51
|
Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S. Structural disorder in viral proteins. Chem Rev 2014; 114:6880-911. [PMID: 24823319 DOI: 10.1021/cr4005692] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, College of Fine Arts and Sciences, and ‡Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | | | | | | | |
Collapse
|
52
|
Dunker AK. Another disordered chameleon: the Micro-Exon Gene 14 protein from Schistosomiasis. Biophys J 2014; 104:2326-8. [PMID: 23746503 DOI: 10.1016/j.bpj.2013.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/10/2013] [Indexed: 11/17/2022] Open
Affiliation(s)
- A Keith Dunker
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
53
|
Han GS, Yu ZG, Anh V. A two-stage SVM method to predict membrane protein types by incorporating amino acid classifications and physicochemical properties into a general form of Chou's PseAAC. J Theor Biol 2013; 344:31-9. [PMID: 24316387 DOI: 10.1016/j.jtbi.2013.11.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/16/2013] [Accepted: 11/24/2013] [Indexed: 01/12/2023]
Abstract
Membrane proteins play important roles in many biochemical processes and are also attractive targets of drug discovery for various diseases. The elucidation of membrane protein types provides clues for understanding the structure and function of proteins. Recently we developed a novel system for predicting protein subnuclear localizations. In this paper, we propose a simplified version of our system for predicting membrane protein types directly from primary protein structures, which incorporates amino acid classifications and physicochemical properties into a general form of pseudo-amino acid composition. In this simplified system, we will design a two-stage multi-class support vector machine combined with a two-step optimal feature selection process, which proves very effective in our experiments. The performance of the present method is evaluated on two benchmark datasets consisting of five types of membrane proteins. The overall accuracies of prediction for five types are 93.25% and 96.61% via the jackknife test and independent dataset test, respectively. These results indicate that our method is effective and valuable for predicting membrane protein types. A web server for the proposed method is available at http://www.juemengt.com/jcc/memty_page.php.
Collapse
Affiliation(s)
- Guo-Sheng Han
- School of Mathematics and Computational Science, Xiangtan University, Hunan 411105, China
| | - Zu-Guo Yu
- School of Mathematics and Computational Science, Xiangtan University, Hunan 411105, China; School of Mathematical Science, Queensland University of Technology, GPO Box 2434, Brisbane Q 4001, Australia.
| | - Vo Anh
- School of Mathematical Science, Queensland University of Technology, GPO Box 2434, Brisbane Q 4001, Australia
| |
Collapse
|
54
|
Peysselon F, Launay G, Lisacek F, Duclos B, Ricard-Blum S. Comparative analysis of Leishmania exoproteomes: Implication for host–pathogen interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2653-62. [DOI: 10.1016/j.bbapap.2013.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/06/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
|
55
|
Malaria proteomics: insights into the parasite-host interactions in the pathogenic space. J Proteomics 2013; 97:107-25. [PMID: 24140976 DOI: 10.1016/j.jprot.2013.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/23/2013] [Accepted: 10/08/2013] [Indexed: 11/23/2022]
Abstract
Proteomics is improving malaria research by providing global information on relevant protein sets from the parasite and the host in connection with its cellular structures and specific functions. In the last decade, reports have described biologically significant elements in the proteome of Plasmodium, which are selectively targeted and quantified, allowing for sensitive and high-throughput comparisons. The identification of molecules by which the parasite and the host react during the malaria infection is crucial to the understanding of the underlying pathogenic mechanisms. Hence, proteomics is playing a major role by defining the elements within the pathogenic space between both organisms that change across the parasite life cycle in association with the host transformation and response. Proteomics has identified post-translational modifications in the parasite and the host that are discussed in terms of functional interactions in malaria parasitism. Furthermore, the contribution of proteomics to the investigation of immunogens for potential vaccine candidates is summarized. The malaria-specific technological advances in proteomics are particularly suited now for identifying host-parasite interactions that could lead to promising targets for therapy, diagnosis or prevention. In this review, we examine the knowledge gained on the biology, pathogenesis, immunity and diagnosis of Plasmodium infection from recent proteomic studies. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
|
56
|
Macêdo AG, Cunha JP, Cardoso THS, Silva MV, Santiago FM, Silva JS, Pirovani CP, Silva DAO, Mineo JR, Mineo TWP. SAG2A protein from Toxoplasma gondii interacts with both innate and adaptive immune compartments of infected hosts. Parasit Vectors 2013; 6:163. [PMID: 23735002 PMCID: PMC3706231 DOI: 10.1186/1756-3305-6-163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 05/26/2013] [Indexed: 11/26/2022] Open
Abstract
Background Toxoplasma gondii is an intracellular parasite that causes relevant clinical disease in humans and animals. Several studies have been performed in order to understand the interactions between proteins of the parasite and host cells. SAG2A is a 22 kDa protein that is mainly found in the surface of tachyzoites. In the present work, our aim was to correlate the predicted three-dimensional structure of this protein with the immune system of infected hosts. Methods To accomplish our goals, we performed in silico analysis of the amino acid sequence of SAG2A, correlating the predictions with in vitro stimulation of antigen presenting cells and serological assays. Results Structure modeling predicts that SAG2A protein possesses an unfolded C-terminal end, which varies its conformation within distinct strain types of T. gondii. This structure within the protein shelters a known B-cell immunodominant epitope, which presents low identity with its closest phyllogenetically related protein, an orthologue predicted in Neospora caninum. In agreement with the in silico observations, sera of known T. gondii infected mice and goats recognized recombinant SAG2A, whereas no serological cross-reactivity was observed with samples from N. caninum animals. Additionally, the C-terminal end of the protein was able to down-modulate pro-inflammatory responses of activated macrophages and dendritic cells. Conclusions Altogether, we demonstrate herein that recombinant SAG2A protein from T. gondii is immunologically relevant in the host-parasite interface and may be targeted in therapeutic and diagnostic procedures designed against the infection.
Collapse
Affiliation(s)
- Arlindo G Macêdo
- Laboratório de Imunoparasitologia "Dr, Mário Endsfeldz Camargo", Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av, Pará 1720-Bloco 4C, Campus Umuarama, Uberlândia, Minas Gerais 38.400-902, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Uversky VN. A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 2013; 22:693-724. [PMID: 23553817 PMCID: PMC3690711 DOI: 10.1002/pro.2261] [Citation(s) in RCA: 373] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 03/23/2013] [Accepted: 03/25/2013] [Indexed: 12/28/2022]
Abstract
The abundant existence of proteins and regions that possess specific functions without being uniquely folded into unique 3D structures has become accepted by a significant number of protein scientists. Sequences of these intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) are characterized by a number of specific features, such as low overall hydrophobicity and high net charge which makes these proteins predictable. IDPs/IDPRs possess large hydrodynamic volumes, low contents of ordered secondary structure, and are characterized by high structural heterogeneity. They are very flexible, but some may undergo disorder to order transitions in the presence of natural ligands. The degree of these structural rearrangements varies over a very wide range. IDPs/IDPRs are tightly controlled under the normal conditions and have numerous specific functions that complement functions of ordered proteins and domains. When lacking proper control, they have multiple roles in pathogenesis of various human diseases. Gaining structural and functional information about these proteins is a challenge, since they do not typically "freeze" while their "pictures are taken." However, despite or perhaps because of the experimental challenges, these fuzzy objects with fuzzy structures and fuzzy functions are among the most interesting targets for modern protein research. This review briefly summarizes some of the recent advances in this exciting field and considers some of the basic lessons learned from the analysis of physics, chemistry, and biology of IDPs.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA.
| |
Collapse
|
58
|
Xue B, Brown CJ, Dunker AK, Uversky VN. Intrinsically disordered regions of p53 family are highly diversified in evolution. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:725-38. [PMID: 23352836 DOI: 10.1016/j.bbapap.2013.01.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/28/2012] [Accepted: 01/11/2013] [Indexed: 11/15/2022]
Abstract
Proteins of the p53 family are expressed in vertebrates and in some invertebrate species. The main function of these proteins is to control and regulate cell cycle in response to various cellular signals, and therefore to control the organism's development. The regulatory functions of the p53 family members originate mostly from their highly-conserved and well-structured DNA-binding domains. Many human diseases (including various types of cancer) are related to the missense mutations within this domain. The ordered DNA-binding domains of the p53 family members are surrounded by functionally important intrinsically disordered regions. In this study, substitution rates and propensities in different regions of p53 were analyzed. The analyses revealed that the ordered DNA-binding domain is conserved, whereas disordered regions are characterized by high sequence diversity. This diversity was reflected both in the number of substitutions and in the types of substitutions to which each amino acid was prone. These results support the existence of a positive correlation between protein intrinsic disorder and sequence divergence during the evolutionary process. This higher sequence divergence provides strong support for the existence of disordered regions in p53 in vivo for if they were structured, they would evolve at similar rates as the rest of the protein.
Collapse
Affiliation(s)
- Bin Xue
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
59
|
Xue B, Dunker AK, Uversky VN. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 2012; 30:137-49. [PMID: 22702725 DOI: 10.1080/07391102.2012.675145] [Citation(s) in RCA: 438] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Intrinsically disordered proteins and intrinsically disordered protein regions are highly abundant in nature. However, the quantitative and qualitative measures of protein intrinsic disorder in species with known genomes are still not available. Furthermore, although the correlation between high fraction of disordered residues and advanced species has been reported, the details of this correlation and the connection between the disorder content and proteome complexity have not been reported as of yet. To fill this gap, we analysed entire proteomes of 3484 species from three domains of life (archaea, bacteria and eukaryotes) and from viruses. Our analysis revealed that the evolution process is characterized by distinctive patterns of changes in the protein intrinsic disorder content. We are showing here that viruses are characterized by the widest spread of the proteome disorder content (the percentage of disordered residues ranges from 7.3% in human coronavirus NL63 to 77.3% in Avian carcinoma virus). For several organisms, a clear correlation is seen between their disorder contents and habitats. In multicellular eukaryotes, there is a weak correlation between the complexity of an organism (evaluated as a number of different cell types) and its overall disorder content. For both the prokaryotes and eukaryotes, the disorder content is generally independent of the proteome size. However, disorder shows a sharp increase associated with the transition from prokaryotic to eukaryotic cells. This suggests that the increased disorder content in eukaryotic proteomes might be used by nature to deal with the increased cell complexity due to the appearance of the various cellular compartments.
Collapse
Affiliation(s)
- Bin Xue
- aDepartment of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | |
Collapse
|
60
|
Antigenic characterization of an intrinsically unstructured protein, Plasmodium falciparum merozoite surface protein 2. Infect Immun 2012; 80:4177-85. [PMID: 22966050 DOI: 10.1128/iai.00665-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Merozoite surface protein 2 (MSP2) is an abundant glycosylphosphatidylinositol (GPI)-anchored protein of Plasmodium falciparum, which is a potential component of a malaria vaccine. As all forms of MSP2 can be categorized into two allelic families, a vaccine containing two representative forms of MSP2 may overcome the problem of diversity in this highly polymorphic protein. Monomeric recombinant MSP2 is an intrinsically unstructured protein, but its conformational properties on the merozoite surface are unknown. This question is addressed here by analyzing the 3D7 and FC27 forms of recombinant and parasite MSP2 using a panel of monoclonal antibodies raised against recombinant MSP2. The epitopes of all antibodies, mapped using both a peptide array and by nuclear magnetic resonance (NMR) spectroscopy on full-length recombinant MSP2, were shown to be linear. The antibodies revealed antigenic differences, which indicate that the conserved N- and C-terminal regions, but not the central variable region, are less accessible in the parasite antigen. This appears to be an intrinsic property of parasite MSP2 and is not dependent on interactions with other merozoite surface proteins as the loss of some conserved-region epitopes seen using the immunofluorescence assay (IFA) on parasite smears was also seen on Western blot analyses of parasite lysates. Further studies of the structural basis of these antigenic differences are required in order to optimize recombinant MSP2 constructs being evaluated as potential vaccine components.
Collapse
|
61
|
Abstract
Malaria is caused by parasites which live in host erythrocytes and remodel these cells to provide optimally for the parasites’ needs by exporting effector proteins into the host cells. Eight years ago the discovery of a host cell targeting sequence present in both soluble and transmembrane
P. falciparum exported proteins generated a starting point for investigating the mechanism of parasite protein transport into infected erythrocytes. Since then many confusing facts about this targeting signal have emerged. In this paper, I try to make sense of them.
Collapse
Affiliation(s)
- Karin Römisch
- Department of Microbiology, Faculty of Biology, Saarland University, Saarbruecken, Germany
| |
Collapse
|
62
|
Feng ZP, Chandrashekaran IR, Low A, Speed TP, Nicholson SE, Norton RS. The N-terminal domains of SOCS proteins: a conserved region in the disordered N-termini of SOCS4 and 5. Proteins 2012; 80:946-57. [PMID: 22423360 DOI: 10.1002/prot.23252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Suppressors of cytokine signaling (SOCS) proteins function as negative regulators of cytokine signaling and are involved in fine tuning the immune response. The structure and role of the SH2 domains and C-terminal SOCS box motifs of the SOCS proteins are well characterized, but the long N-terminal domains of SOCS4-7 remain poorly understood. Here, we present bioinformatic analyses of the N-terminal domains of the mammalian SOCS proteins, which indicate that these domains of SOCS4, 5, 6, and 7 are largely disordered. We have also identified a conserved region of about 70 residues in the N-terminal domains of SOCS4 and 5 that is predicted to be more ordered than the surrounding sequence. The conservation of this region can be traced as far back as lower vertebrates. As conserved regions with increased structural propensity that are located within long disordered regions often contain molecular recognition motifs, we expressed the N-terminal conserved region of mouse SOCS4 for further analysis. This region, mSOCS4₈₆₋₁₅₅, has been characterized by circular dichroism and nuclear magnetic resonance spectroscopy, both of which indicate that it is predominantly unstructured in aqueous solution, although it becomes helical in the presence of trifluoroethanol. The high degree of sequence conservation of this region across different species and between SOCS4 and SOCS5 nonetheless implies that it has an important functional role, and presumably this region adopts a more ordered conformation in complex with its partners. The recombinant protein will be a valuable tool in identifying these partners and defining the structures of these complexes.
Collapse
Affiliation(s)
- Zhi-Ping Feng
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
63
|
Abstract
Based on early bioinformatic studies on a handful of species, the frequency of structural disorder of proteins is generally thought to be much higher in eukaryotes than in prokaryotes. To refine this view, we present here a comparative prediction study and analysis of 194 fully described eukaryotic proteomes and 87 reference prokaryotes for structural disorder. We found that structural disorder does distinguish eukaryotes from prokaryotes, but its frequency spans a very wide range in the two superkingdoms that largely overlap. The number of disordered binding regions and different Pfam domain types also contribute to distinguish eukaryotes from prokaryotes. Unexpectedly, the highest levels--and highest variability--of predicted disorder is found in protists, i.e. single-celled eukaryotes, often surpassing more complex eukaryote organisms, plants and animals. This trend contrasts with that of the number of domain types, which increases rather monotonously toward more complex organisms. The level of structural disorder appears to be strongly correlated with lifestyle, because some obligate intracellular parasites and endosymbionts have the lowest levels, whereas host-changing parasites have the highest level of predicted disorder. We conclude that protists have been the evolutionary hot-bed of experimentation with structural disorder, in a period when structural disorder was actively invented and the major functional classes of disordered proteins established.
Collapse
Affiliation(s)
- Rita Pancsa
- VIB Department of Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Tompa
- VIB Department of Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
64
|
Guan G, Moreau E, Liu J, Ma M, Rogniaux H, Liu A, Niu Q, Li Y, Ren Q, Luo J, Chauvin A, Yin H. BQP35 is a novel member of the intrinsically unstructured protein (IUP) family which is a potential antigen for the sero-diagnosis of Babesia sp. BQ1 (Lintan) infection. Vet Parasitol 2012; 187:421-30. [PMID: 22317784 DOI: 10.1016/j.vetpar.2012.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 01/04/2012] [Accepted: 01/13/2012] [Indexed: 11/19/2022]
Abstract
A new gene of Babesia sp. BQ1 (Lintan) (BQP35) was cloned by screening a merozoite cDNA expression library with infected sheep serum and using rapid amplification of cDNA ends (RACE). The nucleotide sequence of the cDNA was 1140bp with an open reading frame (ORF) of 936bp encoding a 35-kDa predicted polypeptide with 311 amino acid residues. Comparison of BQP35 cDNA and genomic DNA sequences showed that BQP35 does not possess an intron. Recombinant BQP35 (rBQP35), expressed in a prokaryotic expression system, showed abnormally slow migration on SDS-PAGE. Gel shifting, amino acid sequence and in silico disorder region prediction indicated that BQP35 protein has characteristics of intrinsically unstructured proteins (IUPs). This is the first description of such proteins in the Babesia genus. BQP35 induced antibodies production as early as one week after Babesia sp. BQ1 (Lintan) infection in sheep. No cross-reaction was observed with sera from sheep infected with other ovine piroplasms dominant in China, except with Babesia sp. Tianzhu. The interest of BQP35 as a diagnostic antigen is discussed.
Collapse
Affiliation(s)
- Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu 730046, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Mayer C, Slater L, Erat MC, Konrat R, Vakonakis I. Structural analysis of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) intracellular domain reveals a conserved interaction epitope. J Biol Chem 2012; 287:7182-9. [PMID: 22249178 PMCID: PMC3293552 DOI: 10.1074/jbc.m111.330779] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasmodium falciparum-infected red blood cells adhere to endothelial cells, thereby obstructing the microvasculature. Erythrocyte adherence is directly associated with severe malaria and increased disease lethality, and it is mediated by the PfEMP1 family. PfEMP1 clustering in knob-like protrusions on the erythrocyte membrane is critical for cytoadherence, however the molecular mechanisms behind this system remain elusive. Here, we show that the intracellular domains of the PfEMP1 family (ATS) share a unique molecular architecture, which comprises a minimal folded core and extensive flexible elements. A conserved flexible segment at the ATS center is minimally restrained by the folded core. Yeast-two-hybrid data and a novel sequence analysis method suggest that this central segment contains a conserved protein interaction epitope. Interestingly, ATS in solution fails to bind the parasite knob-associated histidine-rich protein (KAHRP), an essential cytoadherence component. Instead, we demonstrate that ATS associates with PFI1780w, a member of the Plasmodium helical interspersed sub-telomeric (PHIST) family. PHIST domains are widespread in exported parasite proteins, however this is the first specific molecular function assigned to any variant of this family. We propose that PHIST domains facilitate protein interactions, and that the conserved ATS epitope may be targeted to disrupt the parasite cytoadherence system.
Collapse
Affiliation(s)
- Christina Mayer
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
66
|
Southworth PM, Hyde JE, Sims PFG. A mass spectrometric strategy for absolute quantification of Plasmodium falciparum proteins of low abundance. Malar J 2011; 10:315. [PMID: 22027174 PMCID: PMC3219587 DOI: 10.1186/1475-2875-10-315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/25/2011] [Indexed: 11/10/2022] Open
Abstract
Selected reaction monitoring mass spectrometry has been combined with the use of an isotopically labelled synthetic protein, made up of proteotypic tryptic peptides selected from parasite proteins of interest. This allows, for the first time, absolute quantification of proteins from Plasmodium falciparum. This methodology is demonstrated to be of sufficient sensitivity to quantify, even within whole cell extracts, proteins of low abundance from the folate pathway as well as more abundant "housekeeping" proteins.
Collapse
Affiliation(s)
- Paul M Southworth
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | |
Collapse
|
67
|
Mai K, Smith NC, Feng ZP, Katrib M, Šlapeta J, Šlapetova I, Wallach MG, Luxford C, Davies MJ, Zhang X, Norton RS, Belli SI. Peroxidase catalysed cross-linking of an intrinsically unstructured protein via dityrosine bonds in the oocyst wall of the apicomplexan parasite, Eimeria maxima. Int J Parasitol 2011; 41:1157-64. [DOI: 10.1016/j.ijpara.2011.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/30/2011] [Accepted: 07/02/2011] [Indexed: 10/18/2022]
|
68
|
Orosz F. Apicomplexan apicortins possess a long disordered N-terminal extension. INFECTION GENETICS AND EVOLUTION 2011; 11:1037-44. [DOI: 10.1016/j.meegid.2011.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 01/01/2023]
|
69
|
Abstract
MOTIVATION Predictions, and experiments to a lesser extent, following the decoding of the human genome showed that a significant fraction of gene products do not have well-defined 3D structures. While the presence of structured domains traditionally suggested function, it was not clear what the absence of structure implied. These and many other findings initiated the extensive theoretical and experimental research into these types of proteins, commonly known as intrinsically disordered proteins (IDPs). Crucial to understanding IDPs is the evaluation of structural predictors based on different principles and trained on various datasets, which is currently the subject of active research. The view is emerging that structural disorder can be considered as a separate structural category and not simply as absence of secondary and/or tertiary structure. IDPs perform essential functions and their improper functioning is responsible for human diseases such as neurodegenerative disorders.
Collapse
Affiliation(s)
- Ferenc Orosz
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Karolina út 29, Budapest, H-1113 Hungary.
| | | |
Collapse
|
70
|
Patarroyo ME, Bermúdez A, Patarroyo MA. Structural and Immunological Principles Leading to Chemically Synthesized, Multiantigenic, Multistage, Minimal Subunit-Based Vaccine Development. Chem Rev 2011; 111:3459-507. [DOI: 10.1021/cr100223m] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad Nacional de Colombia
| | - Adriana Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad del Rosario
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad del Rosario
| |
Collapse
|
71
|
Mahdavi A, Jahandideh S. Application of density similarities to predict membrane protein types based on pseudo-amino acid composition. J Theor Biol 2011; 276:132-7. [PMID: 21296088 DOI: 10.1016/j.jtbi.2011.01.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 01/28/2011] [Accepted: 01/30/2011] [Indexed: 11/26/2022]
Abstract
Cell membranes provide integrity of living cells. Although the stability of biological membrane is maintained by the lipid bilayer, membrane proteins perform most of the specific functions such as signal transduction, transmembrane transport, etc. Then it is plausible membrane proteins being attractive drug targets. In this article, based on the concept of using the pseudo-amino acid composition to define a protein, three different density similarities are developed for predicting the membrane protein type. The predicted results showed that the proposed approach can remarkably improve the accuracy, and might become a useful tool for predicting the other attributes of proteins as well.
Collapse
Affiliation(s)
- Abbas Mahdavi
- Department of Statistics, Faculty of Science, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
72
|
A comparative analysis of envelope and tegument proteins of suid herpesvirus 1, bovine herpesvirus 1 and bovine herpesvirus 5. Arch Virol 2010; 155:1687-92. [DOI: 10.1007/s00705-010-0747-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 06/27/2010] [Indexed: 11/26/2022]
|
73
|
Prudencio CR, Pérez de la Lastra JM, Canales M, Villar M, de la Fuente J. Mapping protective epitopes in the tick and mosquito subolesin ortholog proteins. Vaccine 2010; 28:5398-406. [DOI: 10.1016/j.vaccine.2010.06.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/28/2010] [Accepted: 06/04/2010] [Indexed: 11/24/2022]
|
74
|
Xue B, Williams RW, Oldfield CJ, Dunker AK, Uversky VN. Archaic chaos: intrinsically disordered proteins in Archaea. BMC SYSTEMS BIOLOGY 2010; 4 Suppl 1:S1. [PMID: 20522251 PMCID: PMC2880407 DOI: 10.1186/1752-0509-4-s1-s1] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Many proteins or their regions known as intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) lack unique 3D structure in their native states under physiological conditions yet fulfill key biological functions. Earlier bioinformatics studies showed that IDPs and IDRs are highly abundant in different proteomes and carry out mostly regulatory functions related to molecular recognition and signal transduction. Archaea belong to an intriguing domain of life whose members, being microbes, are characterized by a unique mosaic-like combination of bacterial and eukaryotic properties and include inhabitants of some of the most extreme environments on the planet. With the expansion of the archaea genome data (more than fifty archaea species from five different phyla are known now), and with recent improvements in the accuracy of intrinsic disorder prediction, it is time to re-examine the abundance of IDPs and IDRs in the archaea domain. RESULTS The abundance of IDPs and IDRs in 53 archaea species is analyzed. The amino acid composition profiles of these species are generally quite different from each other. The disordered content is highly species-dependent. Thermoproteales proteomes have 14% of disordered residues, while in Halobacteria, this value increases to 34%. In proteomes of these two phyla, proteins containing long disordered regions account for 12% and 46%, whereas 4% and 26% their proteins are wholly disordered. These three measures of disorder content are linearly correlated with each other at the genome level. There is a weak correlation between the environmental factors (such as salinity, pH and temperature of the habitats) and the abundance of intrinsic disorder in Archaea, with various environmental factors possessing different disorder-promoting strengths. Harsh environmental conditions, especially those combining several hostile factors, clearly favor increased disorder content. Intrinsic disorder is highly abundant in functional Pfam domains of the archaea origin. The analysis based on the disordered content and phylogenetic tree indicated diverse evolution of intrinsic disorder among various classes and species of Archaea. CONCLUSIONS Archaea proteins are rich in intrinsic disorder. Some of these IDPs and IDRs likely evolve to help archaea to accommodate to their hostile habitats. Other archaean IDPs and IDRs possess crucial biological functions similar to those of the bacterial and eukaryotic IDPs/IDRs.
Collapse
Affiliation(s)
- Bin Xue
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Robert W Williams
- Department of Biomedical Informatics, Uniformed Services University, Bethesda, MD 20814 , USA
| | - Christopher J Oldfield
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Informatics, Indianapolis, IN 46202, USA
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vladimir N Uversky
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
75
|
|
76
|
Frugier M, Bour T, Ayach M, Santos MAS, Rudinger-Thirion J, Théobald-Dietrich A, Pizzi E. Low Complexity Regions behave as tRNA sponges to help co-translational folding of plasmodial proteins. FEBS Lett 2009; 584:448-54. [PMID: 19900443 DOI: 10.1016/j.febslet.2009.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
In most organisms, the information necessary to specify the native 3D-structures of proteins is encoded in the corresponding mRNA sequences. Translational accuracy and efficiency are coupled and sequences that are slowly translated play an essential role in the concomitant folding of protein domains. Here, we suggest that the well-known mechanisms for the regulation of translational efficiency, which involves mRNA structure and/or asymmetric tRNA abundance, do not apply to all organisms. We propose that Plasmodium, the parasite responsible for malaria, uses an alternative strategy to slow down ribosomal speed and avoid multidomain protein misfolding during translation. In our model, the abundant Low Complexity Regions present in Plasmodium proteins replace the codon preferences, which influence the assembly of protein secondary structures.
Collapse
Affiliation(s)
- Magali Frugier
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
77
|
Webster DE, Wang L, Mulcair M, Ma C, Santi L, Mason HS, Wesselingh SL, Coppel RL. Production and characterization of an orally immunogenic Plasmodium antigen in plants using a virus-based expression system. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:846-55. [PMID: 19781007 DOI: 10.1111/j.1467-7652.2009.00447.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Increasing numbers of plant-made vaccines and pharmaceuticals are entering the late stage of product development and commercialization. Despite the theoretical benefits of such production, expression of parasite antigens in plants, particularly those from Plasmodium, the causative parasites for malaria, have achieved only limited success. We have previously shown that stable transformation of tobacco plants with a plant-codon optimized form of the Plasmodium yoelii merozoite surface protein 4/5 (PyMSP4/5) gene resulted in PyMSP4/5 expression of up to approximately 0.25% of total soluble protein. In this report, we describe the rapid expression of PyMSP4/5 in Nicotiana benthamiana leaves using the deconstructed tobacco mosaic virus-based magnICON expression system. PyMSP4/5 yields of up to 10% TSP or 1-2 mg/g of fresh weight were consistently achieved. Characterization of the recombinant plant-made PyMSP4/5 indicates that it is structurally similar to PyMSP4/5 expressed by Escherichia coli. It is notable that the plant-made PyMSP4/5 protein retained its immunogenicity following long-term storage at ambient temperature within freeze-dried leaves. With assistance from a mucosal adjuvant the PyMSP4/5-containing leaves induced PyMSP4/5-specific antibodies when delivered orally to naïve mice or mice primed by a DNA vaccine. This study provides evidence that immunogenic Plasmodium antigens can be produced in large quantities in plants using the magnICON viral vector system.
Collapse
Affiliation(s)
- Diane E Webster
- School of Biological Sciences, Monash University, Clayton, Vic, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Vaccine potentials of an intrinsically unstructured fragment derived from the blood stage-associated Plasmodium falciparum protein PFF0165c. Infect Immun 2009; 77:5701-9. [PMID: 19786562 DOI: 10.1128/iai.00652-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have identified new malaria vaccine candidates through the combination of bioinformatics prediction of stable protein domains in the Plasmodium falciparum genome, chemical synthesis of polypeptides, in vitro biological functional assays, and association of an antigen-specific antibody response with protection against clinical malaria. Within the predicted open reading frame of P. falciparum hypothetical protein PFF0165c, several segments with low hydrophobic amino acid content, which are likely to be intrinsically unstructured, were identified. The synthetic peptide corresponding to one such segment (P27A) was well recognized by sera and peripheral blood mononuclear cells of adults living in different regions where malaria is endemic. High antibody titers were induced in different strains of mice and in rabbits immunized with the polypeptide formulated with different adjuvants. These antibodies recognized native epitopes in P. falciparum-infected erythrocytes, formed distinct bands in Western blots, and were inhibitory in an in vitro antibody-dependent cellular inhibition parasite-growth assay. The immunological properties of P27A, together with its low polymorphism and association with clinical protection from malaria in humans, warrant its further development as a malaria vaccine candidate.
Collapse
|
79
|
Adda CG, Murphy VJ, Sunde M, Waddington LJ, Jesse S, Talbo GH, Vingas K, Kienzle V, Masciantonio R, Howlett GJ, Hodder AN, Foley M, Anders RF. Plasmodium falciparum merozoite surface protein 2 is unstructured and forms amyloid-like fibrils. Mol Biochem Parasitol 2009; 166:159-71. [PMID: 19450733 PMCID: PMC2713819 DOI: 10.1016/j.molbiopara.2009.03.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 03/30/2009] [Accepted: 03/30/2009] [Indexed: 12/30/2022]
Abstract
Several merozoite surface proteins are being assessed as potential components of a vaccine against Plasmodium falciparum, the cause of the most serious form of human malaria. One of these proteins, merozoite surface protein 2 (MSP2), is unusually hydrophilic and contains tandem sequence repeats, characteristics of intrinsically unstructured proteins. A range of physicochemical studies has confirmed that recombinant forms of MSP2 are largely unstructured. Both dimorphic types of MSP2 (3D7 and FC27) are equivalently extended in solution and form amyloid-like fibrils although with different kinetics and structural characteristics. These fibrils have a regular underlying beta-sheet structure and both fibril types stain with Congo Red, but only the FC27 fibrils stain with Thioflavin T. 3D7 MSP2 fibrils seeded the growth of fibrils from 3D7 or FC27 MSP2 monomer indicating the involvement of a conserved region of MSP2 in fibril formation. Consistent with this, digestion of fibrils with proteinase K generated resistant peptides, which included the N-terminal conserved region of MSP2. A monoclonal antibody that reacted preferentially with monomeric recombinant MSP2 did not react with the antigen in situ on the merozoite surface. Glutaraldehyde cross-linking of infected erythrocytes generated MSP2 oligomers similar to those formed by polymeric recombinant MSP2. We conclude that MSP2 oligomers containing intermolecular beta-strand interactions similar to those in amyloid fibrils may be a component of the fibrillar surface coat on P. falciparum merozoites.
Collapse
Affiliation(s)
| | - Vince J. Murphy
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Margaret Sunde
- School of Molecular and Microbial Biosciences, University of Sydney, NSW, Australia
| | - Lynne J. Waddington
- Division of Molecular and Health Technologies, CSIRO, Parkville, Victoria, Australia
| | - Schloegel Jesse
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Gert H. Talbo
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Kleo Vingas
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Vivian Kienzle
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | | | - Geoffrey J. Howlett
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Anthony N. Hodder
- The Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | - Michael Foley
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Robin F. Anders
- Department of Biochemistry, La Trobe University, Victoria, Australia
| |
Collapse
|
80
|
Dalby AR. A comparative proteomic analysis of the simple amino acid repeat distributions in Plasmodia reveals lineage specific amino acid selection. PLoS One 2009; 4:e6231. [PMID: 19597555 PMCID: PMC2705789 DOI: 10.1371/journal.pone.0006231] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 06/17/2009] [Indexed: 11/19/2022] Open
Abstract
Background Microsatellites have been used extensively in the field of comparative genomics. By studying microsatellites in coding regions we have a simple model of how genotypic changes undergo selection as they are directly expressed in the phenotype as altered proteins. The simplest of these tandem repeats in coding regions are the tri-nucleotide repeats which produce a repeat of a single amino acid when translated into proteins. Tri-nucleotide repeats are often disease associated, and are also known to be unstable to both expansion and contraction. This makes them sensitive markers for studying proteome evolution, in closely related species. Results The evolutionary history of the family of malarial causing parasites Plasmodia is complex because of the life-cycle of the organism, where it interacts with a number of different hosts and goes through a series of tissue specific stages. This study shows that the divergence between the primate and rodent malarial parasites has resulted in a lineage specific change in the simple amino acid repeat distribution that is correlated to A–T content. The paper also shows that this altered use of amino acids in SAARs is consistent with the repeat distributions being under selective pressure. Conclusions The study shows that simple amino acid repeat distributions can be used to group related species and to examine their phylogenetic relationships. This study also shows that an outgroup species with a similar A–T content can be distinguished based only on the amino acid usage in repeats, and suggest that this might be a useful feature for proteome clustering. The lineage specific use of amino acids in repeat regions suggests that comparative studies of SAAR distributions between proteomes gives an insight into the mechanisms of expansion and the selective pressures acting on the organism.
Collapse
Affiliation(s)
- Andrew R Dalby
- Department of Statistics, University of Oxford, Oxford, UK.
| |
Collapse
|
81
|
Vaughan K, Blythe M, Greenbaum J, Zhang Q, Peters B, Doolan DL, Sette A. Meta-analysis of immune epitope data for all Plasmodia: overview and applications for malarial immunobiology and vaccine-related issues. Parasite Immunol 2009; 31:78-97. [PMID: 19149776 DOI: 10.1111/j.1365-3024.2008.01077.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We present a comprehensive meta-analysis of more than 500 references, describing nearly 5000 unique B cell and T cell epitopes derived from the Plasmodium genus, and detailing thousands of immunological assays. This is the first inventory of epitope data related to malaria-specific immunology, plasmodial pathogenesis, and vaccine performance. The survey included host and pathogen species distribution of epitopes, the number of antibody vs. CD4(+) and CD8(+) T cell epitopes, the genomic distribution of recognized epitopes, variance among epitopes from different parasite strains, and the characterization of protective epitopes and of epitopes associated with parasite evasion of the host immune response. The results identify knowledge gaps and areas for further investigation. This information has relevance to issues, such as the identification of epitopes and antigens associated with protective immunity, the design and development of candidate malaria vaccines, and characterization of immune response to strain polymorphisms.
Collapse
Affiliation(s)
- K Vaughan
- La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
82
|
Galea CA, High A, Obenauer JC, Mishra A, Park CG, Punta M, Schlessinger A, Ma J, Rost B, Slaughter CA, Kriwacki RW. Large-scale analysis of thermostable, mammalian proteins provides insights into the intrinsically disordered proteome. J Proteome Res 2009; 8:211-26. [PMID: 19067583 PMCID: PMC2760310 DOI: 10.1021/pr800308v] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intrinsically disordered proteins are predicted to be highly abundant and play broad biological roles in eukaryotic cells. In particular, by virtue of their structural malleability and propensity to interact with multiple binding partners, disordered proteins are thought to be specialized for roles in signaling and regulation. However, these concepts are based on in silico analyses of translated whole genome sequences, not on large-scale analyses of proteins expressed in living cells. Therefore, whether these concepts broadly apply to expressed proteins is currently unknown. Previous studies have shown that heat-treatment of cell extracts lead to partial enrichment of soluble, disordered proteins. On the basis of this observation, we sought to address the current dearth of knowledge about expressed, disordered proteins by performing a large-scale proteomics study of thermostable proteins isolated from mouse fibroblast cells. With the use of novel multidimensional chromatography methods and mass spectrometry, we identified a total of 1320 thermostable proteins from these cells. Further, we used a variety of bioinformatics methods to analyze the structural and biological properties of these proteins. Interestingly, more than 900 of these expressed proteins were predicted to be substantially disordered. These were divided into two categories, with 514 predicted to be predominantly disordered and 395 predicted to exhibit both disordered and ordered/folded features. In addition, 411 of the thermostable proteins were predicted to be folded. Despite the use of heat treatment (60 min at 98 degrees C) to partially enrich for disordered proteins, which might have been expected to select for small proteins, the sequences of these proteins exhibited a wide range of lengths (622 +/- 555 residues (average length +/- standard deviation) for disordered proteins and 569 +/- 598 residues for folded proteins). Computational structural analyses revealed several unexpected features of the thermostable proteins: (1) disordered domains and coiled-coil domains occurred together in a large number of disordered proteins, suggesting functional interplay between these domains; and (2) more than 170 proteins contained lengthy domains (>300 residues) known to be folded. Reference to Gene Ontology Consortium functional annotations revealed that, while disordered proteins play diverse biological roles in mouse fibroblasts, they do exhibit heightened involvement in several functional categories, including, cytoskeletal structure and cell movement, metabolic and biosynthetic processes, organelle structure, cell division, gene transcription, and ribonucleoprotein complexes. We believe that these results reflect the general properties of the mouse intrinsically disordered proteome (IDP-ome) although they also reflect the specialized physiology of fibroblast cells. Large-scale identification of expressed, thermostable proteins from other cell types in the future, grown under varied physiological conditions, will dramatically expand our understanding of the structural and biological properties of disordered eukaryotic proteins.
Collapse
Affiliation(s)
- Charles A. Galea
- Department of Structural Biology, St. Jude Children's Research Hospital, 332 North Lauderdale St., Memphis, TN USA 38105
| | - Anthony High
- Hartwell Center for Bioinformatics and Biotechnology, St Jude Children's Research Hospital, 332 North Lauderdale St, Memphis, TN 38105, USA
| | - John C. Obenauer
- Hartwell Center for Bioinformatics and Biotechnology, St Jude Children's Research Hospital, 332 North Lauderdale St, Memphis, TN 38105, USA
| | - Ashutosh Mishra
- Hartwell Center for Bioinformatics and Biotechnology, St Jude Children's Research Hospital, 332 North Lauderdale St, Memphis, TN 38105, USA
| | - Cheon-Gil Park
- Department of Structural Biology, St. Jude Children's Research Hospital, 332 North Lauderdale St., Memphis, TN USA 38105
| | - Marco Punta
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Avner Schlessinger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jing Ma
- Hartwell Center for Bioinformatics and Biotechnology, St Jude Children's Research Hospital, 332 North Lauderdale St, Memphis, TN 38105, USA
| | - Burkhard Rost
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Clive A. Slaughter
- Hartwell Center for Bioinformatics and Biotechnology, St Jude Children's Research Hospital, 332 North Lauderdale St, Memphis, TN 38105, USA
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, 332 North Lauderdale St., Memphis, TN USA 38105
- Department of Molecular Sciences, University of Tennessee Health Sciences Center, Memphis, TN, USA
| |
Collapse
|
83
|
Heterologous expression of plasmodial proteins for structural studies and functional annotation. Malar J 2008; 7:197. [PMID: 18828893 PMCID: PMC2567985 DOI: 10.1186/1475-2875-7-197] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/01/2008] [Indexed: 11/10/2022] Open
Abstract
Malaria remains the world's most devastating tropical infectious disease with as many as 40% of the world population living in risk areas. The widespread resistance of Plasmodium parasites to the cost-effective chloroquine and antifolates has forced the introduction of more costly drug combinations, such as Coartem®. In the absence of a vaccine in the foreseeable future, one strategy to address the growing malaria problem is to identify and characterize new and durable antimalarial drug targets, the majority of which are parasite proteins. Biochemical and structure-activity analysis of these proteins is ultimately essential in the characterization of such targets but requires large amounts of functional protein. Even though heterologous protein production has now become a relatively routine endeavour for most proteins of diverse origins, the functional expression of soluble plasmodial proteins is highly problematic and slows the progress of antimalarial drug target discovery. Here the status quo of heterologous production of plasmodial proteins is presented, constraints are highlighted and alternative strategies and hosts for functional expression and annotation of plasmodial proteins are reviewed.
Collapse
|
84
|
Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate Molecular Interactions of P. falciparum Merozoite Proteins Involved in Invasion of Red Blood Cells and Their Implications for Vaccine Design. Chem Rev 2008; 108:3656-705. [DOI: 10.1021/cr068407v] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Mauricio Urquiza
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Gladys Cifuentes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Claudia Reyes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | | |
Collapse
|
85
|
Ram EVSR, Naik R, Ganguli M, Habib S. DNA organization by the apicoplast-targeted bacterial histone-like protein of Plasmodium falciparum. Nucleic Acids Res 2008; 36:5061-73. [PMID: 18663012 PMCID: PMC2528193 DOI: 10.1093/nar/gkn483] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Apicomplexans, including the pathogens Plasmodium and Toxoplasma, carry a nonphotosynthetic plastid of secondary endosymbiotic origin called the apicoplast. The P. falciparum apicoplast contains a 35 kb, circular DNA genome with limited coding capacity that lacks genes encoding proteins for DNA organization and replication. We report identification of a nuclear-encoded bacterial histone-like protein (PfHU) involved in DNA compaction in the apicoplast. PfHU is associated with apicoplast DNA and is expressed throughout the parasite's intra-erythocytic cycle. The protein binds DNA in a sequence nonspecific manner with a minimum binding site length of ∼27 bp and a Kd of ∼63 nM and displays a preference for supercoiled DNA. PfHU is capable of condensing Escherichia coli nucleoids in vivo indicating its role in DNA compaction. The unique 42 aa C-terminal extension of PfHU influences its DNA condensation properties. In contrast to bacterial HUs that bend DNA, PfHU promotes concatenation of linear DNA and inhibits DNA circularization. Atomic Force Microscopic study of PfHU–DNA complexes shows protein concentration-dependent DNA stiffening, intermolecular bundling and formation of DNA bridges followed by assembly of condensed DNA networks. Our results provide the first functional characterization of an apicomplexan HU protein and provide additional evidence for red algal ancestry of the apicoplast.
Collapse
Affiliation(s)
- E V S Raghu Ram
- Division of Molecular and Structural Biology, Central Drug Research Institute, Lucknow-226 001, India
| | | | | | | |
Collapse
|
86
|
Zhang X, Perugini MA, Yao S, Adda CG, Murphy VJ, Low A, Anders RF, Norton RS. Solution conformation, backbone dynamics and lipid interactions of the intrinsically unstructured malaria surface protein MSP2. J Mol Biol 2008; 379:105-21. [PMID: 18440022 PMCID: PMC4432223 DOI: 10.1016/j.jmb.2008.03.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 11/27/2022]
Abstract
Merozoite surface protein 2 (MSP2), one of the most abundant proteins on the surface of the merozoite stage of Plasmodium falciparum, is a potential component of a malaria vaccine, having shown some efficacy in a clinical trial in Papua New Guinea. MSP2 is a GPI-anchored protein consisting of conserved N- and C-terminal domains and a variable central region. Previous studies have shown that it is an intrinsically unstructured protein with a high propensity for fibril formation, in which the conserved N-terminal domain has a key role. Secondary structure predictions suggest that MSP2 contains long stretches of random coil with very little alpha-helix or beta-strand. Circular dichroism spectroscopy confirms this prediction under physiological conditions (pH 7.4) and in more acidic solutions (pH 6.2 and 3.4). Pulsed field gradient NMR diffusion measurements showed that MSP2 under physiological conditions has a large effective hydrodynamic radius consistent with an intrinsic pre-molten globule state, as defined by Uversky. This was supported by sedimentation velocity studies in the analytical ultracentrifuge. NMR resonance assignments have been obtained for FC27 MSP2, allowing the residual secondary structure and backbone dynamics to be defined. There is some motional restriction in the conserved C-terminal region in the vicinity of an intramolecular disulfide bond. Two other regions show motional restrictions, both of which display helical structure propensities. One of these helical regions is within the conserved N-terminal domain, which adopts essentially the same conformation in full-length MSP2 as in corresponding peptide fragments. We see no evidence of long-range interactions in the full-length protein. MSP2 associates with lipid micelles, but predominantly through the N-terminal region rather than the C terminus, which is GPI-anchored to the membrane in the parasite.
Collapse
Affiliation(s)
- Xuecheng Zhang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3050, Australia
- Department of Biochemistry, La Trobe University, Bundoora, 3086, Australia
| | - Matthew A. Perugini
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, 3010, Australia
| | - Shenggen Yao
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3050, Australia
| | | | - Vincent J. Murphy
- Department of Biochemistry, La Trobe University, Bundoora, 3086, Australia
| | - Andrew Low
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3050, Australia
| | - Robin F. Anders
- Department of Biochemistry, La Trobe University, Bundoora, 3086, Australia
| | - Raymond S. Norton
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3050, Australia
| |
Collapse
|
87
|
Mohan A, Sullivan Jr WJ, Radivojac P, Dunker AK, Uversky VN. Intrinsic disorder in pathogenic and non-pathogenic microbes: discovering and analyzing the unfoldomes of early-branching eukaryotes. MOLECULAR BIOSYSTEMS 2008; 4:328-40. [DOI: 10.1039/b719168e] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
88
|
Casta LJ, Buguliskis JS, Matsumoto Y, Taraschi TF. Expression and biochemical characterization of the Plasmodium falciparum DNA repair enzyme, flap endonuclease-1 (PfFEN-1). Mol Biochem Parasitol 2008; 157:1-12. [PMID: 17928073 PMCID: PMC2699572 DOI: 10.1016/j.molbiopara.2007.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 08/24/2007] [Accepted: 08/27/2007] [Indexed: 11/29/2022]
Abstract
Flap endonuclease-1 (FEN-1) is a structure-specific endonuclease that is critical for the resolution of single-stranded DNA flap intermediates that form during long patch DNA base excision repair (BER). This investigation reports that Plasmodium species encode FEN-1 homologs. Protein sequence analysis revealed the N and I domains of Plasmodium falciparum (PfFEN-1) and Plasmodium yoelii (PyFEN-1) to be homologous to FEN-1 from other species. However, each possessed an extended C domain which had limited homology to apicomplexan FEN-1s and no homology to eukaryotic FEN-1s. A conserved proliferating cell nuclear antigen (PCNA)-binding site was identified at an internal location rather than the extreme C-terminal location typically seen in FEN-1 from other organisms. The endonuclease and exonuclease activities of PfFEN-1 and PyFEN-1 were investigated using recombinant protein produced in Escherichia coli. Pf and PyFEN-1 possessed DNA structure-specific flap endonuclease and 5'-->3' exonuclease activities, similar to FEN-1s from other species. Endonuclease activity was stimulated by Mg(2+) or Mn(2+) and inhibited by monovalent ions (>20.0 mM). A PfFEN-1 C-terminal truncation mutant lacking the terminal 250 amino acids (PfFEN-1DeltaC) had endonuclease activity that was approximately 130-fold greater (k(cat)=1.2x10(-1)) than full-length PfFEN-1 (k(cat)=9.1x10(-4)) or approximately 240-fold greater than PyFEN-1 (k(cat)=4.9x10(-4)) in vitro. PfFEN-1 generated a nicked DNA substrate that was ligated by recombinant Pf DNA Ligase I (PfLigI) using an in vitro DNA repair assay. Plasmodium FEN-1s have enzymatic activities similar to other species but contain extended C-termini and a more internally located PCNA-binding site.
Collapse
Affiliation(s)
- Louis J. Casta
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Jeffery S. Buguliskis
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Yoshihiro Matsumoto
- Medical Science Division, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111
| | - Theodore F. Taraschi
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
89
|
Delbecq S, Auguin D, Yang YS, Löhr F, Arold S, Schetters T, Précigout E, Gorenflot A, Roumestand C. The solution structure of the adhesion protein Bd37 from Babesia divergens reveals structural homology with eukaryotic proteins involved in membrane trafficking. J Mol Biol 2007; 375:409-24. [PMID: 18035372 DOI: 10.1016/j.jmb.2007.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Revised: 08/07/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
Babesia divergens is the Apicomplexa agent of the bovine babesiosis in Europe: this infection leads to growth and lactation decrease, so that economical losses due to this parasite are sufficient to require the development of a vaccine. The major surface antigen of B. divergens has been described as a 37 kDa protein glycosyl phosphatidyl inositol (GPI)-anchored at the surface of the merozoite. The immuno-prophylactic potential of Bd37 has been demonstrated, and we present here the high-resolution solution structure of the 27 kDa structured core of Bd37 (Delta-Bd37) using NMR spectroscopy. A model for the whole protein has been obtained using additional small angle X-ray scattering (SAXS) data. The knowledge of the 3D structure of Bd37 allowed the precise epitope mapping of antibodies on its surface. Interestingly, the geometry of Delta-Bd37 reveals an intriguing similarity with the exocyst subunit Exo84p C-terminal region, an eukaryotic protein that has a direct implication in vesicle trafficking. This strongly suggests that Apicomplexa have developed in parallel molecular machines similar in structure and function to the ones used for endo- and exocytosis in eukaryotic cells.
Collapse
Affiliation(s)
- Stéphane Delbecq
- DIMNP, Université Montpellier 1 et 2, CNRS, Laboratoire de Biologie Cellulaire et Moléculaire, ERT 1038, Faculté de Pharmacie BP 14491, Université de Montpellier I, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Raghu Ram EVS, Kumar A, Biswas S, Kumar A, Chaubey S, Siddiqi MI, Habib S. Nuclear gyrB encodes a functional subunit of the Plasmodium falciparum gyrase that is involved in apicoplast DNA replication. Mol Biochem Parasitol 2007; 154:30-9. [PMID: 17499371 DOI: 10.1016/j.molbiopara.2007.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 11/30/2022]
Abstract
The DNA replication machinery of the Plasmodium falciparum apicoplast is a validated drug target. Nuclear-encoded gyrase subunits are predicted to play a critical role in maintaining DNA topology during the D-loop/bi-directional ori replication process of the parasite. We show the presence of P. falciparum gyrase subunits in parasite lysates by using antibodies generated against recombinant gyrase A and B. The ATPase activity of PfGyrB was inhibited by novobiocin that also caused parasite death in culture. Reduction of apicoplast/nuclear DNA ratio in the presence of novobiocin indicated that the drug targets apicoplast DNA replication. Molecular modeling of gyrase A and B subunits revealed extensive fold conservation with the Escherichia coli counterparts as well as the presence of a long disordered loop adjacent to the ATPase domain of PfGyrB. Our results have implications for development of PfGyrB as a drug target against malaria.
Collapse
Affiliation(s)
- E V S Raghu Ram
- Division of Molecular and Structural Biology, Central Drug Research Institute, Post Box 173, Chattar Manzil, Mahatma Gandhi Marg, Lucknow 226001, India
| | | | | | | | | | | | | |
Collapse
|
91
|
Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK. Intrinsic disorder and functional proteomics. Biophys J 2007; 92:1439-56. [PMID: 17158572 PMCID: PMC1796814 DOI: 10.1529/biophysj.106.094045] [Citation(s) in RCA: 560] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 11/15/2006] [Indexed: 11/18/2022] Open
Abstract
The recent advances in the prediction of intrinsically disordered proteins and the use of protein disorder prediction in the fields of molecular biology and bioinformatics are reviewed here, especially with regard to protein function. First, a close look is taken at intrinsically disordered proteins and then at the methods used for their experimental characterization. Next, the major statistical properties of disordered regions are summarized, and prediction models developed thus far are described, including their numerous applications in functional proteomics. The future of the prediction of protein disorder and the future uses of such predictions in functional proteomics comprise the last section of this article.
Collapse
Affiliation(s)
- Predrag Radivojac
- School of Informatics, Indiana University, Bloomington, Indiana, USA
| | | | | | | | | | | |
Collapse
|
92
|
Reyes C, Patarroyo ME, Vargas LE, Rodríguez LE, Patarroyo MA. Functional, structural, and immunological compartmentalisation of malaria invasive proteins. Biochem Biophys Res Commun 2007; 354:363-71. [PMID: 17239816 DOI: 10.1016/j.bbrc.2006.12.220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 12/22/2006] [Indexed: 11/16/2022]
Abstract
Conserved Plasmodium falciparum merozoite high activity binding peptides (HABPs) involved in red blood cell (RBC) invasion which are present in merozoite surface proteins (MSPs) involved in attachment, rolling over RBC, those derived from soluble proteins loosely bound to the membrane, and those present in microneme and rhoptry organelles have an alpha-helical structure and bind with high affinity to HLA-DR52 molecules. On the contrary, conserved HABPs belonging to molecules anchored to the membrane by a GPI tail, or a transmembranal region, or those molecules presenting PEXEL motifs have a strand, turn or unordered configuration and bind with high affinity to HLA-DR53 molecules. Such functional, cellular, structural, and immunological compartmentalisation has tremendous implications in subunit-based, multi-epitope, synthetic, anti-malarial vaccine development.
Collapse
Affiliation(s)
- Claudia Reyes
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-00, Bogota, Colombia
| | | | | | | | | |
Collapse
|
93
|
Yang XG, Luo RY, Feng ZP. Using amino acid and peptide composition to predict membrane protein types. Biochem Biophys Res Commun 2006; 353:164-9. [PMID: 17174938 DOI: 10.1016/j.bbrc.2006.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 12/01/2006] [Indexed: 11/23/2022]
Abstract
Membrane proteins play an important role in many biological processes and are attractive drug targets. Determination of membrane protein structures or topologies by experimental methods is expensive and time consuming. Effective computational method in predicting the membrane protein types can provide useful information for large amount of protein sequences emerging in the post-genomic era. Although numerous algorithms have addressed this issue, the methods of extracting efficient protein sequence information are very limit. In this study, we provide a method of extracting high order sequence information with the stepwise discriminant analysis. Some important amino acids and peptides that are distinct for different types of the membrane proteins have been identified and their occurrence frequencies in membrane proteins can be used to predict the types of the membrane proteins. Consequently, an accuracy of 86.5% in the cross-validation test, and 99.8% in the resubstitution test has been achieved for a non-redundant dataset, which includes type-I, type-II, multipass transmembrane proteins, lipid chain-anchored and GPI-anchored membrane proteins. The fingerprint features of the identified peptides in each membrane protein type are also discussed.
Collapse
Affiliation(s)
- Xiao-Guang Yang
- Department of Biological Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | |
Collapse
|