51
|
IJspeert H, van Schouwenburg PA, Pico-Knijnenburg I, Loeffen J, Brugieres L, Driessen GJ, Blattmann C, Suerink M, Januszkiewicz-Lewandowska D, Azizi AA, Seidel MG, Jacobs H, van der Burg M. Repertoire Sequencing of B Cells Elucidates the Role of UNG and Mismatch Repair Proteins in Somatic Hypermutation in Humans. Front Immunol 2019; 10:1913. [PMID: 31507588 PMCID: PMC6718458 DOI: 10.3389/fimmu.2019.01913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 01/12/2023] Open
Abstract
The generation of high-affinity antibodies depends on somatic hypermutation (SHM). SHM is initiated by the activation-induced cytidine deaminase (AID), which generates uracil (U) lesions in the B-cell receptor (BCR) encoding genes. Error-prone processing of U lesions creates a typical spectrum of point mutations during SHM. The aim of this study was to determine the molecular mechanism of SHM in humans; currently available knowledge is limited by the number of mutations analyzed per patient. We collected a unique cohort of 10 well-defined patients with bi-allelic mutations in genes involved in base excision repair (BER) (UNG) or mismatch repair (MMR) (MSH2, MSH6, or PMS2) and are the first to present next-generation sequencing (NGS) data of the BCR, allowing us to study SHM extensively in humans. Analysis using ARGalaxy revealed selective skewing of SHM mutation patterns specific for each genetic defect, which are in line with the five-pathway model of SHM that was recently proposed based on mice data. However, trans-species comparison revealed differences in the role of PMS2 and MSH2 in strand targeting between mice and man. In conclusion, our results indicate a role for UNG, MSH2, MSH6, and PMS2 in the generation of SHM in humans comparable to their function in mice. However, we observed differences in strand targeting between humans and mice, emphasizing the importance of studying molecular mechanisms in a human setting. The here developed method combining NGS and ARGalaxy analysis of BCR mutation data forms the basis for efficient SHM analyses of other immune deficiencies.
Collapse
Affiliation(s)
- Hanna IJspeert
- Department of Immunology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands.,Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Pauline A van Schouwenburg
- Department of Immunology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ingrid Pico-Knijnenburg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Loeffen
- Department of Pediatric Oncology and Hematology, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, Netherlands
| | - Laurence Brugieres
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Gertjan J Driessen
- Department of Paediatrics, Juliana Children's Hospital, Haga Teaching Hospital, The Hague, Netherlands
| | - Claudia Blattmann
- Department of Pediatric Hematology and Oncology, Palliative Care, Olgahospital Klinikum Stuttgart, Stuttgart, Germany
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Marcus G Seidel
- Research Unit Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Mirjam van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
52
|
Hirth G, Svensson CM, Böttcher K, Ullrich S, Figge MT, Jungnickel B. Regulation of the Germinal Center Reaction and Somatic Hypermutation Dynamics by Homologous Recombination. THE JOURNAL OF IMMUNOLOGY 2019; 203:1493-1501. [DOI: 10.4049/jimmunol.1900483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023]
|
53
|
Singh AK, Jaiswal A, Kodgire P. AID preferentially targets the top strand in nucleosome sequences. Mol Immunol 2019; 112:198-205. [DOI: 10.1016/j.molimm.2019.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/29/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
|
54
|
DSB structure impacts DNA recombination leading to class switching and chromosomal translocations in human B cells. PLoS Genet 2019; 15:e1008101. [PMID: 30946744 PMCID: PMC6467426 DOI: 10.1371/journal.pgen.1008101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/16/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022] Open
Abstract
Class switch recombination (CSR) requires activation-induced cytidine deaminase (AID) to trigger DNA double strand breaks (DSBs) at the immunoglobulin heavy chain (IGH) in B cells. Joining of AID-dependent DSBs within IGH facilitate CSR and effective humoral immunity, but ligation to DSBs in non-IGH chromosomes leads to chromosomal translocations. Thus, the mechanism by which AID-dependent DSBs are repaired requires careful examination. The random activity of AID in IGH leads to a spectrum of DSB structures. In this report, we investigated how DSB structure impacts end-joining leading to CSR and chromosomal translocations in human B cells, for which models of CSR are inefficient and not readily available. Using CRISPR/Cas9 to model AID-dependent DSBs in IGH and non-IGH genes, we found that DSBs with 5’ and 3’ overhangs led to increased processing during end-joining compared to blunt DSBs. We observed that 5’ overhangs were removed and 3’ overhangs were filled in at recombination junctions, suggesting that different subsets of enzymes are required for repair based on DSB polarity. Surprisingly, while Cas9-mediated switching preferentially utilized NHEJ regardless of DSB structure, A-EJ strongly preferred repairing blunt DSBs leading to translocations in the absence of NHEJ. We found that DSB polarity influenced frequency of Cas9-mediated switching and translocations more than overhang length. Lastly, recombination junctions from staggered DSBs exhibited templated insertions, suggesting iterative resection and filling in during repair. Our results demonstrate that DSB structure biases repair towards NHEJ or A-EJ to complete recombination leading to CSR and translocations, thus helping to elucidate the mechanism of genome rearrangements in human B cells. The production of different classes of antibodies/immunoglobulins (IgM, IgG, etc.) is essential for protection against diverse pathogens and effective immunity. This cellular process is triggered by the enzyme activation-induced cytidine deaminase (AID). AID mutates DNA predominantly in antibody genes, generating different types of DNA breaks. Repair of DNA breaks initiated by AID leads to the production of different antibody classes. Erroneous repair of this damage can also lead to chromosomal translocations, a hallmark of lymphomas and other cancers. In this study, we used CRISPR/Cas9 technology to model the different types of DNA breaks physiologically produced by AID. We found that the specific structure of these DNA breaks strongly influenced how they were repaired. That is, different types of DNA breaks inform different modes of rejoining. Our findings show that not all types of DNA breaks are treated equally by genome maintenance machinery in the cell. These observations provide insight into the molecular mechanisms behind antibody-dependent immunity and lymphomagenesis.
Collapse
|
55
|
Pilzecker B, Jacobs H. Mutating for Good: DNA Damage Responses During Somatic Hypermutation. Front Immunol 2019; 10:438. [PMID: 30915081 PMCID: PMC6423074 DOI: 10.3389/fimmu.2019.00438] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activation-Induced Cytidine Deaminase (AID) to rearranged V(D)J and switch regions of Ig genes. The mutation rate of this programmed mutagenesis is ~10-3 base pairs per generation, a million-fold higher than the non-AID targeted genome of B cells. AID is a processive enzyme that binds single-stranded DNA and deaminates cytosines in DNA. Cytosine deamination generates highly mutagenic deoxy-uracil (U) in the DNA of both strands of the Ig loci. Mutagenic processing of the U by the DNA damage response generates the entire spectrum of base substitutions characterizing SHM at and around the initial U lesion. Starting from the U as a primary lesion, currently five mutagenic DNA damage response pathways have been identified in generating a well-defined SHM spectrum of C/G transitions, C/G transversions, and A/T mutations around this initial lesion. These pathways include (1) replication opposite template U generates transitions at C/G, (2) UNG2-dependent translesion synthesis (TLS) generates transversions at C/G, (3) a hybrid pathway comprising non-canonical mismatch repair (ncMMR) and UNG2-dependent TLS generates transversions at C/G, (4) ncMMR generates mutations at A/T, and (5) UNG2- and PCNA Ubiquitination (PCNA-Ub)-dependent mutations at A/T. Furthermore, specific strand-biases of SHM spectra arise as a consequence of a biased AID targeting, ncMMR, and anti-mutagenic repriming. Here, we review mammalian SHM with special focus on the mutagenic DNA damage response pathways involved in processing AID induced Us, the origin of characteristic strand biases, and relevance of the cell cycle.
Collapse
Affiliation(s)
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
56
|
Zanotti KJ, Maul RW, Yang W, Gearhart PJ. DNA Breaks in Ig V Regions Are Predominantly Single Stranded and Are Generated by UNG and MSH6 DNA Repair Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1573-1581. [PMID: 30665938 PMCID: PMC6382588 DOI: 10.4049/jimmunol.1801183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Abstract
Antibody diversity is initiated by activation-induced deaminase (AID), which deaminates cytosine to uracil in DNA. Uracils in the Ig gene loci can be recognized by uracil DNA glycosylase (UNG) or mutS homologs 2 and 6 (MSH2-MSH6) proteins, and then processed into DNA breaks. Breaks in switch regions of the H chain locus cause isotype switching and have been extensively characterized as staggered and blunt double-strand breaks. However, breaks in V regions that arise during somatic hypermutation are poorly understood. In this study, we characterize AID-dependent break formation in JH introns from mouse germinal center B cells. We used a ligation-mediated PCR assay to detect single-strand breaks and double-strand breaks that were either staggered or blunt. In contrast to switch regions, V regions contained predominantly single-strand breaks, which peaked 10 d after immunization. We then examined the pathways used to generate these breaks in UNG- and MSH6-deficient mice. Surprisingly, both DNA repair pathways contributed substantially to break formation, and in the absence of both UNG and MSH6, the frequency of breaks was severely reduced. When the breaks were sequenced and mapped, they were widely distributed over a 1000-bp intron region downstream of JH3 and JH4 exons and were unexpectedly located at all 4 nt. These data suggest that during DNA repair, nicks are generated at distal sites from the original deaminated cytosine, and these repair intermediates could generate both faithful and mutagenic repair. During mutagenesis, single-strand breaks would allow entry for low-fidelity DNA polymerases to generate somatic hypermutation.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - William Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
57
|
Abstract
Class switch recombination (CSR) generates isotype-switched antibodies with distinct effector functions essential for mediating effective humoral immunity. CSR is catalyzed by activation-induced deaminase (AID) that initiates DNA lesions in the evolutionarily conserved switch (S) regions at the immunoglobulin heavy chain (Igh) locus. AID-initiated DNA lesions are subsequently converted into DNA double stranded breaks (DSBs) in the S regions of Igh locus, repaired by non-homologous end-joining to effect CSR in mammalian B lymphocytes. While molecular mechanisms of CSR are well characterized, it remains less well understood how upstream signaling pathways regulate AID expression and CSR. B lymphocytes express multiple receptors including the B cell antigen receptor (BCR) and co-receptors (e.g., CD40). These receptors may share common signaling pathways or may use distinct signaling elements to regulate CSR. Here, we discuss how signals emanating from different receptors positively or negatively regulate AID expression and CSR.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
58
|
Yeap LS, Meng FL. Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv Immunol 2019; 141:51-103. [PMID: 30904133 DOI: 10.1016/bs.ai.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antigen receptor diversification is a hallmark of adaptive immunity which allows specificity of the receptor to particular antigen. B cell receptor (BCR) or its secreted form, antibody, is diversified through antigen-independent and antigen-dependent mechanisms. During B cell development in bone marrow, BCR is diversified via V(D)J recombination mediated by RAG endonuclease. Upon stimulation by antigen, B cell undergo somatic hypermutation (SHM) to allow affinity maturation and class switch recombination (CSR) to change the effector function of the antibody. Both SHM and CSR are initiated by activation-induced cytidine deaminase (AID). Repair of AID-initiated lesions through different DNA repair pathways results in diverse mutagenic outcomes. Here, we focus on discussing cis- and trans-factors that target AID to its substrates and factors that affect different outcomes of AID-initiated lesions. The knowledge of mechanisms that govern AID targeting and outcomes could be harnessed to elicit rare functional antibodies and develop ex vivo antibody diversification approaches with diversifying base editors.
Collapse
Affiliation(s)
- Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
59
|
Leung W, Baxley RM, Moldovan GL, Bielinsky AK. Mechanisms of DNA Damage Tolerance: Post-Translational Regulation of PCNA. Genes (Basel) 2018; 10:genes10010010. [PMID: 30586904 PMCID: PMC6356670 DOI: 10.3390/genes10010010] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
DNA damage is a constant source of stress challenging genomic integrity. To ensure faithful duplication of our genomes, mechanisms have evolved to deal with damage encountered during replication. One such mechanism is referred to as DNA damage tolerance (DDT). DDT allows for replication to continue in the presence of a DNA lesion by promoting damage bypass. Two major DDT pathways exist: error-prone translesion synthesis (TLS) and error-free template switching (TS). TLS recruits low-fidelity DNA polymerases to directly replicate across the damaged template, whereas TS uses the nascent sister chromatid as a template for bypass. Both pathways must be tightly controlled to prevent the accumulation of mutations that can occur from the dysregulation of DDT proteins. A key regulator of error-prone versus error-free DDT is the replication clamp, proliferating cell nuclear antigen (PCNA). Post-translational modifications (PTMs) of PCNA, mainly by ubiquitin and SUMO (small ubiquitin-like modifier), play a critical role in DDT. In this review, we will discuss the different types of PTMs of PCNA and how they regulate DDT in response to replication stress. We will also cover the roles of PCNA PTMs in lagging strand synthesis, meiotic recombination, as well as somatic hypermutation and class switch recombination.
Collapse
Affiliation(s)
- Wendy Leung
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Ryan M Baxley
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
60
|
van Schouwenburg PA, IJspeert H, Pico-Knijnenburg I, Dalm VASH, van Hagen PM, van Zessen D, Stubbs AP, Patel SY, van der Burg M. Identification of CVID Patients With Defects in Immune Repertoire Formation or Specification. Front Immunol 2018; 9:2545. [PMID: 30532750 PMCID: PMC6265514 DOI: 10.3389/fimmu.2018.02545] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/16/2018] [Indexed: 01/08/2023] Open
Abstract
Common variable immune deficiency disorder (CVID) is the most clinically relevant cause of antibody failure. It is a highly heterogeneous disease with different underlying etiologies. CVID has been associated with a quantitative B cell defect, however, little is known about the quality of B cells present. Here, we studied the naïve and antigen selected B-cell receptor (BCR) repertoire in 33 CVID patients using next generation sequencing, to investigate B cells quality. Analysis for each individual patient revealed whether they have a defect in immune repertoire formation [V(D)J recombination] or specification (somatic hypermutation, subclass distribution, or selection). The naïve BCR repertoire was normal in most of the patients, although alterations in repertoire diversity and the junctions were found in a limited number of patients indicating possible defects in early B-cell development or V(D)J recombination in these patients. In contrast, major differences were found in the antigen selected BCR repertoire. Here, most patients (15/17) showed a reduced frequency of somatic hypermutation (SHM), changes in subclass distribution and/or minor alterations in antigen selection. Together these data show that in our CVID cohort only a small number of patients have a defect in formation of the naïve BCR repertoire, whereas the clear majority of patients have disturbances in their antigen selected repertoire, suggesting a defect in repertoire specification in the germinal centers of these patients. This highlights that CVID patients not only have a quantitative B cell defect, but that also the quality of, especially post germinal center B cells, is impaired.
Collapse
Affiliation(s)
| | - Hanna IJspeert
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | | | - Virgil A S H Dalm
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Division of Clinical Immunology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - P Martin van Hagen
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Division of Clinical Immunology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - David van Zessen
- Clinical Bioinformatics Unit, Department of Pathology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Andrew P Stubbs
- Clinical Bioinformatics Unit, Department of Pathology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Smita Y Patel
- Nuffield Department of Clinical Medicine and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
61
|
Yewdell WT, Chaudhuri J. A transcriptional serenAID: the role of noncoding RNAs in class switch recombination. Int Immunol 2018; 29:183-196. [PMID: 28535205 DOI: 10.1093/intimm/dxx027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/22/2017] [Indexed: 12/31/2022] Open
Abstract
During an immune response, activated B cells may undergo class switch recombination (CSR), a molecular rearrangement that allows B cells to switch from expressing IgM and IgD to a secondary antibody heavy chain isotype such as IgG, IgA or IgE. Secondary antibody isotypes provide the adaptive immune system with distinct effector functions to optimally combat various pathogens. CSR occurs between repetitive DNA elements within the immunoglobulin heavy chain (Igh) locus, termed switch (S) regions and requires the DNA-modifying enzyme activation-induced cytidine deaminase (AID). AID-mediated DNA deamination within S regions initiates the formation of DNA double-strand breaks, which serve as biochemical beacons for downstream DNA repair pathways that coordinate the ligation of DNA breaks. Myriad factors contribute to optimal AID targeting; however, many of these factors also localize to genomic regions outside of the Igh locus. Thus, a current challenge is to explain the specific targeting of AID to the Igh locus. Recent studies have implicated noncoding RNAs in CSR, suggesting a provocative mechanism that incorporates Igh-specific factors to enable precise AID targeting. Here, we chronologically recount the rich history of noncoding RNAs functioning in CSR to provide a comprehensive context for recent and future discoveries. We present a model for the RNA-guided targeting of AID that attempts to integrate historical and recent findings, and highlight potential caveats. Lastly, we discuss testable hypotheses ripe for current experimentation, and explore promising ideas for future investigations.
Collapse
Affiliation(s)
- William T Yewdell
- Immunology Program, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
62
|
SAMHD1 enhances immunoglobulin hypermutation by promoting transversion mutation. Proc Natl Acad Sci U S A 2018; 115:4921-4926. [PMID: 29669924 DOI: 10.1073/pnas.1719771115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Activation-induced deaminase (AID) initiates hypermutation of Ig genes in activated B cells by converting C:G into U:G base pairs. G1-phase variants of uracil base excision repair (BER) and mismatch repair (MMR) then deploy translesion polymerases including REV1 and Pol η, which exacerbates mutation. dNTP paucity may contribute to hypermutation, because dNTP levels are reduced in G1 phase to inhibit viral replication. To derestrict G1-phase dNTP supply, we CRISPR-inactivated SAMHD1 (which degrades dNTPs) in germinal center B cells. Samhd1 inactivation increased B cell virus susceptibility, increased transition mutations at C:G base pairs, and substantially decreased transversion mutations at A:T and C:G base pairs in both strands. We conclude that SAMHD1's restriction of dNTP supply enhances AID's mutagenicity and that the evolution of Ig hypermutation included the repurposing of antiviral mechanisms based on dNTP starvation.
Collapse
|
63
|
Nicolas L, Cols M, Choi JE, Chaudhuri J, Vuong B. Generating and repairing genetically programmed DNA breaks during immunoglobulin class switch recombination. F1000Res 2018; 7:458. [PMID: 29744038 PMCID: PMC5904731 DOI: 10.12688/f1000research.13247.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2018] [Indexed: 01/03/2023] Open
Abstract
Adaptive immune responses require the generation of a diverse repertoire of immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite number of antigens. V(D)J recombination creates the primary Ig repertoire, which subsequently is modified by somatic hypermutation (SHM) and class switch recombination (CSR). SHM promotes Ig affinity maturation whereas CSR alters the effector function of the Ig. Both SHM and CSR require activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in the Ig locus that are transformed into untemplated mutations in variable coding segments during SHM or DNA double-strand breaks (DSBs) in switch regions during CSR. Within the Ig locus, DNA repair pathways are diverted from their canonical role in maintaining genomic integrity to permit AID-directed mutation and deletion of gene coding segments. Recently identified proteins, genes, and regulatory networks have provided new insights into the temporally and spatially coordinated molecular interactions that control the formation and repair of DSBs within the Ig locus. Unravelling the genetic program that allows B cells to selectively alter the Ig coding regions while protecting non-Ig genes from DNA damage advances our understanding of the molecular processes that maintain genomic integrity as well as humoral immunity.
Collapse
Affiliation(s)
- Laura Nicolas
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Montserrat Cols
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jee Eun Choi
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, NY, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bao Vuong
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, NY, USA
| |
Collapse
|
64
|
Double-stranded DNA break polarity skews repair pathway choice during intrachromosomal and interchromosomal recombination. Proc Natl Acad Sci U S A 2018; 115:2800-2805. [PMID: 29472448 DOI: 10.1073/pnas.1720962115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) inflicts DNA damage at Ig genes to initiate class switch recombination (CSR) and chromosomal translocations. However, the DNA lesions formed during these processes retain an element of randomness, and thus knowledge of the relationship between specific DNA lesions and AID-mediated processes remains incomplete. To identify necessary and sufficient DNA lesions in CSR, the Cas9 endonuclease and nickase variants were used to program DNA lesions at a greater degree of predictability than is achievable with conventional induction of CSR. Here we show that Cas9-mediated nicks separated by up to 250 nucleotides on opposite strands can mediate CSR. Staggered double-stranded breaks (DSBs) result in more end resection and junctional microhomology than blunt DSBs. Moreover, Myc-Igh chromosomal translocations, which are carried out primarily by alternative end joining (A-EJ), were preferentially induced by 5' DSBs. These data indicate that DSBs with 5' overhangs skew intrachromosomal and interchromosomal end-joining toward A-EJ. In addition to lending potential insight to AID-mediated phenomena, this work has broader carryover implications in DNA repair and lymphomagenesis.
Collapse
|
65
|
Álvarez-Prado ÁF, Pérez-Durán P, Pérez-García A, Benguria A, Torroja C, de Yébenes VG, Ramiro AR. A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets. J Exp Med 2018; 215:761-771. [PMID: 29374026 PMCID: PMC5839764 DOI: 10.1084/jem.20171738] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/22/2017] [Accepted: 12/21/2017] [Indexed: 12/18/2022] Open
Abstract
Activation-induced deaminase (AID) initiates antibody diversification in germinal center (GC) B cells through the deamination of cytosines on immunoglobulin genes. AID can also target other regions in the genome, triggering mutations or chromosome translocations, with major implications for oncogenic transformation. However, understanding the specificity of AID has proved extremely challenging. We have sequenced at very high depth >1,500 genomic regions from GC B cells and identified 275 genes targeted by AID, including 30 of the previously known 35 AID targets. We have also identified the most highly mutated hotspot for AID activity described to date. Furthermore, integrative analysis of the molecular features of mutated genes coupled to machine learning has produced a powerful predictive tool for AID targets. We also have found that base excision repair and mismatch repair back up each other to faithfully repair AID-induced lesions. Finally, our data establish a novel link between AID mutagenic activity and lymphomagenesis.
Collapse
Affiliation(s)
- Ángel F Álvarez-Prado
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Pablo Pérez-Durán
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Arantxa Pérez-García
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alberto Benguria
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Carlos Torroja
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Virginia G de Yébenes
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Almudena R Ramiro
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
66
|
Liu X, Meng FL. Generation of Genomic Alteration from Cytidine Deamination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:49-64. [DOI: 10.1007/978-981-13-0593-1_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
67
|
Steele EJ. Reverse Transcriptase Mechanism of Somatic Hypermutation: 60 Years of Clonal Selection Theory. Front Immunol 2017; 8:1611. [PMID: 29218047 PMCID: PMC5704389 DOI: 10.3389/fimmu.2017.01611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/07/2017] [Indexed: 01/24/2023] Open
Abstract
The evidence for the reverse transcriptase mechanism of somatic hypermutation is substantial and multifactorial. In this 60th anniversary year of the publication of Sir MacFarlane Burnet's Clonal Selection Theory, the evidence is briefly reviewed and updated.
Collapse
Affiliation(s)
- Edward J. Steele
- CYO’Connor ERADE Village Foundation Inc., Piara Waters, WA, Australia
| |
Collapse
|
68
|
Abdouni HS, King JJ, Ghorbani A, Fifield H, Berghuis L, Larijani M. DNA/RNA hybrid substrates modulate the catalytic activity of purified AID. Mol Immunol 2017; 93:94-106. [PMID: 29161581 DOI: 10.1016/j.molimm.2017.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/10/2017] [Accepted: 11/11/2017] [Indexed: 11/28/2022]
Abstract
Activation-induced cytidine deaminase (AID) converts cytidine to uridine at Immunoglobulin (Ig) loci, initiating somatic hypermutation and class switching of antibodies. In vitro, AID acts on single stranded DNA (ssDNA), but neither double-stranded DNA (dsDNA) oligonucleotides nor RNA, and it is believed that transcription is the in vivo generator of ssDNA targeted by AID. It is also known that the Ig loci, particularly the switch (S) regions targeted by AID are rich in transcription-generated DNA/RNA hybrids. Here, we examined the binding and catalytic behavior of purified AID on DNA/RNA hybrid substrates bearing either random sequences or GC-rich sequences simulating Ig S regions. If substrates were made up of a random sequence, AID preferred substrates composed entirely of DNA over DNA/RNA hybrids. In contrast, if substrates were composed of S region sequences, AID preferred to mutate DNA/RNA hybrids over substrates composed entirely of DNA. Accordingly, AID exhibited a significantly higher affinity for binding DNA/RNA hybrid substrates composed specifically of S region sequences, than any other substrates composed of DNA. Thus, in the absence of any other cellular processes or factors, AID itself favors binding and mutating DNA/RNA hybrids composed of S region sequences. AID:DNA/RNA complex formation and supporting mutational analyses suggest that recognition of DNA/RNA hybrids is an inherent structural property of AID.
Collapse
Affiliation(s)
- Hala S Abdouni
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1 B 3V6, Canada
| | - Justin J King
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1 B 3V6, Canada
| | - Atefeh Ghorbani
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1 B 3V6, Canada
| | - Heather Fifield
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1 B 3V6, Canada
| | - Lesley Berghuis
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1 B 3V6, Canada
| | - Mani Larijani
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, A1 B 3V6, Canada.
| |
Collapse
|
69
|
Abstract
Bloom's syndrome (BS) is an autosomal recessive disease, caused by mutations in the BLM gene. This gene codes for BLM protein, which is a helicase involved in DNA repair. DNA repair is especially important for the development and maturation of the T and B cells. Since BLM is involved in DNA repair, we aimed to study if BLM deficiency affects T and B cell development and especially somatic hypermutation (SHM) and class switch recombination (CSR) processes. Clinical data of six BS patients was collected, and immunoglobulin serum levels were measured at different time points. In addition, we performed immune phenotyping of the B and T cells and analyzed the SHM and CSR in detail by analyzing IGHA and IGHG transcripts using next-generation sequencing. The serum immunoglobulin levels were relatively low, and patients had an increased number of infections. The absolute number of T, B, and NK cells were low but still in the normal range. Remarkably, all BS patients studied had a high percentage (20-80%) of CD4+ and CD8+ effector memory T cells. The process of SHM seems normal; however, the Ig subclass distribution was not normal, since the BS patients had more IGHG1 and IGHG3 transcripts. In conclusion, BS patients have low number of lymphocytes, but the immunodeficiency seems relatively mild since they have no severe or opportunistic infections. Most changes in the B cell development were seen in the CSR process; however, further studies are necessary to elucidate the exact role of BLM in CSR.
Collapse
|
70
|
Khan FA, Ali SO. Physiological Roles of DNA Double-Strand Breaks. J Nucleic Acids 2017; 2017:6439169. [PMID: 29181194 PMCID: PMC5664317 DOI: 10.1155/2017/6439169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/24/2017] [Indexed: 12/20/2022] Open
Abstract
Genomic integrity is constantly threatened by sources of DNA damage, internal and external alike. Among the most cytotoxic lesions is the DNA double-strand break (DSB) which arises from the cleavage of both strands of the double helix. Cells boast a considerable set of defences to both prevent and repair these breaks and drugs which derail these processes represent an important category of anticancer therapeutics. And yet, bizarrely, cells deploy this very machinery for the intentional and calculated disruption of genomic integrity, harnessing potentially destructive DSBs in delicate genetic transactions. Under tight spatiotemporal regulation, DSBs serve as a tool for genetic modification, widely used across cellular biology to generate diverse functionalities, ranging from the fundamental upkeep of DNA replication, transcription, and the chromatin landscape to the diversification of immunity and the germline. Growing evidence points to a role of aberrant DSB physiology in human disease and an understanding of these processes may both inform the design of new therapeutic strategies and reduce off-target effects of existing drugs. Here, we review the wide-ranging roles of physiological DSBs and the emerging network of their multilateral regulation to consider how the cell is able to harness DNA breaks as a critical biochemical tool.
Collapse
Affiliation(s)
- Farhaan A. Khan
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| | - Syed O. Ali
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| |
Collapse
|
71
|
Cytosine deamination and base excision repair cause R-loop-induced CAG repeat fragility and instability in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2017; 114:E8392-E8401. [PMID: 28923949 DOI: 10.1073/pnas.1711283114] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CAG/CTG repeats are structure-forming repetitive DNA sequences, and expansion beyond a threshold of ∼35 CAG repeats is the cause of several human diseases. Expanded CAG repeats are prone to breakage, and repair of the breaks can cause repeat contractions and expansions. In this study, we found that cotranscriptional R-loops formed at a CAG-70 repeat inserted into a yeast chromosome. R-loops were further elevated upon deletion of yeast RNaseH genes and caused repeat fragility. A significant increase in CAG repeat contractions was also observed, consistent with previous human cell studies. Deletion of yeast cytosine deaminase Fcy1 significantly decreased the rate of CAG repeat fragility and contractions in the rnh1Δrnh201Δ background, indicating that Fcy1-mediated deamination is one cause of breakage and contractions in the presence of R-loops. Furthermore, base excision repair (BER) is responsible for causing CAG repeat contractions downstream of Fcy1, but not fragility. The Rad1/XPF and Rad2/XPG nucleases were also important in protecting against contractions, but through BER rather than nucleotide excision repair. Surprisingly, the MutLγ (Mlh1/Mlh3) endonuclease caused R-loop-dependent CAG fragility, defining an alternative function for this complex. These findings provide evidence that breakage at expanded CAG repeats occurs due to R-loop formation and reveal two mechanisms for CAG repeat instability: one mediated by cytosine deamination of DNA engaged in R-loops and the other by MutLγ cleavage. Since disease-causing CAG repeats occur in transcribed regions, our results suggest that R-loop-mediated fragility is a mechanism that could cause DNA damage and repeat-length changes in human cells.
Collapse
|
72
|
Bahjat M, Guikema JEJ. The Complex Interplay between DNA Injury and Repair in Enzymatically Induced Mutagenesis and DNA Damage in B Lymphocytes. Int J Mol Sci 2017; 18:ijms18091876. [PMID: 28867784 PMCID: PMC5618525 DOI: 10.3390/ijms18091876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 11/25/2022] Open
Abstract
Lymphocytes are endowed with unique and specialized enzymatic mutagenic properties that allow them to diversify their antigen receptors, which are crucial sensors for pathogens and mediators of adaptive immunity. During lymphocyte development, the antigen receptors expressed by B and T lymphocytes are assembled in an antigen-independent fashion by ordered variable gene segment recombinations (V(D)J recombination), which is a highly ordered and regulated process that requires the recombination activating gene products 1 & 2 (RAG1, RAG2). Upon activation by antigen, B lymphocytes undergo additional diversifications of their immunoglobulin B-cell receptors. Enzymatically induced somatic hypermutation (SHM) and immunoglobulin class switch recombination (CSR) improves the affinity for antigen and shape the effector function of the humoral immune response, respectively. The activation-induced cytidine deaminase (AID) enzyme is crucial for both SHM and CSR. These processes have evolved to both utilize as well as evade different DNA repair and DNA damage response pathways. The delicate balance between enzymatic mutagenesis and DNA repair is crucial for effective immune responses and the maintenance of genomic integrity. Not surprisingly, disturbances in this balance are at the basis of lymphoid malignancies by provoking the formation of oncogenic mutations and chromosomal aberrations. In this review, we discuss recent mechanistic insight into the regulation of RAG1/2 and AID expression and activity in lymphocytes and the complex interplay between these mutagenic enzymes and DNA repair and DNA damage response pathways, focusing on the base excision repair and mismatch repair pathways. We discuss how disturbances of this interplay induce genomic instability and contribute to oncogenesis.
Collapse
Affiliation(s)
- Mahnoush Bahjat
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| | - Jeroen E J Guikema
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
73
|
Thientosapol ES, Sharbeen G, Lau KKE, Bosnjak D, Durack T, Stevanovski I, Weninger W, Jolly CJ. Proximity to AGCT sequences dictates MMR-independent versus MMR-dependent mechanisms for AID-induced mutation via UNG2. Nucleic Acids Res 2017; 45:3146-3157. [PMID: 28039326 PMCID: PMC5389528 DOI: 10.1093/nar/gkw1300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/16/2016] [Indexed: 11/30/2022] Open
Abstract
AID deaminates C to U in either strand of Ig genes, exclusively producing C:G/G:C to T:A/A:T transition mutations if U is left unrepaired. Error-prone processing by UNG2 or mismatch repair diversifies mutation, predominantly at C:G or A:T base pairs, respectively. Here, we show that transversions at C:G base pairs occur by two distinct processing pathways that are dictated by sequence context. Within and near AGCT mutation hotspots, transversion mutation at C:G was driven by UNG2 without requirement for mismatch repair. Deaminations in AGCT were refractive both to processing by UNG2 and to high-fidelity base excision repair (BER) downstream of UNG2, regardless of mismatch repair activity. We propose that AGCT sequences resist faithful BER because they bind BER-inhibitory protein(s) and/or because hemi-deaminated AGCT motifs innately form a BER-resistant DNA structure. Distal to AGCT sequences, transversions at G were largely co-dependent on UNG2 and mismatch repair. We propose that AGCT-distal transversions are produced when apyrimidinic sites are exposed in mismatch excision patches, because completion of mismatch repair would require bypass of these sites.
Collapse
Affiliation(s)
- Eddy Sanchai Thientosapol
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - George Sharbeen
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - K K Edwin Lau
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Daniel Bosnjak
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Timothy Durack
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Igor Stevanovski
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Wolfgang Weninger
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Christopher J Jolly
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
74
|
DNA mismatch repair and its many roles in eukaryotic cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:174-187. [PMID: 28927527 DOI: 10.1016/j.mrrev.2017.07.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 02/06/2023]
Abstract
DNA mismatch repair (MMR) is an important DNA repair pathway that plays critical roles in DNA replication fidelity, mutation avoidance and genome stability, all of which contribute significantly to the viability of cells and organisms. MMR is widely-used as a diagnostic biomarker for human cancers in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore, the mechanism by which the eukaryotic MMR machinery discriminates between the parental (template) and the daughter (nascent) DNA strand is incompletely understood and how cells choose between the EXO1-dependent and the EXO1-independent subpathways of MMR is not known. This review summarizes recent literature on eukaryotic MMR, with emphasis on the diverse cellular roles of eukaryotic MMR proteins, the mechanism of strand discrimination and cross-talk/interactions between and co-regulation of MMR and other DNA repair pathways in eukaryotic cells. The main conclusion of the review is that MMR proteins contribute to genome stability through their ability to recognize and promote an appropriate cellular response to aberrant DNA structures, especially when they arise during DNA replication. Although the molecular mechanism of MMR in the eukaryotic cell is still not completely understood, increased used of single-molecule analyses in the future may yield new insight into these unsolved questions.
Collapse
|
75
|
Seifermann M, Epe B. Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark? Free Radic Biol Med 2017; 107:258-265. [PMID: 27871818 DOI: 10.1016/j.freeradbiomed.2016.11.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 02/03/2023]
Abstract
The generation of DNA modifications in cells is in most cases accidental and associated with detrimental consequences such as increased mutation rates and an elevated risk of malignant transformation. Accordingly, repair enzymes involved in the removal of the modifications have primarily a protective function. Among the well-established exceptions of this rule are 5-methylcytosine and uracil, which are generated in DNA enzymatically under controlled conditions and fulfill important regulatory functions in DNA as epigenetic marks and in antibody diversification, respectively. More recently, considerable evidence has been obtained that also 8-oxo-7,8-dihydroguanine (8-oxoG), a frequent pro-mutagenic DNA modification generated by endogenous or exogenous reactive oxygen species (ROS), has distinct roles in the regulation of both transcription and signal transduction. Thus, the activation of transcription by the estrogen receptor, NF-κB, MYC and other transcription factors was shown to depend on the presence of 8-oxoG in the promoter regions and its recognition by the DNA repair glycosylase OGG1. The lysine-specific histone demethylase LSD1, which produces H2O2 as a by-product, was indentified as a local generator of 8-oxoG in some of these cases. In addition, a complex of OGG1 with the excised free substrate base was demonstrated to act as a guanine nucleotide exchange factor (GEF) for small GTPases such as Ras, Rac and Rho, thus stimulating signal transduction. The various findings and intriguing novel mechanisms suggested will be described and compared in this review.
Collapse
Affiliation(s)
- Marco Seifermann
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany.
| |
Collapse
|
76
|
Eid MMA, Shimoda M, Singh SK, Almofty SA, Pham P, Goodman MF, Maeda K, Sakaguchi N. Integrity of immunoglobulin variable regions is supported by GANP during AID-induced somatic hypermutation in germinal center B cells. Int Immunol 2017; 29:211-220. [PMID: 28541550 PMCID: PMC5890899 DOI: 10.1093/intimm/dxx032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin affinity maturation depends on somatic hypermutation (SHM) in immunoglobulin variable (IgV) regions initiated by activation-induced cytidine deaminase (AID). AID induces transition mutations by C→U deamination on both strands, causing C:G→T:A. Error-prone repairs of U by base excision and mismatch repairs (MMRs) create transversion mutations at C/G and mutations at A/T sites. In Neuberger’s model, it remained to be clarified how transition/transversion repair is regulated. We investigate the role of AID-interacting GANP (germinal center-associated nuclear protein) in the IgV SHM profile. GANP enhances transition mutation of the non-transcribed strand G and reduces mutation at A, restricted to GYW of the AID hotspot motif. It reduces DNA polymerase η hotspot mutations associated with MMRs followed by uracil-DNA glycosylase. Mutation comparison between IgV complementary and framework regions (FWRs) by Bayesian statistical estimation demonstrates that GANP supports the preservation of IgV FWR genomic sequences. GANP works to maintain antibody structure by reducing drastic changes in the IgV FWR in affinity maturation.
Collapse
Affiliation(s)
| | - Mayuko Shimoda
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.,Laboratory of Host Defense, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC).,Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shailendra Kumar Singh
- Laboratory of Host Defense, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC)
| | - Sarah Ameen Almofty
- Laboratory of Immunology, Institute for Research and Medical Consultations (IRMC), University Of Dammam (UOD), PO Box 1982, Dammam 31441, Saudi Arabia
| | - Phuong Pham
- Departments of Biological Sciences and Chemistry, University of Southern California, 1050 Childs Way, University Park, Los Angeles, CA 90089-2910, USA
| | - Myron F Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, 1050 Childs Way, University Park, Los Angeles, CA 90089-2910, USA
| | - Kazuhiko Maeda
- Laboratory of Host Defense, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC).,Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Nobuo Sakaguchi
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
77
|
Girelli Zubani G, Zivojnovic M, De Smet A, Albagli-Curiel O, Huetz F, Weill JC, Reynaud CA, Storck S. Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs. J Exp Med 2017; 214:1169-1180. [PMID: 28283534 PMCID: PMC5379981 DOI: 10.1084/jem.20161576] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 11/06/2022] Open
Abstract
Girelli Zubani et al. show that the Pms2 component of the mismatch repair complex and multiple uracil glycosylases contribute, each with a distinct strand bias, to enlarge the Ig gene mutation spectrum from G-C to A-T bases. During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung−/−Pms2−/− mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases.
Collapse
Affiliation(s)
- Giulia Girelli Zubani
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Marija Zivojnovic
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Annie De Smet
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Olivier Albagli-Curiel
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Faculté de Médecine-Site Cochin, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - François Huetz
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France.,Département d'Immunologie, Institut Pasteur, 75015 Paris, France
| | - Jean-Claude Weill
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Claude-Agnès Reynaud
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Sébastien Storck
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| |
Collapse
|
78
|
Methot S, Di Noia J. Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination. Adv Immunol 2017; 133:37-87. [DOI: 10.1016/bs.ai.2016.11.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
79
|
Zhang K, Raboanatahiry N, Zhu B, Li M. Progress in Genome Editing Technology and Its Application in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:177. [PMID: 28261237 PMCID: PMC5306361 DOI: 10.3389/fpls.2017.00177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/27/2017] [Indexed: 05/19/2023]
Abstract
Genome editing technology (GET) is a versatile approach that has progressed rapidly as a mechanism to alter the genotype and phenotype of organisms. However, conventional genome modification using GET cannot satisfy current demand for high-efficiency and site-directed mutagenesis, retrofitting of artificial nucleases has developed into a new avenue within this field. Based on mechanisms to recognize target genes, newly-developed GETs can generally be subdivided into three cleavage systems, protein-dependent DNA cleavage systems (i.e., zinc-finger nucleases, ZFN, and transcription activator-like effector nucleases, TALEN), RNA-dependent DNA cleavage systems (i.e., clustered regularly interspaced short palindromic repeats-CRISPR associated proteins, CRISPR-Cas9, CRISPR-Cpf1, and CRISPR-C2c1), and RNA-dependent RNA cleavage systems (i.e., RNA interference, RNAi, and CRISPR-C2c2). All these techniques can lead to double-stranded (DSB) or single-stranded breaks (SSB), and result in either random mutations via non-homologous end-joining (NHEJ) or targeted mutation via homologous recombination (HR). Thus, site-directed mutagenesis can be induced via targeted gene knock-out, knock-in, or replacement to modify specific characteristics including morphology-modification, resistance-enhancement, and physiological mechanism-improvement along with plant growth and development. In this paper, an non-comprehensive review on the development of different GETs as applied to plants is presented.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Bin Zhu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
- *Correspondence: Maoteng Li
| |
Collapse
|
80
|
Le MX, Haddad D, Ling AK, Li C, So CC, Chopra A, Hu R, Angulo JF, Moffat J, Martin A. Kin17 facilitates multiple double-strand break repair pathways that govern B cell class switching. Sci Rep 2016; 6:37215. [PMID: 27853268 PMCID: PMC5112545 DOI: 10.1038/srep37215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/13/2016] [Indexed: 11/09/2022] Open
Abstract
Class switch recombination (CSR) in B cells requires the timely repair of DNA double-stranded breaks (DSBs) that result from lesions produced by activation-induced cytidine deaminase (AID). Through a genome-wide RNAi screen, we identified Kin17 as a gene potentially involved in the maintenance of CSR in murine B cells. In this study, we confirm a critical role for Kin17 in CSR independent of AID activity. Furthermore, we make evident that DSBs generated by AID or ionizing radiation require Kin17 for efficient repair and resolution. Our report shows that reduced Kin17 results in an elevated deletion frequency following AID mutational activity in the switch region. In addition, deficiency in Kin17 affects the functionality of multiple DSB repair pathways, namely homologous recombination, non-homologous end-joining, and alternative end-joining. This report demonstrates the importance of Kin17 as a critical factor that acts prior to the repair phase of DSB repair and is of bona fide importance for CSR.
Collapse
Affiliation(s)
- Michael X. Le
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S1A8, Canada
| | - Dania Haddad
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S1A8, Canada
| | - Alexanda K. Ling
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S1A8, Canada
| | - Conglei Li
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S1A8, Canada
| | - Clare C. So
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S1A8, Canada
| | - Amit Chopra
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S1A8, Canada
| | - Rui Hu
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S1A8, Canada
| | - Jaime F. Angulo
- Laboratoire de Radio Toxicologie, CEA, Université Paris-Saclay, Arpajon, 91297, France
| | - Jason Moffat
- Donnelly Centre and Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S1A8, Canada
| |
Collapse
|
81
|
Engineering and optimising deaminase fusions for genome editing. Nat Commun 2016; 7:13330. [PMID: 27804970 PMCID: PMC5097136 DOI: 10.1038/ncomms13330] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022] Open
Abstract
Precise editing is essential for biomedical research and gene therapy. Yet, homology-directed genome modification is limited by the requirements for genomic lesions, homology donors and the endogenous DNA repair machinery. Here we engineered programmable cytidine deaminases and test if we could introduce site-specific cytidine to thymidine transitions in the absence of targeted genomic lesions. Our programmable deaminases effectively convert specific cytidines to thymidines with 13% efficiency in Escherichia coli and 2.5% in human cells. However, off-target deaminations were detected more than 150 bp away from the target site. Moreover, whole genome sequencing revealed that edited bacterial cells did not harbour chromosomal abnormalities but demonstrated elevated global cytidine deamination at deaminase intrinsic binding sites. Therefore programmable deaminases represent a promising genome editing tool in prokaryotes and eukaryotes. Future engineering is required to overcome the processivity and the intrinsic DNA binding affinity of deaminases for safer therapeutic applications. Precision genome engineering using homology donors and the endogenous DNA break repair machinery and recently CRISPR-Cas9 targeted APOBECs have been demonstrated. Here the authors design zinc-finger and TALE chimeric deaminases and investigate editing efficiency and off-target effects.
Collapse
|
82
|
Abstract
The AID/APOBEC family enzymes convert cytosines in single-stranded DNA to uracils, causing base substitutions and strand breaks. They are induced by cytokines produced during the body's inflammatory response to infections, and they help combat infections through diverse mechanisms. AID is essential for the maturation of antibodies and causes mutations and deletions in antibody genes through somatic hypermutation (SHM) and class-switch recombination (CSR) processes. One member of the APOBEC family, APOBEC1, edits mRNA for a protein involved in lipid transport. Members of the APOBEC3 subfamily in humans (APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H) inhibit infections of viruses such as HIV-1, HBV, and HCV, and retrotransposition of endogenous retroelements through mutagenic and nonmutagenic mechanisms. There is emerging consensus that these enzymes can cause mutations in the cellular genome at replication forks or within transcription bubbles depending on the physiological state of the cell and the phase of the cell cycle during which they are expressed. We describe here the state of knowledge about the structures of these enzymes, regulation of their expression, and both the advantageous and deleterious consequences of their expression, including carcinogenesis. We highlight similarities among them and present a holistic view of their regulation and function.
Collapse
Affiliation(s)
- Sachini U Siriwardena
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University , Detroit, Michigan 48201, United States
- Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| |
Collapse
|
83
|
Cortizas EM, Zahn A, Safavi S, Reed JA, Vega F, Di Noia JM, Verdun RE. UNG protects B cells from AID-induced telomere loss. J Exp Med 2016; 213:2459-2472. [PMID: 27697833 PMCID: PMC5068241 DOI: 10.1084/jem.20160635] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/16/2016] [Indexed: 02/05/2023] Open
Abstract
Verdun and colleagues find that the uracil-DNA glycosylase UNG, which promotes DNA breaks in the immunoglobulin genes during class switch recombination and is required for AID-induced chromosomal translocations, protects telomeres from AID-induced DNA damage and subsequent dysfunction. Activation-induced deaminase (AID) initiates antibody gene diversification by creating G:U mismatches in the immunoglobulin loci. However, AID also deaminates nonimmunoglobulin genes, and failure to faithfully repair these off-target lesions can cause B cell lymphoma. In this study, we identify a mechanism by which processing of G:U produced by AID at the telomeres can eliminate B cells at risk of genomic instability. We show that telomeres are off-target substrates of AID and that B cell proliferation depends on protective repair by uracil-DNA glycosylase (UNG). In contrast, in the absence of UNG activity, deleterious processing by mismatch repair leads to telomere loss and defective cell proliferation. Indeed, we show that UNG deficiency reduces B cell clonal expansion in the germinal center in mice and blocks the proliferation of tumor B cells expressing AID. We propose that AID-induced damage at telomeres acts as a fail-safe mechanism to limit the tumor promoting activity of AID when it overwhelms uracil excision repair.
Collapse
Affiliation(s)
- Elena M Cortizas
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Shiva Safavi
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Joseph A Reed
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Francisco Vega
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada .,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 0G4, Canada.,Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Ramiro E Verdun
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136 .,Geriatric Research, Education, and Clinical Center, Miami VA Healthcare System, FL 33125
| |
Collapse
|
84
|
Prasad R, Poltoratsky V, Hou EW, Wilson SH. Rev1 is a base excision repair enzyme with 5'-deoxyribose phosphate lyase activity. Nucleic Acids Res 2016; 44:10824-10833. [PMID: 27683219 PMCID: PMC5159550 DOI: 10.1093/nar/gkw869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 12/28/2022] Open
Abstract
Rev1 is a member of the Y-family of DNA polymerases and is known for its deoxycytidyl transferase activity that incorporates dCMP into DNA and its ability to function as a scaffold factor for other Y-family polymerases in translesion bypass events. Rev1 also is involved in mutagenic processes during somatic hypermutation of immunoglobulin genes. In light of the mutation pattern consistent with dCMP insertion observed earlier in mouse fibroblast cells treated with a base excision repair-inducing agent, we questioned whether Rev1 could also be involved in base excision repair (BER). Here, we uncovered a weak 5′-deoxyribose phosphate (5′-dRP) lyase activity in mouse Rev1 and demonstrated the enzyme can mediate BER in vitro. The full-length Rev1 protein and its catalytic core domain are similar in their ability to support BER in vitro. The dRP lyase activity in both of these proteins was confirmed by NaBH4 reduction of the Schiff base intermediate and kinetics studies. Limited proteolysis, mass spectrometry and deletion analysis localized the dRP lyase active site to the C-terminal segment of Rev1's catalytic core domain. These results suggest that Rev1 could serve as a backup polymerase in BER and could potentially contribute to AID-initiated antibody diversification through this activity.
Collapse
Affiliation(s)
- Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Vladimir Poltoratsky
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Esther W Hou
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F3-01, Research Triangle Park, NC 27709, USA
| |
Collapse
|
85
|
Somatic hypermutation in immunity and cancer: Critical analysis of strand-biased and codon-context mutation signatures. DNA Repair (Amst) 2016; 45:1-24. [DOI: 10.1016/j.dnarep.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023]
|
86
|
Maul RW, MacCarthy T, Frank EG, Donigan KA, McLenigan MP, Yang W, Saribasak H, Huston DE, Lange SS, Woodgate R, Gearhart PJ. DNA polymerase ι functions in the generation of tandem mutations during somatic hypermutation of antibody genes. J Exp Med 2016; 213:1675-83. [PMID: 27455952 PMCID: PMC4995076 DOI: 10.1084/jem.20151227] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 06/01/2016] [Indexed: 11/04/2022] Open
Abstract
DNA polymerase ι (Pol ι) is an attractive candidate for somatic hypermutation in antibody genes because of its low fidelity. To identify a role for Pol ι, we analyzed mutations in two strains of mice with deficiencies in the enzyme: 129 mice with negligible expression of truncated Pol ι, and knock-in mice that express full-length Pol ι that is catalytically inactive. Both strains had normal frequencies and spectra of mutations in the variable region, indicating that loss of Pol ι did not change overall mutagenesis. We next examined if Pol ι affected tandem mutations generated by another error-prone polymerase, Pol ζ. The frequency of contiguous mutations was analyzed using a novel computational model to determine if they occur during a single DNA transaction or during two independent events. Analyses of 2,000 mutations from both strains indicated that Pol ι-compromised mice lost the tandem signature, whereas C57BL/6 mice accumulated significant amounts of double mutations. The results support a model where Pol ι occasionally accesses the replication fork to generate a first mutation, and Pol ζ extends the mismatch with a second mutation.
Collapse
Affiliation(s)
- Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, NY 11794
| | - Ekaterina G Frank
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - Katherine A Donigan
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - Mary P McLenigan
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - William Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Huseyin Saribasak
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Donald E Huston
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - Sabine S Lange
- Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
87
|
Fritzen R, Delbos F, De Smet A, Palancade B, Canman CE, Aoufouchi S, Weill JC, Reynaud CA, Storck S. A single aspartate mutation in the conserved catalytic site of Rev3L generates a hypomorphic phenotype in vivo and in vitro. DNA Repair (Amst) 2016; 46:37-46. [PMID: 27481099 DOI: 10.1016/j.dnarep.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 12/29/2022]
Abstract
Rev3, the catalytic subunit of yeast DNA polymerase ζ, is required for UV resistance and UV-induced mutagenesis, while its mammalian ortholog, REV3L, plays further vital roles in cell proliferation and embryonic development. To assess the contribution of REV3L catalytic activity to its in vivo function, we generated mutant mouse strains in which one or two Ala residues were substituted to the Asp of the invariant catalytic YGDTDS motif. The simultaneous mutation of both Asp (ATA) phenocopies the Rev3l knockout, which proves that the catalytic activity is mandatory for the vital functions of Rev3L, as reported recently. Surprisingly, although the mutation of the first Asp severely impairs the enzymatic activity of other B-family DNA polymerases, the corresponding mutation of Rev3 (ATD) is hypomorphic in yeast and mouse, as it does not affect viability and proliferation and moderately impacts UVC-induced cell death and mutagenesis. Interestingly, Rev3l hypomorphic mutant mice display a distinct, albeit modest, alteration of the immunoglobulin gene mutation spectrum at G-C base pairs, further documenting its role in this process.
Collapse
Affiliation(s)
- Rémi Fritzen
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Frédéric Delbos
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Annie De Smet
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Benoît Palancade
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | | | - Said Aoufouchi
- Institut Gustave Roussy, CNRS UMR 8200, Villejuif, and Université Paris-Sud, Orsay, France.
| | - Jean-Claude Weill
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Claude-Agnès Reynaud
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Sébastien Storck
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
88
|
Herate C, Vigne C, Guenzel CA, Lambele M, Rouyez MC, Benichou S. Uracil DNA glycosylase interacts with the p32 subunit of the replication protein A complex to modulate HIV-1 reverse transcription for optimal virus dissemination. Retrovirology 2016; 13:26. [PMID: 27068393 PMCID: PMC4828845 DOI: 10.1186/s12977-016-0257-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/27/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Through incorporation into virus particles, the HIV-1 Vpr protein participates in the early steps of the virus life cycle by influencing the reverse transcription process. We previously showed that this positive impact on reverse transcription was related to Vpr binding to the uracil DNA glycosylase 2 enzyme (UNG2), leading to enhancement of virus infectivity in established CD4-positive cell lines via a nonenzymatic mechanism. RESULTS We report here that Vpr can form a trimolecular complex with UNG2 and the p32 subunit (RPA32) of the replication protein A (RPA) complex and we explore how these cellular proteins can influence virus replication and dissemination in the primary target cells of HIV-1, which express low levels of both proteins. Virus infectivity and replication in peripheral blood mononuclear cells and monocyte-derived macrophages (MDMs), as well as the efficiency of the viral DNA synthesis, were significantly reduced when viruses were produced from cells depleted of endogenous UNG2 or RPA32. Moreover, viruses produced in macrophages failed to replicate efficiently in UNG2- and RPA32-depleted T lymphocytes. Reciprocally, viruses produced in UNG2-depleted T cells did not replicate efficiently in MDMs confirming the positive role of UNG2 for virus dissemination. CONCLUSIONS Our data show the positive effect of UNG2 and RPA32 on the reverse transcription process leading to optimal virus replication and dissemination between the primary target cells of HIV-1.
Collapse
Affiliation(s)
- Cecile Herate
- />Inserm U1016, Institut Cochin, 22 Rue Méchain, 75014 Paris, France
- />CNRS, UMR8104, Paris, France
- />Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Clarisse Vigne
- />Inserm U1016, Institut Cochin, 22 Rue Méchain, 75014 Paris, France
- />CNRS, UMR8104, Paris, France
- />Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Carolin A. Guenzel
- />Inserm U1016, Institut Cochin, 22 Rue Méchain, 75014 Paris, France
- />CNRS, UMR8104, Paris, France
- />Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Marie Lambele
- />Inserm U1016, Institut Cochin, 22 Rue Méchain, 75014 Paris, France
- />CNRS, UMR8104, Paris, France
- />Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Marie-Christine Rouyez
- />Inserm U1016, Institut Cochin, 22 Rue Méchain, 75014 Paris, France
- />CNRS, UMR8104, Paris, France
- />Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Serge Benichou
- />Inserm U1016, Institut Cochin, 22 Rue Méchain, 75014 Paris, France
- />CNRS, UMR8104, Paris, France
- />Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| |
Collapse
|
89
|
Related Mechanisms of Antibody Somatic Hypermutation and Class Switch Recombination. Microbiol Spectr 2016; 3:MDNA3-0037-2014. [PMID: 26104555 DOI: 10.1128/microbiolspec.mdna3-0037-2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The primary antibody repertoire is generated by mechanisms involving the assembly of the exons that encode the antigen-binding variable regions of immunoglobulin heavy (IgH) and light (IgL) chains during the early development of B lymphocytes. After antigen-dependent activation, mature B lymphocytes can further alter their IgH and IgL variable region exons by the process of somatic hypermutation (SHM), which allows the selection of B cells in which SHMs resulted in the production of antibodies with increased antigen affinity. In addition, during antigen-dependent activation, B cells can also change the constant region of their IgH chain through a DNA double-strand-break (DSB) dependent process referred to as IgH class switch recombination (CSR), which generates B cell progeny that produce antibodies with different IgH constant region effector functions that are best suited for a elimination of a particular pathogen or in a particular setting. Both the mutations that underlie SHM and the DSBs that underlie CSR are initiated in target genes by activation-induced cytidine deaminase (AID). This review describes in depth the processes of SHM and CSR with a focus on mechanisms that direct AID cytidine deamination in activated B cells and mechanisms that promote the differential outcomes of such cytidine deamination.
Collapse
|
90
|
Mismatch Repair and Colon Cancer: Mechanisms and Therapies Explored. Trends Mol Med 2016; 22:274-289. [PMID: 26970951 DOI: 10.1016/j.molmed.2016.02.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) remains one of the most prevalent cancers worldwide. In sporadic CRC, mutations frequently occur in the DNA mismatch repair (MMR) pathway. In addition, germline MMR mutations have been linked to Lynch syndrome, the most common form of hereditary CRC. Although genetic mutations, diet, inflammation, and the gut microbiota can influence CRC, it is unclear how MMR deficiency relates to these factors to modulate disease. In this review, the association of MMR to the etiology of CRC is examined, particularly in the context of microRNAs (miRNAs), inflammation, and the microbiome. We also discuss the most current targeted therapies, methods of prevention, and molecular biomarkers against MMR-deficient CRC, all of which are encouraging advancements in the field.
Collapse
|
91
|
Chen Z, Eder MD, Elos MT, Viboolsittiseri SS, Chen X, Wang JH. Interplay between Target Sequences and Repair Pathways Determines Distinct Outcomes of AID-Initiated Lesions. THE JOURNAL OF IMMUNOLOGY 2016; 196:2335-47. [PMID: 26810227 DOI: 10.4049/jimmunol.1502184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/22/2015] [Indexed: 11/19/2022]
Abstract
Activation-induced deaminase (AID) functions by deaminating cytosines and causing U:G mismatches, a rate-limiting step of Ab gene diversification. However, precise mechanisms regulating AID deamination frequency remain incompletely understood. Moreover, it is not known whether different sequence contexts influence the preferential access of mismatch repair or uracil glycosylase (UNG) to AID-initiated U:G mismatches. In this study, we employed two knock-in models to directly compare the mutability of core Sμ and VDJ exon sequences and their ability to regulate AID deamination and subsequent repair process. We find that the switch (S) region is a much more efficient AID deamination target than the V region. Igh locus AID-initiated lesions are processed by error-free and error-prone repair. S region U:G mismatches are preferentially accessed by UNG, leading to more UNG-dependent deletions, enhanced by mismatch repair deficiency. V region mutation hotspots are largely determined by AID deamination. Recurrent and conserved S region motifs potentially function as spacers between AID deamination hotspots. We conclude that the pattern of mutation hotspots and DNA break generation is influenced by sequence-intrinsic properties, which regulate AID deamination and affect the preferential access of downstream repair. Our studies reveal an evolutionarily conserved role for substrate sequences in regulating Ab gene diversity and AID targeting specificity.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Maxwell D Eder
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Mihret T Elos
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Sawanee S Viboolsittiseri
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Xiaomi Chen
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045; and Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| |
Collapse
|
92
|
Pilzecker B, Buoninfante OA, Pritchard C, Blomberg OS, Huijbers IJ, van den Berk PCM, Jacobs H. PrimPol prevents APOBEC/AID family mediated DNA mutagenesis. Nucleic Acids Res 2016; 44:4734-44. [PMID: 26926109 PMCID: PMC4889928 DOI: 10.1093/nar/gkw123] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/19/2016] [Indexed: 01/09/2023] Open
Abstract
PrimPol is a DNA damage tolerant polymerase displaying both translesion synthesis (TLS) and (re)-priming properties. This led us to study the consequences of a PrimPol deficiency in tolerating mutagenic lesions induced by members of the APOBEC/AID family of cytosine deaminases. Interestingly, during somatic hypermutation, PrimPol counteracts the generation of C>G transversions on the leading strand. Independently, mutation analyses in human invasive breast cancer confirmed a pro-mutagenic activity of APOBEC3B and revealed a genome-wide anti-mutagenic activity of PRIMPOL as well as most Y-family TLS polymerases. PRIMPOL especially prevents APOBEC3B targeted cytosine mutations within TpC dinucleotides. As C transversions induced by APOBEC/AID family members depend on the formation of AP-sites, we propose that PrimPol reprimes preferentially downstream of AP-sites on the leading strand, to prohibit error-prone TLS and simultaneously stimulate error-free homology directed repair. These in vivo studies are the first demonstrating a critical anti-mutagenic activity of PrimPol in genome maintenance.
Collapse
Affiliation(s)
- Bas Pilzecker
- Division of Biological Stress Response, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Olimpia Alessandra Buoninfante
- Division of Biological Stress Response, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Colin Pritchard
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Olga S Blomberg
- Division of Biological Stress Response, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Ivo J Huijbers
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Paul C M van den Berk
- Division of Biological Stress Response, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Biological Stress Response, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
93
|
DiMenna LJ, Chaudhuri J. Regulating infidelity: RNA-mediated recruitment of AID to DNA during class switch recombination. Eur J Immunol 2016; 46:523-30. [PMID: 26799454 DOI: 10.1002/eji.201545809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/24/2015] [Accepted: 01/19/2016] [Indexed: 01/03/2023]
Abstract
The mechanism by which the DNA deaminase activation-induced cytidine deaminase (AID) is specifically recruited to repetitive switch region DNA during class switch recombination is still poorly understood. Work over the past decade has revealed a strong link between transcription and RNA polymerase-associated factors in AID recruitment, yet none of these processes satisfactorily explain how AID specificity is affected. Here, we review a recent finding wherein AID is guided to switch regions not by a protein factor but by an RNA moiety, and especially one associated with a noncoding RNA that has been long thought of as being inert. This work explains the long-standing requirement of splicing of noncoding transcripts during class switching, and has implications in both B cell-mediated immunity as well as the underlying pathological syndromes associated with the recombination reaction.
Collapse
Affiliation(s)
- Lauren J DiMenna
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jayanta Chaudhuri
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
94
|
Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity. Nat Rev Immunol 2016; 16:164-76. [PMID: 26898111 DOI: 10.1038/nri.2016.2] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As B cells engage in the immune response, they express activation-induced cytidine deaminase (AID) to initiate the hypermutation and recombination of immunoglobulin genes, which are crucial processes for the efficient recognition and disposal of pathogens. However, AID must be tightly controlled in B cells to minimize off-target mutations, which can drive chromosomal translocations and the development of B cell malignancies, such as lymphomas. Recent genomic and biochemical analyses have begun to unravel the mechanisms of how AID-mediated deamination is targeted outside immunoglobulin genes. Here, we discuss the transcriptional and topological features that are emerging as key drivers of AID promiscuous activity.
Collapse
|
95
|
Zanotti KJ, Gearhart PJ. Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases. DNA Repair (Amst) 2016; 38:110-116. [PMID: 26719140 PMCID: PMC4740194 DOI: 10.1016/j.dnarep.2015.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/30/2015] [Indexed: 10/25/2022]
Abstract
The enzyme activation-induced deaminase (AID) targets the immunoglobulin loci in activated B cells and creates DNA mutations in the antigen-binding variable region and DNA breaks in the switch region through processes known, respectively, as somatic hypermutation and class switch recombination. AID deaminates cytosine to uracil in DNA to create a U:G mismatch. During somatic hypermutation, the MutSα complex binds to the mismatch, and the error-prone DNA polymerase η generates mutations at A and T bases. During class switch recombination, both MutSα and MutLα complexes bind to the mismatch, resulting in double-strand break formation and end-joining. This review is centered on the mechanisms of how the MMR pathway is commandeered by B cells to generate antibody diversity.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
96
|
Bregenhorn S, Kallenberger L, Artola-Borán M, Peña-Diaz J, Jiricny J. Non-canonical uracil processing in DNA gives rise to double-strand breaks and deletions: relevance to class switch recombination. Nucleic Acids Res 2016; 44:2691-705. [PMID: 26743004 PMCID: PMC4824095 DOI: 10.1093/nar/gkv1535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/23/2015] [Indexed: 12/24/2022] Open
Abstract
During class switch recombination (CSR), antigen-stimulated B-cells rearrange their immunoglobulin constant heavy chain (CH) loci to generate antibodies with different effector functions. CSR is initiated by activation-induced deaminase (AID), which converts cytosines in switch (S) regions, repetitive sequences flanking the CH loci, to uracils. Although U/G mispairs arising in this way are generally efficiently repaired to C/Gs by uracil DNA glycosylase (UNG)-initiated base excision repair (BER), uracil processing in S-regions of activated B-cells occasionally gives rise to double strand breaks (DSBs), which trigger CSR. Surprisingly, genetic experiments revealed that CSR is dependent not only on AID and UNG, but also on mismatch repair (MMR). To elucidate the role of MMR in CSR, we studied the processing of uracil-containing DNA substrates in extracts of MMR-proficient and –deficient human cells, as well as in a system reconstituted from recombinant BER and MMR proteins. Here, we show that the interplay of these repair systems gives rise to DSBs in vitro and to genomic deletions and mutations in vivo, particularly in an S-region sequence. Our findings further suggest that MMR affects pathway choice in DSB repair. Given its amenability to manipulation, our system represents a powerful tool for the molecular dissection of CSR.
Collapse
Affiliation(s)
- Stephanie Bregenhorn
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland Department of Biology, Swiss Federal Institute of Technology (ETH) Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Lia Kallenberger
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Mariela Artola-Borán
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Javier Peña-Diaz
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland University of Copenhagen, Faculty of Health Sciences Center for Healthy Aging, Department of Neuroscience and Pharmacology, Blegdamsvej 3b, DK-2200 Copenhagen N, Denmark
| | - Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland Department of Biology, Swiss Federal Institute of Technology (ETH) Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
97
|
Yeap LS, Hwang JK, Du Z, Meyers RM, Meng FL, Jakubauskaitė A, Liu M, Mani V, Neuberg D, Kepler TB, Wang JH, Alt FW. Sequence-Intrinsic Mechanisms that Target AID Mutational Outcomes on Antibody Genes. Cell 2015; 163:1124-1137. [PMID: 26582132 DOI: 10.1016/j.cell.2015.10.042] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/01/2015] [Accepted: 10/13/2015] [Indexed: 12/27/2022]
Abstract
In activated B lymphocytes, AID initiates antibody variable (V) exon somatic hypermutation (SHM) for affinity maturation in germinal centers (GCs) and IgH switch (S) region DNA breaks (DSBs) for class-switch recombination (CSR). To resolve long-standing questions, we have developed an in vivo assay to study AID targeting of passenger sequences replacing a V exon. First, we find AID targets SHM hotspots within V exon and S region passengers at similar frequencies and that the normal SHM process frequently generates deletions, indicating that SHM and CSR employ the same mechanism. Second, AID mutates targets in diverse non-Ig passengers in GC B cells at levels similar to those of V exons, definitively establishing the V exon location as "privileged" for SHM. Finally, Peyer's patch GC B cells generate a reservoir of V exons that are highly mutated before selection for affinity maturation. We discuss the implications of these findings for harnessing antibody diversification mechanisms.
Collapse
Affiliation(s)
- Leng-Siew Yeap
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joyce K Hwang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Zhou Du
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Robin M Meyers
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Fei-Long Meng
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Agnė Jakubauskaitė
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mengyuan Liu
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Vinidhra Mani
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02215, USA
| | - Jing H Wang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine at Boston Children's Hospital, and Department of Genetics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
98
|
AID-associated DNA repair pathways regulate malignant transformation in a murine model of BCL6-driven diffuse large B-cell lymphoma. Blood 2015; 127:102-12. [PMID: 26385350 DOI: 10.1182/blood-2015-02-628164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 09/08/2015] [Indexed: 12/27/2022] Open
Abstract
Somatic hypermutation and class-switch recombination of the immunoglobulin (Ig) genes occur in germinal center (GC) B cells and are initiated through deamination of cytidine to uracil by activation-induced cytidine deaminase (AID). Resulting uracil-guanine mismatches are processed by uracil DNA glycosylase (UNG)-mediated base-excision repair and MSH2-mediated mismatch repair (MMR) to yield mutations and DNA strand lesions. Although off-target AID activity also contributes to oncogenic point mutations and chromosome translocations associated with GC and post-GC B-cell lymphomas, the role of downstream AID-associated DNA repair pathways in the pathogenesis of lymphoma is unknown. Here, we show that simultaneous deficiency of UNG and MSH2 or MSH2 alone causes genomic instability and a shorter latency to the development of BCL6-driven diffuse large B-cell lymphoma (DLBCL) in a murine model. The additional development of several BCL6-independent malignancies in these mice underscores the critical role of MMR in maintaining general genomic stability. In contrast, absence of UNG alone is highly protective and prevents the development of BCL6-driven DLBCL. We further demonstrate that clonal and nonclonal mutations arise within non-Ig AID target genes in the combined absence of UNG and MSH2 and that DNA strand lesions arise in an UNG-dependent manner but are offset by MSH2. These findings lend insight into a complex interplay whereby potentially deleterious UNG activity and general genomic instability are opposed by the protective influence of MSH2, producing a net protective effect that promotes immune diversification while simultaneously attenuating malignant transformation of GC B cells.
Collapse
|
99
|
Davari K, Frankenberger S, Schmidt A, Tomi NS, Jungnickel B. Checkpoint kinase 2 is required for efficient immunoglobulin diversification. Cell Cycle 2015; 13:3659-69. [PMID: 25483076 DOI: 10.4161/15384101.2014.964112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Maintenance of genome integrity relies on multiple DNA repair pathways as well as on checkpoint regulation. Activation of the checkpoint kinases Chk1 and Chk2 by DNA damage triggers cell cycle arrest and improved DNA repair, or apoptosis in case of excessive damage. Chk1 and Chk2 have been reported to act in a complementary or redundant fashion, depending on the physiological context. During secondary immunoglobulin (Ig) diversification in B lymphocytes, DNA damage is abundantly introduced by activation-induced cytidine deaminase (AID) and processed to mutations in a locus-specific manner by several error-prone DNA repair pathways. We have previously shown that Chk1 negatively regulates Ig somatic hypermutation by promoting error-free homologous recombination and Ig gene conversion. We now report that Chk2 shows opposite effects to Chk1 in the regulation of these processes. Chk2 inactivation in B cells leads to decreased Ig hypermutation and Ig class switching, and increased Ig gene conversion activity. This is linked to defects in non-homologous end joining and increased Chk1 activation upon interference with Chk2 function. Intriguingly, in the context of physiological introduction of substantial DNA damage into the genome during Ig diversification, the 2 checkpoint kinases thus function in an opposing manner, rather than redundantly or cooperatively.
Collapse
Key Words
- AID, activation-induced cytidine deaminase
- APE1, apurinic endonuclease 1
- ATM, ataxia telangiectasia mutated
- ATR, ataxia telangiectasia and rad3 related
- Chk, checkpoint kinase
- DNA repair
- HR, homologous recombination
- Ig, immunoglobulin
- MMR mismatch repair
- MMS, methyl methansulfonate
- NHEJ, non-homologous end joining
- UNG, uracil N-glycosilase
- checkpoint signaling
- germinal center
- immunoglobulin diversification
Collapse
Affiliation(s)
- Kathrin Davari
- a Department of Cell Biology; Institute of Biochemistry and Biophysics; Center for Molecular Biomedicine ; Friedrich-Schiller University Jena ; Jena , Germany
| | | | | | | | | |
Collapse
|
100
|
Individual substitution mutations in the AID C terminus that ablate IgH class switch recombination. PLoS One 2015; 10:e0134397. [PMID: 26267846 PMCID: PMC4534307 DOI: 10.1371/journal.pone.0134397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/08/2015] [Indexed: 11/19/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. The C terminus of AID is required for CSR but not for SHM, but the reason for this is not entirely clear. By retroviral transduction of mutant AID proteins into aid-/- mouse splenic B cells, we show that 4 amino acids within the C terminus of mouse AID, when individually mutated to specific amino acids (R190K, A192K, L196S, F198S), reduce CSR about as much or more than deletion of the entire C terminal 10 amino acids. Similar to ΔAID, the substitutions reduce binding of UNG to Ig Sμ regions and some reduce binding of Msh2, both of which are important for introducing S region DNA breaks. Junctions between the IgH donor switch (S)μ and acceptor Sα regions from cells expressing ΔAID or the L196S mutant show increased microhomology compared to junctions in cells expressing wild-type AID, consistent with problems during CSR and the use of alternative end-joining, rather than non-homologous end-joining (NHEJ). Unlike deletion of the AID C terminus, 3 of the substitution mutants reduce DNA double-strand breaks (DSBs) detected within the Sμ region in splenic B cells undergoing CSR. Cells expressing these 3 substitution mutants also have greatly reduced mutations within unrearranged Sμ regions, and they decrease with time after activation. These results might be explained by increased error-free repair, but as the C terminus has been shown to be important for recruitment of NHEJ proteins, this appears unlikely. We hypothesize that Sμ DNA breaks in cells expressing these C terminus substitution mutants are poorly repaired, resulting in destruction of Sμ segments that are deaminated by these mutants. This could explain why these mutants cannot undergo CSR.
Collapse
|