51
|
Sze CC, Ozark PA, Cao K, Ugarenko M, Das S, Wang L, Marshall SA, Rendleman EJ, Ryan CA, Zha D, Douillet D, Chen FX, Shilatifard A. Coordinated regulation of cellular identity-associated H3K4me3 breadth by the COMPASS family. SCIENCE ADVANCES 2020; 6:eaaz4764. [PMID: 32637595 PMCID: PMC7314515 DOI: 10.1126/sciadv.aaz4764] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/08/2020] [Indexed: 06/01/2023]
Abstract
Set1A and Set1B, two members of the COMPASS family of methyltransferases that methylate the histone H3 lysine 4 (H3K4) residue, have been accredited as primary depositors of global H3K4 trimethylation (H3K4me3) in mammalian cells. Our previous studies in mouse embryonic stem cells (ESCs) demonstrated that deleting the enzymatic SET domain of Set1A does not perturb bulk H3K4me3, indicating possible compensatory roles played by other COMPASS methyltransferases. Here, we generated a series of ESC lines harboring compounding mutations of COMPASS methyltransferases. We find that Set1B is functionally redundant to Set1A in implementing H3K4me3 at highly expressed genes, while Mll2 deposits H3K4me3 at less transcriptionally active promoters. While Set1A-B/COMPASS is responsible for broad H3K4me3 peaks, Mll2/COMPASS establishes H3K4me3 with narrow breadth. Additionally, Mll2 helps preserve global H3K4me3 levels and peak breadth in the absence of Set1A-B activity. Our results illustrate the biological flexibility of such enzymes in regulating transcription in a context-dependent manner to maintain stem cell identity.
Collapse
Affiliation(s)
- Christie C. Sze
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Patrick A. Ozark
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Kaixiang Cao
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Michal Ugarenko
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Siddhartha Das
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Lu Wang
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Stacy A. Marshall
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Emily J. Rendleman
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Caila A. Ryan
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Didi Zha
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Delphine Douillet
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Fei Xavier Chen
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
- Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA
| |
Collapse
|
52
|
Uncoupling histone H3K4 trimethylation from developmental gene expression via an equilibrium of COMPASS, Polycomb and DNA methylation. Nat Genet 2020; 52:615-625. [PMID: 32393859 DOI: 10.1038/s41588-020-0618-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/26/2020] [Indexed: 12/20/2022]
Abstract
The COMPASS protein family catalyzes histone H3 Lys 4 (H3K4) methylation and its members are essential for regulating gene expression. MLL2/COMPASS methylates H3K4 on many developmental genes and bivalent clusters. To understand MLL2-dependent transcriptional regulation, we performed a CRISPR-based screen with an MLL2-dependent gene as a reporter in mouse embryonic stem cells. We found that MLL2 functions in gene expression by protecting developmental genes from repression via repelling PRC2 and DNA methylation machineries. Accordingly, repression in the absence of MLL2 is relieved by inhibition of PRC2 and DNA methyltransferases. Furthermore, DNA demethylation on such loci leads to reactivation of MLL2-dependent genes not only by removing DNA methylation but also by opening up previously CpG methylated regions for PRC2 recruitment, diluting PRC2 at Polycomb-repressed genes. These findings reveal how the context and function of these three epigenetic modifiers of chromatin can orchestrate transcriptional decisions and demonstrate that prevention of active repression by the context of the enzyme and not H3K4 trimethylation underlies transcriptional regulation on MLL2/COMPASS targets.
Collapse
|
53
|
Wu J, Chai H, Xu X, Yu J, Gu Y. Histone methyltransferase SETD1A interacts with HIF1α to enhance glycolysis and promote cancer progression in gastric cancer. Mol Oncol 2020; 14:1397-1409. [PMID: 32291851 PMCID: PMC7266269 DOI: 10.1002/1878-0261.12689] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/03/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
Growing tumors alter their metabolic profiles to support the increased cell proliferation. SETD1A, a histone lysine methyltransferase which specifically methylates H3K4, plays important roles in both normal cell and cancer cell functions. However, the function of SETD1A in gastric cancer (GC) progression and its role in GC metabolic reprogramming are still largely unknown. In the current study, we discovered that the expression of SETD1A was higher in GC tumor specimens compared to surrounding nontumor tissues. Upregulation of SETD1A increased GC cell proliferation, whereas downregulation of SETD1A inhibited GC cell proliferation. Furthermore, knockdown of SETD1A reduced glucose uptake and production of lactate and suppressed glycolysis by decreasing the expression of glycolytic genes, including GLUT1, HK2, PFK2, PKM2, LDHA, and MCT4. Mechanistically, SETD1A interacted with HIF1α to strengthen its transactivation, indicating that SETD1A promotes glycolysis through coactivation of HIF1α. SETD1A and HIF1α were recruited to the promoter of HK2 and PFK2, where SETD1A could methylate H3K4. However, knockdown of SETD1A decreased the methylation of H3K4 on HK2 and PFK2 promoter and reduced HIF1α recruitment necessary to promote transcription of glycolytic genes. Inhibition of HIF1α decelerated SETD1A‐enhanced GC cell growth. In additional, there was a linear correlation between SETD1A and several key glycolytic genes in human GC specimens obtained from TCGA dataset. Thus, our results demonstrated that SETD1A interacted with HIF1α to promote glycolysis and accelerate GC progression, implicating that SETD1A may be a potential molecular target for GC treatment.
Collapse
Affiliation(s)
- Jugang Wu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, China
| | - Hongjuan Chai
- Department of Gynecology and Obstetrics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, China
| | - Xin Xu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, China
| | - Jiwei Yu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, China
| | - Yan Gu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, China
| |
Collapse
|
54
|
Berry K, Wang J, Lu QR. Epigenetic regulation of oligodendrocyte myelination in developmental disorders and neurodegenerative diseases. F1000Res 2020; 9:F1000 Faculty Rev-105. [PMID: 32089836 PMCID: PMC7014579 DOI: 10.12688/f1000research.20904.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Oligodendrocytes are the critical cell types giving rise to the myelin nerve sheath enabling efficient nerve transmission in the central nervous system (CNS). Oligodendrocyte precursor cells differentiate into mature oligodendrocytes and are maintained throughout life. Deficits in the generation, proliferation, or differentiation of these cells or their maintenance have been linked to neurological disorders ranging from developmental disorders to neurodegenerative diseases and limit repair after CNS injury. Understanding the regulation of these processes is critical for achieving proper myelination during development, preventing disease, or recovering from injury. Many of the key factors underlying these processes are epigenetic regulators that enable the fine tuning or reprogramming of gene expression during development and regeneration in response to changes in the local microenvironment. These include chromatin remodelers, histone-modifying enzymes, covalent modifiers of DNA methylation, and RNA modification-mediated mechanisms. In this review, we will discuss the key components in each of these classes which are responsible for generating and maintaining oligodendrocyte myelination as well as potential targeted approaches to stimulate the regenerative program in developmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kalen Berry
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jiajia Wang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Q. Richard Lu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
55
|
Park S, Kim GW, Kwon SH, Lee JS. Broad domains of histone H3 lysine 4 trimethylation in transcriptional regulation and disease. FEBS J 2020; 287:2891-2902. [PMID: 31967712 DOI: 10.1111/febs.15219] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/23/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022]
Abstract
Histone modifications affect transcription by changing the chromatin structure. In particular, histone H3 lysine 4 trimethylation (H3K4me3) is one of the most recognized epigenetic marks of active transcription. While many studies have provided evidence of the correlation between H3K4me3 and active transcription, details regarding the mechanism involved remain unclear. The first study on the broad H3K4me3 domain was reported in 2014; subsequently, the function of this domain has been studied in various cell types. In this review, we summarized the recent studies on the role of the broad H3K4me3 domain in transcription, development, memory formation, and several diseases, including cancer and autoimmune diseases. The broadest H3K4me3 domains are associated with increased transcriptional precision of cell-type-specific genes related to cell identity and other essential functions. The broad H3K4me3 domain regulates maternal zygotic activation in early mammalian development. In systemic autoimmune diseases, high expression of immune-responsive genes requires the presence of the broad H3K4me3 domain in the promoter-proximal regions. Transcriptional repression of tumor-suppressor genes is associated with the shortening of the broad H3K4me3 domains in cancer cells. Additionally, the broad H3K4me3 domain interacts with the super-enhancer to regulate cancer-associated genes. During memory formation, H3K4me3 breadth is regulated in the hippocampus CA1 neurons. Taken together, these findings indicate that H3K4me3 breadth is essential for the regulation of the transcriptional output across multiple cell types.
Collapse
Affiliation(s)
- Shinae Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Korea.,Critical Zone Frontier Research Laboratory, Kangwon National University, Chuncheon, Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea.,Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Korea.,Critical Zone Frontier Research Laboratory, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
56
|
Worden EJ, Zhang X, Wolberger C. Structural basis for COMPASS recognition of an H2B-ubiquitinated nucleosome. eLife 2020; 9:53199. [PMID: 31922488 PMCID: PMC7039682 DOI: 10.7554/elife.53199] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022] Open
Abstract
Methylation of histone H3K4 is a hallmark of actively transcribed genes that depends on mono-ubiquitination of histone H2B (H2B-Ub). H3K4 methylation in yeast is catalyzed by Set1, the methyltransferase subunit of COMPASS. We report here the cryo-EM structure of a six-protein core COMPASS subcomplex, which can methylate H3K4 and be stimulated by H2B-Ub, bound to a ubiquitinated nucleosome. Our structure shows that COMPASS spans the face of the nucleosome, recognizing ubiquitin on one face of the nucleosome and methylating H3 on the opposing face. As compared to the structure of the isolated core complex, Set1 undergoes multiple structural rearrangements to cement interactions with the nucleosome and with ubiquitin. The critical Set1 RxxxRR motif adopts a helix that mediates bridging contacts between the nucleosome, ubiquitin and COMPASS. The structure provides a framework for understanding mechanisms of trans-histone cross-talk and the dynamic role of H2B ubiquitination in stimulating histone methylation.
Collapse
Affiliation(s)
- Evan J Worden
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Xiangbin Zhang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
57
|
Yang Y, Joshi M, Takahashi YH, Ning Z, Qu Q, Brunzelle JS, Skiniotis G, Figeys D, Shilatifard A, Couture JF. A non-canonical monovalent zinc finger stabilizes the integration of Cfp1 into the H3K4 methyltransferase complex COMPASS. Nucleic Acids Res 2020; 48:421-431. [PMID: 31724694 PMCID: PMC7145517 DOI: 10.1093/nar/gkz1037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022] Open
Abstract
COMPlex ASsociating with SET1 (COMPASS) is a histone H3 Lys-4 methyltransferase that typically marks the promoter region of actively transcribed genes. COMPASS is a multi-subunit complex in which the catalytic unit, SET1, is required for H3K4 methylation. An important subunit known to regulate SET1 methyltransferase activity is the CxxC zinc finger protein 1 (Cfp1). Cfp1 binds to COMPASS and is critical to maintain high level of H3K4me3 in cells but the mechanisms underlying its stimulatory activity is poorly understood. In this study, we show that Cfp1 only modestly activates COMPASS methyltransferase activity in vitro. Binding of Cfp1 to COMPASS is in part mediated by a new type of monovalent zinc finger (ZnF). This ZnF interacts with the COMPASS's subunits RbBP5 and disruption of this interaction blunts its methyltransferase activity in cells and in vivo. Collectively, our studies reveal that a novel form of ZnF on Cfp1 enables its integration into COMPASS and contributes to epigenetic signaling.
Collapse
Affiliation(s)
- Yidai Yang
- Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology , University of Ottawa, Ottawa , ON K1H 8M5 , Canada
| | - Monika Joshi
- Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology , University of Ottawa, Ottawa , ON K1H 8M5 , Canada
| | - Yoh-hei Takahashi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Zhibin Ning
- Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology , University of Ottawa, Ottawa , ON K1H 8M5 , Canada
| | - Qianhui Qu
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph S Brunzelle
- Northwestern Synchrotron Research Centers, Life Science Collaborative Access Team, Northwestern University, Evanston, IL, USA
| | - Georgios Skiniotis
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Figeys
- Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology , University of Ottawa, Ottawa , ON K1H 8M5 , Canada
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Jean-François Couture
- Shanghai Institute of Materia Medica-University of Ottawa Joint Research Centre on Systems and Personalized Pharmacology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology , University of Ottawa, Ottawa , ON K1H 8M5 , Canada
| |
Collapse
|
58
|
Grzybowski AT, Shah RN, Richter WF, Ruthenburg AJ. Native internally calibrated chromatin immunoprecipitation for quantitative studies of histone post-translational modifications. Nat Protoc 2019; 14:3275-3302. [PMID: 31723301 PMCID: PMC7158589 DOI: 10.1038/s41596-019-0218-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/25/2019] [Indexed: 01/20/2023]
Abstract
Chromatin immunoprecipitation coupled to next-generation sequencing (ChIP-seq) has served as the central method for the study of histone modifications for the past decade. In ChIP-seq analyses, antibodies selectively capture nucleosomes bearing a modification of interest and the associated DNA is then mapped to the genome to determine the distribution of the mark. This approach has several important drawbacks: (i) ChIP interpretation necessitates the assumption of perfect antibody specificity, despite growing evidence that this is often not the case. (ii) Common methods for evaluating antibody specificity in other formats have little or no bearing on specificity within a ChIP experiment. (iii) Uncalibrated ChIP is reported as relative enrichment, which is biologically meaningless outside the experimental reference frame defined by a discrete immunoprecipitation (IP), thus preventing facile comparison across experimental conditions or modifications. (iv) Differential library amplification and loading onto next-generation sequencers, as well as computational normalization, can further compromise quantitative relationships that may exist between samples. Consequently, the researcher is presented with a series of potential pitfalls and is blind to nearly all of them. Here we provide a detailed protocol for internally calibrated ChIP (ICeChIP), a method we recently developed to resolve these problems by spike-in of defined nucleosomal standards within a ChIP procedure. This protocol is optimized for specificity and quantitative power, allowing for measurement of antibody specificity and absolute measurement of histone modification density (HMD) at genomic loci on a biologically meaningful scale enabling unambiguous comparisons. We provide guidance on optimal conditions for next-generation sequencing (NGS) and instructions for data analysis. This protocol takes between 17 and 18 h, excluding time for sequencing or bioinformatic analysis. The ICeChIP procedure enables accurate measurement of histone post-translational modifications (PTMs) genome-wide in mammalian cells as well as Drosophila melanogaster and Caenorhabditis elegans, indicating suitability for use in eukaryotic cells more broadly.
Collapse
Affiliation(s)
- Adrian T Grzybowski
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Rohan N Shah
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
- Division of the Biological Sciences, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
| | - William F Richter
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
59
|
Structural basis for histone H3K4me3 recognition by the N-terminal domain of the PHD finger protein Spp1. Biochem J 2019; 476:1957-1973. [PMID: 31253666 DOI: 10.1042/bcj20190091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
Saccharomyces cerevisiae Spp1, a plant homeodomain (PHD) finger containing protein, is a critical subunit of the histone H3K4 methyltransferase complex of proteins associated with Set1 (COMPASS). The chromatin binding affinity of the PHD finger of Spp1 has been proposed to modulate COMPASS activity. During meiosis, Spp1 plays another role in promoting programmed double-strand break (DSB) formation by binding H3K4me3 via its PHD finger and interacting with a DSB protein, Mer2. However, how the Spp1 PHD finger performs site-specific readout of H3K4me3 is still not fully understood. In the present study, we determined the crystal structure of the highly conserved Spp1 N-terminal domain (Sc_Spp1NTD) in complex with the H3K4me3 peptide. The structure shows that Sc_Spp1NTD comprises a PHD finger responsible for methylated H3K4 recognition and a C3H-type zinc finger necessary to ensure the overall structural stability. Our isothermal titration calorimetry results show that binding of H3K4me3 to Sc_Spp1NTD is mildly inhibited by H3R2 methylation, weakened by H3T6 phosphorylation, and abrogated by H3T3 phosphorylation. This histone modification cross-talk, which is conserved in the Saccharomyces pombe and mammalian orthologs of Sc_Spp1 in vitro, can be rationalized structurally and might contribute to the roles of Spp1 in COMPASS activity regulation and meiotic recombination.
Collapse
|
60
|
Lukito Y, Chujo T, Hale TK, Mace W, Johnson LJ, Scott B. Regulation of subtelomeric fungal secondary metabolite genes by H3K4me3 regulators CclA and KdmB. Mol Microbiol 2019; 112:837-853. [DOI: 10.1111/mmi.14320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Yonathan Lukito
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
- Grasslands Research Centre AgResearch Limited Palmerston North New Zealand
| | - Tetsuya Chujo
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Tracy K. Hale
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Wade Mace
- Grasslands Research Centre AgResearch Limited Palmerston North New Zealand
| | - Linda J. Johnson
- Grasslands Research Centre AgResearch Limited Palmerston North New Zealand
| | - Barry Scott
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
| |
Collapse
|
61
|
Histone Methylation and Memory of Environmental Stress. Cells 2019; 8:cells8040339. [PMID: 30974922 PMCID: PMC6523599 DOI: 10.3390/cells8040339] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023] Open
Abstract
Cellular adaptation to environmental stress relies on a wide range of tightly controlled regulatory mechanisms, including transcription. Changes in chromatin structure and organization accompany the transcriptional response to stress, and in some cases, can impart memory of stress exposure to subsequent generations through mechanisms of epigenetic inheritance. In the budding yeast Saccharomyces cerevisiae, histone post-translational modifications, and in particular histone methylation, have been shown to confer transcriptional memory of exposure to environmental stress conditions through mitotic divisions. Recent evidence from Caenorhabditis elegans also implicates histone methylation in transgenerational inheritance of stress responses, suggesting a more widely conserved role in epigenetic memory.
Collapse
|
62
|
Jezek M, Green EM. Histone Modifications and the Maintenance of Telomere Integrity. Cells 2019; 8:E199. [PMID: 30823596 PMCID: PMC6407025 DOI: 10.3390/cells8020199] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/09/2019] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
Abstract
Telomeres, the nucleoprotein structures at the ends of eukaryotic chromosomes, play an integral role in protecting linear DNA from degradation. Dysregulation of telomeres can result in genomic instability and has been implicated in increased rates of cellular senescence and many diseases, including cancer. The integrity of telomeres is maintained by a coordinated network of proteins and RNAs, such as the telomerase holoenzyme and protective proteins that prevent the recognition of the telomere ends as a DNA double-strand breaks. The structure of chromatin at telomeres and within adjacent subtelomeres has been implicated in telomere maintenance pathways in model systems and humans. Specific post-translational modifications of histones, including methylation, acetylation, and ubiquitination, have been shown to be necessary for maintaining a chromatin environment that promotes telomere integrity. Here we review the current knowledge regarding the role of histone modifications in maintaining telomeric and subtelomeric chromatin, discuss the implications of histone modification marks as they relate to human disease, and highlight key areas for future research.
Collapse
Affiliation(s)
- Meagan Jezek
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| | - Erin M Green
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
63
|
Pfannenstiel BT, Keller NP. On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv 2019; 37:107345. [PMID: 30738111 DOI: 10.1016/j.biotechadv.2019.02.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Fungi produce an abundance of bioactive secondary metabolites which can be utilized as antibiotics and pharmaceutical drugs. The genes encoding secondary metabolites are contiguously arranged in biosynthetic gene clusters (BGCs), which supports co-regulation of all genes required for any one metabolite. However, an ongoing challenge to harvest this fungal wealth is the finding that many of the BGCs are 'silent' in laboratory settings and lie in heterochromatic regions of the genome. Successful approaches allowing access to these regions - in essence converting the heterochromatin covering BGCs to euchromatin - include use of epigenetic stimulants and genetic manipulation of histone modifying proteins. This review provides a comprehensive look at the chromatin remodeling proteins which have been shown to regulate secondary metabolism, the use of chemical inhibitors used to induce BGCs, and provides future perspectives on expansion of epigenetic tools and concepts to mine the fungal metabolome.
Collapse
Affiliation(s)
- Brandon T Pfannenstiel
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Nancy P Keller
- Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
64
|
Hoshii T, Cifani P, Feng Z, Huang CH, Koche R, Chen CW, Delaney CD, Lowe SW, Kentsis A, Armstrong SA. A Non-catalytic Function of SETD1A Regulates Cyclin K and the DNA Damage Response. Cell 2019; 172:1007-1021.e17. [PMID: 29474905 DOI: 10.1016/j.cell.2018.01.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/30/2017] [Accepted: 01/24/2018] [Indexed: 12/22/2022]
Abstract
MLL/SET methyltransferases catalyze methylation of histone 3 lysine 4 and play critical roles in development and cancer. We assessed MLL/SET proteins and found that SETD1A is required for survival of acute myeloid leukemia (AML) cells. Mutagenesis studies and CRISPR-Cas9 domain screening show the enzymatic SET domain is not necessary for AML cell survival but that a newly identified region termed the "FLOS" (functional location on SETD1A) domain is indispensable. FLOS disruption suppresses DNA damage response genes and induces p53-dependent apoptosis. The FLOS domain acts as a cyclin-K-binding site that is required for chromosomal recruitment of cyclin K and for DNA-repair-associated gene expression in S phase. These data identify a connection between the chromatin regulator SETD1A and the DNA damage response that is independent of histone methylation and suggests that targeting SETD1A and cyclin K complexes may represent a therapeutic opportunity for AML and, potentially, for other cancers.
Collapse
Affiliation(s)
- Takayuki Hoshii
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02210, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paolo Cifani
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Zhaohui Feng
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02210, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chun-Hao Huang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cell and Developmental Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Richard Koche
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02210, USA
| | - Chun-Wei Chen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02210, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher D Delaney
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02210, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cell and Developmental Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02210, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
65
|
Cruz C, Della Rosa M, Krueger C, Gao Q, Horkai D, King M, Field L, Houseley J. Tri-methylation of histone H3 lysine 4 facilitates gene expression in ageing cells. eLife 2018; 7:34081. [PMID: 30274593 PMCID: PMC6168286 DOI: 10.7554/elife.34081] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
Transcription of protein coding genes is accompanied by recruitment of COMPASS to promoter-proximal chromatin, which methylates histone H3 lysine 4 (H3K4) to form H3K4me1, H3K4me2 and H3K4me3. Here, we determine the importance of COMPASS in maintaining gene expression across lifespan in budding yeast. We find that COMPASS mutations reduce replicative lifespan and cause expression defects in almost 500 genes. Although H3K4 methylation is reported to act primarily in gene repression, particularly in yeast, repressive functions are progressively lost with age while hundreds of genes become dependent on H3K4me3 for full expression. Basal and inducible expression of these genes is also impaired in young cells lacking COMPASS components Swd1 or Spp1. Gene induction during ageing is associated with increasing promoter H3K4me3, but H3K4me3 also accumulates in non-promoter regions and the ribosomal DNA. Our results provide clear evidence that H3K4me3 is required to maintain normal expression of many genes across organismal lifespan.
Collapse
Affiliation(s)
- Cristina Cruz
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Monica Della Rosa
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Christel Krueger
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Qian Gao
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Dorottya Horkai
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Michelle King
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Lucy Field
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
66
|
Haddad JF, Yang Y, Takahashi YH, Joshi M, Chaudhary N, Woodfin AR, Benyoucef A, Yeung S, Brunzelle JS, Skiniotis G, Brand M, Shilatifard A, Couture JF. Structural Analysis of the Ash2L/Dpy-30 Complex Reveals a Heterogeneity in H3K4 Methylation. Structure 2018; 26:1594-1603.e4. [PMID: 30270175 DOI: 10.1016/j.str.2018.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/28/2018] [Accepted: 08/08/2018] [Indexed: 01/09/2023]
Abstract
Dpy-30 is a regulatory subunit controlling the histone methyltransferase activity of the KMT2 enzymes in vivo. Paradoxically, in vitro methyltransferase assays revealed that Dpy-30 only modestly participates in the positive heterotypic allosteric regulation of these methyltransferases. Detailed genome-wide, molecular and structural studies reveal that an extensive network of interactions taking place at the interface between Dpy-30 and Ash2L are critical for the correct placement, genome-wide, of H3K4me2 and H3K4me3 but marginally contribute to the methyltransferase activity of KMT2 enzymes in vitro. Moreover, we show that H3K4me2 peaks persisting following the loss of Dpy-30 are found in regions of highly transcribed genes, highlighting an interplay between Complex of Proteins Associated with SET1 (COMPASS) kinetics and the cycling of RNA polymerase to control H3K4 methylation. Overall, our data suggest that Dpy-30 couples its modest positive heterotypic allosteric regulation of KMT2 methyltransferase activity with its ability to help the positioning of SET1/COMPASS to control epigenetic signaling.
Collapse
Affiliation(s)
- John Faissal Haddad
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Roger Guindon Hall, Ottawa, ON K1H 8M5, Canada
| | - Yidai Yang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Roger Guindon Hall, Ottawa, ON K1H 8M5, Canada
| | - Yoh-Hei Takahashi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Monika Joshi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Roger Guindon Hall, Ottawa, ON K1H 8M5, Canada
| | - Nidhi Chaudhary
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Roger Guindon Hall, Ottawa, ON K1H 8M5, Canada
| | - Ashley R Woodfin
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Aissa Benyoucef
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Sylvain Yeung
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Roger Guindon Hall, Ottawa, ON K1H 8M5, Canada
| | - Joseph S Brunzelle
- Northwestern Synchrotron Research Centers, Life Science Collaborative Access Team, Northwestern University, Evanston, IL, USA
| | - Georgios Skiniotis
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marjorie Brand
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Jean-François Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Roger Guindon Hall, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
67
|
Oliete-Calvo P, Serrano-Quílez J, Nuño-Cabanes C, Pérez-Martínez ME, Soares LM, Dichtl B, Buratowski S, Pérez-Ortín JE, Rodríguez-Navarro S. A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export. EMBO Rep 2018; 19:embr.201845992. [PMID: 30249596 DOI: 10.15252/embr.201845992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022] Open
Abstract
Monoubiquitination of histone H2B (to H2Bub1) is required for downstream events including histone H3 methylation, transcription, and mRNA export. The mechanisms and players regulating these events have not yet been completely delineated. Here, we show that the conserved Ran-binding protein Mog1 is required to sustain normal levels of H2Bub1 and H3K4me3 in Saccharomyces cerevisiae Mog1 is needed for gene body recruitment of Rad6, Bre1, and Rtf1 that are involved in H2B ubiquitination and genetically interacts with these factors. We provide evidence that the absence of MOG1 impacts on cellular processes such as transcription, DNA replication, and mRNA export, which are linked to H2Bub1. Importantly, the mRNA export defect in mog1Δ strains is exacerbated by the absence of factors that decrease H2Bub1 levels. Consistent with a role in sustaining H2Bub and H3K4me3 levels, Mog1 co-precipitates with components that participate in these modifications such as Bre1, Rtf1, and the COMPASS-associated factors Shg1 and Sdc1. These results reveal a novel role for Mog1 in H2B ubiquitination, transcription, and mRNA biogenesis.
Collapse
Affiliation(s)
- Paula Oliete-Calvo
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Joan Serrano-Quílez
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Carme Nuño-Cabanes
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - María E Pérez-Martínez
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, Burjassot, Spain
| | - Luis M Soares
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bernhard Dichtl
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Centre for Cellular and Molecular Biology, Deakin University, Geelong, Vic., Australia
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, Burjassot, Spain
| | - Susana Rodríguez-Navarro
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain .,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
68
|
Xie Y, Zheng M, Chu X, Chen Y, Xu H, Wang J, Zhou H, Long J. Paf1 and Ctr9 subcomplex formation is essential for Paf1 complex assembly and functional regulation. Nat Commun 2018; 9:3795. [PMID: 30228257 PMCID: PMC6143631 DOI: 10.1038/s41467-018-06237-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/15/2018] [Indexed: 11/09/2022] Open
Abstract
The evolutionarily conserved multifunctional polymerase-associated factor 1 (Paf1) complex (Paf1C), which is composed of at least five subunits (Paf1, Leo1, Ctr9, Cdc73, and Rtf1), plays vital roles in gene regulation and has connections to development and human diseases. Here, we report two structures of each of the human and yeast Ctr9/Paf1 subcomplexes, which assemble into heterodimers with very similar conformations, revealing an interface between the tetratricopeptide repeat module in Ctr9 and Paf1. The structure of the Ctr9/Paf1 subcomplex may provide mechanistic explanations for disease-associated mutations in human PAF1 and CTR9. Our study reveals that the formation of the Ctr9/Paf1 heterodimer is required for the assembly of yeast Paf1C, and is essential for yeast viability. In addition, disruption of the interaction between Paf1 and Ctr9 greatly affects the level of histone H3 methylation in vivo. Collectively, our results shed light on Paf1C assembly and functional regulation.
Collapse
Affiliation(s)
- Ying Xie
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Minying Zheng
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xinlei Chu
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Huisha Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
69
|
Fang L, Teng H, Wang Y, Liao G, Weng L, Li Y, Wang X, Jin J, Jiao C, Chen L, Peng X, Chen J, Yang Y, Fang H, Han D, Li C, Jin X, Zhang S, Liu Z, Liu M, Wei Q, Liao L, Ge X, Zhao B, Zhou D, Qin HL, Zhou J, Wang P. SET1A-Mediated Mono-Methylation at K342 Regulates YAP Activation by Blocking Its Nuclear Export and Promotes Tumorigenesis. Cancer Cell 2018; 34:103-118.e9. [PMID: 30008322 DOI: 10.1016/j.ccell.2018.06.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 04/11/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023]
Abstract
YAP, a key effector of Hippo pathway, is activated by its translocation from cytoplasm to nucleus to regulate gene expression and promote tumorigenesis. Although the mechanism by which YAP is suppressed in cytoplasm has been well-studied, how the activated YAP is sequestered in the nucleus remains unknown. Here, we demonstrate that YAP is a nucleocytoplasmic shuttling protein and its nuclear export is controlled by SET1A-mediated mono-methylation of YAP at K342, which disrupts the binding of YAP to CRM1. YAP mimetic methylation knockin mice are more susceptible to colorectal tumorigenesis. Clinically, YAP K342 methylation is reversely correlated with cancer survival. Collectively, our study identifies SET1A-mediated mono-methylation at K342 as an essential regulatory mechanism for regulating YAP activity and tumorigenesis.
Collapse
Affiliation(s)
- Lan Fang
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Hongqi Teng
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Yilin Wang
- Department of Hepatic Surgery, Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guanghong Liao
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Linjun Weng
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Yaxu Li
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Xinbo Wang
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Jiali Jin
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Chenchen Jiao
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Lei Chen
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Xiaoping Peng
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Jiayu Chen
- School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Yongzhi Yang
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Houqin Fang
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Dongyan Han
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Cheng Li
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Xueling Jin
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University, Shanghai 200032, China
| | - Shihao Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhongchen Liu
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Shandong Collaborative Innovation Center of Cell Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Qing Wei
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xin Ge
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Bin Zhao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Zhejiang 310058, China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huan-Long Qin
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Shandong Collaborative Innovation Center of Cell Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Ping Wang
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai 200072, China.
| |
Collapse
|
70
|
Abstract
Protein lysine methylation is a distinct posttranslational modification that causes minimal changes in the size and electrostatic status of lysine residues. Lysine methylation plays essential roles in regulating fates and functions of target proteins in an epigenetic manner. As a result, substrates and degrees (free versus mono/di/tri) of protein lysine methylation are orchestrated within cells by balanced activities of protein lysine methyltransferases (PKMTs) and demethylases (KDMs). Their dysregulation is often associated with neurological disorders, developmental abnormalities, or cancer. Methyllysine-containing proteins can be recognized by downstream effector proteins, which contain methyllysine reader domains, to relay their biological functions. While numerous efforts have been made to annotate biological roles of protein lysine methylation, limited work has been done to uncover mechanisms associated with this modification at a molecular or atomic level. Given distinct biophysical and biochemical properties of methyllysine, this review will focus on chemical and biochemical aspects in addition, recognition, and removal of this posttranslational mark. Chemical and biophysical methods to profile PKMT substrates will be discussed along with classification of PKMT inhibitors for accurate perturbation of methyltransferase activities. Semisynthesis of methyllysine-containing proteins will also be covered given the critical need for these reagents to unambiguously define functional roles of protein lysine methylation.
Collapse
Affiliation(s)
- Minkui Luo
- Chemical Biology Program , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.,Program of Pharmacology, Weill Graduate School of Medical Science , Cornell University , New York , New York 10021 , United States
| |
Collapse
|
71
|
H3K4 Methylation Dependent and Independent Chromatin Regulation by JHD2 and SET1 in Budding Yeast. G3-GENES GENOMES GENETICS 2018; 8:1829-1839. [PMID: 29599176 PMCID: PMC5940172 DOI: 10.1534/g3.118.200151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Set1 and Jhd2 regulate the methylation state of histone H3 lysine-4 (H3K4me) through their opposing methyltransferase and demethylase activities in the budding yeast Saccharomyces cerevisiae. H3K4me associates with actively transcribed genes and, like both SET1 and JHD2 themselves, is known to regulate gene expression diversely. It remains unclear, however, if Set1 and Jhd2 act solely through H3K4me. Relevantly, Set1 methylates lysine residues in the kinetochore protein Dam1 while genetic studies of the S. pombe SET1 ortholog suggest the existence of non-H3K4 Set1 targets relevant to gene regulation. We interrogated genetic interactions of JHD2 and SET1 with essential genes involved in varied aspects of the transcription cycle. Our findings implicate JHD2 in genetic inhibition of the histone chaperone complexes Spt16-Pob3 (FACT) and Spt6-Spn1. This targeted screen also revealed that JHD2 inhibits the Nrd1-Nab3-Sen1 (NNS) transcription termination complex. We find that while Jhd2’s impact on these transcription regulatory complexes likely acts via H3K4me, Set1 governs the roles of FACT and NNS through opposing H3K4-dependent and -independent functions. We also identify diametrically opposing consequences for mutation of H3K4 to alanine or arginine, illuminating that caution must be taken in interpreting histone mutation studies. Unlike FACT and NNS, detailed genetic studies suggest an H3K4me-centric mode of Spt6-Spn1 regulation by JHD2 and SET1. Chromatin immunoprecipitation and transcript quantification experiments show that Jhd2 opposes the positioning of a Spt6-deposited nucleosome near the transcription start site of SER3, a Spt6-Spn1 regulated gene, leading to hyper-induction of SER3. In addition to confirming and extending an emerging role for Jhd2 in the control of nucleosome occupancy near transcription start sites, our findings suggest some of the chromatin regulatory functions of Set1 are independent of H3K4 methylation.
Collapse
|
72
|
Abstract
Homologous recombination is required for proper segregation of homologous chromosomes during meiosis. It occurs predominantly at recombination hotspots that are defined by the DNA binding specificity of the PRDM9 protein. PRDM9 contains three conserved domains typically involved in regulation of transcription; yet, the role of PRDM9 in gene expression control is not clear. Here, we analyze the germline transcriptome of Prdm9−/− male mice in comparison to Prdm9+/+ males and find no apparent differences in the mRNA and miRNA profiles. We further explore the role of PRDM9 in meiosis by analyzing the effect of the KRAB, SSXRD, and post-SET zinc finger deletions in a cell culture expression system and the KRAB domain deletion in mice. We found that although the post-SET zinc finger and the KRAB domains are not essential for the methyltransferase activity of PRDM9 in cell culture, the KRAB domain mutant mice show only residual PRDM9 methyltransferase activity and undergo meiotic arrest. In aggregate, our data indicate that domains typically involved in regulation of gene expression do not serve that role in PRDM9, but are likely involved in setting the proper chromatin environment for initiation and completion of homologous recombination.
Collapse
|
73
|
Repression of Middle Sporulation Genes in Saccharomyces cerevisiae by the Sum1-Rfm1-Hst1 Complex Is Maintained by Set1 and H3K4 Methylation. G3-GENES GENOMES GENETICS 2017; 7:3971-3982. [PMID: 29066473 PMCID: PMC5714494 DOI: 10.1534/g3.117.300150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The conserved yeast histone methyltransferase Set1 targets H3 lysine 4 (H3K4) for mono, di, and trimethylation and is linked to active transcription due to the euchromatic distribution of these methyl marks and the recruitment of Set1 during transcription. However, loss of Set1 results in increased expression of multiple classes of genes, including genes adjacent to telomeres and middle sporulation genes, which are repressed under normal growth conditions because they function in meiotic progression and spore formation. The mechanisms underlying Set1-mediated gene repression are varied, and still unclear in some cases, although repression has been linked to both direct and indirect action of Set1, associated with noncoding transcription, and is often dependent on the H3K4me2 mark. We show that Set1, and particularly the H3K4me2 mark, are implicated in repression of a subset of middle sporulation genes during vegetative growth. In the absence of Set1, there is loss of the DNA-binding transcriptional regulator Sum1 and the associated histone deacetylase Hst1 from chromatin in a locus-specific manner. This is linked to increased H4K5ac at these loci and aberrant middle gene expression. These data indicate that, in addition to DNA sequence, histone modification status also contributes to proper localization of Sum1 Our results also show that the role for Set1 in middle gene expression control diverges as cells receive signals to undergo meiosis. Overall, this work dissects an unexplored role for Set1 in gene-specific repression, and provides important insights into a new mechanism associated with the control of gene expression linked to meiotic differentiation.
Collapse
|
74
|
Soares LM, He PC, Chun Y, Suh H, Kim T, Buratowski S. Determinants of Histone H3K4 Methylation Patterns. Mol Cell 2017; 68:773-785.e6. [PMID: 29129639 DOI: 10.1016/j.molcel.2017.10.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 08/23/2017] [Accepted: 10/12/2017] [Indexed: 11/28/2022]
Abstract
Various factors differentially recognize trimethylated histone H3 lysine 4 (H3K4me3) near promoters, H3K4me2 just downstream, and promoter-distal H3K4me1 to modulate gene expression. This methylation "gradient" is thought to result from preferential binding of the H3K4 methyltransferase Set1/complex associated with Set1 (COMPASS) to promoter-proximal RNA polymerase II. However, other studies have suggested that location-specific cues allosterically activate Set1. Chromatin immunoprecipitation sequencing (ChIP-seq) experiments show that H3K4 methylation patterns on active genes are not universal or fixed and change in response to both transcription elongation rate and frequency as well as reduced COMPASS activity. Fusing Set1 to RNA polymerase II results in H3K4me2 throughout transcribed regions and similarly extended H3K4me3 on highly transcribed genes. Tethered Set1 still requires histone H2B ubiquitylation for activity. These results show that higher-level methylations reflect not only Set1/COMPASS recruitment but also multiple rounds of transcription. This model provides a simple explanation for non-canonical methylation patterns at some loci or in certain COMPASS mutants.
Collapse
Affiliation(s)
- Luis M Soares
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - P Cody He
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yujin Chun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyunsuk Suh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - TaeSoo Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
75
|
Not All H3K4 Methylations Are Created Equal: Mll2/COMPASS Dependency in Primordial Germ Cell Specification. Mol Cell 2017; 65:460-475.e6. [PMID: 28157506 DOI: 10.1016/j.molcel.2017.01.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/16/2016] [Accepted: 01/04/2017] [Indexed: 11/20/2022]
Abstract
The spatiotemporal regulation of gene expression is central for cell-lineage specification during embryonic development and is achieved through the combinatorial action of transcription factors/co-factors and epigenetic states at cis-regulatory elements. Here, we show that in addition to implementing H3K4me3 at promoters of bivalent genes, Mll2 (KMT2B)/COMPASS can also implement H3K4me3 at a subset of non-TSS regulatory elements, a subset of which shares epigenetic signatures of active enhancers. Our mechanistic studies reveal that association of Mll2's CXXC domain with CpG-rich regions plays an instrumental role for chromatin targeting and subsequent implementation of H3K4me3. Although Mll2/COMPASS is required for H3K4me3 implementation on thousands of loci, generation of catalytically mutant MLL2/COMPASS demonstrated that H3K4me3 implemented by this enzyme was essential for expression of a subset of genes, including those functioning in the control of transcriptional programs during embryonic development. Our findings suggest that not all H3K4 trimethylations implemented by MLL2/COMPASS are functionally equivalent.
Collapse
|
76
|
Gu Q, Tahir HAS, Zhang H, Huang H, Ji T, Sun X, Wu L, Wu H, Gao X. Involvement of FvSet1 in Fumonisin B1 Biosynthesis, Vegetative Growth, Fungal Virulence, and Environmental Stress Responses in Fusarium verticillioides. Toxins (Basel) 2017; 9:toxins9020043. [PMID: 28125013 PMCID: PMC5331423 DOI: 10.3390/toxins9020043] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 01/27/2023] Open
Abstract
Fusarium verticillioides (teleomorph, Gibberella moniliformis) is an important plant pathogen that causes seedling blight, stalk rot, and ear rot in maize (Zea mays). During infection, F. verticillioides produce fumonsins B1 (FB1) that pose a serious threat to human and animal health. Recent studies showed that Set1, a methyltransferase of H3K4, was responsible for toxin biosynthesis in filamentous fungi. However, to date, the regulation of FvSet1 on FB1 biosynthesis remains unclear. In the current study, we identified only one Set1 ortholog in F. verticillioides (FvSet1) and found that the deletion of FvSET1 led to various defects in fungal growth and pathogenicity. More interestingly, the FvSET1 deletion mutant (ΔFvSet1) showed a significant defect in FB1 biosynthesis and lower expression levels of FUM genes. FvSet1 was also found to play an important role in the responses of F. verticillioides to multiple environmental stresses via regulating the phosphorylation of FvMgv1 and FvHog1. Taken together, these results indicate that FvSet1 plays essential roles in the regulation of FB1 biosynthesis, fungal growth and virulence, as well as various stress responses in F. verticillioides.
Collapse
Affiliation(s)
- Qin Gu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China.
| | - Hafiz Abdul Samad Tahir
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China.
| | - Hao Zhang
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China.
| | - Hai Huang
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China.
| | - Tiantian Ji
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China.
| | - Xiao Sun
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China.
| | - Liming Wu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China.
| | - Huijun Wu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China.
| | - Xuewen Gao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China.
| |
Collapse
|
77
|
Studt L, Janevska S, Arndt B, Boedi S, Sulyok M, Humpf HU, Tudzynski B, Strauss J. Lack of the COMPASS Component Ccl1 Reduces H3K4 Trimethylation Levels and Affects Transcription of Secondary Metabolite Genes in Two Plant-Pathogenic Fusarium Species. Front Microbiol 2017; 7:2144. [PMID: 28119673 PMCID: PMC5220078 DOI: 10.3389/fmicb.2016.02144] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/20/2016] [Indexed: 01/07/2023] Open
Abstract
In the two fungal pathogens Fusarium fujikuroi and Fusarium graminearum, secondary metabolites (SMs) are fitness and virulence factors and there is compelling evidence that the coordination of SM gene expression is under epigenetic control. Here, we characterized Ccl1, a subunit of the COMPASS complex responsible for methylating lysine 4 of histone H3 (H3K4me). We show that Ccl1 is not essential for viability but a regulator of genome-wide trimethylation of H3K4 (H3K4me3). Although, recent work in Fusarium and Aspergillus spp. detected only sporadic H3K4 methylation at the majority of the SM gene clusters, we show here that SM profiles in CCL1 deletion mutants are strongly deviating from the wild type. Cross-complementation experiments indicate high functional conservation of Ccl1 as phenotypes of the respective △ccl1 were rescued in both fungi. Strikingly, biosynthesis of the species-specific virulence factors gibberellic acid and deoxynivalenol produced by F. fujikuroi and F. graminearum, respectively, was reduced in axenic cultures but virulence was not attenuated in these mutants, a phenotype which goes in line with restored virulence factor production levels in planta. This suggests that yet unknown plant-derived signals are able to compensate for Ccl1 function during pathogenesis.
Collapse
Affiliation(s)
- Lena Studt
- Division of Microbial Genetics and Pathogen Interactions, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life SciencesVienna, Tulln an der Donau, Austria,Institute for Plant Biology and Biotechnology, Westfälische Wilhelms UniversityMünster, Germany,*Correspondence: Lena Studt, Joseph Strauss,
| | - Slavica Janevska
- Institute for Plant Biology and Biotechnology, Westfälische Wilhelms UniversityMünster, Germany
| | - Birgit Arndt
- Institute of Food Chemistry, Westfälische Wilhelms UniversityMünster, Germany
| | - Stefan Boedi
- Division of Microbial Genetics and Pathogen Interactions, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life SciencesVienna, Tulln an der Donau, Austria
| | - Michael Sulyok
- Center for Analytical Chemistry, Department IFA-Tulln, BOKU-University of Natural Resources and Life SciencesVienna, Tulln an der Donau, Austria
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms UniversityMünster, Germany
| | - Bettina Tudzynski
- Institute for Plant Biology and Biotechnology, Westfälische Wilhelms UniversityMünster, Germany
| | - Joseph Strauss
- Division of Microbial Genetics and Pathogen Interactions, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life SciencesVienna, Tulln an der Donau, Austria,*Correspondence: Lena Studt, Joseph Strauss,
| |
Collapse
|
78
|
Abstract
Recent studies from a number of model organisms have indicated chromatin structure and its remodeling as a major contributory agent for aging. Few recent experiments also demonstrate that modulation in the chromatin modifying agents also affect the life span of an organism and even in some cases the change is inherited epigenetically to subsequent generations. Hence, in the present report we discuss the chromatin organization and its changes during aging.
Collapse
Affiliation(s)
- Pramod C. Rath
- School of Life Sciences, Molecular Biology Laboratory, Jawaharlal Nehru University, New Delhi, Delhi India
| | - Ramesh Sharma
- Department of Biochemistry, North Eastern Hill University, Shillong, Megalaya India
| | - S. Prasad
- Biochemistry & Molecular Biology Lab, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh India
| |
Collapse
|
79
|
Zhang Y, Liu J, Lin J, Zhou L, Song Y, Wei B, Luo X, Chen Z, Chen Y, Xiong J, Xu X, Ding L, Ye Q. The transcription factor GATA1 and the histone methyltransferase SET7 interact to promote VEGF-mediated angiogenesis and tumor growth and predict clinical outcome of breast cancer. Oncotarget 2016; 7:9859-75. [PMID: 26848522 PMCID: PMC4891089 DOI: 10.18632/oncotarget.7126] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/18/2016] [Indexed: 01/26/2023] Open
Abstract
Angiogenesis is essential for tumor growth. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis. However, how transcription factors interact with histone-modifying enzymes to regulate VEGF transcription and tumor angiogenesis remains unclear. Here, we show that transcription factor GATA1 associates with the histone methyltransferase SET7 to promote VEGF transcription and breast tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that GATA1 was required for recruitment of SET7, RNA polymerase II and transcription factor II B to VEGF core promoter. GATA1 enhanced breast cancer cell (MCF7, ZR75-1 and MDA-MB-231)-secreted VEGF via SET7, which promoted vascular endothelial cell (HUVEC) proliferation, migration and tube formation. SET7 was required for GATA1-induced breast tumor angiogenesis and growth in nude mice. Immunohistochemical staining showed that expression of GATA1 and SET7 was upregulated and positively correlated with VEGF expression and microvessel number in 80 breast cancer patients. GATA1 and SET7 are independent poor prognostic factors in breast cancer. Our data provide novel insights into VEGF transcriptional regulation and suggest GATA1/SET7 as cancer therapeutic targets.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| | - Jie Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Jing Lin
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lei Zhou
- Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yuhua Song
- The Affiliated Hospital of Qing Dao University, Qingdao, People's Republic of China
| | - Bo Wei
- Department of General Surgery, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaoli Luo
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Zhida Chen
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,Department of General Surgery, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yingjie Chen
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,The Affiliated Hospital of Qing Dao University, Qingdao, People's Republic of China
| | - Jiaxiu Xiong
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,Department of General Surgery, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Lihua Ding
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China.,Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| |
Collapse
|
80
|
Jezek M, Gast A, Choi G, Kulkarni R, Quijote J, Graham-Yooll A, Park D, Green EM. The histone methyltransferases Set5 and Set1 have overlapping functions in gene silencing and telomere maintenance. Epigenetics 2016; 12:93-104. [PMID: 27911222 DOI: 10.1080/15592294.2016.1265712] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Genes adjacent to telomeres are subject to transcriptional repression mediated by an integrated set of chromatin modifying and remodeling factors. The telomeres of Saccharomyces cerevisiae have served as a model for dissecting the function of diverse chromatin proteins in gene silencing, and their study has revealed overlapping roles for many chromatin proteins in either promoting or antagonizing gene repression. The H3K4 methyltransferase Set1, which is commonly linked to transcriptional activation, has been implicated in telomere silencing. Set5 is an H4 K5, K8, and K12 methyltransferase that functions with Set1 to promote repression at telomeres. Here, we analyzed the combined role for Set1 and Set5 in gene expression control at native yeast telomeres. Our data reveal that Set1 and Set5 promote a Sir protein-independent mechanism of repression that may primarily rely on regulation of H4K5ac and H4K8ac at telomeric regions. Furthermore, cells lacking both Set1 and Set5 have highly correlated transcriptomes to mutants in telomere maintenance pathways and display defects in telomere stability, linking their roles in silencing to protection of telomeres. Our data therefore provide insight into and clarify potential mechanisms by which Set1 contributes to telomere silencing and shed light on the function of Set5 at telomeres.
Collapse
Affiliation(s)
- Meagan Jezek
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Alison Gast
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Grace Choi
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Rushmie Kulkarni
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Jeremiah Quijote
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Andrew Graham-Yooll
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - DoHwan Park
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Erin M Green
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| |
Collapse
|
81
|
Mitochondrial control through nutritionally regulated global histone H3 lysine-4 demethylation. Sci Rep 2016; 6:37942. [PMID: 27897198 PMCID: PMC5126570 DOI: 10.1038/srep37942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022] Open
Abstract
Histone demethylation by Jumonji-family proteins is coupled with the decarboxylation of α-ketoglutarate (αKG) to yield succinate, prompting hypotheses that their activities are responsive to levels of these metabolites in the cell. Consistent with this paradigm we show here that the Saccharomyces cerevisiae Jumonji demethylase Jhd2 opposes the accumulation of H3K4me3 in fermenting cells only when they are nutritionally manipulated to contain an elevated αKG/succinate ratio. We also find that Jhd2 opposes H3K4me3 in respiratory cells that do not exhibit such an elevated αKG/succinate ratio. While jhd2∆ caused only limited gene expression defects in fermenting cells, transcript profiling and physiological measurements show that JHD2 restricts mitochondrial respiratory capacity in cells grown in non-fermentable carbon in an H3K4me-dependent manner. In association with these phenotypes, we find that JHD2 limits yeast proliferative capacity under physiologically challenging conditions as measured by both replicative lifespan and colony growth on non-fermentable carbon. JHD2’s impact on nutrient response may reflect an ancestral role of its gene family in mediating mitochondrial regulation.
Collapse
|
82
|
Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. Genetics 2016; 205:185-199. [PMID: 28049706 DOI: 10.1534/genetics.116.194852] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Methylation of histone H3 lysine 4 (H3K4) by Set1 complex/COMPASS is a hallmark of eukaryotic chromatin, but it remains poorly understood how this post-translational modification contributes to the regulation of biological processes like the cell cycle. Here, we report a H3K4 methylation-dependent pathway in Saccharomyces cerevisiae that governs toxicity toward benomyl, a microtubule destabilizing drug. Benomyl-sensitive growth of wild-type cells required mono- and dimethylation of H3K4 and Pho23, a PHD-containing subunit of the Rpd3L complex. Δset1 and Δpho23 deletions suppressed defects associated with ipl1-2 aurora kinase mutant, an integral component of the spindle assembly checkpoint during mitosis. Benomyl resistance of Δset1 strains was accompanied by deregulation of all four tubulin genes and the phenotype was suppressed by tub2-423 and Δtub3 mutations, establishing a genetic link between H3K4 methylation and microtubule function. Most interestingly, sine wave fitting and clustering of transcript abundance time series in synchronized cells revealed a requirement for Set1 for proper cell-cycle-dependent gene expression and Δset1 cells displayed delayed entry into S phase. Disruption of G1/S regulation in Δmbp1 and Δswi4 transcription factor mutants duplicated both benomyl resistance and suppression of ipl1-2 as was observed with Δset1 Taken together our results support a role for H3K4 methylation in the coordination of cell-cycle progression and proper assembly of the mitotic spindle during mitosis.
Collapse
|
83
|
|
84
|
Sze CC, Shilatifard A. MLL3/MLL4/COMPASS Family on Epigenetic Regulation of Enhancer Function and Cancer. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026427. [PMID: 27638352 DOI: 10.1101/cshperspect.a026427] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During development, precise spatiotemporal patterns of gene expression are coordinately controlled by cis-regulatory modules known as enhancers. Their crucial role in development helped spur numerous studies aiming to elucidate the functional properties of enhancers within their physiological and disease contexts. In recent years, the role of enhancer malfunction in tissue-specific tumorigenesis is increasingly investigated. Here, we direct our focus to two primary players in enhancer regulation and their role in cancer pathogenesis: MLL3 and MLL4, members of the COMPASS family of histone H3 lysine 4 (H3K4) methyltransferases, and their complex-specific subunit UTX, a histone H3 lysine 27 (H3K27) demethylase. We review the most recent evidence on the underlying roles of MLL3/MLL4 and UTX in cancer and highlight key outstanding questions to help drive future research and contribute to our fundamental understanding of cancer and facilitate identification of therapeutic opportunities.
Collapse
Affiliation(s)
- Christie C Sze
- Department of Biochemistry and Molecular Genetics and Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics and Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
85
|
Poynter ST, Kadoch C. Polycomb and trithorax opposition in development and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:659-688. [PMID: 27581385 DOI: 10.1002/wdev.244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/07/2016] [Accepted: 06/02/2016] [Indexed: 01/08/2023]
Abstract
Early discoveries in chromatin biology and epigenetics heralded new insights into organismal development. From these studies, two mediators of cellular differentiation were discovered: the Polycomb group (PcG) of transcriptional repressors, and the trithorax group (trxG) of transcriptional activators. These protein families, while opposed in function, work together to coordinate the appropriate cellular developmental programs that allow for both embryonic stem cell self-renewal and differentiation. Recently, both the PcG and trxG chromatin modulators have been observed to be deregulated in a wide spectrum diseases including developmental disorders and cancer. To understand the impact of these findings we outline the past, present, and future. WIREs Dev Biol 2016, 5:659-688. doi: 10.1002/wdev.244 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Steven T Poynter
- Chemical Biology Program, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
86
|
Alicea-Velázquez NL, Shinsky SA, Loh DM, Lee JH, Skalnik DG, Cosgrove MS. Targeted Disruption of the Interaction between WD-40 Repeat Protein 5 (WDR5) and Mixed Lineage Leukemia (MLL)/SET1 Family Proteins Specifically Inhibits MLL1 and SETd1A Methyltransferase Complexes. J Biol Chem 2016; 291:22357-22372. [PMID: 27563068 DOI: 10.1074/jbc.m116.752626] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 08/23/2016] [Indexed: 11/06/2022] Open
Abstract
MLL1 belongs to the SET1 family of histone H3 lysine 4 (H3K4) methyltransferases, composed of MLL1-4 and SETd1A/B. MLL1 translocations are present in acute leukemias, and mutations in several family members are associated with cancer and developmental disorders. MLL1 associates with a subcomplex containing WDR5, RbBP5, ASH2L, and DPY-30 (WRAD), forming the MLL1 core complex required for H3K4 mono- and dimethylation and transcriptional activation. Core complex assembly requires interaction of WDR5 with the MLL1 Win (WDR5 interaction) motif, which is conserved across the SET1 family. Agents that mimic the SET1 family Win motif inhibit the MLL1 core complex and have become an attractive approach for targeting MLL1 in cancers. Like MLL1, other SET1 family members interact with WRAD, but the roles of the Win motif in complex assembly and enzymatic activity remain unexplored. Here, we show that the Win motif is necessary for interaction of WDR5 with all members of the human SET1 family. Mutation of the Win motif-WDR5 interface severely disrupts assembly and activity of MLL1 and SETd1A complexes but only modestly disrupts MLL2/4 and SETd1B complexes without significantly altering enzymatic activity in vitro Notably, in the absence of WDR5, MLL3 interacts with RAD and shows enhanced activity. To further probe the role of the Win motif-WDR5 interaction, we designed a peptidomimetic that binds WDR5 (Kd ∼3 nm) and selectively inhibits activity of MLL1 and SETd1A core complexes within the SET1 family. Our results reveal that SET1 family complexes with the weakest Win motif-WDR5 interaction are more susceptible to Win motif-based inhibitors.
Collapse
Affiliation(s)
- Nilda L Alicea-Velázquez
- From the Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| | - Stephen A Shinsky
- From the Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| | - Daniel M Loh
- From the Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| | - Jeong-Heon Lee
- the Biology Department, School of Science, Indiana University-Purdue University, Indianapolis, Indiana 46202
| | - David G Skalnik
- the Biology Department, School of Science, Indiana University-Purdue University, Indianapolis, Indiana 46202
| | - Michael S Cosgrove
- From the Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| |
Collapse
|
87
|
KdmB, a Jumonji Histone H3 Demethylase, Regulates Genome-Wide H3K4 Trimethylation and Is Required for Normal Induction of Secondary Metabolism in Aspergillus nidulans. PLoS Genet 2016; 12:e1006222. [PMID: 27548260 PMCID: PMC4993369 DOI: 10.1371/journal.pgen.1006222] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/06/2016] [Indexed: 12/12/2022] Open
Abstract
Histone posttranslational modifications (HPTMs) are involved in chromatin-based regulation of fungal secondary metabolite biosynthesis (SMB) in which the corresponding genes—usually physically linked in co-regulated clusters—are silenced under optimal physiological conditions (nutrient-rich) but are activated when nutrients are limiting. The exact molecular mechanisms by which HPTMs influence silencing and activation, however, are still to be better understood. Here we show by a combined approach of quantitative mass spectrometry (LC-MS/MS), genome-wide chromatin immunoprecipitation (ChIP-seq) and transcriptional network analysis (RNA-seq) that the core regions of silent A. nidulans SM clusters generally carry low levels of all tested chromatin modifications and that heterochromatic marks flank most of these SM clusters. During secondary metabolism, histone marks typically associated with transcriptional activity such as H3 trimethylated at lysine-4 (H3K4me3) are established in some, but not all gene clusters even upon full activation. KdmB, a Jarid1-family histone H3 lysine demethylase predicted to comprise a BRIGHT domain, a zinc-finger and two PHD domains in addition to the catalytic Jumonji domain, targets and demethylates H3K4me3 in vivo and mediates transcriptional downregulation. Deletion of kdmB leads to increased transcription of about ~1750 genes across nutrient-rich (primary metabolism) and nutrient-limiting (secondary metabolism) conditions. Unexpectedly, an equally high number of genes exhibited reduced expression in the kdmB deletion strain and notably, this group was significantly enriched for genes with known or predicted functions in secondary metabolite biosynthesis. Taken together, this study extends our general knowledge about multi-domain KDM5 histone demethylases and provides new details on the chromatin-level regulation of fungal secondary metabolite production. In this work we monitored by proteomic analysis and ChIP-seq the genome-wide distribution of several key modifications on histone H3 in the model fungus Aspergillus nidulans cultivated either under optimal physiological conditions (active growth) or less favourable conditions which are known to promote the production of secondary metabolites (SM). When we correlated the chromatin status to transcriptional activities in actively growing cells we found that the silenced SM gene clusters are flanked by heterochromatic domains presumably contributing to silencing but that the bodies of the clusters only carry background levels of any of the investigated marks. In nutrient-depleted conditions, activating marks were invading some, but by far not all transcribed clusters, leaving open the question how activation of these regions occurs at the chromatin level. Surprisingly, a large number of these gene clusters actually depend on KdmB for normal activation and it will be interesting to see in future how this protein thought to mainly act as repressor by removing positive H3K4m3 marks switches gears to activate transcription directly or indirectly.
Collapse
|
88
|
D'Urso A, Takahashi YH, Xiong B, Marone J, Coukos R, Randise-Hinchliff C, Wang JP, Shilatifard A, Brickner JH. Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory. eLife 2016; 5:e16691. [PMID: 27336723 DOI: 10.7554/elife.16691.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/22/2016] [Indexed: 05/21/2023] Open
Abstract
In yeast and humans, previous experiences can lead to epigenetic transcriptional memory: repressed genes that exhibit mitotically heritable changes in chromatin structure and promoter recruitment of poised RNA polymerase II preinitiation complex (RNAPII PIC), which enhances future reactivation. Here, we show that INO1 memory in yeast is initiated by binding of the Sfl1 transcription factor to the cis-acting Memory Recruitment Sequence, targeting INO1 to the nuclear periphery. Memory requires a remodeled form of the Set1/COMPASS methyltransferase lacking Spp1, which dimethylates histone H3 lysine 4 (H3K4me2). H3K4me2 recruits the SET3C complex, which plays an essential role in maintaining this mark. Finally, while active INO1 is associated with Cdk8(-) Mediator, during memory, Cdk8(+) Mediator recruits poised RNAPII PIC lacking the Kin28 CTD kinase. Aspects of this mechanism are generalizable to yeast and conserved in human cells. Thus, COMPASS and Mediator are repurposed to promote epigenetic transcriptional poising by a highly conserved mechanism.
Collapse
Affiliation(s)
- Agustina D'Urso
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Yoh-Hei Takahashi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| | - Bin Xiong
- Department of Statistics, Northwestern University, Evanston, United States
| | - Jessica Marone
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Robert Coukos
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | | | - Ji-Ping Wang
- Department of Statistics, Northwestern University, Evanston, United States
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
89
|
D'Urso A, Takahashi YH, Xiong B, Marone J, Coukos R, Randise-Hinchliff C, Wang JP, Shilatifard A, Brickner JH. Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory. eLife 2016; 5. [PMID: 27336723 PMCID: PMC4951200 DOI: 10.7554/elife.16691] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/22/2016] [Indexed: 12/17/2022] Open
Abstract
In yeast and humans, previous experiences can lead to epigenetic transcriptional memory: repressed genes that exhibit mitotically heritable changes in chromatin structure and promoter recruitment of poised RNA polymerase II preinitiation complex (RNAPII PIC), which enhances future reactivation. Here, we show that INO1 memory in yeast is initiated by binding of the Sfl1 transcription factor to the cis-acting Memory Recruitment Sequence, targeting INO1 to the nuclear periphery. Memory requires a remodeled form of the Set1/COMPASS methyltransferase lacking Spp1, which dimethylates histone H3 lysine 4 (H3K4me2). H3K4me2 recruits the SET3C complex, which plays an essential role in maintaining this mark. Finally, while active INO1 is associated with Cdk8- Mediator, during memory, Cdk8+ Mediator recruits poised RNAPII PIC lacking the Kin28 CTD kinase. Aspects of this mechanism are generalizable to yeast and conserved in human cells. Thus, COMPASS and Mediator are repurposed to promote epigenetic transcriptional poising by a highly conserved mechanism. DOI:http://dx.doi.org/10.7554/eLife.16691.001 Cells respond to stressful conditions by changing which of their genes are switched on. Such stress-specific genes are typically switched off again when the conditions improve, but can remain primed and ready to be switched on again when needed. This phenomenon is known as “epigenetic transcriptional memory” and allows for a faster or stronger response to the same stress in the future. In fact, these memories can last for a long time, even after the cell divides many times. Inside cells, most of the DNA is wrapped tightly around proteins called histones. To activate – or transcribe – a gene, the DNA must be re-packaged to allow better access for specific proteins including the enzyme called RNA polymerase II. This repackaging involves a number of changes including chemical modification of the histone proteins. Genes that have been previously transcribed under stress are packaged in a different way so that they are poised and ready for the next time they are needed. However, the details of this process were not clear. Using yeast as a model, D'Urso et al. have dissected the changes that are responsible for priming genes to respond to future events. The yeast gene INO1, which shows transcriptional memory, was studied in cells by characterizing the proteins bound at and around the gene and the histone modifications in the region. D'Urso et al. found that a protein called SfI1 bound to this gene only during transcriptional memory and that this binding was critical to start the phenomenon. Further experiments showed that transcriptional memory also required altering two protein complexes that normally bind to genes when they are switched on. One complex, which includes an enzyme that modifies histones, was altered so that the histones at the INO1 gene were marked in a unique way. The other complex was responsible for recruiting an inactive, poised form of RNA polymerase II to the gene, which allowed the gene to be activated when needed. In addition, D'Urso found that other genes that show transcriptional memory in yeast, as well as such genes in human cells, were also marked in the same ways. A future challenge will be to understand how different conditions in different organisms can lead to transcriptional memory. Further studies could also explore how this memory phenomenon is inherited and how it influences an organism’s fitness. DOI:http://dx.doi.org/10.7554/eLife.16691.002
Collapse
Affiliation(s)
- Agustina D'Urso
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Yoh-Hei Takahashi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| | - Bin Xiong
- Department of Statistics, Northwestern University, Evanston, United States
| | - Jessica Marone
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Robert Coukos
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | | | - Ji-Ping Wang
- Department of Statistics, Northwestern University, Evanston, United States
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
90
|
Ramakrishnan S, Pokhrel S, Palani S, Pflueger C, Parnell TJ, Cairns BR, Bhaskara S, Chandrasekharan MB. Counteracting H3K4 methylation modulators Set1 and Jhd2 co-regulate chromatin dynamics and gene transcription. Nat Commun 2016; 7:11949. [PMID: 27325136 PMCID: PMC4919544 DOI: 10.1038/ncomms11949] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 05/17/2016] [Indexed: 02/03/2023] Open
Abstract
Histone H3K4 methylation is connected to gene transcription from yeast to humans, but its mechanistic roles in transcription and chromatin dynamics remain poorly understood. We investigated the functions for Set1 and Jhd2, the sole H3K4 methyltransferase and H3K4 demethylase, respectively, in S. cerevisiae. Here, we show that Set1 and Jhd2 predominantly co-regulate genome-wide transcription. We find combined activities of Set1 and Jhd2 via H3K4 methylation contribute to positive or negative transcriptional regulation. Providing mechanistic insights, our data reveal that Set1 and Jhd2 together control nucleosomal turnover and occupancy during transcriptional co-regulation. Moreover, we find a genome-wide co-regulation of chromatin structure by Set1 and Jhd2 at different groups of transcriptionally active or inactive genes and at different regions within yeast genes. Overall, our study puts forth a model wherein combined actions of Set1 and Jhd2 via modulating H3K4 methylation-demethylation together control chromatin dynamics during various facets of transcriptional regulation.
Collapse
Affiliation(s)
- Saravanan Ramakrishnan
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Srijana Pokhrel
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Sowmiya Palani
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Christian Pflueger
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Timothy J Parnell
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Bradley R Cairns
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Srividya Bhaskara
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| |
Collapse
|
91
|
Structure and function of histone methylation-binding proteins in plants. Biochem J 2016; 473:1663-80. [DOI: 10.1042/bcj20160123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/29/2016] [Indexed: 12/28/2022]
Abstract
Post-translational modifications of histones play important roles in modulating many essential biological processes in both animals and plants. These covalent modifications, including methylation, acetylation, phosphorylation, ubiquitination, SUMOylation and so on, are laid out and erased by histone-modifying enzymes and read out by effector proteins. Recent studies have revealed that a number of developmental processes in plants are under the control of histone post-translational modifications, such as floral transition, seed germination, organogenesis and morphogenesis. Therefore, it is critical to identify those protein domains, which could specifically recognize these post-translational modifications to modulate chromatin structure and regulate gene expression. In the present review, we discuss the recent progress in understanding the structure and function of the histone methylation readers in plants, by focusing on Arabidopsis thaliana proteins.
Collapse
|
92
|
Schibler A, Koutelou E, Tomida J, Wilson-Pham M, Wang L, Lu Y, Cabrera AP, Chosed RJ, Li W, Li B, Shi X, Wood RD, Dent SYR. Histone H3K4 methylation regulates deactivation of the spindle assembly checkpoint through direct binding of Mad2. Genes Dev 2016; 30:1187-97. [PMID: 27198228 PMCID: PMC4888839 DOI: 10.1101/gad.278887.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/20/2016] [Indexed: 12/20/2022]
Abstract
Schibler et al. show that both Set1 and H3K4 mutants display a benomyl resistance phenotype that requires components of the spindle assembly checkpoint (SAC), including Bub3 and Mad2. Interactions between Mad2 and H3K4 regulate resolution of the SAC by limiting closed Mad2 availability for Cdc20 inhibition. Histone H3 methylation on Lys4 (H3K4me) is associated with active gene transcription in all eukaryotes. In Saccharomyces cerevisiae, Set1 is the sole lysine methyltransferase required for mono-, di-, and trimethylation of this site. Although H3K4me3 is linked to gene expression, whether H3K4 methylation regulates other cellular processes, such as mitosis, is less clear. Here we show that both Set1 and H3K4 mutants display a benomyl resistance phenotype that requires components of the spindle assembly checkpoint (SAC), including Bub3 and Mad2. These proteins inhibit Cdc20, an activator of the anaphase-promoting complex/cyclosome (APC/C). Mutations in Cdc20 that block Mad2 interactions suppress the benomyl resistance of both set1 and H3K4 mutant cells. Furthermore, the HORMA domain in Mad2 directly binds H3, identifying a new histone H3 “reader” motif. Mad2 undergoes a conformational change important for execution of the SAC. We found that the closed (active) conformation of both yeast and human Mad2 is capable of binding methylated H3K4, but, in contrast, the open (inactive) Mad2 conformation limits interaction with methylated H3. Collectively, our data indicate that interactions between Mad2 and H3K4 regulate resolution of the SAC by limiting closed Mad2 availability for Cdc20 inhibition.
Collapse
Affiliation(s)
- Andria Schibler
- Program in Genes and Development, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; The Graduate School of Biomedical Sciences (GSBS) at Houston, Houston, Texas 77030, USA; Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Evangelia Koutelou
- Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Junya Tomida
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Center for Environmental and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Marenda Wilson-Pham
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Li Wang
- The Graduate School of Biomedical Sciences (GSBS) at Houston, Houston, Texas 77030, USA; Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Program in Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Alexa Parra Cabrera
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Renee J Chosed
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wenqian Li
- The Graduate School of Biomedical Sciences (GSBS) at Houston, Houston, Texas 77030, USA; Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Program in Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Bing Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Xiaobing Shi
- Program in Genes and Development, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; The Graduate School of Biomedical Sciences (GSBS) at Houston, Houston, Texas 77030, USA; Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Richard D Wood
- The Graduate School of Biomedical Sciences (GSBS) at Houston, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Center for Environmental and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Program in Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Sharon Y R Dent
- The Graduate School of Biomedical Sciences (GSBS) at Houston, Houston, Texas 77030, USA; Center for Cancer Epigenetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; Program in Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA
| |
Collapse
|
93
|
Li Y, Schulz VP, Deng C, Li G, Shen Y, Tusi BK, Ma G, Stees J, Qiu Y, Steiner LA, Zhou L, Zhao K, Bungert J, Gallagher PG, Huang S. Setd1a and NURF mediate chromatin dynamics and gene regulation during erythroid lineage commitment and differentiation. Nucleic Acids Res 2016; 44:7173-88. [PMID: 27141965 PMCID: PMC5009724 DOI: 10.1093/nar/gkw327] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/15/2016] [Indexed: 01/08/2023] Open
Abstract
The modulation of chromatin structure is a key step in transcription regulation in mammalian cells and eventually determines lineage commitment and differentiation. USF1/2, Setd1a and NURF complexes interact to regulate chromatin architecture in erythropoiesis, but the mechanistic basis for this regulation is hitherto unknown. Here we showed that Setd1a and NURF complexes bind to promoters to control chromatin structural alterations and gene activation in a cell context dependent manner. In human primary erythroid cells USF1/2, H3K4me3 and the NURF complex were significantly co-enriched at transcription start sites of erythroid genes, and their binding was associated with promoter/enhancer accessibility that resulted from nucleosome repositioning. Mice deficient for Setd1a, an H3K4 trimethylase, in the erythroid compartment exhibited reduced Ter119/CD71 positive erythroblasts, peripheral blood RBCs and hemoglobin levels. Loss of Setd1a led to a reduction of promoter-associated H3K4 methylation, inhibition of gene transcription and blockade of erythroid differentiation. This was associated with alterations in NURF complex occupancy at erythroid gene promoters and reduced chromatin accessibility. Setd1a deficiency caused decreased associations between enhancer and promoter looped interactions as well as reduced expression of erythroid genes such as the adult β-globin gene. These data indicate that Setd1a and NURF complexes are specifically targeted to and coordinately regulate erythroid promoter chromatin dynamics during erythroid lineage differentiation.
Collapse
Affiliation(s)
- Ying Li
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA Macau Institute for Applied Research in Medicine and Health, State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 519020, China
| | - Vincent P Schulz
- Department of Pediatrics, Pathology, and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Changwang Deng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Guangyao Li
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Yong Shen
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Betsabeh K Tusi
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Gina Ma
- Public Health Studies, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jared Stees
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Yi Qiu
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA Genetics Institute, University of Florida, Gainesville, FL 32610, USA UF health Cancer center, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Laurie A Steiner
- Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA
| | - Lei Zhou
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA Genetics Institute, University of Florida, Gainesville, FL 32610, USA UF health Cancer center, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Keji Zhao
- Systems Biology Center, NHLBI, National Institute of Health, Bethesda, MD 20814, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Patrick G Gallagher
- Department of Pediatrics, Pathology, and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA Macau Institute for Applied Research in Medicine and Health, State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 519020, China Genetics Institute, University of Florida, Gainesville, FL 32610, USA UF health Cancer center, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
94
|
Zhang P, Bergamin E, Couture JF. The many facets of MLL1 regulation. Biopolymers 2016; 99:136-45. [PMID: 23175388 DOI: 10.1002/bip.22126] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 01/07/2023]
Abstract
In the last 20 years, we have witnessed an exponential number of evidences linking the human mixed lineage leukemia-1 (MLL1) gene to several acute and myelogenous leukemias. MLL1 is one of the founding members of the SET1 family of lysine methyltransferases and is key for the proper control of developmentally regulated gene expression. MLL1 is a structurally complex protein composed of several functional domains. These domains play pivotal roles for the recruitment of regulatory proteins. These MLL1 regulatory proteins (MRPs) dynamically interact with MLL1 and consequently control gene expression. In this review, we summarize recent structural and functional studies of MRPs and discuss emergent structural paradigms for the control of MLL1 activity.
Collapse
Affiliation(s)
- Pamela Zhang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5
| | | | | |
Collapse
|
95
|
Zhang T, Cooper S, Brockdorff N. The interplay of histone modifications - writers that read. EMBO Rep 2015; 16:1467-81. [PMID: 26474904 PMCID: PMC4641500 DOI: 10.15252/embr.201540945] [Citation(s) in RCA: 559] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/16/2015] [Indexed: 01/07/2023] Open
Abstract
Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and various cancers. Readers of these marks contain protein domains that allow their recruitment to chromatin. Interestingly, writers often contain domains which can read chromatin marks, allowing the reinforcement of modifications through a positive feedback loop or inhibition of their activity by other modifications. We discuss how such positive reinforcement can result in chromatin states that are robust and can be epigenetically maintained through cell division. We describe the implications of these regulatory systems in relation to modifications including H3K4me3, H3K79me3, and H3K36me3 that are associated with active genes and H3K27me3 and H3K9me3 that have been linked to transcriptional repression. We also review the crosstalk between active and repressive modifications, illustrated by the interplay between the Polycomb and Trithorax histone-modifying proteins, and discuss how this may be important in defining gene expression states during development.
Collapse
Affiliation(s)
- Tianyi Zhang
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Sarah Cooper
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
96
|
Zhang H, Li M, Gao Y, Jia C, Pan X, Cao P, Zhao X, Zhang J, Chang W. Structural implications of Dpy30 oligomerization for MLL/SET1 COMPASS H3K4 trimethylation. Protein Cell 2015; 6:147-51. [PMID: 25542209 PMCID: PMC4312765 DOI: 10.1007/s13238-014-0127-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Hongmei Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Liu Y, Liu N, Yin Y, Chen Y, Jiang J, Ma Z. Histone H3K4 methylation regulates hyphal growth, secondary metabolism and multiple stress responses inFusarium graminearum. Environ Microbiol 2015; 17:4615-30. [DOI: 10.1111/1462-2920.12993] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 07/17/2015] [Accepted: 07/18/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Ye Liu
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Na Liu
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Yanni Yin
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Yun Chen
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| | - Jinhua Jiang
- Institute of Quality and Standard for Agro-products; Zhejiang Academy of Agricultural Sciences; Hangzhou 310021 Zhejiang China
| | - Zhonghua Ma
- Institute of Biotechnology; Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
98
|
Abstract
DNA in human cells is constantly assaulted by endogenous and exogenous DNA damaging agents. It is vital for the cell to respond rapidly and precisely to DNA damage to maintain genome integrity and reduce the risk of mutagenesis. Sophisticated reactions occur in chromatin surrounding the damaged site leading to the activation of DNA damage response (DDR), including transcription reprogramming, cell cycle checkpoint, and DNA repair. Histone proteins around the DNA damage play essential roles in DDR, through extensive post-translational modifications (PTMs) by a variety of modifying enzymes. One PTM on histones, mono-ubiquitylation, has emerged as a key player in cellular response to DNA damage. In this review, we will (1) briefly summarize the history of histone H2A and H2B ubiquitylation (H2Aub and H2Bub, respectively), (2) discuss their roles in transcription, and (3) their functions in DDR.
Collapse
|
99
|
The Set3 Complex Antagonizes the MYST Acetyltransferase Esa1 in the DNA Damage Response. Mol Cell Biol 2015; 35:3714-25. [PMID: 26303527 DOI: 10.1128/mcb.00298-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/14/2015] [Indexed: 11/20/2022] Open
Abstract
Acetylation is a dynamic posttranslational modification that contributes to chromatin-regulated processes, including DNA replication, repair, recombination, and gene expression. Acetylation is controlled by complexes containing opposing lysine and histone acetyltransferase (KAT and HAT) and deacetylase (KDAC and HDAC) activities. The essential MYST family Esa1 KAT acetylates core histones and many nonhistone substrates. Phenotypes of esa1 mutants include transcriptional silencing and activation defects, impaired growth at high temperatures, and sensitivity to DNA damage. The KDAC Rpd3 was previously identified as an activity opposing Esa1, as its deletion suppresses growth and silencing defects of esa1 mutants. However, loss of Rpd3 does not suppress esa1 DNA damage sensitivity. In this work, we identified Hos2 as a KDAC counteracting ESA1 in the damage response. Deletion of HOS2 resulted in changes of esa1's transcriptional response upon damage. Further, loss of HOS2 or components of the Set3 complex (Set3C) in which it acts specifically suppressed damage sensitivity and restored esa1 histone H4 acetylation. This rescue was mediated via loss of either Set3C integrity or of its binding to dimethylated histone H3K4. Our results thus add new insight into the interactions of an essential MYST acetyltransferase with diverse deacetylases to respond specifically to environmental and physiological challenges.
Collapse
|
100
|
Lee YJ, Han ME, Baek SJ, Kim SY, Oh SO. Roles of DPY30 in the Proliferation and Motility of Gastric Cancer Cells. PLoS One 2015; 10:e0131863. [PMID: 26147337 PMCID: PMC4493084 DOI: 10.1371/journal.pone.0131863] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/08/2015] [Indexed: 12/11/2022] Open
Abstract
Various types of histone methylation have been associated with cancer progression. Depending on the methylation site in histone proteins, its effects on transcription are different. DPY30 is a common member of SET1/MLL histone H3K4 methyltransferase complexes. However, its expression and roles in gastric cancer have been poorly characterized. To determine whether DPY30 has pathophysiological roles in gastric cancer, its expression and roles were examined. Immunohistochemistry and real time PCR showed up-regulation of DPY30 expression in some gastric cancer cell lines and patients’ tissues. Its knockdown by siRNA decreased the proliferation, migration, and invasion of gastric cancer cells, whereas its overexpression showed the opposite effects. These results indicate that DPY30 has critical roles in the proliferation, migration, and invasion of gastric cancer cells, and suggest DPY30 might be a therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Yong Joo Lee
- Departments of Anatomy, School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Myoung-Eun Han
- Departments of Anatomy, School of Medicine, Pusan National University, Busan, Republic of Korea
- Medical Research Center for Ischemic Tissue Regeneration, Pusan National University, Busan, Republic of Korea
| | - Su-Jin Baek
- Medical Genomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Seon-Young Kim
- Medical Genomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Sae-Ock Oh
- Departments of Anatomy, School of Medicine, Pusan National University, Busan, Republic of Korea
- * E-mail:
| |
Collapse
|