51
|
An L, Cao Z, Nie P, Zhang H, Tong Z, Chen F, Tang Y, Han Y, Wang W, Zhao Z, Zhao Q, Yang Y, Xu Y, Fang G, Shi L, Xu H, Ma H, Jiao S, Zhou Z. Combinatorial targeting of Hippo-STRIPAK and PARP elicits synthetic lethality in gastrointestinal cancers. J Clin Invest 2022; 132:e155468. [PMID: 35290241 PMCID: PMC9057599 DOI: 10.1172/jci155468] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
The striatin-interacting phosphatase and kinase (STRIPAK) complexes integrate extracellular stimuli that result in intracellular activities. Previously, we discovered that STRIPAK is a key machinery responsible for loss of the Hippo tumor suppressor signal in cancer. Here, we identified the Hippo-STRIPAK complex as an essential player in the control of DNA double-stranded break (DSB) repair and genomic stability. Specifically, we found that the mammalian STE20-like protein kinases 1 and 2 (MST1/2), independent of classical Hippo signaling, directly phosphorylated zinc finger MYND type-containing 8 (ZMYND8) and hence resulted in the suppression of DNA repair in the nucleus. In response to genotoxic stress, the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway was determined to relay nuclear DNA damage signals to the dynamic assembly of Hippo-STRIPAK via TANK-binding kinase 1-induced (TBK1-induced) structural stabilization of the suppressor of IKBKE 1- sarcolemma membrane-associated protein (SIKE1-SLMAP) arm. As such, we found that STRIPAK-mediated MST1/2 inactivation increased the DSB repair capacity of cancer cells and endowed these cells with resistance to radio- and chemotherapy and poly(ADP-ribose)polymerase (PARP) inhibition. Importantly, targeting the STRIPAK assembly with each of 3 distinct peptide inhibitors efficiently recovered the kinase activity of MST1/2 to suppress DNA repair and resensitize cancer cells to PARP inhibitors in both animal- and patient-derived tumor models. Overall, our findings not only uncover what we believe to be a previously unrecognized role for STRIPAK in modulating DSB repair but also provide translational implications of cotargeting STRIPAK and PARP for a new type of synthetic lethality anticancer therapy.
Collapse
Affiliation(s)
- Liwei An
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Zhifa Cao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Pingping Nie
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhenzhu Tong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yang Tang
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Yi Han
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhangting Zhao
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingya Zhao
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqin Yang
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gemin Fang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haiqing Ma
- Department of Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
52
|
Sinclear CK, Maruyama J, Nagashima S, Arimoto‐Matsuzaki K, Kuleape JA, Iwasa H, Nishina H, Hata Y. Protein kinase Cα activation switches YAP1 from TEAD-mediated signaling to p73-mediated signaling. Cancer Sci 2022; 113:1305-1320. [PMID: 35102644 PMCID: PMC8990296 DOI: 10.1111/cas.15285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 12/30/2022] Open
Abstract
Yes-associated protein 1 (YAP1) interacts with TEAD transcription factor in the nucleus and upregulates TEAD-target genes. YAP1 is phosphorylated by large tumor suppressor (LATS) kinases, the core kinases of the Hippo pathway, at 5 serine residues and is sequestered and degraded in the cytoplasm. In human cancers with the dysfunction of the Hippo pathway, YAP1 becomes hyperactive and confers malignant properties to cancer cells. We have observed that cold shock induces protein kinase C (PKC)-mediated phosphorylation of YAP1. PKC phosphorylates YAP1 at 3 serine residues among LATS-mediate phosphorylation sites. Importantly, PKC activation recruits YAP1 to the cytoplasm even in LATS-depleted cancer cells and reduces the cooperation with TEAD. PKC activation induces promyelocytic leukemia protein-mediated SUMOylation of YAP1. SUMOylated YAP1 remains in the nucleus, binds to p73, and promotes p73-target gene transcription. Bryostatin, a natural anti-neoplastic reagent that activates PKC, induces YAP1/p73-mediated apoptosis in cancer cells. Bryostatin reverses malignant transformation caused by the depletion of LATS kinases. Therefore, bryostatin and other reagents that activate PKC are expected to control cancers with the dysfunction of the Hippo pathway.
Collapse
Affiliation(s)
- Caleb Kwame Sinclear
- Department of Medical BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Junichi Maruyama
- Laboratory for Integrated Cellular SystemsRIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Shunta Nagashima
- Department of Medical BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Kyoko Arimoto‐Matsuzaki
- Department of Medical BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Joshua Agbemefa Kuleape
- Department of Medical BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Hiroaki Iwasa
- Department of Molecular BiologySchool of MedicineInternational University of Health and WelfareNaritaJapan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative BiologyMedical Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| | - Yutaka Hata
- Department of Medical BiochemistryGraduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan,Center for Brain Integration ResearchTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
53
|
Ramaccini D, Pedriali G, Perrone M, Bouhamida E, Modesti L, Wieckowski MR, Giorgi C, Pinton P, Morciano G. Some Insights into the Regulation of Cardiac Physiology and Pathology by the Hippo Pathway. Biomedicines 2022; 10:biomedicines10030726. [PMID: 35327528 PMCID: PMC8945338 DOI: 10.3390/biomedicines10030726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022] Open
Abstract
The heart is one of the most fascinating organs in living beings. It beats up to 100,000 times a day throughout the lifespan, without resting. The heart undergoes profound anatomical, biochemical, and functional changes during life, from hypoxemic fetal stages to a completely differentiated four-chambered cardiac muscle. In the middle, many biological events occur after and intersect with each other to regulate development, organ size, and, in some cases, regeneration. Several studies have defined the essential roles of the Hippo pathway in heart physiology through the regulation of apoptosis, autophagy, cell proliferation, and differentiation. This molecular route is composed of multiple components, some of which were recently discovered, and is highly interconnected with multiple known prosurvival pathways. The Hippo cascade is evolutionarily conserved among species, and in addition to its regulatory roles, it is involved in disease by drastically changing the heart phenotype and its function when its components are mutated, absent, or constitutively activated. In this review, we report some insights into the regulation of cardiac physiology and pathology by the Hippo pathway.
Collapse
Affiliation(s)
- Daniela Ramaccini
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Gaia Pedriali
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Mariasole Perrone
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Esmaa Bouhamida
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Lorenzo Modesti
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
- Correspondence: (P.P.); (G.M.); Tel.: +39-0532-455-802 (P.P.); +39-0532-455-804 (G.M.)
| | - Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
- Correspondence: (P.P.); (G.M.); Tel.: +39-0532-455-802 (P.P.); +39-0532-455-804 (G.M.)
| |
Collapse
|
54
|
Hou Y, Zhang X, Sun X, Qin Q, Chen D, Jia M, Chen Y. Genetically modified rabbit models for cardiovascular medicine. Eur J Pharmacol 2022; 922:174890. [PMID: 35300995 DOI: 10.1016/j.ejphar.2022.174890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 01/19/2023]
Abstract
Genetically modified (GM) rabbits are outstanding animal models for studying human genetic and acquired diseases. As such, GM rabbits that express human genes have been extensively used as models of cardiovascular disease. Rabbits are genetically modified via prokaryotic microinjection. Through this process, genes are randomly integrated into the rabbit genome. Moreover, gene targeting in embryonic stem (ES) cells is a powerful tool for understanding gene function. However, rabbits lack stable ES cell lines. Therefore, ES-dependent gene targeting is not possible in rabbits. Nevertheless, the RNA interference technique is rapidly becoming a useful experimental tool that enables researchers to knock down specific gene expression, which leads to the genetic modification of rabbits. Recently, with the emergence of new genetic technology, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated protein 9 (CRISPR/Cas9), major breakthroughs have been made in rabbit gene targeting. Using these novel genetic techniques, researchers have successfully modified knockout (KO) rabbit models. In this paper, we aimed to review the recent advances in GM technology in rabbits and highlight their application as models for cardiovascular medicine.
Collapse
Affiliation(s)
- Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xia Sun
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
55
|
Guo Y, Luo J, Zou H, Liu C, Deng L, Li P. Context-dependent transcriptional regulations of YAP/TAZ in cancer. Cancer Lett 2022; 527:164-173. [PMID: 34952145 DOI: 10.1016/j.canlet.2021.12.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/20/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
As the downstream effectors of Hippo pathway, YAP/TAZ are identified to participate in organ growth, regeneration and tumorigenesis. However, owing to lack of a DNA-binding domain, YAP/TAZ usually act as coactivators and cooperate with other transcription factors or partners to mediate their transcriptional outputs. In this article, we first present an overview of the core components and the upstream regulators of Hippo-YAP/TAZ signaling in mammals, and then systematically summarize the identified transcription factors or partners that are responsible for the downstream transcriptional output of YAP/TAZ in various cancers.
Collapse
Affiliation(s)
- Yibo Guo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Chenxin Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei, 430205, People's Republic of China
| | - Liang Deng
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
56
|
The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond) 2022; 136:197-222. [PMID: 35119068 PMCID: PMC8819670 DOI: 10.1042/cs20201474] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings.
Collapse
|
57
|
Ren F, Ning H, Ge Y, Yin Z, Chen L, Hu D, Shen S, Wang X, Wang S, Li R, He J. Bisphenol A Induces Apoptosis in Response to DNA Damage through c-Abl/YAPY357/ p73 Pathway in P19 Embryonal Carcinoma Stem Cells. Toxicology 2022; 470:153138. [DOI: 10.1016/j.tox.2022.153138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 12/22/2022]
|
58
|
Luo J, Li P. Context-dependent transcriptional regulations of YAP/TAZ in stem cell and differentiation. Stem Cell Res Ther 2022; 13:10. [PMID: 35012640 PMCID: PMC8751096 DOI: 10.1186/s13287-021-02686-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
Hippo pathway is initially identified as a master regulator for cell proliferation and organ size control, and the subsequent researches show this pathway is also involved in development, tissue regeneration and homeostasis, inflammation, immunity and cancer. YAP/TAZ, the downstream effectors of Hippo pathway, usually act as coactivators and are dependent on other transcription factors to mediate their transcriptional outputs. In this review, we will first provide an overview on the core components and regulations of Hippo pathway in mammals, and then systematically summarize the identified transcriptional factors or partners that are responsible for the transcriptional output of YAP/TAZ in stem cell and differentiation. More than that, we will discuss the potential applications and future directions based on these findings.
Collapse
Affiliation(s)
- Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
59
|
Xiao Y, Dong J. The Hippo Signaling Pathway in Cancer: A Cell Cycle Perspective. Cancers (Basel) 2021; 13:cancers13246214. [PMID: 34944834 PMCID: PMC8699626 DOI: 10.3390/cancers13246214] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Cancer is increasingly viewed as a cell cycle disease in that the dysregulation of the cell cycle machinery is a common feature in cancer. The Hippo signaling pathway consists of a core kinase cascade as well as extended regulators, which together control organ size and tissue homeostasis. The aberrant expression of cell cycle regulators and/or Hippo pathway components contributes to cancer development, and for this reason, we specifically focus on delineating the roles of the Hippo pathway in the cell cycle. Improving our understanding of the Hippo pathway from a cell cycle perspective could be used as a powerful weapon in the cancer battlefield. Abstract Cell cycle progression is an elaborate process that requires stringent control for normal cellular function. Defects in cell cycle control, however, contribute to genomic instability and have become a characteristic phenomenon in cancers. Over the years, advancement in the understanding of disrupted cell cycle regulation in tumors has led to the development of powerful anti-cancer drugs. Therefore, an in-depth exploration of cell cycle dysregulation in cancers could provide therapeutic avenues for cancer treatment. The Hippo pathway is an evolutionarily conserved regulator network that controls organ size, and its dysregulation is implicated in various types of cancers. Although the role of the Hippo pathway in oncogenesis has been widely investigated, its role in cell cycle regulation has not been comprehensively scrutinized. Here, we specifically focus on delineating the involvement of the Hippo pathway in cell cycle regulation. To that end, we first compare the structural as well as functional conservation of the core Hippo pathway in yeasts, flies, and mammals. Then, we detail the multi-faceted aspects in which the core components of the mammalian Hippo pathway and their regulators affect the cell cycle, particularly with regard to the regulation of E2F activity, the G1 tetraploidy checkpoint, DNA synthesis, DNA damage checkpoint, centrosome dynamics, and mitosis. Finally, we briefly discuss how a collective understanding of cell cycle regulation and the Hippo pathway could be weaponized in combating cancer.
Collapse
Affiliation(s)
| | - Jixin Dong
- Correspondence: ; Tel.: +402-559-5596; Fax: +402-559-4651
| |
Collapse
|
60
|
Rozenberg JM, Zvereva S, Dalina A, Blatov I, Zubarev I, Luppov D, Bessmertnyi A, Romanishin A, Alsoulaiman L, Kumeiko V, Kagansky A, Melino G, Ganini C, Barlev NA. The p53 family member p73 in the regulation of cell stress response. Biol Direct 2021; 16:23. [PMID: 34749806 PMCID: PMC8577020 DOI: 10.1186/s13062-021-00307-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
During oncogenesis, cells become unrestrictedly proliferative thereby altering the tissue homeostasis and resulting in subsequent hyperplasia. This process is paralleled by resumption of cell cycle, aberrant DNA repair and blunting the apoptotic program in response to DNA damage. In most human cancers these processes are associated with malfunctioning of tumor suppressor p53. Intriguingly, in some cases two other members of the p53 family of proteins, transcription factors p63 and p73, can compensate for loss of p53. Although both p63 and p73 can bind the same DNA sequences as p53 and their transcriptionally active isoforms are able to regulate the expression of p53-dependent genes, the strongest overlap with p53 functions was detected for p73. Surprisingly, unlike p53, the p73 is rarely lost or mutated in cancers. On the contrary, its inactive isoforms are often overexpressed in cancer. In this review, we discuss several lines of evidence that cancer cells develop various mechanisms to repress p73-mediated cell death. Moreover, p73 isoforms may promote cancer growth by enhancing an anti-oxidative response, the Warburg effect and by repressing senescence. Thus, we speculate that the role of p73 in tumorigenesis can be ambivalent and hence, requires new therapeutic strategies that would specifically repress the oncogenic functions of p73, while keeping its tumor suppressive properties intact.
Collapse
Affiliation(s)
- Julian M Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Svetlana Zvereva
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksandra Dalina
- The Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russia
| | - Igor Blatov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ilya Zubarev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daniil Luppov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Alexander Romanishin
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.,School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Lamak Alsoulaiman
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Alexander Kagansky
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Gerry Melino
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Ganini
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nikolai A Barlev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia. .,Institute of Cytology, Russian Academy of Science, Saint-Petersburg, Russia.
| |
Collapse
|
61
|
Noor H, Briggs NE, McDonald KL, Holst J, Vittorio O. TP53 Mutation Is a Prognostic Factor in Lower Grade Glioma and May Influence Chemotherapy Efficacy. Cancers (Basel) 2021; 13:5362. [PMID: 34771529 PMCID: PMC8582451 DOI: 10.3390/cancers13215362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Identification of prognostic biomarkers in cancers is a crucial step to improve overall survival (OS). Although mutations in tumour protein 53 (TP53) is prevalent in astrocytoma, the prognostic effects of TP53 mutation are unclear. METHODS In this retrospective study, we sequenced TP53 exons 1 to 10 in a cohort of 102 lower-grade glioma (LGG) subtypes and determined the prognostic effects of TP53 mutation in astrocytoma and oligodendroglioma. Publicly available datasets were analysed to confirm the findings. RESULTS In astrocytoma, mutations in TP53 codon 273 were associated with a significantly increased OS compared to the TP53 wild-type (HR (95% CI): 0.169 (0.036-0.766), p = 0.021). Public datasets confirmed these findings. TP53 codon 273 mutant astrocytomas were significantly more chemosensitive than TP53 wild-type astrocytomas (HR (95% CI): 0.344 (0.13-0.88), p = 0.0148). Post-chemotherapy, a significant correlation between TP53 and YAP1 mRNA was found (p = 0.01). In O (6)-methylguanine methyltransferase (MGMT) unmethylated chemotherapy-treated astrocytoma, both TP53 codon 273 and YAP1 mRNA were significant prognostic markers. In oligodendroglioma, TP53 mutations were associated with significantly decreased OS. CONCLUSIONS Based on these findings, we propose that certain TP53 mutant astrocytomas are chemosensitive through the involvement of YAP1, and we outline a potential mechanism. Thus, TP53 mutations may be key drivers of astrocytoma therapeutic efficacy and influence survival outcomes.
Collapse
Affiliation(s)
- Humaira Noor
- Cure Brain Cancer Biomarkers and Translational Research Group, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2031, Australia;
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW 2031, Australia;
| | - Nancy E. Briggs
- Stats Central, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2031, Australia;
| | - Kerrie L. McDonald
- Cure Brain Cancer Biomarkers and Translational Research Group, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2031, Australia;
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW 2031, Australia;
| | - Jeff Holst
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW 2031, Australia;
- Translational Cancer Metabolism Laboratory, School of Medical Sciences, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2031, Australia
| | - Orazio Vittorio
- School of Women’s & Children’s Health, UNSW Medicine, University of NSW, Randwick, NSW 2031, Australia;
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW 2031, Australia
| |
Collapse
|
62
|
Riluzole-induced apoptosis in osteosarcoma is mediated through Yes-associated protein upon phosphorylation by c-Abl Kinase. Sci Rep 2021; 11:20974. [PMID: 34697383 PMCID: PMC8546089 DOI: 10.1038/s41598-021-00439-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Our lab has previously demonstrated Riluzole to be an effective drug in inhibiting proliferation and inducing apoptosis in both human and mouse osteosarcoma. Yes-associated protein is a transcription co-activator, known to be involved in cell proliferation or apoptosis depending on its protein partner. In the present study we investigated the role of YAP in apoptosis in osteosarcoma, we hypothesized that YAP may be activated by Riluzole to induce apoptosis in osteosarcoma. By knocking down the expression of YAP, we have demonstrated that Riluzole failed to induce apoptosis in YAP deficient osteosarcoma cells. Riluzole caused translocation of YAP from the cytoplasm to the nucleus, indicating YAP’s role in apoptosis. Both Riluzole-induced phosphorylation of YAP at tyrosine 357 and Riluzole-induced apoptosis were blocked by inhibitors of c-Abl kinase. In addition, knockdown of c-Abl kinase prevented Riluzole-induced apoptosis in LM7 cells. We further demonstrated that Riluzole promoted interaction between YAP and p73, while c-Abl kinase inhibitors abolished the interaction. Subsequently, we demonstrated that Riluzole enhanced activity of the Bax promoter in a luciferase reporter assay and enhanced YAP/p73 binding on endogenous Bax promoter in a ChIP assay. Our data supports a novel mechanism in which Riluzole activates c-Abl kinase to regulate pro-apoptotic activity of YAP in osteosarcoma.
Collapse
|
63
|
Chen J, Cheng J, Zhao C, Zhao B, Mi J, Li W. The Hippo pathway: a renewed insight in the craniofacial diseases and hard tissue remodeling. Int J Biol Sci 2021; 17:4060-4072. [PMID: 34671220 PMCID: PMC8495397 DOI: 10.7150/ijbs.63305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
The Hippo pathway plays an important role in many pathophysiological processes, including cell proliferation and differentiation, cell death, cell migration and invasion. Because of its extensive functions, Hippo pathway is closely related to not only growth and development, but also many diseases, including inflammation and cancer. In this study, the role of Hippo pathway in craniofacial diseases and hard tissue remodeling was reviewed, in attempting to find new research directions.
Collapse
Affiliation(s)
- Jun Chen
- Xiangya School of Stomatology, Central South University, Changsha 410008, China.,Xiangya Stomatological Hospital, Central South University, Changsha 410008, China.,Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
| | - Jingyi Cheng
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Cong Zhao
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Boxuan Zhao
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Jia Mi
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Wenjie Li
- Xiangya School of Stomatology, Central South University, Changsha 410008, China.,Xiangya Stomatological Hospital, Central South University, Changsha 410008, China.,Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China.,National Key Laboratory of Science and Technology on High-strength Structural Materials, Central South University, Changsha 410083, China.,State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| |
Collapse
|
64
|
Sun X, Niu X, Qin N, Shan X, Zhao J, Ma C, Xu R, Mishra B. Novel insights into the regulation of LATS2 kinase in prehierarchical follicle development via the Hippo pathway in hen ovary. Poult Sci 2021; 100:101454. [PMID: 34649058 PMCID: PMC8517930 DOI: 10.1016/j.psj.2021.101454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
The large tumor suppressor homolog 2 (LATS2), one of the central regulators of the Hippo/MST signaling pathway, plays an inhibitory role in ovarian function and different organ development and growth in mammals. However, the exact roles and molecular regulatory mechanisms of LATS2 in chicken granulosa cell (GC) proliferation, differentiation, and steroidogenesis required for ovarian follicle growth, development, and follicular selection remain poorly understood. This study demonstrated that the LATS2 protein was predominantly localized in the oocytes and undifferentiated GCs of various-sized prehierarchical follicles of the hen ovary. Expression levels of LATS2 mRNA were significantly higher in the smaller follicles (from 1 mm to 5.9 mm in diameter) and the GCs than in the larger follicles (6–6.9 mm in diameter up to F1). Moreover, we found that high levels of LATS2 suppressed the GC proliferation and the mRNA and protein expression of the genes serving as the biomarkers of follicle selection, GC differentiation, and steroidogenesis in the GCs, including FSHR, STAR, CYP11A1, ESR1, and ESR2. Interestingly, the LATS2 significantly downregulated SAV1 and YAP1 transcripts but upregulated the expression of STK3, STK4, TEAD1, and TEAD3 mRNA. Our study provided evidences that STK3/4-LATS2-YAP1 not only acts as a suppressor of cell proliferation and follicle selection but also LATS2 may serve as an enhancer in cell proliferation and follicle selection through the YAP1-LATS2 and the LATS2-STK3/4 feedback loops by promoting the expression of TEAD1/3 but inhibiting the expression of SAV1 transcripts in the prehierarchical follicle development of hen ovary. Taken together, the present study initially revealed the pivotal role and molecular mechanism of LATS2 in the regulation of hen prehierarchical follicle development by controlling GC proliferation, differentiation, steroidogenesis, and follicle selection via the Hippo/MST signaling pathway.
Collapse
Affiliation(s)
- Xue Sun
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaotian Niu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ning Qin
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xuesong Shan
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jinghua Zhao
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Chang Ma
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Rifu Xu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
65
|
Lopez-Hernandez A, Sberna S, Campaner S. Emerging Principles in the Transcriptional Control by YAP and TAZ. Cancers (Basel) 2021; 13:cancers13164242. [PMID: 34439395 PMCID: PMC8391352 DOI: 10.3390/cancers13164242] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary YAP and TAZ are transcriptional cofactors that integrate several upstream signals to generate context-dependent transcriptional responses. This requires extensive integration with epigenetic regulators and other transcription factors. The molecular and genomic characterization of YAP and TAZ nuclear function has broad implications both in physiological and pathological settings. Abstract Yes-associated protein (YAP) and TAZ are transcriptional cofactors that sit at the crossroad of several signaling pathways involved in cell growth and differentiation. As such, they play essential functions during embryonic development, regeneration, and, once deregulated, in cancer progression. In this review, we will revise the current literature and provide an overview of how YAP/TAZ control transcription. We will focus on data concerning the modulation of the basal transcriptional machinery, their ability to epigenetically remodel the enhancer–promoter landscape, and the mechanisms used to integrate transcriptional cues from multiple pathways. This reveals how YAP/TAZ activation in cancer cells leads to extensive transcriptional control that spans several hallmarks of cancer. The definition of the molecular mechanism of transcriptional control and the identification of the pathways regulated by YAP/TAZ may provide therapeutic opportunities for the effective treatment of YAP/TAZ-driven tumors.
Collapse
|
66
|
Wang Z, Ran X, Qian S, Hou H, Dong M, Wu S, Ding M, Zhang Y, Zhang X, Zhang M, Chen Q. GPNMB promotes the progression of diffuse large B cell lymphoma via YAP1-mediated activation of the Wnt/β-catenin signaling pathway. Arch Biochem Biophys 2021; 710:108998. [PMID: 34280359 DOI: 10.1016/j.abb.2021.108998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 01/06/2023]
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) has been confirmed to be related to the pathogenesis of tumors. However, the potential impact of GPNMB on the progression of diffuse large B-cell lymphoma (DLBCL) is unclear. In this study, the expression levels of GPNMB and Yes-associated protein (YAP) were analyzed using qRT-PCT and Western blot assay. Cell counting kit-8, EdU, and flow cytometry assays were used to detect the proliferation and apoptosis of DLBCL cells. A nude mice xenograft model was established for in vivo research. Results showed that GPNMB and YAP1 were upregulated in DLBCL cell lines. Knockdown of GPNMB inhibited cell proliferation and promoted apoptosis in DLBCL cells. Additionally, the expression levels of YAP1 and the downstream effector of Hippo pathway (c-myc) were markedly decreased when GPNMB was knocked down. Moreover, knockdown of GPNMB inhibited the nuclear translocation of β-catenin protein, which could be abolished by YAP1 overexpression. Simultaneously, the anti-proliferative and pro-apoptotic effects of GPNMB knockdown could be reversed by YAP1 overexpression or LiCl (the activator of Wnt/β-catenin pathway). Furthermore, the mice xenograft model confirmed that inhibition of GPNMB restrained the tumorigenesis of DLBCL in vivo. In conclusion, GPNMB could partly activate the Wnt/β-catenin signaling pathway by targeting YAP1, so as to participate in tumorigenesis of DLBCL.
Collapse
Affiliation(s)
- Zeyuan Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Xianting Ran
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, China
| | - Siyu Qian
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Huting Hou
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Meng Dong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Shaoxuan Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Mengjie Ding
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Yue Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China
| | - Qingjiang Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, China.
| |
Collapse
|
67
|
Li FL, Guan KL. The two sides of Hippo pathway in cancer. Semin Cancer Biol 2021; 85:33-42. [PMID: 34265423 DOI: 10.1016/j.semcancer.2021.07.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023]
Abstract
The Hippo signaling pathway was originally characterized by genetic studies in Drosophila to regulate tissue growth and organ size, and the core components of this pathway are highly conserved in mammals. Studies over the past two decades have revealed critical physiological and pathological functions of the Hippo tumor-suppressor pathway, which is tightly regulated by a broad range of intracellular and extracellular signals. These properties enable the Hippo pathway to serve as an important controller in organismal development and adult tissue homeostasis. Dysregulation of the Hippo signaling has been observed in many cancer types, suggesting the possibility of cancer treatment by targeting the Hippo pathway. The general consensus is that Hippo has tumor suppressor function. However, growing evidence also suggests that the function of the Hippo pathway in malignancy is cancer context dependent as recent studies indicating tumor promoting function of LATS. This article surveys the Hippo pathway signaling mechanisms and then reviews both the tumor suppressing and promoting function of this pathway. A comprehensive understanding of the dual roles of the Hippo pathway in cancer will benefit future therapeutic targeting of the Hippo pathway for cancer treatment.
Collapse
Affiliation(s)
- Fu-Long Li
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
68
|
Hippo Signaling Pathway as a New Potential Target in Non-Melanoma Skin Cancers: A Narrative Review. Life (Basel) 2021; 11:life11070680. [PMID: 34357052 PMCID: PMC8306788 DOI: 10.3390/life11070680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Non-melanoma skin cancers (NMSCs), including basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), are the most frequently diagnosed cancers in humans, however, their exact pathogenesis is not fully understood. In recent years, it has been hypothesized that the recently discovered Hippo pathway could play a detrimental role in cutaneous carcinogenesis, but no direct connections have been made. The Hippo pathway and its effector, YAP, are responsible for tissue growth by accelerating cell proliferation, however, YAP upregulation and overexpression have also been reported in numerous types of tumors. There is also evidence that disrupted YAP/Hippo signaling is responsible for cancer growth, invasion, and metastasis. In this short review, we will explore whether the Hippo pathway is an important regulator of skin carcinogenesis and if it could be a promising target for future therapies.
Collapse
|
69
|
p53/p73 Protein Network in Colorectal Cancer and Other Human Malignancies. Cancers (Basel) 2021; 13:cancers13122885. [PMID: 34207603 PMCID: PMC8227208 DOI: 10.3390/cancers13122885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The p53 family of proteins comprises p53, p63, and p73, which share high structural and functional similarity. The two distinct promoters of each locus, the alternative splicing, and the alternative translation initiation sites enable the generation of numerous isoforms with different protein-interacting domains and distinct activities. The co-expressed p53/p73 isoforms have significant but distinct roles in carcinogenesis. Their activity is frequently impaired in human tumors including colorectal carcinoma due to dysregulated expression and a dominant-negative effect accomplished by some isoforms and p53 mutants. The interactions between isoforms are particularly important to understand the onset of tumor formation, progression, and therapeutic response. The understanding of the p53/p73 network can contribute to the development of new targeted therapies. Abstract The p53 tumor suppressor protein is crucial for cell growth control and the maintenance of genomic stability. Later discovered, p63 and p73 share structural and functional similarity with p53. To understand the p53 pathways more profoundly, all family members should be considered. Each family member possesses two promoters and alternative translation initiation sites, and they undergo alternative splicing, generating multiple isoforms. The resulting isoforms have important roles in carcinogenesis, while their expression is dysregulated in several human tumors including colorectal carcinoma, which makes them potential targets in cancer treatment. Their activities arise, at least in part, from the ability to form tetramers that bind to specific DNA sequences and activate the transcription of target genes. In this review, we summarize the current understanding of the biological activities and regulation of the p53/p73 isoforms, highlighting their role in colorectal tumorigenesis. The analysis of the expression patterns of the p53/p73 isoforms in human cancers provides an important step in the improvement of cancer therapy. Furthermore, the interactions among the p53 family members which could modulate normal functions of the canonical p53 in tumor tissue are described. Lastly, we emphasize the importance of clinical studies to assess the significance of combining the deregulation of different members of the p53 family to define the outcome of the disease.
Collapse
|
70
|
Jiang X, Hu J, Wu Z, Cafarello ST, Di Matteo M, Shen Y, Dong X, Adler H, Mazzone M, Ruiz de Almodovar C, Wang X. Protein Phosphatase 2A Mediates YAP Activation in Endothelial Cells Upon VEGF Stimulation and Matrix Stiffness. Front Cell Dev Biol 2021; 9:675562. [PMID: 34055807 PMCID: PMC8158299 DOI: 10.3389/fcell.2021.675562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/08/2021] [Indexed: 01/14/2023] Open
Abstract
Angiogenesis is an essential process during development. Abnormal angiogenesis also contributes to many disease conditions such as tumor and retinal diseases. Previous studies have established the Hippo signaling pathway effector Yes-associated protein (YAP) as a crucial regulator of angiogenesis. In ECs, activated YAP promotes endothelial cell proliferation, migration and sprouting. YAP activity is regulated by vascular endothelial growth factor (VEGF) and mechanical cues such as extracellular matrix (ECM) stiffness. However, it is unclear how VEGF or ECM stiffness signal to YAP, especially how dephosphorylation of YAP occurs in response to VEGF stimulus or ECM stiffening. Here, we show that protein phosphatase 2A (PP2A) is required for this process. Blocking PP2A activity abolishes VEGF or ECM stiffening mediated YAP activation. Systemic administration of a PP2A inhibitor suppresses YAP activity in blood vessels in developmental and pathological angiogenesis mouse models. Consistently, PP2A inhibitor also inhibits sprouting angiogenesis. Mechanistically, PP2A directly interacts with YAP, and this interaction requires proper cytoskeleton dynamics. These findings identify PP2A as a crucial mediator of YAP activation in ECs and hence as an important regulator of angiogenesis.
Collapse
Affiliation(s)
- Xiao Jiang
- Laboratory of Molecular Ophthalmology, Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiandong Hu
- Laboratory of Molecular Ophthalmology, Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ziru Wu
- Laboratory of Molecular Ophthalmology, Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Sarah Trusso Cafarello
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Mario Di Matteo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ying Shen
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xue Dong
- Laboratory of Molecular Ophthalmology, Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Heike Adler
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Carmen Ruiz de Almodovar
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiaohong Wang
- Laboratory of Molecular Ophthalmology, Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
71
|
Wu G, Hao C, Qi X, Nie J. Effect of Yes Associated Protein 1 Silence on Proliferation and Apoptosis of Bladder Cancer Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Yes Associated Protein 1 (YAP) can act as either an oncoprotein or a tumor suppressor in different cellular contexts. However, the reports about the direct role of YAP silence in bladder cancer cells are rare. We designed loss-off-function experiments to investigate the effect of YAP
knockdown on bladder cancer cell proliferation, cell cycle and cell apoptosis. We examined YAP expression in human bladder cancer and paracancerous tissues using RT-qPCR, western blot and immunohisto-chemistry. YAP short hairpin RNA (shRNA) was successfully constructed and transfected into
T24 cells to knockdown YAP. Cell proliferation, cell cycle and cell apoptosis were analyzed by CCK-8 and flow cytometry. We found the expression levels of YAP mRNA and protein were significantly increased in the bladder cancer tissues when compared with that in the paracancerous tissues. shRNA
YAP inhibited cell proliferation, induced cell cycle arrest at G1 phase, and induced cell apoptosis. In conclusion, our findings provided the first evidence that YAP knockdown could inhibit cell proliferation and induce cell apoptosis of bladder cancer cells. YAP inhibition may be beneficial
in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Gaoliang Wu
- Department of Urology, Jiangxi Cancer, Hospital, Nanchang 330029, Jiangxi, P. R. China
| | - Chao Hao
- Department of Urology, Jiangxi Cancer, Hospital, Nanchang 330029, Jiangxi, P. R. China
| | - Xueliang Qi
- Department of Urology, Jiangxi Cancer, Hospital, Nanchang 330029, Jiangxi, P. R. China
| | - Jianqiang Nie
- Department of Urology, Jiangxi Cancer, Hospital, Nanchang 330029, Jiangxi, P. R. China
| |
Collapse
|
72
|
New Insights into YES-Associated Protein Signaling Pathways in Hematological Malignancies: Diagnostic and Therapeutic Challenges. Cancers (Basel) 2021; 13:cancers13081981. [PMID: 33924049 PMCID: PMC8073623 DOI: 10.3390/cancers13081981] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary YES-associated protein (YAP) is a co-transcriptional activator that binds to transcriptional factors to increase the rate of transcription of a set of genes, and it can intervene in the onset and progression of different tumors. Most of the data in the literature refer to the effects of the YAP system in solid neoplasms. In this review, we analyze the possibility that YAP can also intervene in hematological neoplasms such as lymphomas, multiple myeloma, and acute and chronic leukemias, modifying the phenomena of cell proliferation and cell death. The possibilities of pharmacological intervention related to the YAP system in an attempt to use its modulation therapeutically are also discussed. Abstract The Hippo/YES-associated protein (YAP) signaling pathway is a cell survival and proliferation-control system with its main activity that of regulating cell growth and organ volume. YAP operates as a transcriptional coactivator in regulating the onset, progression, and treatment response in numerous human tumors. Moreover, there is evidence suggesting the involvement of YAP in the control of the hematopoietic system, in physiological conditions rather than in hematological diseases. Nevertheless, several reports have proposed that the effects of YAP in tumor cells are cell-dependent and cell-type-determined, even if YAP usually interrelates with extracellular signaling to stimulate the onset and progression of tumors. In the present review, we report the most recent findings in the literature on the relationship between the YAP system and hematological neoplasms. Moreover, we evaluate the possible therapeutic use of the modulation of the YAP system in the treatment of malignancies. Given the effects of the YAP system in immunosurveillance, tumorigenesis, and chemoresistance, further studies on interactions between the YAP system and hematological malignancies will offer very relevant information for the targeting of these diseases employing YAP modifiers alone or in combination with chemotherapy drugs.
Collapse
|
73
|
Omran Z, H. Dalhat M, Abdullah O, Kaleem M, Hosawi S, A Al-Abbasi F, Wu W, Choudhry H, Alhosin M. Targeting Post-Translational Modifications of the p73 Protein: A Promising Therapeutic Strategy for Tumors. Cancers (Basel) 2021; 13:1916. [PMID: 33921128 PMCID: PMC8071514 DOI: 10.3390/cancers13081916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/11/2023] Open
Abstract
The tumor suppressor p73 is a member of the p53 family and is expressed as different isoforms with opposing properties. The TAp73 isoforms act as tumor suppressors and have pro-apoptotic effects, whereas the ΔNp73 isoforms lack the N-terminus transactivation domain and behave as oncogenes. The TAp73 protein has a high degree of similarity with both p53 function and structure, and it induces the regulation of various genes involved in the cell cycle and apoptosis. Unlike those of the p53 gene, the mutations in the p73 gene are very rare in tumors. Cancer cells have developed several mechanisms to inhibit the activity and/or expression of p73, from the hypermethylation of its promoter to the modulation of the ratio between its pro- and anti-apoptotic isoforms. The p73 protein is also decorated by a panel of post-translational modifications, including phosphorylation, acetylation, ubiquitin proteasomal pathway modifications, and small ubiquitin-related modifier (SUMO)ylation, that regulate its transcriptional activity, subcellular localization, and stability. These modifications orchestrate the multiple anti-proliferative and pro-apoptotic functions of TAp73, thereby offering multiple promising candidates for targeted anti-cancer therapies. In this review, we summarize the current knowledge of the different pathways implicated in the regulation of TAp73 at the post-translational level. This review also highlights the growing importance of targeting the post-translational modifications of TAp73 as a promising antitumor strategy, regardless of p53 status.
Collapse
Affiliation(s)
- Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (Z.O.); (O.A.)
| | - Mahmood H. Dalhat
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (Z.O.); (O.A.)
| | - Mohammed Kaleem
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Salman Hosawi
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Fahd A Al-Abbasi
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, CA 94143, USA;
| | - Hani Choudhry
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| | - Mahmoud Alhosin
- King Fahd Medical Research Center, Cancer and Mutagenesis Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.H.D.); (M.K.); (S.H.); (F.A.A.-A.); (H.C.)
| |
Collapse
|
74
|
Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling. Genes (Basel) 2021; 12:genes12040553. [PMID: 33920182 PMCID: PMC8070103 DOI: 10.3390/genes12040553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Oncogenic RAS (Rat sarcoma) mutations drive more than half of human cancers, and RAS inhibition is the holy grail of oncology. Thirty years of relentless efforts and harsh disappointments have taught us about the intricacies of oncogenic RAS signalling that allow us to now get a pharmacological grip on this elusive protein. The inhibition of effector pathways, such as the RAF-MEK-ERK pathway, has largely proven disappointing. Thus far, most of these efforts were aimed at blocking the activation of ERK. Here, we discuss RAF-dependent pathways that are regulated through RAF functions independent of catalytic activity and their potential role as targets to block oncogenic RAS signalling. We focus on the now well documented roles of RAF kinase-independent functions in apoptosis, cell cycle progression and cell migration.
Collapse
|
75
|
Fan H, Zaman MAU, Chen W, Ali T, Campbell A, Zhang Q, Setu NI, Saxon E, Zahn NM, Benko AM, Arnold LA, Peng X. Assessment of Phenylboronic Acid Nitrogen Mustards as Potent and Selective Drug Candidates for Triple-Negative Breast Cancer. ACS Pharmacol Transl Sci 2021; 4:687-702. [PMID: 33860194 PMCID: PMC8033613 DOI: 10.1021/acsptsci.0c00092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancer (TNBC) has limited treatment options and the worst prognosis among all types of breast cancer. We describe two prodrugs, namely, CWB-20145 (1) and its methyl analogue FAN-NM-CH3 (2) that reduced the size of TNBC-derived tumors. The DNA cross-linking of nitrogen mustard prodrugs 1 and 2 was superior to that of chlorambucil and melphalan once activated in the presence of H2O2. The cellular toxicity of 1 and 2 was demonstrated in seven human cancer cell lines. The TNBC cell line MDA-MB-468 was particularly sensitive toward 1 and 2. Compound 2 was 10 times more cytotoxic than chlorambucil and 16 times more active than melphalan. An evaluation of the gene expression demonstrated an upregulation of the tumor suppressor genes p53 and p21 supporting a transcriptional mechanism of a reduced tumor growth. Pharmacokinetic studies with 1 showed a rapid conversion of the prodrug. The introduction of a methyl group generated 2 with an increased half-life. An in vivo toxicity study in mice demonstrated that both prodrugs were less toxic than chlorambucil. Compounds 1 and 2 reduced tumor growth with an inhibition rate of more than 90% in athymic nude mice xenografted with MDA-MB-468 cells. Together, the in vivo investigations demonstrated that treatment with 1 and 2 suppressed tumor growth without affecting normal tissues in mice. These phenylboronic acid nitrogen mustard prodrugs represent promising drug candidates for the treatment of TNBC. However, the mechanisms underlying their superior in vivo activity and selectivity as well as the correlation between H2O2 level and in vivo efficacy are not yet fully understood.
Collapse
Affiliation(s)
| | | | | | - Taufeeque Ali
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Anahit Campbell
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Qi Zhang
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Nurul Islam Setu
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Eron Saxon
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Nicolas M. Zahn
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Anna M. Benko
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Leggy A. Arnold
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Xiaohua Peng
- Department of Chemistry and
Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, 3210 N. Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
76
|
Niu G, Bak A, Nusselt M, Zhang Y, Pausch H, Flisikowska T, Schnieke AE, Flisikowski K. Allelic Expression Imbalance Analysis Identified YAP1 Amplification in p53- Dependent Osteosarcoma. Cancers (Basel) 2021; 13:cancers13061364. [PMID: 33803512 PMCID: PMC8002920 DOI: 10.3390/cancers13061364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Osteosarcoma (OS) is a highly heterogenous cancer, making the identification of genetic driving factors difficult. Genetic factors, such as heritable mutations of Rb1 and TP53, are associated with an increased risk of OS. We previously generated pigs carrying a mutated TP53 gene, which develop OS at high frequency. RNA sequencing and allelic expression imbalance analysis identified an amplification of YAP1 involved in p53- dependent OS progression. The inactivation of YAP1 inhibits proliferation, migration, and invasion, and leads to the silencing of TP63 and reconstruction of p16 expression in p53-deficient porcine OS cells. This study confirms the importance of p53/YAP1 network in cancer. Abstract Osteosarcoma (OS) is a primary bone malignancy that mainly occurs during adolescent growth, suggesting that bone growth plays an important role in the aetiology of the disease. Genetic factors, such as heritable mutations of Rb1 and TP53, are associated with an increased risk of OS. Identifying driver mutations for OS has been challenging due to the complexity of bone growth-related pathways and the extensive intra-tumoral heterogeneity of this cancer. We previously generated pigs carrying a mutated TP53 gene, which develop OS at high frequency. RNA sequencing and allele expression imbalance (AEI) analysis of OS and matched healthy control samples revealed a highly significant AEI (p = 2.14 × 10−39) for SNPs in the BIRC3-YAP1 locus on pig chromosome 9. Analysis of copy number variation showed that YAP1 amplification is associated with the AEI and the progression of OS. Accordingly, the inactivation of YAP1 inhibits proliferation, migration, and invasion, and leads to the silencing of TP63 and reconstruction of p16 expression in p53-deficient porcine OS cells. Increased p16 mRNA expression correlated with lower methylation of its promoter. Altogether, our study provides molecular evidence for the role of YAP1 amplification in the progression of p53-dependent OS.
Collapse
Affiliation(s)
- Guanglin Niu
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Agnieszka Bak
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Melanie Nusselt
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Yue Zhang
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Hubert Pausch
- Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland;
| | - Tatiana Flisikowska
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Angelika E. Schnieke
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
- Correspondence:
| |
Collapse
|
77
|
Fresques T, LaBarge MA. <PE-AT>Contributions of Yap and Taz dysfunction to breast cancer initiation, progression, and aging-related susceptibility. ACTA ACUST UNITED AC 2021; 1:5-18. [PMID: 33693435 DOI: 10.1002/aac2.12011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Yap and Taz are co-transcription factors that have been implicated in the development of many cancers. Here, we review the literature that analyzes the function of Yap/Taz in normal breast and breast cancer contexts. Our review of the literature suggests that that Yap and Taz are involved in breast cancer and Taz, in particular, is involved in the triple negative subtype. Nevertheless, the precise contexts in which Yap/Taz contribute to specific breast cancer phenotypes remains unclear. Indeed, Yap/Taz dysregulation acts differentially and in multiple epithelial cell types during early breast cancer progression. We propose Yap/Taz activation promotes breast cancer phenotypes in breast cancer precursor cells. Further, Yap dysregulation as a result of aging in breast tissue may result in microenvironments that increase the fitness of breast cancer precursor cells relative to the normal epithelia. <PE-FRONTEND>.
Collapse
Affiliation(s)
- Tara Fresques
- Beckman Research Institute at City of Hope, City of Hope National Medical Center, Duarte, CA USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Mark A LaBarge
- Beckman Research Institute at City of Hope, City of Hope National Medical Center, Duarte, CA USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA.,Center for Cancer Biomarkers Research, University of Bergen, Norway
| |
Collapse
|
78
|
Kim G, Bhattarai PY, Lim SC, Kim JY, Choi HS. PIN1 facilitates ubiquitin-mediated degradation of serine/threonine kinase 3 and promotes melanoma development via TAZ activation. Cancer Lett 2021; 499:164-174. [PMID: 33253791 DOI: 10.1016/j.canlet.2020.11.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
The Hippo signaling pathway controls cellular processes including growth, homeostasis, and apoptosis. The kinase STK3 acts upstream in this pathway to activate LATS1/2 kinase, which phosphorylates and inactivates the transcriptional coactivators YAP/TAZ. The dysregulation of Hippo signaling leads to human diseases including cancer; however, the molecular mechanisms underlying its dysregulation in melanoma are unknown. We aimed to determine the role of the PIN1 in Hippo signaling dysregulation and melanoma tumorigenesis. We report that PIN1 interacts with STK3 and induces ubiquitination-dependent proteasomal degradation of STK3. Furthermore, PIN1 plays a critical role in the nuclear translocation of TAZ, which forms a complex with TEAD to increase CTGF expression. PIN1 ablation blocks TAZ/TEAD complex formation and decreases CTGF expression. PIN1-mediated STK3 degradation is associated with enhanced cell growth, induction of cell transformation, and increased tumorigenicity. In clinical context, PIN1 and STK3 levels are inversely correlated in patient melanoma tissues. These findings indicate that PIN1-mediated STK3 destabilization contributes to the dysregulation of Hippo signaling, leading to oncogenic signaling and melanoma tumorigenesis. Our data suggest that inhibition of the PIN1-STK3 axis could be a novel treatment strategy for malignant melanoma.
Collapse
Affiliation(s)
- Garam Kim
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | | | - Sung-Chul Lim
- Department of Pathology, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jin-Young Kim
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Hong Seok Choi
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
79
|
IQGAP1 Is a Scaffold of the Core Proteins of the Hippo Pathway and Negatively Regulates the Pro-Apoptotic Signal Mediated by This Pathway. Cells 2021; 10:cells10020478. [PMID: 33672268 PMCID: PMC7926663 DOI: 10.3390/cells10020478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022] Open
Abstract
The Hippo pathway regulates a complex signalling network which mediates several biological functions including cell proliferation, organ size and apoptosis. Several scaffold proteins regulate the crosstalk of the members of the pathway with other signalling pathways and play an important role in the diverse output controlled by this pathway. In this study we have identified the scaffold protein IQGAP1 as a novel interactor of the core kinases of the Hippo pathway, MST2 and LATS1. Our results indicate that IQGAP1 scaffolds MST2 and LATS1 supresses their kinase activity and YAP1-dependent transcription. Additionally, we show that IQGAP1 is a negative regulator of the non-canonical pro-apoptotic pathway and may enable the crosstalk between this pathway and the ERK and AKT signalling modules. Our data also show that bile acids regulate the IQGAP1-MST2-LATS1 signalling module in hepatocellular carcinoma cells, which could be necessary for the inhibition of MST2-dependent apoptosis and hepatocyte transformation.
Collapse
|
80
|
Yes-Associated Protein 1 Is a Novel Calcium Sensing Receptor Target in Human Parathyroid Tumors. Int J Mol Sci 2021; 22:ijms22042016. [PMID: 33670622 PMCID: PMC7922006 DOI: 10.3390/ijms22042016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
The Hippo pathway is involved in human tumorigenesis and tissue repair. Here, we investigated the Hippo coactivator Yes-associated protein 1 (YAP1) and the kinase large tumor suppressor 1/2 (LATS1/2) in tumors of the parathyroid glands, which are almost invariably associated with primary hyperparathyroidism. Compared with normal parathyroid glands, parathyroid adenomas (PAds) and carcinomas show variably but reduced nuclear YAP1 expression. The kinase LATS1/2, which phosphorylates YAP1 thus promoting its degradation, was also variably reduced in PAds. Further, YAP1 silencing reduces the expression of the key parathyroid oncosuppressor multiple endocrine neoplasia type 1(MEN1), while MEN1 silencing increases YAP1 expression. Treatment of patient-derived PAds-primary cell cultures and Human embryonic kidney 293A (HEK293A) cells expressing the calcium-sensing receptor (CASR) with the CASR agonist R568 induces YAP1 nuclear accumulation. This effect was prevented by the incubation of the cells with RhoA/Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitors Y27632 and H1152. Lastly, CASR activation increased the expression of the YAP1 gene targets CYR61, CTGF, and WNT5A, and this effect was blunted by YAP1 silencing. Concluding, here we provide preliminary evidence of the involvement of the Hippo pathway in human tumor parathyroid cells and of the existence of a CASR-ROCK-YAP1 axis. We propose a tumor suppressor role for YAP1 and LATS1/2 in parathyroid tumors.
Collapse
|
81
|
Iscan E, Ekin U, Yildiz G, Oz O, Keles U, Suner A, Cakan-Akdogan G, Ozhan G, Nekulova M, Vojtesek B, Uzuner H, Karakülah G, Alotaibi H, Ozturk M. TAp73β Can Promote Hepatocellular Carcinoma Dedifferentiation. Cancers (Basel) 2021; 13:cancers13040783. [PMID: 33668566 PMCID: PMC7918882 DOI: 10.3390/cancers13040783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is a highly complex and heterogeneous type of cancer. Hepatocyte dedifferentiation is one of the important steps in the development of HCC. However, its molecular mechanisms are not well known. In this study, we report that transcriptionally active TAp73 isoforms are overexpressed in HCC. We also show that TAp73β suppresses the expression of the hepatocyte markers including CYP3A4, AFP, ALB, HNF4α, while increasing the expression of several cholangiocyte markers in HCC cell lines. In conclusion, this report reveals a pro-oncogenic role for TAp73β in liver cancer. Abstract Hepatocyte dedifferentiation is a major source of hepatocellular carcinoma (HCC), but its mechanisms are unknown. We explored the p73 expression in HCC tumors and studied the effects of transcriptionally active p73β (TAp73β) in HCC cells. Expression profiles of p73 and patient clinical data were collected from the Genomic Data Commons (GDC) data portal and the TSVdb database, respectively. Global gene expression profiles were determined by pan-genomic 54K microarrays. The Gene Set Enrichment Analysis method was used to identify TAp73β-regulated gene sets. The effects of TAp73 isoforms were analyzed in monolayer cell culture, 3D-cell culture and xenograft models in zebrafish using western blot, flow cytometry, fluorescence imaging, real-time polymerase chain reaction (RT-PCR), immunohistochemistry and morphological examination. TAp73 isoforms were significantly upregulated in HCC, and high p73 expression correlated with poor patient survival. The induced expression of TAp73β caused landscape expression changes in genes involved in growth signaling, cell cycle, stress response, immunity, metabolism and development. Hep3B cells overexpressing TAp73β had lost hepatocyte lineage biomarkers including ALB, CYP3A4, AFP, HNF4α. In contrast, TAp73β upregulated genes promoting cholangiocyte lineage such as YAP, JAG1 and ZO-1, accompanied with an increase in metastatic ability. Our findings suggest that TAp73β may promote malignant dedifferentiation of HCC cells.
Collapse
Affiliation(s)
- Evin Iscan
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Umut Ekin
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Gokhan Yildiz
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61000, Turkey;
| | - Ozden Oz
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
- Izmir Bozyaka Education and Research Hospital, University of Health Sciences, Izmir 35000, Turkey
| | - Umur Keles
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Aslı Suner
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir 35000, Turkey;
| | - Gulcin Cakan-Akdogan
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir 35000, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Marta Nekulova
- RECAMO, Masaryk Memorial Cancer Institute, 60200 Brno, Czech Republic; (M.N.); (B.V.)
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, 60200 Brno, Czech Republic; (M.N.); (B.V.)
| | - Hamdiye Uzuner
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Hani Alotaibi
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35000, Turkey
| | - Mehmet Ozturk
- Izmir Biomedicine and Genome Center, Izmir 35000, Turkey; (E.I.); (U.E.); (O.O.); (U.K.); (G.C.-A.); (G.O.); (H.U.); (G.K.); (H.A.)
- Correspondence:
| |
Collapse
|
82
|
Manno G, Filorizzo C, Fanale D, Brando C, Di Lisi D, Lunetta M, Bazan V, Russo A, Novo G. Role of the HIPPO pathway as potential key player in the cross talk between oncology and cardiology. Crit Rev Oncol Hematol 2021; 159:103246. [PMID: 33545354 DOI: 10.1016/j.critrevonc.2021.103246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
The HIPPO pathway (HP) is a highly conserved kinase cascade that affects organ size by regulating proliferation, cell survival and differentiation. Discovered in Drosophila melanogaster to early 2000, it immediately opened wide frontiers in the field of research. Over the last years the field of knowledge on HP is quickly expanding and it is thought will offer many answers on complex pathologies. Here, we summarized the results of several studies that have investigated HP signaling both in oncology than in cardiology field, with an overview on future perspectives in cardiology research.
Collapse
Affiliation(s)
- Girolamo Manno
- Cardiology Unit, University Hospital P. Giaccone, Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (ProMISE) "G. D'Alessandro", Palermo, Italy
| | - Clarissa Filorizzo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Italy
| | - Chiara Brando
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Italy
| | - Daniela Di Lisi
- Cardiology Unit, University Hospital P. Giaccone, Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (ProMISE) "G. D'Alessandro", Palermo, Italy
| | - Monica Lunetta
- Cardiology Unit, University Hospital P. Giaccone, Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (ProMISE) "G. D'Alessandro", Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Medical Oncology, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Italy.
| | - Giuseppina Novo
- Cardiology Unit, University Hospital P. Giaccone, Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (ProMISE) "G. D'Alessandro", Palermo, Italy
| |
Collapse
|
83
|
Szulzewsky F, Holland EC, Vasioukhin V. YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Dev Biol 2021; 475:205-221. [PMID: 33428889 DOI: 10.1016/j.ydbio.2020.12.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
YAP1 is a transcriptional co-activator whose activity is controlled by the Hippo signaling pathway. In addition to important functions in normal tissue homeostasis and regeneration, YAP1 has also prominent functions in cancer initiation, aggressiveness, metastasis, and therapy resistance. In this review we are discussing the molecular functions of YAP1 and its roles in cancer, with a focus on the different mechanisms of de-regulation of YAP1 activity in human cancers, including inactivation of upstream Hippo pathway tumor suppressors, regulation by intersecting pathways, miRNAs, and viral oncogenes. We are also discussing new findings on the function and biology of the recently identified family of YAP1 gene fusions, that constitute a new type of activating mutation of YAP1 and that are the likely oncogenic drivers in several subtypes of human cancers. Lastly, we also discuss different strategies of therapeutic inhibition of YAP1 functions.
Collapse
Affiliation(s)
- Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA; Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Valeri Vasioukhin
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| |
Collapse
|
84
|
Narciclasine is a novel YAP inhibitor that disturbs interaction between YAP and TEAD4. BBA ADVANCES 2021; 1:100008. [PMID: 37082014 PMCID: PMC10074845 DOI: 10.1016/j.bbadva.2021.100008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Yes-associated protein (YAP) is involved in development, cell growth, cell size, and homeostasis and plays a key role in the progression of various cancers. Among them, constitutive activation of YAP can often be observed in malignant mesothelioma, which arises in the pleura, peritoneum, and pericardium because of inactivation of the Hippo pathway. To date, however, only less-effective treatments such as chemotherapy, radiation therapy, and surgery are available for patients with malignant mesothelioma. In this study, we identified narciclasine as a novel YAP inhibitor that prevents YAP from interacting with TEAD4 because it competes with TEAD4 for binding to YAP. Furthermore, narciclasine could perturb the cell growth and colony formation of malignant mesothelioma NCI-H290 cells in addition to inhibiting their growth in nude mice. Therefore, narciclasine might be a potential seed for a novel antitumor drug against malignant mesothelioma and other cancers in which hyperactivation and/or overexpression of YAP are observed.
Collapse
|
85
|
Distinct p63 and p73 Protein Interactions Predict Specific Functions in mRNA Splicing and Polyploidy Control in Epithelia. Cells 2020; 10:cells10010025. [PMID: 33375680 PMCID: PMC7824480 DOI: 10.3390/cells10010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial organs are the first barrier against microorganisms and genotoxic stress, in which the p53 family members p63 and p73 have both overlapping and distinct functions. Intriguingly, p73 displays a very specific localization to basal epithelial cells in human tissues, while p63 is expressed in both basal and differentiated cells. Here, we analyse systematically the literature describing p63 and p73 protein-protein interactions to reveal distinct functions underlying the aforementioned distribution. We have found that p73 and p63 cooperate in the genome stability surveillance in proliferating cells; p73 specific interactors contribute to the transcriptional repression, anaphase promoting complex and spindle assembly checkpoint, whereas p63 specific interactors play roles in the regulation of mRNA processing and splicing in both proliferating and differentiated cells. Our analysis reveals the diversification of the RNA and DNA specific functions within the p53 family.
Collapse
|
86
|
Sahu MR, Mondal AC. Neuronal Hippo signaling: From development to diseases. Dev Neurobiol 2020; 81:92-109. [PMID: 33275833 DOI: 10.1002/dneu.22796] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/18/2020] [Accepted: 11/27/2020] [Indexed: 01/12/2023]
Abstract
Hippo signaling pathway is a highly conserved and familiar tissue growth regulator, primarily dealing with cell survival, cell proliferation, and apoptosis. The Yes-associated protein (YAP) is the key transcriptional effector molecule, which is under negative regulation of the Hippo pathway. Wealth of studies have identified crucial roles of Hippo/YAP signaling pathway during the process of development, including the development of neuronal system. We provide here, an overview of the contributions of this signaling pathway at multiple stages of neuronal development including, proliferation of neural stem cells (NSCs), migration of NSCs toward their destined niche, maintaining NSCs in the quiescent state, differentiation of NSCs into neurons, neuritogenesis, synaptogenesis, brain development, and in neuronal apoptosis. Hyperactivation of the neuronal Hippo pathway can also lead to a variety of devastating neurodegenerative diseases. Instances of aberrant Hippo pathway leading to neurodegenerative diseases along with the approaches utilizing this pathway as molecular targets for therapeutics has been highlighted in this review. Recent evidences suggesting neuronal repair and regenerative potential of this pathway has also been pointed out, that will shed light on a novel aspect of Hippo pathway in regenerative medicine. Our review provides a better understanding of the significance of Hippo pathway in the journey of neuronal system from development to diseases as a whole.
Collapse
Affiliation(s)
- Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
87
|
Seo Y, Park SY, Kim HS, Nam JS. The Hippo-YAP Signaling as Guardian in the Pool of Intestinal Stem Cells. Biomedicines 2020; 8:biomedicines8120560. [PMID: 33271948 PMCID: PMC7760694 DOI: 10.3390/biomedicines8120560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022] Open
Abstract
Despite endogenous insults such as mechanical stress and danger signals derived from the microbiome, the intestine can maintain its homeostatic condition through continuous self-renewal of the crypt–villus axis. This extraordinarily rapid turnover of intestinal epithelium, known to be 3 to 5 days, can be achieved by dynamic regulation of intestinal stem cells (ISCs). The crypt base-located leucine-rich repeat-containing G-protein-coupled receptor 5-positive (Lgr5+) ISCs maintain intestinal integrity in the steady state. Under severe damage leading to the loss of conventional ISCs, quiescent stem cells and even differentiated cells can be reactivated into stem-cell-like cells with multi-potency and contribute to the reconstruction of the intestinal epithelium. This process requires fine-tuning of the various signaling pathways, including the Hippo–YAP system. In this review, we summarize recent advances in understanding the correlation between Hippo–YAP signaling and intestinal homeostasis, repair, and tumorigenesis, focusing specifically on ISC regulation.
Collapse
Affiliation(s)
- Yoojin Seo
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea;
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - So-Yeon Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea;
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Correspondence: (H.-S.K.); (J.-S.N.); Tel.: +82-51-510-8231 (H.-S.K.); +82-62-715-2893 (J.-S.N.)
| | - Jeong-Seok Nam
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
- Correspondence: (H.-S.K.); (J.-S.N.); Tel.: +82-51-510-8231 (H.-S.K.); +82-62-715-2893 (J.-S.N.)
| |
Collapse
|
88
|
Marquard S, Thomann S, Weiler SME, Bissinger M, Lutz T, Sticht C, Tóth M, de la Torre C, Gretz N, Straub BK, Marquardt J, Schirmacher P, Breuhahn K. Yes-associated protein (YAP) induces a secretome phenotype and transcriptionally regulates plasminogen activator Inhibitor-1 (PAI-1) expression in hepatocarcinogenesis. Cell Commun Signal 2020; 18:166. [PMID: 33097058 PMCID: PMC7583285 DOI: 10.1186/s12964-020-00634-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Background Overexpression and nuclear enrichment of the oncogene yes-associated protein (YAP) cause tumor initiation and support tumor progression in human hepatocellular carcinoma (HCC) via cell autonomous mechanisms. However, how YAP expression in tumor cells affects intercellular communication within the tumor microenvironment is not well understood. Methods To investigate how tumor cell-derived YAP is changing the paracrine communication network between tumor cells and non-neoplastic cells in hepatocarcinogenesis, the expression and secretion of cytokines, growth factors and chemokines were analyzed in transgenic mice with liver-specific and inducible expression of constitutively active YAP (YAPS127A). Transcriptomic and proteomic analyses were performed using primary isolated hepatocytes and blood plasma. In vitro, RNAinterference (RNAi), expression profiling, functional analyses and chromatin immunoprecipitation (ChIP) analyses of YAP and the transcription factor TEA domain transcription factor 4 (TEAD4) were performed using immortalized cell lines. Findings were confirmed in cohorts of HCC patients at the transcript and protein levels. Results YAP overexpression induced the expression and secretion of many paracrine-acting factors with potential impact on tumorous or non-neoplastic cells (e.g. plasminogen activator inhibitor-1 (PAI-1), C-X-C motif chemokine ligand 13 (CXCL13), CXCL16). Expression analyses of human HCC patients showed an overexpression of PAI-1 in human HCC tissues and a correlation with poor overall survival as well as early cancer recurrence. PAI-1 statistically correlated with genes typically induced by YAP, such as connective tissue growth factor (CTGF) and cysteine rich angiogenic inducer 61 (CYR61) or YAP-dependent gene signatures (CIN4/25). In vitro, YAP inhibition diminished the expression and secretion of PAI-1 in murine and human liver cancer cell lines. PAI-1 affected the expression of genes involved in cellular senescence and oncogene-induced senescence was confirmed in YAPS127A transgenic mice. Silencing of TEAD4 as well as treatment with the YAP/TEAD interfering substance Verteporfin reduced PAI-1 expression. ChIP analyses confirmed the binding of YAP and TEAD4 to the gene promoter of PAI-1 (SERPINE1). Conclusions These results demonstrate that the oncogene YAP changes the secretome response of hepatocytes and hepatocyte-derived tumor cells. In this context, the secreted protein PAI-1 is transcriptionally regulated by YAP in hepatocarcinogenesis. Perturbation of these YAP-dependent communication hubs including PAI-1 may represent a promising pharmacological approach in tumors with YAP overexpression. Video abstract
Supplementary information Supplementary information accompanies this paper at 10.1186/s12964-020-00634-6.
Collapse
Affiliation(s)
- Simone Marquard
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Thomann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michaela Bissinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Teresa Lutz
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Present address: Department of Medicine II, LMU Munich, Munich, Germany
| | - Carsten Sticht
- Medical Faculty Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carolina de la Torre
- Medical Faculty Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Faculty Mannheim, Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Beate K Straub
- Institute of Pathology, Johannes Gutenberg University, Mainz, Germany
| | - Jens Marquardt
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany.,Present address: Department of Medicine I, University Hospital Lübeck, Lübeck, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
89
|
p73: From the p53 shadow to a major pharmacological target in anticancer therapy. Pharmacol Res 2020; 162:105245. [PMID: 33069756 DOI: 10.1016/j.phrs.2020.105245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
p73, along with p53 and p63, belongs to the p53 family of transcription factors. Besides the p53-like tumor suppressive activities, p73 has unique roles, namely in neuronal development and differentiation. In addition, the TP73 gene is rarely mutated in tumors. This makes p73 a highly appealing therapeutic target, particularly towards cancers with a null or disrupted p53 pathway. Distinct isoforms are transcribed from the TP73 locus either with (TAp73) and without (ΔNp73) the N-terminal transactivation domain. Conversely to TA tumor suppressors, ΔN proteins exhibit oncogenic properties by inhibiting p53 and TA protein functions. As such, p73 isoforms compose a puzzled and challenging regulatory pathway. This state-of-the-art review affords an update overview on p73 structure, biological functions and pharmacological regulation. Importantly, it addresses the relevance of p73 isoforms in carcinogenesis, highlighting their potential as drug targets in anticancer therapy. A critical discussion of major pharmacological approaches to promote p73 tumor suppressive activities, with relevant survival outcomes for cancer patients, is also provided.
Collapse
|
90
|
Zheng J, Yu H, Zhou A, Wu B, Liu J, Jia Y, Xiang L. It takes two to tango: coupling of Hippo pathway and redox signaling in biological process. Cell Cycle 2020; 19:2760-2775. [PMID: 33016196 DOI: 10.1080/15384101.2020.1824448] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hippo pathway is a chain of kinases consists of a series of protein kinases and transcription factors. Meanwhile, oxidative stress is a condition of elevated concentrations of reactive oxygen species (ROS) that cause molecular damage to vital structures and functions. Both of them are key regulators in cell proliferation, survival, and development. These processes are strictly regulated by highly coordinated mechanisms, including c-Jun n-terminal kinase (JNK) pathway, mTOR pathway and a number of extrinsic and intrinsic factors. Recently, emerging evidence suggests that Hippo pathway is involved in the responses to cellular stresses, including mechanic stress, DNA damage, and oxidative stress, to mediate biological process, such as apoptosis, pyroptosis, and metastasis. But the exact mechanism remains to be further explored. Therefore, the purpose of this review is to summarize recent findings and discuss how Hippo pathway, oxidative stress, and the crosstalk between them regulate some biological process which determines cell fate.
Collapse
Affiliation(s)
- Jianan Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Hui Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Anqi Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Bingfeng Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Jiayi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Yinan Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| |
Collapse
|
91
|
Reggiani F, Gobbi G, Ciarrocchi A, Sancisi V. YAP and TAZ Are Not Identical Twins. Trends Biochem Sci 2020; 46:154-168. [PMID: 32981815 DOI: 10.1016/j.tibs.2020.08.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Yes-associated protein (YAP) and TAZ (WW domain containing transcription regulator 1, or WWTR1) are paralog transcriptional regulators, able to integrate mechanical, metabolic, and signaling inputs to regulate cell growth and differentiation during development and neoplastic progression. YAP and TAZ hold common and distinctive structural features, reflecting only partially overlapping regulatory mechanisms. The two paralogs interact with both shared and specific transcriptional partners and control nonidentical transcriptional programs. Although most of the available literature considers YAP and TAZ as functionally redundant, they play distinctive or even contrasting roles in different contexts. The issue of their divergent roles is currently underexplored but holds fundamental implications for mechanistic and translational studies. Here, we aim to review the available literature on the biological functions of YAP and TAZ, highlighting differential roles that distinguish these two paralogues.
Collapse
Affiliation(s)
- Francesca Reggiani
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giulia Gobbi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
92
|
Pradhan D, Pradhan J, Mishra A, Karmakar K, Dhiman R, Chakravortty D, Negi VD. Immune modulations and survival strategies of evolved hypervirulent Salmonella Typhimurium strains. Biochim Biophys Acta Gen Subj 2020; 1864:129627. [PMID: 32360143 DOI: 10.1016/j.bbagen.2020.129627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Evolving multidrug-resistance and hypervirulence in Salmonella is due to multiple host-pathogen, and non-host environmental interactions. Previously we had studied Salmonella adaptation upon repeated exposure in different in-vitro and in-vivo environmental conditions. This study deals with the mechanistic basis of hypervirulence of the passaged hypervirulent Salmonella strains reported previously. METHODS Real-time PCR, flow cytometry, western blotting, and confocal microscopy were employed to check the alteration of signaling pathways by the hypervirulent strains. The hypervirulence was also looked in-vivo in the Balb/c murine model system. RESULTS The hypervirulent strains altered cytokine production towards anti-inflammatory response via NF-κB and Akt-NLRC4 signaling in RAW-264.7 and U-937 cells. They also impaired lysosome number, as well as co-localization with the lysosome as compared to unpassaged WT-STM. In Balb/c mice also they caused decreased antimicrobial peptides, reduced nitric oxide level, altered cytokine production, and reduced CD4+ T cell population leading to increased organ burden. CONCLUSIONS Hypervirulent Salmonella strains infection resulted in an anti-inflammatory environment by upregulating IL-10 and down-regulating IL-1β expression. They also evaded lysosomal degradation for their survival. With inhibition of NF-κB and Akt signaling, cytokine expression, lysosome number, as well as the bacterial burden was reverted, indicating the infection mediated immune modulation by the hypervirulent Salmonella strains through these pathways. GENERAL SIGNIFICANCE Understanding the mechanism of adaptation can provide better disease prognosis by either targeting the bacterial gene or by strengthening the host immune system that might ultimately help in controlling salmonellosis.
Collapse
Affiliation(s)
- Diana Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Jasmin Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Kapudeep Karmakar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India; Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Coochbehar, west Bengal 736165, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vidya Devi Negi
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
93
|
Yamaguchi N. Multiple Roles of Vestigial-Like Family Members in Tumor Development. Front Oncol 2020; 10:1266. [PMID: 32793503 PMCID: PMC7393262 DOI: 10.3389/fonc.2020.01266] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Vestigial-like family (VGLL) members are mammalian orthologs of vestigial gene in Drosophila, and they consist of four homologs (VGLL1–4). VGLL members have TDU motifs that are binding regions to TEA/ATSS-DNA-binding domain transcription factor (TEAD). Through TDU motifs, VGLL members act as transcriptional cofactors for TEAD. VGLL1-3 have single TDU motif, whereas VGLL4 has two tandem TDU motifs, suggesting that VGLL4 has distinct molecular functions among this family. Although molecular and physiological functions of VGLL members are still obscure, emerging evidence has shown that these members are involved in tumor development. Gene alterations and elevated expression of VGLL1-3 were observed in various types of tumors, and VGLL1-3 have been shown to possess tumorigenic functions. In contrast, down-regulation of VGLL4 was detected in various tumors, and the tumor-suppressing role of VGLL4 has been demonstrated. In this review, we summarize the recently identified multiple roles of VGLL members in tumor development and provide important and novel insights regarding tumorigenesis.
Collapse
Affiliation(s)
- Noritaka Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
94
|
Patchett AL, Flies AS, Lyons AB, Woods GM. Curse of the devil: molecular insights into the emergence of transmissible cancers in the Tasmanian devil (Sarcophilus harrisii). Cell Mol Life Sci 2020; 77:2507-2525. [PMID: 31900624 PMCID: PMC11104928 DOI: 10.1007/s00018-019-03435-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022]
Abstract
The Tasmanian devil (Sarcophilus harrisii) is the only mammalian species known to be affected by multiple transmissible cancers. Devil facial tumours 1 and 2 (DFT1 and DFT2) are independent neoplastic cell lineages that produce large, disfiguring cancers known as devil facial tumour disease (DFTD). The long-term persistence of wild Tasmanian devils is threatened due to the ability of DFTD cells to propagate as contagious allografts and the high mortality rate of DFTD. Recent studies have demonstrated that both DFT1 and DFT2 cancers originated from founder cells of the Schwann cell lineage, an uncommon origin of malignant cancer in humans. This unprecedented finding has revealed a potential predisposition of Tasmanian devils to transmissible cancers of the Schwann cell lineage. In this review, we compare the molecular nature of human Schwann cells and nerve sheath tumours with DFT1 and DFT2 to gain insights into the emergence of transmissible cancers in the Tasmanian devil. We discuss a potential mechanism, whereby Schwann cell plasticity and frequent wounding in Tasmanian devils combine with an inherent cancer predisposition and low genetic diversity to give rise to transmissible Schwann cell cancers in devils on rare occasions.
Collapse
Affiliation(s)
- Amanda L Patchett
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
95
|
Mohammadi S, Arefnezhad R, Danaii S, Yousefi M. New insights into the core Hippo signaling and biological macromolecules interactions in the biology of solid tumors. Biofactors 2020; 46:514-530. [PMID: 32445262 DOI: 10.1002/biof.1634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022]
Abstract
As an evolutionarily conserved pathway, Hippo signaling pathway impacts different pathology and physiology processes such as wound healing, tissue repair/size and regeneration. When some components of Hippo signaling dysregulated, it affects cancer cells proliferation. Moreover, the relation Hippo pathway with other signaling including Wnt, TGFβ, Notch, and EGFR signaling leaves effect on the proliferation of cancer cells. Utilizing a number of therapeutic approaches, such as siRNAs and long noncoding RNA (lncRNA) to prevent cancer cells through the targeting of Hippo pathways, can provide new insights into cancer target therapy. The purpose of present review, first of all, is to demonstrate the importance of Hippo signaling and its relation with other signaling pathways in cancer. It also tries to demonstrate targeting Hippo signaling progress in cancer therapy.
Collapse
Affiliation(s)
- Solmaz Mohammadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Depatment of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
96
|
Jin J, Zhao X, Fu H, Gao Y. The Effects of YAP and Its Related Mechanisms in Central Nervous System Diseases. Front Neurosci 2020; 14:595. [PMID: 32676008 PMCID: PMC7333666 DOI: 10.3389/fnins.2020.00595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Yes-associated protein (YAP) is a key effector downstream of the Hippo signaling pathway and plays an important role in the development of the physiology and pathology of the central nervous system (CNS), especially regulating cell proliferation, differentiation, migration, and apoptosis. However, the roles and underlying mechanisms of YAP in CNS diseases are still puzzling. Here, this review will systematically and comprehensively summarize the biological feature, pathological role, and underlying mechanisms of YAP in normal and pathologic CNS, which aims to provide insights into the potential molecular targets and new therapeutic strategies for CNS diseases.
Collapse
Affiliation(s)
- Jiayan Jin
- Department of Forensic Science, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China.,School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoxuan Zhao
- Department of Forensic Science, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China.,School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huifang Fu
- Department of Forensic Science, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China.,Department of Pathology, Traditional Chinese Medicine Hospital of Jiangning District, Nanjing, China
| | - Yuan Gao
- Department of Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China.,Department of Forensic Science, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China.,Forensic Center, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
97
|
Zhou X, Chen N, Xu H, Zhou X, Wang J, Fang X, Zhang Y, Li Y, Yang J, Wang X. Regulation of Hippo-YAP signaling by insulin-like growth factor-1 receptor in the tumorigenesis of diffuse large B-cell lymphoma. J Hematol Oncol 2020; 13:77. [PMID: 32546241 PMCID: PMC7298789 DOI: 10.1186/s13045-020-00906-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background Hippo-Yes-associated protein (YAP) signaling is a key regulator of organ size and tumorigenesis, yet the underlying molecular mechanism is still poorly understood. At present, the significance of the Hippo-YAP pathway in diffuse large B-cell lymphoma (DLBCL) is ill-defined. Methods The expression of YAP in DLBCL was determined in public database and clinical specimens. The effects of YAP knockdown, CRISPR/Cas9-mediated YAP deletion, and YAP inhibitor treatment on cell proliferation and the cell cycle were evaluated both in vitro and in vivo. RNA sequencing was conducted to detect dysregulated RNAs in YAP-knockout DLBCL cells. The regulatory effects of insulin-like growth factor-1 receptor (IGF-1R) on Hippo-YAP signaling were explored by targeted inhibition and rescue experiments. Results High expression of YAP was significantly correlated with disease progression and poor prognosis. Knockdown of YAP expression suppressed cell proliferation and induced cell cycle arrest in DLBCL cells. Verteporfin (VP), a benzoporphyrin derivative, exerted an anti-tumor effect by regulating the expression of YAP and the downstream target genes, CTGF and CYR61. In vitro and in vivo studies revealed that deletion of YAP expression with a CRISPR/Cas9 genome editing system significantly restrained tumor growth. Moreover, downregulation of IGF-1R expression led to a remarkable decrease in YAP expression. In contrast, exposure to IGF-1 promoted YAP expression and reversed the inhibition of YAP expression induced by IGF-1R inhibitors. Conclusions Our study highlights the critical role of YAP in the pathogenesis of DLBCL and uncovers the regulatory effect of IGF-1R on Hippo-YAP signaling, suggesting a novel therapeutic strategy for DLBCL.
Collapse
Affiliation(s)
- Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Na Chen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Hongzhi Xu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiaoming Zhou
- Department of Science and Education, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Jianhong Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Juan Yang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, 250021, Shandong, China.
| |
Collapse
|
98
|
Moya IM, Castaldo SA, Van den Mooter L, Soheily S, Sansores-Garcia L, Jacobs J, Mannaerts I, Xie J, Verboven E, Hillen H, Algueró-Nadal A, Karaman R, Van Haele M, Kowalczyk W, De Waegeneer M, Verhulst S, Karras P, van Huffel L, Zender L, Marine JC, Roskams T, Johnson R, Aerts S, van Grunsven LA, Halder G. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science 2020; 366:1029-1034. [PMID: 31754005 DOI: 10.1126/science.aaw9886] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022]
Abstract
The Hippo signaling pathway and its two downstream effectors, the YAP and TAZ transcriptional coactivators, are drivers of tumor growth in experimental models. Studying mouse models, we show that YAP and TAZ can also exert a tumor-suppressive function. We found that normal hepatocytes surrounding liver tumors displayed activation of YAP and TAZ and that deletion of Yap and Taz in these peritumoral hepatocytes accelerated tumor growth. Conversely, experimental hyperactivation of YAP in peritumoral hepatocytes triggered regression of primary liver tumors and melanoma-derived liver metastases. Furthermore, whereas tumor cells growing in wild-type livers required YAP and TAZ for their survival, those surrounded by Yap- and Taz-deficient hepatocytes were not dependent on YAP and TAZ. Tumor cell survival thus depends on the relative activity of YAP and TAZ in tumor cells and their surrounding tissue, suggesting that YAP and TAZ act through a mechanism of cell competition to eliminate tumor cells.
Collapse
Affiliation(s)
- Iván M Moya
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, Leuven, Belgium.,Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Americas, Quito, Ecuador
| | - Stéphanie A Castaldo
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, Leuven, Belgium
| | - Laura Van den Mooter
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, Leuven, Belgium
| | - Soheil Soheily
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, Leuven, Belgium
| | - Leticia Sansores-Garcia
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, Leuven, Belgium
| | - Jelle Jacobs
- VIB Center for Brain and Disease Research and KU Leuven Center for Human Genetics, University of Leuven, Leuven, Belgium
| | - Inge Mannaerts
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jun Xie
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, Leuven, Belgium
| | - Elisabeth Verboven
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, Leuven, Belgium
| | - Hanne Hillen
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, Leuven, Belgium
| | - Ana Algueró-Nadal
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, Leuven, Belgium
| | - Ruchan Karaman
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, Leuven, Belgium
| | - Matthias Van Haele
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Weronika Kowalczyk
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, Leuven, Belgium
| | - Maxime De Waegeneer
- VIB Center for Brain and Disease Research and KU Leuven Center for Human Genetics, University of Leuven, Leuven, Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology and Department of Oncology, KU Leuven, Leuven, Belgium
| | - Leen van Huffel
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, Leuven, Belgium
| | - Lars Zender
- Department of Medical Oncology and Pneumology, University Hospital Tuebingen, 72076 Tuebingen, Germany.,German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,iFIT Cluster of Excellence EXC 2180 "Image Guided and Functionally Instructed Tumour Therapies," University of Tuebingen, Tuebingen, Germany
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology and Department of Oncology, KU Leuven, Leuven, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Randy Johnson
- Department of Cancer Biology, Program in Cancer Biology, Graduate School for Biological Sciences GSBS, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stein Aerts
- VIB Center for Brain and Disease Research and KU Leuven Center for Human Genetics, University of Leuven, Leuven, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Georg Halder
- VIB Center for Cancer Biology and KU Leuven Department of Oncology, University of Leuven, Leuven, Belgium.
| |
Collapse
|
99
|
Tanaka H, Homma H, Fujita K, Kondo K, Yamada S, Jin X, Waragai M, Ohtomo G, Iwata A, Tagawa K, Atsuta N, Katsuno M, Tomita N, Furukawa K, Saito Y, Saito T, Ichise A, Shibata S, Arai H, Saido T, Sudol M, Muramatsu SI, Okano H, Mufson EJ, Sobue G, Murayama S, Okazawa H. YAP-dependent necrosis occurs in early stages of Alzheimer's disease and regulates mouse model pathology. Nat Commun 2020; 11:507. [PMID: 31980612 PMCID: PMC6981281 DOI: 10.1038/s41467-020-14353-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/19/2019] [Indexed: 01/29/2023] Open
Abstract
The timing and characteristics of neuronal death in Alzheimer’s disease (AD) remain largely unknown. Here we examine AD mouse models with an original marker, myristoylated alanine-rich C-kinase substrate phosphorylated at serine 46 (pSer46-MARCKS), and reveal an increase of neuronal necrosis during pre-symptomatic phase and a subsequent decrease during symptomatic phase. Postmortem brains of mild cognitive impairment (MCI) rather than symptomatic AD patients reveal a remarkable increase of necrosis. In vivo imaging reveals instability of endoplasmic reticulum (ER) in mouse AD models and genome-edited human AD iPS cell-derived neurons. The level of nuclear Yes-associated protein (YAP) is remarkably decreased in such neurons under AD pathology due to the sequestration into cytoplasmic amyloid beta (Aβ) aggregates, supporting the feature of YAP-dependent necrosis. Suppression of early-stage neuronal death by AAV-YAPdeltaC reduces the later-stage extracellular Aβ burden and cognitive impairment, suggesting that preclinical/prodromal YAP-dependent neuronal necrosis represents a target for AD therapeutics. The precise mechanisms of neuronal cell death in neurodegeneration are not fully understood. Here the authors show that YAP-mediated neuronal necrosis is increased in pre-symptomatic stages of Alzheimer’s disease and intervention to the necrosis rescues extracellular Aβ aggregation and symptoms in a mouse model.
Collapse
Affiliation(s)
- Hikari Tanaka
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kanoh Kondo
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shingo Yamada
- Shino-Test Corporation, 2-29-14, Ohino-dai, Minami-ku, Sagamihara, Kanagawa, 252-0331, Japan
| | - Xiaocen Jin
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masaaki Waragai
- Department of Neurology, Higashi Matsudo Municipal Hospital, Matsudo, Chiba, 270-2222, Japan
| | - Gaku Ohtomo
- Department of Neurology, The University of Tokyo, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsushi Iwata
- Department of Neurology, The University of Tokyo, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Naoki Atsuta
- Department of Neurology, Brain and Mind Research Center, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masahisa Katsuno
- Department of Neurology, Brain and Mind Research Center, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Naoki Tomita
- Department of Geriatrics & Gerontology, Division of Brain Science, Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Katsutoshi Furukawa
- Department of Geriatrics & Gerontology, Division of Brain Science, Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Yuko Saito
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higahsi-machi, Kodaira, Tokyo, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Ayaka Ichise
- Department of Physiology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Arai
- Department of Geriatrics & Gerontology, Division of Brain Science, Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Marius Sudol
- Department of Physiology, National University of Singapore, Yong Loo Li School of Medicine, 2 Medical Drive, Singapore, 117597, Singapore
| | - Shin-Ichi Muramatsu
- Department of Neurology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0496, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | - Gen Sobue
- Department of Neurology, Brain and Mind Research Center, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Brain Bank for Aging Research, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
100
|
Transcriptional Coactivator TAZ Negatively Regulates Tumor Suppressor p53 Activity and Cellular Senescence. Cells 2020; 9:cells9010171. [PMID: 31936650 PMCID: PMC7016652 DOI: 10.3390/cells9010171] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Transcriptional coactivator with a PDZ-binding motif (TAZ) is one of the mammalian orthologs of Drosophila Yorkie, a transcriptional coactivator of the Hippo pathway. TAZ has been suggested to function as a regulator that modulates the expression of cell proliferation and anti-apoptotic genes in order to stimulate cell proliferation. TAZ has also been associated with a poor prognosis in several cancers, including breast cancer. However, the physiological role of TAZ in tumorigenesis remains unclear. We herein demonstrated that TAZ negatively regulated the activity of the tumor suppressor p53. The overexpression of TAZ down-regulated p53 transcriptional activity and its downstream gene expression. In contrast, TAZ knockdown up-regulated p21 expression induced by p53 activation. Regarding the underlying mechanism, TAZ inhibited the interaction between p53 and p300 and suppressed the p300-mediated acetylation of p53. Furthermore, TAZ knockdown induced cellular senescence in a p53-dependent manner. These results suggest that TAZ negatively regulates the tumor suppressor functions of p53 and attenuates p53-mediated cellular senescence.
Collapse
|