51
|
|
52
|
Activities of Alkyl Hydroperoxide Reductase Subunits C1 and C2 of Vibrio parahaemolyticus against Different Peroxides. Appl Environ Microbiol 2014; 80:7398-404. [PMID: 25239899 DOI: 10.1128/aem.02701-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/17/2014] [Indexed: 01/06/2023] Open
Abstract
Alkyl hydroperoxide reductase subunit C gene (ahpC) functions were characterized in Vibrio parahaemolyticus, a commonly occurring marine food-borne enteropathogenic bacterium. Two ahpC genes, ahpC1 (VPA1683) and ahpC2 (VP0580), encoded putative two-cysteine peroxiredoxins, which are highly similar to the homologous proteins of Vibrio vulnificus. The responses of deletion mutants of ahpC genes to various peroxides were compared with and without gene complementation and at different incubation temperatures. The growth of the ahpC1 mutant and ahpC1 ahpC2 double mutant in liquid medium was significantly inhibited by organic peroxides, cumene hydroperoxide and tert-butyl hydroperoxide. However, inhibition was higher at 12°C and 22°C than at 37°C. Inhibiting effects were prevented by the complementary ahpC1 gene. Inconsistent detoxification of H2O2 by ahpC genes was demonstrated in an agar medium but not in a liquid medium. Complementation with an ahpC2 gene partially restored the peroxidase effect in the double ahpC1 ahpC2 mutant at 22°C. This investigation reveals that ahpC1 is the chief peroxidase gene that acts against organic peroxides in V. parahaemolyticus and that the function of the ahpC genes is influenced by incubation temperature.
Collapse
|
53
|
A novel marRAB operon contributes to the rifampicin resistance in Mycobacterium smegmatis. PLoS One 2014; 9:e106016. [PMID: 25153492 PMCID: PMC4143341 DOI: 10.1371/journal.pone.0106016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/25/2014] [Indexed: 12/30/2022] Open
Abstract
The multiple-antibiotic resistance regulator (MarR) plays an important role in modulating bacterial antibiotic resistance. However, the regulatory model of the marRAB operon in mycobacteria remains to be characterized. Here we report that a MarR, encoded by Ms6508, and its marRAB operon specifically contribute to rifampicin (RIF) resistance in Mycobacterium smegmatis. We show that the MarR recognizes a conserved 21-bp palindromic motif and negatively regulates the expression of two ABC transporters in the operon, encoded by Ms6509–6510. Unlike other known drug efflux pumps, overexpression of these two ABC transporters unexpectedly increased RIF sensitivity and deletion of these two genes increased mycobacterial resistance to the antibiotic. No change can be detected for the sensitivity of recombinant mycobacterial strains to three other anti-TB drugs. Furthermore, HPLC experiments suggested that Ms6509–Ms6510 could pump RIF into the mycobacterial cells. These findings indicated that the mycobacterial MarR functions as a repressor and constitutively inhibits the expression of the marRAB operon, which specifically contributes to RIF resistance in M. smegmatis. Therefore, our data suggest a new regulatory mechanism of RIF resistance and also provide the new insight into the regulatory model of a marRAB operon in mycobacteria.
Collapse
|
54
|
Conformational stability and ligand binding properties of BldR, a member of the MarR family, from Sulfolobus solfataricus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1167-72. [PMID: 24704039 DOI: 10.1016/j.bbapap.2014.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/07/2014] [Accepted: 03/26/2014] [Indexed: 12/19/2022]
Abstract
The multiple antibiotic resistance regulators (MarR) constitute a family of ligand-responsive transcriptional regulators ubiquitous among the bacterial and archaeal domains. BldR, an archaeal MarR member characterized from the hyperthermophilic crenarchaeon Sulfolobus solfataricus regulates its own expression and that of an alcohol dehydrogenase gene by binding to sequences in their promoters and responding to benzaldehyde as the effector molecule. In this study we assessed the thermodynamic stability of the protein BldR and its binding with benzaldehyde through biophysical measurements. The temperature- and denaturant-induced unfolding experiments, performed by means of circular dichroism (CD) and differential scanning calorimetry (DSC), showed that BldR has an extremely high thermal stability (Td=108.9°C) and a remarkable resistance against GuHCl (Cm=5.3M at 25°C). The unfolding Gibbs energy, ΔdG (H2O), calculated by the linear extrapolation model from GuHCl-induced unfolding equilibrium curve, is 72.2kJmol(-1). ITC binding experiments showed that four benzaldehyde molecules bind to one BldR dimer with a binding constant Kb of 7.5·10(5)M(-1), being the binding entropically driven. ITC, CD and fluorescence results are consistent with a conformational change induced by benzaldehyde binding, further proving that this molecule is a specific effector for BldR modulating its DNA binding activity.
Collapse
|
55
|
Kim T, Duong T, Wu CA, Choi J, Lan N, Kang SW, Lokanath NK, Shin D, Hwang HY, Kim KK. Structural insights into the molecular mechanism of Escherichia coli SdiA, a quorum-sensing receptor. ACTA ACUST UNITED AC 2014; 70:694-707. [PMID: 24598739 DOI: 10.1107/s1399004713032355] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/27/2013] [Indexed: 01/05/2023]
Abstract
Escherichia coli SdiA is a quorum-sensing (QS) receptor that responds to autoinducers produced by other bacterial species to control cell division and virulence. Crystal structures reveal that E. coli SdiA, which is composed of an N-terminal ligand-binding domain and a C-terminal DNA-binding domain (DBD), forms a symmetrical dimer. Although each domain shows structural similarity to other QS receptors, SdiA differs from them in the relative orientation of the two domains, suggesting that its ligand-binding and DNA-binding functions are independent. Consistently, in DNA gel-shift assays the binding affinity of SdiA for the ftsQP2 promoter appeared to be insensitive to the presence of autoinducers. These results suggest that autoinducers increase the functionality of SdiA by enhancing the protein stability rather than by directly affecting the DNA-binding affinity. Structural analyses of the ligand-binding pocket showed that SdiA cannot accommodate ligands with long acyl chains, which was corroborated by isothermal titration calorimetry and thermal stability analyses. The formation of an intersubunit disulfide bond that might be relevant to modulation of the DNA-binding activity was predicted from the proximal position of two Cys residues in the DBDs of dimeric SdiA. It was confirmed that the binding affinity of SdiA for the uvrY promoter was reduced under oxidizing conditions, which suggested the possibility of regulation of SdiA by multiple independent signals such as quorum-sensing inducers and the oxidation state of the cell.
Collapse
Affiliation(s)
- Truc Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Thao Duong
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Chun-ai Wu
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Jongkeun Choi
- Department of Cosmetic Science, Chungwoon University, San 29, Namjang, Hongsung, Chungnam 350-701, Republic of Korea
| | - Nguyen Lan
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Sung Wook Kang
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Neratur K Lokanath
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - DongWoo Shin
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Hye-Yeon Hwang
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| |
Collapse
|
56
|
Birukou I, Seo SM, Schindler BD, Kaatz GW, Brennan RG. Structural mechanism of transcription regulation of the Staphylococcus aureus multidrug efflux operon mepRA by the MarR family repressor MepR. Nucleic Acids Res 2013; 42:2774-88. [PMID: 24293644 PMCID: PMC3936728 DOI: 10.1093/nar/gkt1215] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The multidrug efflux pump MepA is a major contributor to multidrug resistance in Staphylococcus aureus. MepR, a member of the multiple antibiotic resistance regulator (MarR) family, represses mepA and its own gene. Here, we report the structure of a MepR–mepR operator complex. Structural comparison of DNA-bound MepR with ‘induced’ apoMepR reveals the large conformational changes needed to allow the DNA-binding winged helix-turn-helix motifs to interact with the consecutive major and minor grooves of the GTTAG signature sequence. Intriguingly, MepR makes no hydrogen bonds to major groove nucleobases. Rather, recognition-helix residues Thr60, Gly61, Pro62 and Thr63 make sequence-specifying van der Waals contacts with the TTAG bases. Removing these contacts dramatically affects MepR–DNA binding activity. The wings insert into the flanking minor grooves, whereby residue Arg87, buttressed by Asp85, interacts with the O2 of T4 and O4′ ribosyl oxygens of A23 and T4. Mutating Asp85 and Arg87, both conserved throughout the MarR family, markedly affects MepR repressor activity. The His14′:Arg59 and Arg10′:His35:Phe108 interaction networks stabilize the DNA-binding conformation of MepR thereby contributing significantly to its high affinity binding. A structure-guided model of the MepR–mepA operator complex suggests that MepR dimers do not interact directly and cooperative binding is likely achieved by DNA-mediated allosteric effects.
Collapse
Affiliation(s)
- Ivan Birukou
- Department of Biochemistry, Duke University School of Medicine, 307 Research Drive, Durham, NC 27710, USA, The John D. Dingell Department of Veterans Affairs Medical Center, B4333 JD Dingel VA Medical Center, 4646 John R, Detroit, MI 48201, USA and Department of Internal Medicine, Division of Infectious Diseases, Wayne State University School of Medicine, 5 Hudson, Harper University Hospital, 3990 John R, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
57
|
Parker BW, Schwessinger EA, Jakob U, Gray MJ. The RclR protein is a reactive chlorine-specific transcription factor in Escherichia coli. J Biol Chem 2013; 288:32574-32584. [PMID: 24078635 DOI: 10.1074/jbc.m113.503516] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Reactive chlorine species (RCS) such as hypochlorous acid are powerful antimicrobial oxidants. Used extensively for disinfection in household and industrial settings (i.e. as bleach), RCS are also naturally generated in high quantities during the innate immune response. Bacterial responses to RCS are complex and differ substantially from the well characterized responses to other physiologically relevant oxidants, like peroxide or superoxide. Several RCS-sensitive transcription factors have been identified in bacteria, but most of them respond to multiple stressors whose damaging effects overlap with those of RCS, including reactive oxygen species and electrophiles. We have now used in vivo genetic and in vitro biochemical methods to identify and demonstrate that Escherichia coli RclR (formerly YkgD) is a redox-regulated transcriptional activator of the AraC family, whose highly conserved cysteine residues are specifically sensitive to oxidation by RCS. Oxidation of these cysteines leads to strong, highly specific activation of expression of genes required for survival of RCS stress. These results demonstrate the existence of a widely conserved bacterial regulon devoted specifically to RCS resistance.
Collapse
Affiliation(s)
- Benjamin W Parker
- From the Department of Molecular, Cellular, and Developmental Biology
| | | | - Ursula Jakob
- From the Department of Molecular, Cellular, and Developmental Biology; the Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan 48109.
| | - Michael J Gray
- From the Department of Molecular, Cellular, and Developmental Biology.
| |
Collapse
|
58
|
The molecular mechanisms of allosteric mutations impairing MepR repressor function in multidrug-resistant strains of Staphylococcus aureus. mBio 2013; 4:e00528-13. [PMID: 23982071 PMCID: PMC3760248 DOI: 10.1128/mbio.00528-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Overexpression of the Staphylococcus aureus multidrug efflux pump MepA confers resistance to a wide variety of antimicrobials. mepA expression is controlled by MarR family member MepR, which represses mepA and autorepresses its own production. Mutations in mepR are a primary cause of mepA overexpression in clinical isolates of multidrug-resistant S. aureus. Here, we report crystal structures of three multidrug-resistant MepR variants, which contain the single-amino-acid substitution A103V, F27L, or Q18P, and wild-type MepR in its DNA-bound conformation. Although each mutation impairs MepR function by decreasing its DNA binding affinity, none is located in the DNA binding domain. Rather, all are found in the linker region connecting the dimerization and DNA binding domains. Specifically, the A103V substitution impinges on F27, which resolves potential steric clashes via displacement of the DNA binding winged-helix-turn-helix motifs that lead to a 27-fold reduction in DNA binding affinity. The F27L substitution forces F104 into an alternative rotamer, which kinks helix 5, thereby interfering with the positioning of the DNA binding domains and decreasing mepR operator affinity by 35-fold. The Q18P mutation affects the MepR structure and function most significantly by either creating kinks in the middle of helix 1 or completely unfolding its C terminus. In addition, helix 5 of Q18P is either bent or completely dissected into two smaller helices. Consequently, DNA binding is diminished by 2,000-fold. Our structural studies reveal heretofore-unobserved allosteric mechanisms that affect repressor function of a MarR family member and result in multidrug-resistant Staphylococcus aureus. Staphylococcus aureus is a major health threat to immunocompromised patients. S. aureus multidrug-resistant variants that overexpress the multidrug efflux pump mepA emerge frequently due to point mutations in MarR family member MepR, the mepA transcription repressor. Significantly, the majority of MepR mutations identified in these S. aureus clinical isolates are found not in the DNA binding domain but rather in a linker region, connecting the dimerization and DNA binding domains. The location of these mutants underscores the critical importance of a properly functioning allosteric mechanism that regulates MepR function. Understanding the dysregulation of such allosteric MepR mutants underlies this study. The high-resolution structures of three such allosteric MepR mutants reveal unpredictable conformational consequences, all of which preclude cognate DNA binding, while biochemical studies emphasize their debilitating effects on DNA binding affinity. Hence, mutations in the linker region of MepR and their structural consequences are key generators of multidrug-resistant Staphylococcus aureus.
Collapse
|
59
|
Functional consequences of substitution mutations in MepR, a repressor of the Staphylococcus aureus MepA multidrug efflux pump gene. J Bacteriol 2013; 195:3651-62. [PMID: 23749979 DOI: 10.1128/jb.00565-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The expression of mepA, encoding the Staphylococcus aureus MepA multidrug efflux protein, is repressed by the MarR homologue MepR. MepR dimers bind differently to operators upstream of mepR and mepA, with affinity being greatest at the mepA operator. MepR substitution mutations may result in mepA overexpression, with A103V most common in clinical strains. Evaluation of the functional consequences of this and other MepR substitutions using a lacZ reporter gene assay revealed markedly reduced repressor activity in the presence of Q18P, F27L, G97E, and A103V substitutions. Reporter data were generally supported by susceptibility and efflux assays, and electrophoretic mobility shift assays (EMSAs) confirmed compromised affinities of MepR F27L and A103V for the mepR and mepA operators. One mutant protein contained two substitutions (T94P and T132M); T132M compensated for the functional defect incurred by T94P and also rescued that of A103V but not F27L, establishing it as a limited-range suppressor. The function of another derivative with 10 substitutions was minimally affected, and this may be an extreme example of suppression involving interactions among several residues. Structural correlations for the observed functional effects were ascertained by modeling mutations onto apo-MepR. It is likely that F27L and A103V affect the protein-DNA interaction by repositioning of DNA recognition helices. Negative functional consequences of MepR substitution mutations may result from interference with structural plasticity, alteration of helical arrangements, reduced protein-cognate DNA affinity, or possibly association of MepR protomers. Structural determinations will provide further insight into the consequences of these and other mutations that affect MepR function, especially the T132M suppressor.
Collapse
|
60
|
Stevenson CEM, Assaad A, Chandra G, Le TBK, Greive SJ, Bibb MJ, Lawson DM. Investigation of DNA sequence recognition by a streptomycete MarR family transcriptional regulator through surface plasmon resonance and X-ray crystallography. Nucleic Acids Res 2013; 41:7009-22. [PMID: 23748564 PMCID: PMC3737563 DOI: 10.1093/nar/gkt523] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Consistent with their complex lifestyles and rich secondary metabolite profiles, the genomes of streptomycetes encode a plethora of transcription factors, the vast majority of which are uncharacterized. Herein, we use Surface Plasmon Resonance (SPR) to identify and delineate putative operator sites for SCO3205, a MarR family transcriptional regulator from Streptomyces coelicolor that is well represented in sequenced actinomycete genomes. In particular, we use a novel SPR footprinting approach that exploits indirect ligand capture to vastly extend the lifetime of a standard streptavidin SPR chip. We define two operator sites upstream of sco3205 and a pseudopalindromic consensus sequence derived from these enables further potential operator sites to be identified in the S. coelicolor genome. We evaluate each of these through SPR and test the importance of the conserved bases within the consensus sequence. Informed by these results, we determine the crystal structure of a SCO3205-DNA complex at 2.8 Å resolution, enabling molecular level rationalization of the SPR data. Taken together, our observations support a DNA recognition mechanism involving both direct and indirect sequence readout.
Collapse
Affiliation(s)
- Clare E M Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | | | | | | | | |
Collapse
|
61
|
Wang HW, Chung CH, Ma TY, Wong HC. Roles of alkyl hydroperoxide reductase subunit C (AhpC) in viable but nonculturable Vibrio parahaemolyticus. Appl Environ Microbiol 2013; 79:3734-43. [PMID: 23563952 PMCID: PMC3675929 DOI: 10.1128/aem.00560-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/03/2013] [Indexed: 11/20/2022] Open
Abstract
Alkyl hydroperoxide reductase subunit C (AhpC) is the catalytic subunit responsible for the detoxification of reactive oxygen species that form in bacterial cells or are derived from the host; thus, AhpC facilitates the survival of pathogenic bacteria under environmental stresses or during infection. This study investigates the role of AhpC in the induction and maintenance of a viable but nonculturable (VBNC) state in Vibrio parahaemolyticus. In this investigation, ahpC1 (VPA1683) and ahpC2 (VP0580) were identified in chromosomes II and I of this pathogen, respectively. Mutants with deletions of these two ahpC genes and their complementary strains were constructed from the parent strain KX-V231. The growth of these strains was monitored on tryptic soy agar-3% NaCl in the presence of the extrinsic peroxides H(2)O(2) and tert-butyl hydroperoxide (t-BOOH) at different incubation temperatures. The results revealed that both ahpC genes were protective against t-BOOH, while ahpC1 was protective against H(2)O(2). The protective function of ahpC2 at 4°C was higher than that of ahpC1. The times required to induce the VBNC state (4.7 weeks) at 4°C in a modified Morita mineral salt solution with 0.5% NaCl and then to maintain the VBNC state (4.7 weeks) in an ahpC2 mutant and an ahpC1 ahpC2 double mutant were significantly shorter than those for the parent strain (for induction, 6.2 weeks; for maintenance, 7.8 weeks) and the ahpC1 mutant (for induction, 6.0 weeks; for maintenance, 8.0 weeks) (P < 0.03). Complementation with an ahpC2 gene reversed the effects of the ahpC2 mutation in shortening the times for induction and maintenance of the VBNC state. This investigation identified the different functions of the two ahpC genes and confirmed the particular role of ahpC2 in the VBNC state of V. parahaemolyticus.
Collapse
Affiliation(s)
- Hen-Wei Wang
- Department of Microbiology, Soochow University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
62
|
Mutational analysis of the multiple-antibiotic resistance regulator MarR reveals a ligand binding pocket at the interface between the dimerization and DNA binding domains. J Bacteriol 2013; 195:3341-51. [PMID: 23687277 DOI: 10.1128/jb.02224-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli regulator MarR represses the multiple-antibiotic resistance operon marRAB and responds to phenolic compounds, including sodium salicylate, which inhibit its activity. Crystals obtained in the presence of a high concentration of salicylate indicated two possible salicylate sites, SAL-A and SAL-B. However, it was unclear whether these sites were physiologically significant or were simply a result of the crystallization conditions. A study carried out on MarR homologue MTH313 suggested the presence of a salicylate binding site buried at the interface between the dimerization and the DNA-binding domains. Interestingly, the authors of the study indicated a similar pocket conserved in the MarR structure. Since no mutagenesis analysis had been performed to test which amino acids were essential in salicylate binding, we examined the role of residues that could potentially interact with salicylate. We demonstrated that mutations in residues shown as interacting with salicylate at SAL-A and SAL-B in the MarR-salicylate structure had no effect on salicylate binding, indicating that these sites were not the physiological regulatory sites. However, some of these residues (P57, R86, M74, and R77) were important for DNA binding. Furthermore, mutations in residues R16, D26, and K44 significantly reduced binding to both salicylate and 2,4-dinitrophenol, while a mutation in residue H19 impaired the binding to 2,4-dinitrophenol only. These findings indicate, as for MTH313, the presence of a ligand binding pocket located between the dimerization and DNA binding domains.
Collapse
|
63
|
Chang YM, Chen CKM, Ko TP, Chang-Chien MW, Wang AHJ. Structural analysis of the antibiotic-recognition mechanism of MarR proteins. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1138-49. [PMID: 23695258 DOI: 10.1107/s0907444913007117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 03/14/2013] [Indexed: 11/11/2022]
Abstract
Staphylococci cause a wide range of diseases in humans and animals, and the proteins of the multiple antibiotic-resistance repressor (MarR) family in staphylococci function as regulators of protein expression and confer resistance to multiple antibiotics. Diverse mechanisms such as biofilm formation, drug transport, drug modification etc. are associated with this resistance. In this study, crystal structures of the Staphylococcus aureus MarR homologue SAR2349 and its complex with salicylate and the aminoglycoside antibiotic kanamycin have been determined. The structure of SAR2349 shows for the first time that a MarR protein can interact directly with different classes of ligands simultaneously and highlights the importance and versatility of regulatory systems in bacterial antibiotic resistance. The three-dimensional structures of TcaR from S. epidermidis in complexes with chloramphenicol and with the aminoglycoside antibiotic streptomycin were also investigated. The crystal structures of the TcaR and SAR2349 complexes illustrate a general antibiotic-regulated resistance mechanism that may extend to other MarR proteins. To reveal the regulatory mechanism of the MarR proteins, the protein structures of this family were further compared and three possible mechanisms of regulation are proposed. These results are of general interest because they reveal a remarkably broad spectrum of ligand-binding modes of the multifunctional MarR proteins. This finding provides further understanding of antimicrobial resistance mechanisms in pathogens and strategies to develop new therapies against pathogens.
Collapse
Affiliation(s)
- Yu Ming Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
64
|
Ji Q, Zhang L, Jones MB, Sun F, Deng X, Liang H, Cho H, Brugarolas P, Gao YN, Peterson SN, Lan L, Bae T, He C. Molecular mechanism of quinone signaling mediated through S-quinonization of a YodB family repressor QsrR. Proc Natl Acad Sci U S A 2013; 110:5010-5. [PMID: 23479646 PMCID: PMC3612684 DOI: 10.1073/pnas.1219446110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Quinone molecules are intracellular electron-transport carriers, as well as critical intra- and extracellular signals. However, transcriptional regulation of quinone signaling and its molecular basis are poorly understood. Here, we identify a thiol-stress-sensing regulator YodB family transcriptional regulator as a central component of quinone stress response of Staphylococcus aureus, which we have termed the quinone-sensing and response repressor (QsrR). We also identify and confirm an unprecedented quinone-sensing mechanism based on the S-quinonization of the essential residue Cys-5. Structural characterizations of the QsrR-DNA and QsrR-menadione complexes further reveal that the covalent association of menadione directly leads to the release of QsrR from operator DNA following a 10° rigid-body rotation as well as a 9-Å elongation between the dimeric subunits. The molecular level characterization of this quinone-sensing transcriptional regulator provides critical insights into quinone-mediated gene regulation in human pathogens.
Collapse
Affiliation(s)
- Quanjiang Ji
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Liang Zhang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Marcus B. Jones
- Infectious Disease Group, Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, MD 20850
| | - Fei Sun
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Xin Deng
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Haihua Liang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Hoonsik Cho
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| | - Pedro Brugarolas
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Yihe N. Gao
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Scott N. Peterson
- Infectious Disease Group, Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, MD 20850
| | - Lefu Lan
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408; and
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
65
|
Liu X, Sun X, Wu Y, Xie C, Zhang W, Wang D, Chen X, Qu D, Gan J, Chen H, Jiang H, Lan L, Yang CG. Oxidation-sensing regulator AbfR regulates oxidative stress responses, bacterial aggregation, and biofilm formation in Staphylococcus epidermidis. J Biol Chem 2013; 288:3739-52. [PMID: 23271738 PMCID: PMC3567629 DOI: 10.1074/jbc.m112.426205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus epidermidis is a notorious human pathogen that is the major cause of infections related to implanted medical devices. Although redox regulation involving reactive oxygen species is now recognized as a critical component of bacterial signaling and regulation, the mechanism by which S. epidermidis senses and responds to oxidative stress remains largely unknown. Here, we report a new oxidation-sensing regulator, AbfR (aggregation and biofilm formation regulator) in S. epidermidis. An environment of oxidative stress mediated by H(2)O(2) or cumene hydroperoxide markedly up-regulates the expression of abfR gene. Similar to Pseudomonas aeruginosa OspR, AbfR is negatively autoregulated and dissociates from promoter DNA in the presence of oxidants. In vivo and in vitro analyses indicate that Cys-13 and Cys-116 are the key functional residues to form an intersubunit disulfide bond upon oxidation in AbfR. We further show that deletion of abfR leads to a significant induction in H(2)O(2) or cumene hydroperoxide resistance, enhanced bacterial aggregation, and reduced biofilm formation. These effects are mediated by derepression of SERP2195 and gpxA-2 that lie immediately downstream of the abfR gene in the same operon. Thus, oxidative stress likely acts as a signal to modulate S. epidermidis key virulence properties through AbfR.
Collapse
Affiliation(s)
- Xing Liu
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoxu Sun
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Youcong Wu
- the Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institute of Biomedical Sciences, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Cen Xie
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenru Zhang
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dan Wang
- the Coordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China, and
| | - Xiaoyan Chen
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Di Qu
- the Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institute of Biomedical Sciences, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Jianhua Gan
- the School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hao Chen
- the Coordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China, and
| | - Hualiang Jiang
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lefu Lan
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, , To whom correspondence may be addressed. Tel.: 86-21-50803109; Fax: 86-21-50807088; E-mail:
| | - Cai-Guang Yang
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China, , To whom correspondence may be addressed. Tel.: 86-21-50806029; Fax: 86-21-50807088; E-mail:
| |
Collapse
|
66
|
Kim H, Choe J. The X-ray crystal structure of PA1374 from Pseudomonas aeruginosa, a putative oxidative-stress sensing transcriptional regulator. Biochem Biophys Res Commun 2013; 431:376-81. [DOI: 10.1016/j.bbrc.2013.01.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/10/2013] [Indexed: 11/26/2022]
|
67
|
Holley TA, Stevenson CEM, Bibb MJ, Lawson DM. High resolution crystal structure of Sco5413, a widespread actinomycete MarR family transcriptional regulator of unknown function. Proteins 2012; 81:176-82. [PMID: 23042442 DOI: 10.1002/prot.24197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/02/2012] [Indexed: 11/06/2022]
Abstract
The crystal structure of Sco5413 from Streptomyces coelicolor A3(2) has been determined at 1.25 Å resolution, the highest resolution reported for a MarR family transcriptional regulator. Putative orthologs are encoded by the majority of sequenced actinomycete genomes, and may play roles in regulating growth and antibiotic production, but they have yet to be assigned a precise function. Sco5413 forms a homodimer and, through comparisons with other MarR family protein structures, we postulate that it adopts a conformation compatible with DNA binding, and that a channel at the dimer interface, lined by well-conserved residues, is the binding site of an unidentified effector ligand.
Collapse
Affiliation(s)
- Tracey A Holley
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | | | | |
Collapse
|
68
|
Analysis of the organic hydroperoxide response of Chromobacterium violaceum reveals that OhrR is a cys-based redox sensor regulated by thioredoxin. PLoS One 2012; 7:e47090. [PMID: 23071722 PMCID: PMC3469484 DOI: 10.1371/journal.pone.0047090] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/10/2012] [Indexed: 12/17/2022] Open
Abstract
Organic hydroperoxides are oxidants generated during bacterial-host interactions. Here, we demonstrate that the peroxidase OhrA and its negative regulator OhrR comprise a major pathway for sensing and detoxifying organic hydroperoxides in the opportunistic pathogen Chromobacterium violaceum. Initially, we found that an ohrA mutant was hypersensitive to organic hydroperoxides and that it displayed a low efficiency for decomposing these molecules. Expression of ohrA and ohrR was specifically induced by organic hydroperoxides. These genes were expressed as monocistronic transcripts and also as a bicistronic ohrR-ohrA mRNA, generating the abundantly detected ohrA mRNA and the barely detected ohrR transcript. The bicistronic transcript appears to be processed. OhrR repressed both the ohrA and ohrR genes by binding directly to inverted repeat sequences within their promoters in a redox-dependent manner. Site-directed mutagenesis of each of the four OhrR cysteine residues indicated that the conserved Cys21 is critical to organic hydroperoxide sensing, whereas Cys126 is required for disulfide bond formation. Taken together, these phenotypic, genetic and biochemical data indicate that the response of C. violaceum to organic hydroperoxides is mediated by OhrA and OhrR. Finally, we demonstrated that oxidized OhrR, inactivated by intermolecular disulfide bond formation, is specifically regenerated via thiol-disulfide exchange by thioredoxin (but not other thiol reducing agents such as glutaredoxin, glutathione and lipoamide), providing a physiological reducing system for this thiol-based redox switch.
Collapse
|
69
|
Brugarolas P, Movahedzadeh F, Wang Y, Zhang N, Bartek IL, Gao YN, Voskuil MI, Franzblau SG, He C. The oxidation-sensing regulator (MosR) is a new redox-dependent transcription factor in Mycobacterium tuberculosis. J Biol Chem 2012; 287:37703-12. [PMID: 22992749 DOI: 10.1074/jbc.m112.388611] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis thrives in oxidative environments such as the macrophage. To survive, the bacterium must sense and adapt to the oxidative conditions. Several antioxidant defenses including a thick cell wall, millimolar concentrations of small molecule thiols, and protective enzymes are known to help the bacterium withstand the oxidative stress. However, oxidation-sensing regulators that control these defenses have remained elusive. In this study, we report a new oxidation-sensing regulator, Rv1049 or MosR (M. tuberculosis oxidation-sensing regulator). MosR is a transcriptional repressor of the MarR family, which, similarly to Bacillus subtilis OhrR and Staphylococcus aureus MgrA, dissociates from DNA in the presence of oxidants, enabling transcription. MosR senses oxidation through a pair of cysteines near the N terminus (Cys-10 and Cys-12) that upon oxidation forms a disulfide bond. Disulfide formation rearranges a network of hydrogen bonds, which leads to a large conformational change of the protein and dissociation from DNA. MosR has been shown previously to play an important role in survival of the bacterium in the macrophage. In this study, we show that the main role of MosR is to up-regulate expression of rv1050 (a putative exported oxidoreductase that has not yet been characterized) in response to oxidants and propose that it is through this role that MosR contributes to the bacterium survival in the macrophage.
Collapse
Affiliation(s)
- Pedro Brugarolas
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Brier S, Fagnocchi L, Donnarumma D, Scarselli M, Rappuoli R, Nissum M, Delany I, Norais N. Structural Insight into the Mechanism of DNA-Binding Attenuation of the Neisserial Adhesin Repressor NadR by the Small Natural Ligand 4-Hydroxyphenylacetic Acid. Biochemistry 2012; 51:6738-52. [DOI: 10.1021/bi300656w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sébastien Brier
- Research
Center, Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100, Siena, Italy
| | - Luca Fagnocchi
- Research
Center, Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100, Siena, Italy
| | - Danilo Donnarumma
- Research
Center, Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100, Siena, Italy
| | - Maria Scarselli
- Research
Center, Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100, Siena, Italy
| | - Rino Rappuoli
- Research
Center, Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100, Siena, Italy
| | - Mikkel Nissum
- Research
Center, Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100, Siena, Italy
| | - Isabel Delany
- Research
Center, Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100, Siena, Italy
| | - Nathalie Norais
- Research
Center, Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100, Siena, Italy
| |
Collapse
|
71
|
Lebreton F, van Schaik W, Sanguinetti M, Posteraro B, Torelli R, Le Bras F, Verneuil N, Zhang X, Giard JC, Dhalluin A, Willems RJL, Leclercq R, Cattoir V. AsrR is an oxidative stress sensing regulator modulating Enterococcus faecium opportunistic traits, antimicrobial resistance, and pathogenicity. PLoS Pathog 2012; 8:e1002834. [PMID: 22876178 PMCID: PMC3410868 DOI: 10.1371/journal.ppat.1002834] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/18/2012] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress serves as an important host/environmental signal that triggers a wide range of responses in microorganisms. Here, we identified an oxidative stress sensor and response regulator in the important multidrug-resistant nosocomial pathogen Enterococcus faecium belonging to the MarR family and called AsrR (antibiotic and stress response regulator). The AsrR regulator used cysteine oxidation to sense the hydrogen peroxide which results in its dissociation to promoter DNA. Transcriptome analysis showed that the AsrR regulon was composed of 181 genes, including representing functionally diverse groups involved in pathogenesis, antibiotic and antimicrobial peptide resistance, oxidative stress, and adaptive responses. Consistent with the upregulated expression of the pbp5 gene, encoding a low-affinity penicillin-binding protein, the asrR null mutant was found to be more resistant to β-lactam antibiotics. Deletion of asrR markedly decreased the bactericidal activity of ampicillin and vancomycin, which are both commonly used to treat infections due to enterococci, and also led to over-expression of two major adhesins, acm and ecbA, which resulted in enhanced in vitro adhesion to human intestinal cells. Additional pathogenic traits were also reinforced in the asrR null mutant including greater capacity than the parental strain to form biofilm in vitro and greater persistance in Galleria mellonella colonization and mouse systemic infection models. Despite overexpression of oxidative stress-response genes, deletion of asrR was associated with a decreased oxidative stress resistance in vitro, which correlated with a reduced resistance to phagocytic killing by murine macrophages. Interestingly, both strains showed similar amounts of intracellular reactive oxygen species. Finally, we observed a mutator phenotype and enhanced DNA transfer frequencies in the asrR deleted strain. These data indicate that AsrR plays a major role in antimicrobial resistance and adaptation for survival within the host, thereby contributes importantly to the opportunistic traits of E. faecium. Multiple antibiotic-resistant isolates of the opportunistic pathogen Enterococcus faecium have emerged and spread worldwide. However, studies aimed at identifying mechanisms that underlie the transformation of E. faecium from its commensal nature into a nosocomial pathogen are scarce. We report pleiotropic roles for a novel oxidative-sensing regulator, called AsrR (antibiotic and stress response regulator), in E. faecium. Based on transcriptomic analysis, phenotypic studies, and animal models, we demonstrate that asrR deletion is responsible for i) diminished susceptibility to penicillins, vancomycin, and cationic antimicrobial peptides, ii) increased adhesion to human cells and biofilm formation, iii) a mutator phenotype and enhanced DNA transfer frequencies, iv) decreased resistance to oxidative stress both in vitro and in murine macrophages, and v) increased host-persistence in both insect and mouse models. AsrR is a stress-sensor and is promptly inactivated in the presence of hydrogen peroxide. Therefore, oxidative stress, which is a main challenge during infection, may be a significant signal used by E. faecium to promote opportunistic traits. This provides a significant resource combining, for the first time in E. faecium, a global transcriptomic approach and a thorough phenotypic study, which places AsrR as a key regulator modulating pathogenicity, antimicrobial resistance, and environmental adaptation.
Collapse
Affiliation(s)
- François Lebreton
- University of Caen Basse-Normandie, EA4655 (team “Antibioresistance”), Medical School, Caen, France
| | - Willem van Schaik
- University Medical Center Utrecht, Department of Medical Microbiology, Utrecht, The Netherlands
| | | | | | - Riccardo Torelli
- Catholic University of Sacred Heart, Institute of Microbiology, Rome, Italy
| | - Florian Le Bras
- University of Caen Basse-Normandie, EA4655 (team “Antibioresistance”), Medical School, Caen, France
| | - Nicolas Verneuil
- University of Caen Basse-Normandie, EA4655 (team “Stress and Virulence”), Caen, France
| | - Xinglin Zhang
- University Medical Center Utrecht, Department of Medical Microbiology, Utrecht, The Netherlands
| | - Jean-Christophe Giard
- University of Caen Basse-Normandie, EA4655 (team “Antibioresistance”), Medical School, Caen, France
| | - Anne Dhalluin
- University of Caen Basse-Normandie, EA4655 (team “Antibioresistance”), Medical School, Caen, France
| | - Rob J. L. Willems
- University Medical Center Utrecht, Department of Medical Microbiology, Utrecht, The Netherlands
| | - Roland Leclercq
- University of Caen Basse-Normandie, EA4655 (team “Antibioresistance”), Medical School, Caen, France
- University Hospital of Caen, Department of Microbiology, Caen, France
| | - Vincent Cattoir
- University of Caen Basse-Normandie, EA4655 (team “Antibioresistance”), Medical School, Caen, France
- University Hospital of Caen, Department of Microbiology, Caen, France
- * E-mail:
| |
Collapse
|
72
|
Abstract
The ability to maintain intracellular concentrations of toxic reactive oxygen species (ROS) within safe limits is essential for all aerobic life forms. In bacteria, as well as other organisms, ROS are produced during the normal course of aerobic metabolism, necessitating the constitutive expression of ROS scavenging systems. However, bacteria can also experience transient high-level exposure to ROS derived either from external sources, such as the host defense response, or as a secondary effect of other seemingly unrelated environmental stresses. Consequently, transcriptional regulators have evolved to sense the levels of ROS and coordinate the appropriate oxidative stress response. Three well-studied examples of these are the peroxide responsive regulators OxyR, PerR, and OhrR. OxyR and PerR are sensors of primarily H(2)O(2), while OhrR senses organic peroxide (ROOH) and sodium hypochlorite (NaOCl). OxyR and OhrR sense oxidants by means of the reversible oxidation of specific cysteine residues. In contrast, PerR senses H(2)O(2) via the Fe-catalyzed oxidation of histidine residues. These transcription regulators also influence complex biological phenomena, such as biofilm formation, the evasion of host immune responses, and antibiotic resistance via the direct regulation of specific proteins.
Collapse
|
73
|
Ji Q, Zhang L, Sun F, Deng X, Liang H, Bae T, He C. Staphylococcus aureus CymR is a new thiol-based oxidation-sensing regulator of stress resistance and oxidative response. J Biol Chem 2012; 287:21102-9. [PMID: 22553203 DOI: 10.1074/jbc.m112.359737] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As a human pathogen, Staphylococcus aureus must cope with oxidative stress generated by the human immune system. Here, we report that CymR utilizes its sole Cys-25 to sense oxidative stress. Oxidation followed by thiolation of this cysteine residue leads to dissociation of CymR from its cognate promoter DNA. In contrast, the DNA binding of the CymRC25S mutant was insensitive to oxidation and thiolation, suggesting that CymR senses oxidative stress through oxidation of its sole cysteine to form a mixed disulfide with low molecular weight thiols. The determined crystal structures of the reduced and oxidized forms of CymR revealed that Cys-25 is oxidized to Cys-25-SOH in the presence of H(2)O(2). Deletion of cymR reduced the resistance of S. aureus to oxidative stresses, and the resistance was restored by expressing a C25S mutant copy of cymR. In a C25S substitution mutant, the expression of two genes, tcyP and mccB, was constitutively repressed and did not respond to hydrogen peroxide stress, whereas the expression of the genes were highly induced under oxidative stress in a wild-type strain, indicating the critical role of Cys-25 in redox signaling in vivo. Thus, CymR is another master regulator that senses oxidative stress and connects stress responses to virulence regulation in S. aureus.
Collapse
Affiliation(s)
- Quanjiang Ji
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Palm GJ, Khanh Chi B, Waack P, Gronau K, Becher D, Albrecht D, Hinrichs W, Read RJ, Antelmann H. Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR. Nucleic Acids Res 2012; 40:4178-92. [PMID: 22238377 PMCID: PMC3351151 DOI: 10.1093/nar/gkr1316] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bacillus subtilis encodes redox-sensing MarR-type regulators of the OhrR and DUF24-families that sense organic hydroperoxides, diamide, quinones or aldehydes via thiol-based redox-switches. In this article, we characterize the novel redox-sensing MarR/DUF24-family regulator HypR (YybR) that is activated by disulphide stress caused by diamide and NaOCl in B. subtilis. HypR controls positively a flavin oxidoreductase HypO that confers protection against NaOCl stress. The conserved N-terminal Cys14 residue of HypR has a lower pK(a) of 6.36 and is essential for activation of hypO transcription by disulphide stress. HypR resembles a 2-Cys-type regulator that is activated by Cys14-Cys49' intersubunit disulphide formation. The crystal structures of reduced and oxidized HypR proteins were resolved revealing structural changes of HypR upon oxidation. In reduced HypR a hydrogen-bonding network stabilizes the reactive Cys14 thiolate that is 8-9 Å apart from Cys49'. HypR oxidation breaks these H-bonds, reorients the monomers and moves the major groove recognition α4 and α4' helices ∼4 Å towards each other. This is the first crystal structure of a redox-sensing MarR/DUF24 family protein in bacteria that is activated by NaOCl stress. Since hypochloric acid is released by activated macrophages, related HypR-like regulators could function to protect pathogens against the host immune defense.
Collapse
Affiliation(s)
- Gottfried J Palm
- Institute for Biochemistry, Ernst-Moritz-Arndt-University of Greifswald, D-17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Rosbrook GO, Stead MA, Carr SB, Wright SC. The structure of the Bach2 POZ-domain dimer reveals an intersubunit disulfide bond. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 68:26-34. [PMID: 22194330 DOI: 10.1107/s0907444911048335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/14/2011] [Indexed: 11/10/2022]
Abstract
Bach2 is a transcriptional repressor that is expressed during specific stages of B-cell development and in neuronal cells. It plays a critical role in modulating class-switch recombination during the differentiation of mature B cells to antibody-secreting plasma cells and it is also an important regulator of apoptotic responses to oxidative stress. Bach2 has been implicated both as an oncogene and as a tumour suppressor in human malignancy. The interaction of Bach2 with its target genes is mediated via its basic leucine-zipper region, whereas the N-terminal POZ domain recruits transcriptional co-repressors and class II histone deacetylases. Here, the crystal structure of the human Bach2 POZ domain is reported at 2.1 Å resolution. The Bach2 POZ-domain dimer resembles the POZ-domain dimers of the POZ zinc finger transcription factors and dimerization is independent of an N-terminal region that has previously been implicated in the dimerization of the POZ basic leucine-zipper protein Bach1. The Bach2 POZ domain crystallized in two forms which differed by the presence of an intersubunit disulfide bond. The intersubunit disulfide bond is present both in bacterially expressed Bach2 POZ domain in solution and in protein expressed in transfected eukaryotic cells. These crystal structures will be relevant for understanding the regulation of Bach2 in response to oxidative stress and for the design of therapeutics that target the Bach2 POZ domain in human malignancy.
Collapse
|
76
|
Guerra AJ, Dann CE, Giedroc DP. Crystal structure of the zinc-dependent MarR family transcriptional regulator AdcR in the Zn(II)-bound state. J Am Chem Soc 2011; 133:19614-7. [PMID: 22085181 DOI: 10.1021/ja2080532] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Streptococcus pneumoniae adhesin competence regulator (AdcR), the first metal-dependent member of the multiple antibiotic resistance regulator (MarR) family of proteins, represses the transcription of a high-affinity zinc-specific uptake transporter, a group of surface antigen zinc-binding pneumococcal histidine triad proteins (PhtA, PhtB, PhtD, and PhtE), and an AdcA homologue (AdcAII). The 2.0 Å resolution structure of Zn(II)-bound AdcR reveals a highly helical two-fold-symmetric dimer with two distinct metal-binding sites per protomer. Zn(II) is tetrahedrally coordinated by E24, H42, H108, and H112 in what defines the primary sensing site in AdcR. Site 2 is a tetracoordinate site whose function is currently unknown. NMR methyl group perturbation experiments reveal that Zn(II) drives a global change in the structure of apo-AdcR that stabilizes a conformation that is compatible with DNA binding. This co-repression mechanism is unprecedented in MarR transcriptional regulators.
Collapse
Affiliation(s)
- Alfredo J Guerra
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
77
|
Fiorentino G, Del Giudice I, Bartolucci S, Durante L, Martino L, Del Vecchio P. Identification and Physicochemical Characterization of BldR2 from Sulfolobus solfataricus, a Novel Archaeal Member of the MarR Transcription Factor Family. Biochemistry 2011; 50:6607-21. [DOI: 10.1021/bi200187j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriella Fiorentino
- Department of Structural and Functional Biology, University of Naples Federico II, Edificio 7, via Cinthia, 80126 Naples, Italy
| | - Immacolata Del Giudice
- Department of Structural and Functional Biology, University of Naples Federico II, Edificio 7, via Cinthia, 80126 Naples, Italy
| | - Simonetta Bartolucci
- Department of Structural and Functional Biology, University of Naples Federico II, Edificio 7, via Cinthia, 80126 Naples, Italy
| | - Lorenzo Durante
- Department of Chemistry “Paolo Corradini”, University of Naples Federico II, via Cinthia, 80126 Naples, Italy
| | - Luigi Martino
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, U.K
| | - Pompea Del Vecchio
- Department of Chemistry “Paolo Corradini”, University of Naples Federico II, via Cinthia, 80126 Naples, Italy
| |
Collapse
|
78
|
Abstract
Bacillithiol (BSH), the α-anomeric glycoside of l-cysteinyl-d-glucosamine with l-malic acid, plays a dominant role in the cytosolic thiol redox chemistry of the low guanine and cytosine (GC) Gram-positive bacteria (phylum Firmicutes). BSH is functionally analogous to glutathione (GSH) but differs sufficiently in chemical structure that cells have evolved a distinct set of enzymes that use BSH as cofactor. BSH was discovered in Bacillus subtilis as a mixed disulfide with the redox-sensing repressor OhrR and in B. anthracis by biochemical analysis of pools of labeled thiols. The structure of BSH was determined after purification from Deinococcus radiodurans. Similarities in structure between BSH and mycothiol (MSH) facilitated the identification of biosynthetic genes for BSH in the model organism B. subtilis. Phylogenomic analyses have identified several candidate BSH-using or associated proteins, including a BSH reductase, glutaredoxin-like thiol-dependent oxidoreductases (bacilliredoxins), and a BSH-S-transferase (FosB) involved in resistance to the epoxide antibiotic fosfomycin. Preliminary results implicate BSH in cellular processes to maintain cytosolic redox balance and for adaptation to reactive oxygen, nitrogen, and electrophilic species. BSH also is predicted to chelate metals avidly, in part due to the appended malate moiety, although the implications of BSH for metal ion homeostasis have yet to be explored in detail.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA.
| |
Collapse
|
79
|
Dolan KT, Duguid EM, He C. Crystal structures of SlyA protein, a master virulence regulator of Salmonella, in free and DNA-bound states. J Biol Chem 2011; 286:22178-85. [PMID: 21550983 PMCID: PMC3121362 DOI: 10.1074/jbc.m111.245258] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 04/19/2011] [Indexed: 11/06/2022] Open
Abstract
SlyA is a master virulence regulator that controls the transcription of numerous genes in Salmonella enterica. We present here crystal structures of SlyA by itself and bound to a high-affinity DNA operator sequence in the slyA gene. SlyA interacts with DNA through direct recognition of a guanine base by Arg-65, as well as interactions between conserved Arg-86 and the minor groove and a large network of non-base-specific contacts with the sugar phosphate backbone. Our structures, together with an unpublished structure of SlyA bound to the small molecule effector salicylate (Protein Data Bank code 3DEU), reveal that, unlike many other MarR family proteins, SlyA dissociates from DNA without large conformational changes when bound to this effector. We propose that SlyA and other MarR global regulators rely more on indirect readout of DNA sequence to exert control over many genes, in contrast to proteins (such as OhrR) that recognize a single operator.
Collapse
Affiliation(s)
- Kyle T. Dolan
- From the Departments of Biochemistry and Molecular Biology and
- Chemistry and
- the Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637
| | - Erica M. Duguid
- From the Departments of Biochemistry and Molecular Biology and
| | - Chuan He
- Chemistry and
- the Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
80
|
Fontenelle C, Blanco C, Arrieta M, Dufour V, Trautwetter A. Resistance to organic hydroperoxides requires ohr and ohrR genes in Sinorhizobium meliloti. BMC Microbiol 2011; 11:100. [PMID: 21569462 PMCID: PMC3107159 DOI: 10.1186/1471-2180-11-100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 05/13/2011] [Indexed: 12/18/2022] Open
Abstract
Background Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Medicago sativa. During nodule formation bacteria have to withstand oxygen radicals produced by the plant. Resistance to H2O2 and superoxides has been extensively studied in S. meliloti. In contrast resistance to organic peroxides has not been investigated while S. meliloti genome encodes putative organic peroxidases. Organic peroxides are produced by plants and are highly toxic. The resistance to these oxygen radicals has been studied in various bacteria but never in plant nodulating bacteria. Results In this study we report the characterisation of organic hydroperoxide resistance gene ohr and its regulator ohrR in S. meliloti. The inactivation of ohr affects resistance to cumene and ter-butyl hydroperoxides but not to hydrogen peroxide or menadione in vitro. The expression of ohr and ohrR genes is specifically induced by organic peroxides. OhrR binds to the intergenic region between the divergent genes ohr and ohrR. Two binding sites were characterised. Binding to the operator is prevented by OhrR oxidation that promotes OhrR dimerisation. The inactivation of ohr did not affect symbiosis and nitrogen fixation, suggesting that redundant enzymatic activity exists in this strain. Both ohr and ohrR are expressed in nodules suggesting that they play a role during nitrogen fixation. Conclusions This report demonstrates the significant role Ohr and OhrR proteins play in bacterial stress resistance against organic peroxides in S. meliloti. The ohr and ohrR genes are expressed in nodule-inhabiting bacteroids suggesting a role during nodulation.
Collapse
Affiliation(s)
- Catherine Fontenelle
- UMR CNRS 6026, DUALS, Université de Rennes I, Campus de Beaulieu, Av. du Général Leclerc, 35042 Rennes, France
| | | | | | | | | |
Collapse
|
81
|
Abstract
In recent studies of human bacterial pathogens, oxidation sensing and regulation have been shown to impact very diverse pathways that extend beyond inducing antioxidant genes in the bacteria. In fact, some redox-sensitive regulatory proteins act as major regulators of bacteria's adaptability to oxidative stress, an ability that originates from immune host response as well as antibiotic stress. Such proteins play particularly important roles in pathogenic bacteria S. aureus, P. aeruginosa, and M. tuberculosis in part because reactive oxygen species and reactive nitrogen species present significant challenges for pathogens during infection. Herein, we review recent progress toward the identification and understanding of oxidation sensing and regulation in human pathogens. The newly identified redox switches in pathogens are a focus of this review. We will cover several reactive oxygen species-sensing global regulators in both gram-positive and gram-negative pathogenic bacteria in detail. The following discussion of the mechanisms that these proteins employ to sense redox signals through covalent modification of redox active amino acid residues or associated metalloprotein centers will provide further understanding of bacteria pathogenesis, antibiotic resistance, and host-pathogen interaction.
Collapse
Affiliation(s)
- Peng R Chen
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | | | | |
Collapse
|
82
|
Abstract
Cysteine is notable among the universal, proteinogenic amino acids for its facile redox chemistry. Cysteine thiolates are readily modified by reactive oxygen species (ROS), reactive electrophilic species (RES), and reactive nitrogen species (RNS). Although thiol switches are commonly triggered by disulfide bond formation, they can also be controlled by S-thiolation, S-alkylation, or modification by RNS. Thiol-based switches are common in both prokaryotic and eukaryotic organisms and activate functions that detoxify reactive species and restore thiol homeostasis while repressing functions that would be deleterious if expressed under oxidizing conditions. Here, we provide an overview of the best-understood examples of thiol-based redox switches that affect gene expression. Intra- or intermolecular disulfide bond formation serves as a direct regulatory switch for several bacterial transcription factors (OxyR, OhrR/2-Cys, Spx, YodB, CrtJ, and CprK) and indirectly regulates others (the RsrA anti-σ factor and RegB sensory histidine kinase). In eukaryotes, thiol-based switches control the yeast Yap1p transcription factor, the Nrf2/Keap1 electrophile and oxidative stress response, and the Chlamydomonas NAB1 translational repressor. Collectively, these regulators reveal a remarkable range of chemical modifications exploited by Cys residues to effect changes in gene expression.
Collapse
Affiliation(s)
- Haike Antelmann
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany.
| | | |
Collapse
|
83
|
Simen Zhao B, Liang Y, Song Y, Zheng C, Hao Z, Chen PR. A Highly Selective Fluorescent Probe for Visualization of Organic Hydroperoxides in Living Cells. J Am Chem Soc 2010; 132:17065-7. [DOI: 10.1021/ja1071114] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Boxuan Simen Zhao
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, and Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871, China
| | - Yujie Liang
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, and Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871, China
| | - Yanqun Song
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, and Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871, China
| | - Chunhong Zheng
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, and Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871, China
| | - Ziyang Hao
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, and Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871, China
| | - Peng R. Chen
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, and Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
84
|
Andrésen C, Jalal S, Aili D, Wang Y, Islam S, Jarl A, Liedberg B, Wretlind B, Mårtensson LG, Sunnerhagen M. Critical biophysical properties in the Pseudomonas aeruginosa efflux gene regulator MexR are targeted by mutations conferring multidrug resistance. Protein Sci 2010; 19:680-92. [PMID: 20095047 DOI: 10.1002/pro.343] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The self-assembling MexA-MexB-OprM efflux pump system, encoded by the mexO operon, contributes to facile resistance of Pseudomonas aeruginosa by actively extruding multiple antimicrobials. MexR negatively regulates the mexO operon, comprising two adjacent MexR binding sites, and is as such highly targeted by mutations that confer multidrug resistance (MDR). To understand how MDR mutations impair MexR function, we studied MexR-wt as well as a selected set of MDR single mutants distant from the proposed DNA-binding helix. Although DNA affinity and MexA-MexB-OprM repression were both drastically impaired in the selected MexR-MDR mutants, MexR-wt bound its two binding sites in the mexO with high affinity as a dimer. In the MexR-MDR mutants, secondary structure content and oligomerization properties were very similar to MexR-wt despite their lack of DNA binding. Despite this, the MexR-MDR mutants showed highly varying stabilities compared with MexR-wt, suggesting disturbed critical interdomain contacts, because mutations in the DNA-binding domains affected the stability of the dimer region and vice versa. Furthermore, significant ANS binding to MexR-wt in both free and DNA-bound states, together with increased ANS binding in all studied mutants, suggest that a hydrophobic cavity in the dimer region already shown to be involved in regulatory binding is enlarged by MDR mutations. Taken together, we propose that the biophysical MexR properties that are targeted by MDR mutations-stability, domain interactions, and internal hydrophobic surfaces-are also critical for the regulation of MexR DNA binding.
Collapse
Affiliation(s)
- Cecilia Andrésen
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Perera IC, Grove A. Molecular mechanisms of ligand-mediated attenuation of DNA binding by MarR family transcriptional regulators. J Mol Cell Biol 2010; 2:243-54. [PMID: 20716550 DOI: 10.1093/jmcb/mjq021] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacteria and archaea encode members of the large multiple antibiotic resistance regulator (MarR) family of transcriptional regulators. Generally, MarR homologs regulate activity of genes involved in antibiotic resistance, stress responses, virulence or catabolism of aromatic compounds. They constitute a diverse group of transcriptional regulators that includes both repressors and activators, and the conventional mode of regulation entails a genetic locus in which the MarR homolog and a gene under its regulation are encoded divergently; binding of the MarR homolog to the intergenic region typically represses transcription of both genes, while binding of a specific ligand to the transcription factor results in attenuated DNA binding and hence activated gene expression. For many homologs, the natural ligand is unknown. Crystal structures reveal a common architecture with a characteristic winged helix domain for DNA binding, and recent structural information of homologs solved both in the absence and presence of their respective ligands, as well as biochemical data, is finally converging to illuminate the mechanisms by which ligand-binding causes attenuated DNA binding. As MarR homologs regulate pathways that are critical to bacterial physiology, including virulence, a molecular understanding of mechanisms by which ligands affect a regulation of gene activity is essential. Specifying the position of ligand-binding pockets further has the potential to aid in identifying the ligands for MarR homologs for which the ligand remains unknown.
Collapse
Affiliation(s)
- Inoka C Perera
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
86
|
Structural insight into the oxidation-sensing mechanism of the antibiotic resistance of regulator MexR. EMBO Rep 2010; 11:685-90. [PMID: 20616806 DOI: 10.1038/embor.2010.96] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 06/07/2010] [Accepted: 06/07/2010] [Indexed: 12/30/2022] Open
Abstract
MexR functions as the primary regulator of the mexAB-oprM multidrug efflux expression in Pseudomonas aeruginosa. It has been shown that MexR senses oxidative stress by interprotomer disulphide bond formation between redox-active cysteines. This oxidation induces MexR to dissociate from the promoter DNA, thus activating the transcriptional expression of efflux pump genes. In this study, we present the crystal structure of MexR in its oxidized form at a resolution of 2.1 A. This crystal structure reveals the mechanism by which oxidative signal allosterically derepresses the MexR-controlled transcription activation.
Collapse
|
87
|
McLaughlin KJ, Strain-Damerell CM, Xie K, Brekasis D, Soares AS, Paget MSB, Kielkopf CL. Structural basis for NADH/NAD+ redox sensing by a Rex family repressor. Mol Cell 2010; 38:563-75. [PMID: 20513431 DOI: 10.1016/j.molcel.2010.05.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/21/2010] [Accepted: 05/11/2010] [Indexed: 01/26/2023]
Abstract
Nicotinamide adenine dinucleotides have emerged as key signals of the cellular redox state. Yet the structural basis for allosteric gene regulation by the ratio of reduced NADH to oxidized NAD(+) is poorly understood. A key sensor among Gram-positive bacteria, Rex represses alternative respiratory gene expression until a limited oxygen supply elevates the intracellular NADH:NAD(+) ratio. Here we investigate the molecular mechanism for NADH/NAD(+) sensing among Rex family members by determining structures of Thermus aquaticus Rex bound to (1) NAD(+), (2) DNA operator, and (3) without ligand. Comparison with the Rex/NADH complex reveals that NADH releases Rex from the DNA site following a 40 degrees closure between the dimeric subunits. Complementary site-directed mutagenesis experiments implicate highly conserved residues in NAD-responsive DNA-binding activity. These rare views of a redox sensor in action establish a means for slight differences in the nicotinamide charge, pucker, and orientation to signal the redox state of the cell.
Collapse
Affiliation(s)
- Krystle J McLaughlin
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Kumaraswami M, Newberry KJ, Brennan RG. Conformational plasticity of the coiled-coil domain of BmrR is required for bmr operator binding: the structure of unliganded BmrR. J Mol Biol 2010; 398:264-75. [PMID: 20230832 PMCID: PMC2856848 DOI: 10.1016/j.jmb.2010.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 03/03/2010] [Accepted: 03/06/2010] [Indexed: 11/19/2022]
Abstract
The multidrug-binding transcription regulator BmrR from Bacillus subtilis is a MerR family member that binds to a wide array of cationic lipophilic toxins to activate the transcription of the multidrug efflux pump gene bmr. Transcription activation from the sigma(A)-dependent bmr operator requires BmrR to remodel the nonoptimal 19-bp spacer between the -10 promoter element and the -35 promoter element in order to facilitate productive RNA polymerase binding. Despite the availability of several structures of BmrR bound to DNA and drugs, the lack of a BmrR structure in its unliganded or apo (DNA free and drug free) state hinders our full understanding of the structural transitions required for DNA binding and transcription activation. Here, we report the crystal structure of the constitutively active, unliganded BmrR mutant BmrR(E253Q/R275E). Superposition of the ligand-free (apo BmrR(E253Q/R275E)) and DNA-bound BmrR structures reveals that apo BmrR must undergo significant rearrangement in order to assume the DNA-bound conformation, including an outward rotation of minor groove binding wings, an inward movement of helix-turn-helix motifs, and a downward relocation of pliable coiled-coil helices. Computational analysis of the DNA-free and DNA-bound structures reveals a flexible joint that is located at the center of the coiled-coil helices. This region, which is composed of residues 94 through 98, overlaps the helical bulge that is observed only in the apo BmrR structure. This conformational hinge is likely common to other MerR family members with large effector-binding domains, but appears to be missing from the smaller metal-binding MerR family members. Interestingly, the center-to-center distance of the recognition helices of apo BmrR is 34 A and suggests that the conformational change from the apo BmrR structure to the bmr operator-bound BmrR structure is initiated by the binding of this transcription activator to a more B-DNA-like conformation.
Collapse
Affiliation(s)
| | | | - Richard G. Brennan
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Structure and Function, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
89
|
Analyses of the regulatory mechanism and physiological roles of Pseudomonas aeruginosa OhrR, a transcription regulator and a sensor of organic hydroperoxides. J Bacteriol 2010; 192:2093-101. [PMID: 20139188 DOI: 10.1128/jb.01510-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ohrR encodes an organic hydroperoxide sensor and a transcriptional repressor that regulates organic hydroperoxide-inducible expression of a thiol peroxidase gene, ohr, and itself. OhrR binds directly to the operators and represses transcription of these genes. Exposure to an organic hydroperoxide leads to oxidation of OhrR and to subsequent structural changes that result in the loss of the repressor's ability to bind to the operators that allow expression of the target genes. Differential induction of ohrR and ohr by tert-butyl hydroperoxide suggests that factors such as the repressor's dissociation constants for different operators and the chemical nature of the inducer contribute to OhrR-dependent organic hydroperoxide-inducible gene expression. ohrR and ohr mutants show increased and decreased resistance to organic hydroproxides, respectively, compared to a parental strain. Moreover, the ohrR mutant had a reduced-virulence phenotype in the Pseudomonas aeruginosa-Caenorhabditis elegans pathogenicity model.
Collapse
|
90
|
Control of thioredoxin reductase gene (trxB) transcription by SarA in Staphylococcus aureus. J Bacteriol 2010; 192:336-45. [PMID: 19854896 DOI: 10.1128/jb.01202-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thioredoxin reductase (encoded by trxB) protects Staphylococcus aureus against oxygen or disulfide stress and is indispensable for growth. Among the different sarA family mutants analyzed, transcription of trxB was markedly elevated in the sarA mutant under conditions of aerobic as well as microaerophilic growth, indicating that SarA acts as a negative regulator of trxB expression. Gel shift analysis showed that purified SarA protein binds directly to the trxB promoter region DNA in vitro. DNA binding of SarA was essential for repression of trxB transcription in vivo in S. aureus. Northern blot analysis and DNA binding studies of the purified wild-type SarA and the mutant SarAC9G with oxidizing agents indicated that oxidation of Cys-9 reduced the binding of SarA to the trxB promoter DNA. Oxidizing agents, in particular diamide, could further enhance transcription of the trxB gene in the sarA mutant, suggesting the presence of a SarA-independent mode of trxB induction. Analysis of two oxidative stress-responsive sarA regulatory target genes, trxB and sodM, with various mutant sarA constructs showed a differential ability of the SarA to regulate expression of the two above-mentioned genes in vivo. The overall data demonstrate the important role played by SarA in modulating expression of genes involved in oxidative stress resistance in S. aureus.
Collapse
|
91
|
Duarte V, Latour JM. PerR vs OhrR: selective peroxide sensing in Bacillus subtilis. ACTA ACUST UNITED AC 2010; 6:316-23. [DOI: 10.1039/b915042k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
92
|
Lan L, Murray TS, Kazmierczak BI, He C. Pseudomonas aeruginosa OspR is an oxidative stress sensing regulator that affects pigment production, antibiotic resistance and dissemination during infection. Mol Microbiol 2009; 75:76-91. [PMID: 19943895 DOI: 10.1111/j.1365-2958.2009.06955.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative stress is one of the main challenges bacteria must cope with during infection. Here, we identify a new oxidative stress sensing and response ospR (oxidative stress response and pigment production Regulator) gene in Pseudomonas aeruginosa. Deletion of ospR leads to a significant induction in H(2)O(2) resistance. This effect is mediated by de-repression of PA2826, which lies immediately upstream of ospR and encodes a glutathione peroxidase. Constitutive expression of ospR alters pigment production and beta-lactam resistance in P. aeruginosa via a PA2826-independent manner. We further discovered that OspR regulates additional genes involved in quorum sensing and tyrosine metabolism. These regulatory effects are redox-mediated as addition of H(2)O(2) or cumene hydroperoxide leads to the dissociation of OspR from promoter DNA. A conserved Cys residue, Cys-24, plays the major role of oxidative stress sensing in OspR. The serine substitution mutant of Cys-24 is less susceptible to oxidation in vitro and exhibits altered pigmentation and beta-lactam resistance. Lastly, we show that an ospR null mutant strain displays a greater capacity for dissemination than wild-type MPAO1 strain in a murine model of acute pneumonia. Thus, OspR is a global regulator that senses oxidative stress and regulates multiple pathways to enhance the survival of P. aeruginosa inside host.
Collapse
Affiliation(s)
- Lefu Lan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
93
|
GyrA interacts with MarR to reduce repression of the marRAB operon in Escherichia coli. J Bacteriol 2009; 192:942-8. [PMID: 19933356 DOI: 10.1128/jb.01259-09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial two-hybrid studies of randomly cloned Escherichia coli DNA identified a physical interaction between GyrA, subunit A of gyrase, and MarR, a repressor of the marRAB operon. GyrA-His immobilized on Ni-nitrilotriacetic acid (NiNTA) resin bound MarR, while MarR alone did not bind. GyrA interfered with MarR binding to marO, as detected by electrophoretic mobility assays. In a strain bearing the marRAB operon and a marO-lacZ reporter, overexpression of GyrA increased LacZ activity, indicating decreased repression of marO-lacZ by MarR. These results were confirmed by an increased survival of cells treated with quinolones and other antibiotics when GyrA was overexpressed. This work, like a previous study examining TktA (12), shows that unrelated proteins can regulate MarR activity. The findings reveal an unexpected regulatory function of GyrA in antibiotic resistance.
Collapse
|
94
|
Abstract
The spore-forming bacterium and model prokaryotic genetic system, Bacillus subtilis, is extremely useful in the study of oxidative stress management through proteomic and genome-wide transcriptomic analyses, as well as through detailed structural studies of the regulatory factors that govern the oxidative stress response. The factors that sense oxidants and induce expression of protective activities include the PerR and OhrR proteins, which show acute discrimination for their peroxide stimuli, whereas the general stress control factor, the RNA polymerase sigma(B) subunit and the thiol-based sensor Spx, govern the protective response to oxidants under multiple stress conditions. Some specific and some redundant protective mechanisms are mobilized at different stages of the Bacillus developmental cycle to deal with vulnerable cells in stationary-phase conditions and during spore germination and outgrowth. An important unknown is the nature and influence of the low-molecular-weight thiols that mediate the buffering of the redox environment.
Collapse
Affiliation(s)
- Peter Zuber
- Department of Science & Engineering, School of Medicine, Oregon Health & Science University, Beaverton, Oregon 97006, USA.
| |
Collapse
|
95
|
Poor CB, Chen PR, Duguid E, Rice PA, He C. Crystal structures of the reduced, sulfenic acid, and mixed disulfide forms of SarZ, a redox active global regulator in Staphylococcus aureus. J Biol Chem 2009; 284:23517-24. [PMID: 19586910 PMCID: PMC2749125 DOI: 10.1074/jbc.m109.015826] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/17/2009] [Indexed: 12/16/2022] Open
Abstract
SarZ is a global transcriptional regulator that uses a single cysteine residue, Cys(13), to sense peroxide stress and control metabolic switching and virulence in Staphylococcus aureus. SarZ belongs to the single-cysteine class of OhrR-MgrA proteins that play key roles in oxidative resistance and virulence regulation in various bacteria. We present the crystal structures of the reduced form, sulfenic acid form, and mixed disulfide form of SarZ. Both the sulfenic acid and mixed disulfide forms are structurally characterized for the first time for this class of proteins. The Cys(13) sulfenic acid modification is stabilized through two hydrogen bonds with surrounding residues, and the overall DNA-binding conformation is retained. A further reaction of the Cys(13) sulfenic acid with an external thiol leads to formation of a mixed disulfide bond, which results in an allosteric change in the DNA-binding domains, disrupting DNA binding. Thus, the crystal structures of SarZ in three different states provide molecular level pictures delineating the mechanism by which this class of redox active regulators undergoes activation. These structures help to understand redox-mediated virulence regulation in S. aureus and activation of the MarR family proteins in general.
Collapse
Affiliation(s)
| | | | - Erica Duguid
- From the Departments of Chemistry and
- Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
| | - Phoebe A. Rice
- Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637
| | - Chuan He
- From the Departments of Chemistry and
| |
Collapse
|
96
|
Perera IC, Lee YH, Wilkinson SP, Grove A. Mechanism for Attenuation of DNA Binding by MarR Family Transcriptional Regulators by Small Molecule Ligands. J Mol Biol 2009; 390:1019-29. [DOI: 10.1016/j.jmb.2009.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 05/28/2009] [Accepted: 06/01/2009] [Indexed: 10/20/2022]
|
97
|
Di Fiore A, Fiorentino G, Vitale RM, Ronca R, Amodeo P, Pedone C, Bartolucci S, De Simone G. Structural analysis of BldR from Sulfolobus solfataricus provides insights into the molecular basis of transcriptional activation in Archaea by MarR family proteins. J Mol Biol 2009; 388:559-69. [PMID: 19298823 DOI: 10.1016/j.jmb.2009.03.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 11/28/2022]
Abstract
The multiple antibiotic resistance regulator (MarR) family constitutes a significant class of transcriptional regulators whose members control a variety of important biological functions such as regulation of response to environmental stress, control of virulence factor production, resistance to antimicrobial agents, and regulation of aromatic catabolic pathways. Although the majority of MarR family members have been characterized as transcriptional repressors, a few examples of transcriptional activators have also been reported. BldR is a newly identified member of this family that has been demonstrated to act as a transcriptional activator in stress response to aromatic compounds in the crenarchaeon Sulfolobus solfataricus. In this work, we report findings on the BldR X-ray crystal structure and present a molecular modeling study on the complex that this protein forms with its cognate DNA sequence, thus providing the first detailed description of the DNA-binding mechanism of an archaeal activator belonging to the MarR family. Two residues responsible for the high binding specificity of this transcriptional regulator were also identified. Our studies demonstrated that, in Archaea, the capability of MarR family members to act as activators or repressors is not related to a particular DNA-binding mechanism but rather could be due to the position of the binding site on the target DNA. Moreover, since genes encoding MarR proteins often control transcription of operons that encode for multisubstrate efflux pumps, our results also provided important insights for the identification of new tools to overcome the microorganism's multidrug resistance.
Collapse
Affiliation(s)
- Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Regulation of superoxide dismutase (sod) genes by SarA in Staphylococcus aureus. J Bacteriol 2009; 191:3301-10. [PMID: 19286803 DOI: 10.1128/jb.01496-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The scavenging of reactive oxygen species (ROS) within cells is regulated by several interacting factors, including transcriptional regulators. Involvement of sarA family genes in the regulation of proteins involved in the scavenging of ROS is largely unknown. In this report, we show that under aerobic conditions, the levels of sodM and sodA transcription, in particular the sodM transcript, are markedly enhanced in the sarA mutant among the tested sarA family mutants. Increased levels of sod expression returned to near the parental level in a single-copy sarA complemented strain. Under microaerophilc conditions, transcription of both sodM and sodA was considerably enhanced in the sarA mutant compared to the wild-type strain. Various genotypic, phenotypic, and DNA binding studies confirmed the involvement of SarA in the regulation of sod transcripts in different strains of Staphylococcus aureus. The sodA mutant was sensitive to an oxidative stress-inducing agent, methyl viologen, but the sarA sodA double mutant was more resistant to the same stressor than the single sodA mutant. These results suggest that overexpression of SodM, which occurs in the sarA background, can rescue the methyl viologen-sensitive phenotype observed in the absence of the sodA gene. Analysis with various oxidative stress-inducing agents indicates that SarA may play a greater role in modulating oxidative stress resistance in S. aureus. This is the first report that demonstrates the direct involvement of a regulatory protein (SarA) in control of sod expression in S. aureus.
Collapse
|
99
|
Kumaraswami M, Schuman JT, Seo SM, Kaatz GW, Brennan RG. Structural and biochemical characterization of MepR, a multidrug binding transcription regulator of the Staphylococcus aureus multidrug efflux pump MepA. Nucleic Acids Res 2009; 37:1211-24. [PMID: 19129225 PMCID: PMC2651776 DOI: 10.1093/nar/gkn1046] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
MepR is a multidrug binding transcription regulator that represses expression of the Staphylococcus aureus multidrug efflux pump gene, mepA, as well as its own gene. MepR is induced by multiple cationic toxins, which are also substrates of MepA. In order to understand the gene regulatory and drug-binding mechanisms of MepR, we carried out biochemical, in vivo and structural studies. The 2.40 A resolution structure of drug-free MepR reveals the most open MarR family protein conformation to date, which will require a huge conformational change to bind cognate DNA. DNA-binding data show that MepR uses a dual regulatory binding mode as the repressor binds the mepA operator as a dimer of dimers, but binds the mepR operator as a single dimer. Alignment of the six half sites reveals the consensus MepR binding site, 5'-GTTAGAT-3'. 'Drug' binding studies show that MepR binds to ethidium and DAPI with comparable affinities (K(d) = 2.6 and 4.5 microM, respectively), but with significantly lower affinity to the larger rhodamine 6G (K(d) = 62.6 microM). Mapping clinically relevant or in vitro selected MepR mutants onto the MepR structure suggests that their defective repressor phenotypes are due to structural and allosteric defects.
Collapse
Affiliation(s)
- Muthiah Kumaraswami
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
100
|
Eiamphungporn W, Soonsanga S, Lee JW, Helmann JD. Oxidation of a single active site suffices for the functional inactivation of the dimeric Bacillus subtilis OhrR repressor in vitro. Nucleic Acids Res 2009; 37:1174-81. [PMID: 19129220 PMCID: PMC2651793 DOI: 10.1093/nar/gkn1052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacillus subtilis OhrR is a dimeric repressor that senses organic peroxides and regulates the expression of the OhrA peroxiredoxin. Derepression results from oxidation of an active site cysteine which ultimately results in formation of a mixed disulfide with a low molecular weight thiol, a cyclic sulfenamide, or overoxidation to the sulfinic or sulfonic acids. We expressed a single-chain OhrR (scOhrR) in which the two monomers were connected by a short amino-acid linker. scOhrR variants containing only one active site cysteine were fully functional as repressors and still responded, albeit with reduced efficacy, to organic peroxides in vivo. Biochemical analyses indicate that oxidation at a single active site is sufficient for derepression regardless of the fate of the active site cysteine. scOhrR with only one active site cysteine in the amino-terminal domain is inactivated at rates comparable to wild-type whereas when the active site is in the carboxyl-terminal domain the protein is inactivated much more slowly. The incomplete derepression noted for single active site variants of scOhrR in vivo is consistent with the hypothesis that protein reduction regenerates active repressor and that, in the cell, oxidation of the second active site may also contribute to derepression.
Collapse
|