51
|
Bythell-Douglas R, Deans AJ. A Structural Guide to the Bloom Syndrome Complex. Structure 2020; 29:99-113. [PMID: 33357470 DOI: 10.1016/j.str.2020.11.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/03/2020] [Accepted: 11/25/2020] [Indexed: 01/19/2023]
Abstract
The Bloom syndrome complex is a DNA damage repair machine. It consists of several protein components which are functional in isolation, but interdependent in cells for the maintenance of accurate homologous recombination. Mutations to any of the genes encoding these proteins cause numerous physical and developmental markers as well as phenotypes of genome instability, infertility, and cancer predisposition. Here we review the published structural and biochemical data on each of the components of the complex: the helicase BLM, the type IA topoisomerase TOP3A, and the OB-fold-containing RMI and RPA subunits. We describe how each component contributes to function, interacts with each other, and the DNA that it manipulates/repairs.
Collapse
Affiliation(s)
- Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3056, Australia.
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3056, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, 3056, Australia.
| |
Collapse
|
52
|
Bloom JC, Schimenti JC. Sexually dimorphic DNA damage responses and mutation avoidance in the mouse germline. Genes Dev 2020; 34:1637-1649. [PMID: 33184219 PMCID: PMC7706705 DOI: 10.1101/gad.341602.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
In this study, Bloom and Schimenti examine the response of primordial germ cells to DNA damage. Using both environmental and genetic stresses, the authors reveal the importance of the G1 checkpoint in preventing accumulation of complex mutations in the germline, and the differentiation of the DNA damage response during germ cell development. Germ cells specified during fetal development form the foundation of the mammalian germline. These primordial germ cells (PGCs) undergo rapid proliferation, yet the germline is highly refractory to mutation accumulation compared with somatic cells. Importantly, while the presence of endogenous or exogenous DNA damage has the potential to impact PGCs, there is little known about how these cells respond to stressors. To better understand the DNA damage response (DDR) in these cells, we exposed pregnant mice to ionizing radiation (IR) at specific gestational time points and assessed the DDR in PGCs. Our results show that PGCs prior to sex determination lack a G1 cell cycle checkpoint. Additionally, the response to IR-induced DNA damage differs between female and male PGCs post-sex determination. IR of female PGCs caused uncoupling of germ cell differentiation and meiotic initiation, while male PGCs exhibited repression of piRNA metabolism and transposon derepression. We also used whole-genome single-cell DNA sequencing to reveal that genetic rescue of DNA repair-deficient germ cells (Fancm−/−) leads to increased mutation incidence and biases. Importantly, our work uncovers novel insights into how PGCs exposed to DNA damage can become developmentally defective, leaving only those genetically fit cells to establish the adult germline.
Collapse
Affiliation(s)
- Jordana C Bloom
- Department of Biomedical Sciences,, Cornell University, Ithaca, New York 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - John C Schimenti
- Department of Biomedical Sciences,, Cornell University, Ithaca, New York 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
53
|
Kobaisi F, Fayyad N, Sulpice E, Badran B, Fayyad-Kazan H, Rachidi W, Gidrol X. High-throughput synthetic rescue for exhaustive characterization of suppressor mutations in human genes. Cell Mol Life Sci 2020; 77:4209-4222. [PMID: 32270227 PMCID: PMC7588364 DOI: 10.1007/s00018-020-03519-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
Inherited or acquired mutations can lead to pathological outcomes. However, in a process defined as synthetic rescue, phenotypic outcome created by primary mutation is alleviated by suppressor mutations. An exhaustive characterization of these mutations in humans is extremely valuable to better comprehend why patients carrying the same detrimental mutation exhibit different pathological outcomes or different responses to treatment. Here, we first review all known suppressor mutations' mechanisms characterized by genetic screens on model species like yeast or flies. However, human suppressor mutations are scarce, despite some being discovered based on orthologue genes. Because of recent advances in high-throughput screening, developing an inventory of human suppressor mutations for pathological processes seems achievable. In addition, we review several screening methods for suppressor mutations in cultured human cells through knock-out, knock-down or random mutagenesis screens on large scale. We provide examples of studies published over the past years that opened new therapeutic avenues, particularly in oncology.
Collapse
Affiliation(s)
- Farah Kobaisi
- University of Grenoble Alpes, CEA, INSERM, IRIG-BGE U1038, 38000, Grenoble, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
- University of Grenoble Alpes, SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, IRIG/CEA-Grenoble, Grenoble, France
| | - Nour Fayyad
- University of Grenoble Alpes, SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, IRIG/CEA-Grenoble, Grenoble, France
| | - Eric Sulpice
- University of Grenoble Alpes, CEA, INSERM, IRIG-BGE U1038, 38000, Grenoble, France
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Walid Rachidi
- University of Grenoble Alpes, SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, IRIG/CEA-Grenoble, Grenoble, France
| | - Xavier Gidrol
- University of Grenoble Alpes, CEA, INSERM, IRIG-BGE U1038, 38000, Grenoble, France.
| |
Collapse
|
54
|
Tan W, Deans AJ. The ubiquitination machinery of the Fanconi Anemia DNA repair pathway. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 163:5-13. [PMID: 33058944 DOI: 10.1016/j.pbiomolbio.2020.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
The Fanconi Anemia (FA) pathway maintains genome stability by preventing DNA damage from occurring when replication is blocked. Central to the FA pathway is the monoubiquitination of FANCI-FANCD2 mediated by a ubiquitin RING-E3 ligase complex called the FA core complex. Genetic mutation in any component of the FA core complex results in defective FANCI-FANCD2 monoubiquitination and phenotypes of DNA damage sensitivity, birth defects, early-onset bone marrow failure and cancer. Here, we discuss the mechanisms of the FA core complex and FANCI-FANCD2 monoubiquitination at sites of blocked replication and review our current understanding of the biological functions of these proteins in replication fork protection.
Collapse
Affiliation(s)
- Winnie Tan
- Genome Stability Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria, 3065, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria, 3065, Australia; Department of Medicine, St. Vincent's Health, The University of Melbourne, Australia. https://twitter.com/GenomeStability
| |
Collapse
|
55
|
Datta A, Dhar S, Awate S, Brosh RM. Synthetic Lethal Interactions of RECQ Helicases. Trends Cancer 2020; 7:146-161. [PMID: 33041245 DOI: 10.1016/j.trecan.2020.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
DNA helicases have risen to the forefront as genome caretakers. Their prominent roles in chromosomal stability are demonstrated by the linkage of mutations in helicase genes to hereditary disorders with defects in DNA repair, the replication stress response, and/or transcriptional activation. Conversely, accumulating evidence suggests that DNA helicases in cancer cells have a network of pathway interactions such that codeficiency of some helicases and their genetically interacting proteins results in synthetic lethality (SL). Such genetic interactions may potentially be exploited for cancer therapies. We discuss the roles of RECQ DNA helicases in cancer, emphasizing some of the more recent developments in SL.
Collapse
Affiliation(s)
- Arindam Datta
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Srijita Dhar
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sanket Awate
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
56
|
Canonical and Noncanonical Roles of Fanconi Anemia Proteins: Implications in Cancer Predisposition. Cancers (Basel) 2020; 12:cancers12092684. [PMID: 32962238 PMCID: PMC7565043 DOI: 10.3390/cancers12092684] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Fanconi anemia (FA) is a genetic disorder that is characterized by bone marrow failure (BMF), developmental abnormalities, and predisposition to cancer. In this review, we present an overview of both canonical (regulation of interstrand cross-links repair, ICLs) and noncanonical roles of FA proteins. We divide noncanonical alternative functions in two types: nuclear (outside ICLs such as FA action in replication stress or DSB repair) and cytosolic (such as in mitochondrial quality control or selective autophagy). We further discuss the involvement of FA genes in the predisposition to develop different types of cancers and we examine current DNA damage response-targeted therapies. Finally, we promote an insightful perspective regarding the clinical implication of the cytosolic noncanonical roles of FA proteins in cancer predisposition, suggesting that these alternative roles could be of critical importance for disease progression. Abstract Fanconi anemia (FA) is a clinically and genetically heterogeneous disorder characterized by the variable presence of congenital somatic abnormalities, bone marrow failure (BMF), and a predisposition to develop cancer. Monoallelic germline mutations in at least five genes involved in the FA pathway are associated with the development of sporadic hematological and solid malignancies. The key function of the FA pathway is to orchestrate proteins involved in the repair of interstrand cross-links (ICLs), to prevent genomic instability and replication stress. Recently, many studies have highlighted the importance of FA genes in noncanonical pathways, such as mitochondria homeostasis, inflammation, and virophagy, which act, in some cases, independently of DNA repair processes. Thus, primary defects in DNA repair mechanisms of FA patients are typically exacerbated by an impairment of other cytoprotective pathways that contribute to the multifaceted clinical phenotype of this disease. In this review, we summarize recent advances in the understanding of the pathogenesis of FA, with a focus on the cytosolic noncanonical roles of FA genes, discussing how they may contribute to cancer development, thus suggesting opportunities to envisage novel therapeutic approaches.
Collapse
|
57
|
Brannvoll A, Xue X, Kwon Y, Kompocholi S, Simonsen AKW, Viswalingam KS, Gonzalez L, Hickson ID, Oestergaard VH, Mankouri HW, Sung P, Lisby M. The ZGRF1 Helicase Promotes Recombinational Repair of Replication-Blocking DNA Damage in Human Cells. Cell Rep 2020; 32:107849. [PMID: 32640219 PMCID: PMC7473174 DOI: 10.1016/j.celrep.2020.107849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/10/2020] [Accepted: 06/11/2020] [Indexed: 01/05/2023] Open
Abstract
Replication-blocking DNA lesions are particularly toxic to proliferating cells because they can lead to chromosome mis-segregation if not repaired prior to mitosis. In this study, we report that ZGRF1 null cells accumulate chromosome aberrations following replication perturbation and show sensitivity to two potent replication-blocking anticancer drugs: mitomycin C and camptothecin. Moreover, ZGRF1 null cells are defective in catalyzing DNA damage-induced sister chromatid exchange despite accumulating excessive FANCD2, RAD51, and γ-H2AX foci upon induction of interstrand DNA crosslinks. Consistent with a direct role in promoting recombinational DNA repair, we show that ZGRF1 is a 5'-to-3' helicase that catalyzes D-loop dissociation and Holliday junction branch migration. Moreover, ZGRF1 physically interacts with RAD51 and stimulates strand exchange catalyzed by RAD51-RAD54. On the basis of these data, we propose that ZGRF1 promotes repair of replication-blocking DNA lesions through stimulation of homologous recombination.
Collapse
Affiliation(s)
- André Brannvoll
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark; Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Xiaoyu Xue
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | - Leticia Gonzalez
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Hocine W Mankouri
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark; Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
58
|
The FANC/BRCA Pathway Releases Replication Blockades by Eliminating DNA Interstrand Cross-Links. Genes (Basel) 2020; 11:genes11050585. [PMID: 32466131 PMCID: PMC7288313 DOI: 10.3390/genes11050585] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
DNA interstrand cross-links (ICLs) represent a major barrier blocking DNA replication fork progression. ICL accumulation results in growth arrest and cell death—particularly in cell populations undergoing high replicative activity, such as cancer and leukemic cells. For this reason, agents able to induce DNA ICLs are widely used as chemotherapeutic drugs. However, ICLs are also generated in cells as byproducts of normal metabolic activities. Therefore, every cell must be capable of rescuing lCL-stalled replication forks while maintaining the genetic stability of the daughter cells in order to survive, replicate DNA and segregate chromosomes at mitosis. Inactivation of the Fanconi anemia/breast cancer-associated (FANC/BRCA) pathway by inherited mutations leads to Fanconi anemia (FA), a rare developmental, cancer-predisposing and chromosome-fragility syndrome. FANC/BRCA is the key hub for a complex and wide network of proteins that—upon rescuing ICL-stalled DNA replication forks—allows cell survival. Understanding how cells cope with ICLs is mandatory to ameliorate ICL-based anticancer therapies and provide the molecular basis to prevent or bypass cancer drug resistance. Here, we review our state-of-the-art understanding of the mechanisms involved in ICL resolution during DNA synthesis, with a major focus on how the FANC/BRCA pathway ensures DNA strand opening and prevents genomic instability.
Collapse
|
59
|
Jeong E, Lee SG, Kim HS, Yang J, Shin J, Kim Y, Kim J, Schärer OD, Kim Y, Yeo JE, Kim HM, Cho Y. Structural basis of the fanconi anemia-associated mutations within the FANCA and FANCG complex. Nucleic Acids Res 2020; 48:3328-3342. [PMID: 32002546 PMCID: PMC7102982 DOI: 10.1093/nar/gkaa062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Monoubiquitination of the Fanconi anemia complementation group D2 (FANCD2) protein by the FA core ubiquitin ligase complex is the central event in the FA pathway. FANCA and FANCG play major roles in the nuclear localization of the FA core complex. Mutations of these two genes are the most frequently observed genetic alterations in FA patients, and most point mutations in FANCA are clustered in the C-terminal domain (CTD). To understand the basis of the FA-associated FANCA mutations, we determined the cryo-electron microscopy (EM) structures of Xenopus laevis FANCA alone at 3.35 Å and 3.46 Å resolution and two distinct FANCA–FANCG complexes at 4.59 and 4.84 Å resolution, respectively. The FANCA CTD adopts an arc-shaped solenoid structure that forms a pseudo-symmetric dimer through its outer surface. FA- and cancer-associated point mutations are widely distributed over the CTD. The two different complex structures capture independent interactions of FANCG with either FANCA C-terminal HEAT repeats, or the N-terminal region. We show that mutations that disturb either of these two interactions prevent the nuclear localization of FANCA, thereby leading to an FA pathway defect. The structure provides insights into the function of FANCA CTD, and provides a framework for understanding FA- and cancer-associated mutations.
Collapse
Affiliation(s)
- Eunyoung Jeong
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seong-Gyu Lee
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jihyeon Yang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jinwoo Shin
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Youngran Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jihan Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Youngjin Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yunje Cho
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
60
|
Sandhu R, Monge Neria F, Monge Neria J, Chen X, Hollingsworth NM, Börner GV. DNA Helicase Mph1 FANCM Ensures Meiotic Recombination between Parental Chromosomes by Dissociating Precocious Displacement Loops. Dev Cell 2020; 53:458-472.e5. [PMID: 32386601 PMCID: PMC7386354 DOI: 10.1016/j.devcel.2020.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 02/09/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
Meiotic pairing between parental chromosomes (homologs) is required for formation of haploid gametes. Homolog pairing depends on recombination initiation via programmed double-strand breaks (DSBs). Although DSBs appear prior to pairing, the homolog, rather than the sister chromatid, is used as repair partner for crossing over. Here, we show that Mph1, the budding yeast ortholog of Fanconi anemia helicase FANCM, prevents precocious DSB strand exchange between sister chromatids before homologs have completed pairing. By dissociating precocious DNA displacement loops (D-loops) between sister chromatids, Mph1FANCM ensures high levels of crossovers and non-crossovers between homologs. Later-occurring recombination events are protected from Mph1-mediated dissociation by synapsis protein Zip1. Increased intersister repair in absence of Mph1 triggers a shift among remaining interhomolog events from non-crossovers to crossover-specific strand exchange, explaining Mph1's apparent anti-crossover function. Our findings identify temporal coordination between DSB strand exchange and homolog pairing as a critical determinant for recombination outcome.
Collapse
Affiliation(s)
- Rima Sandhu
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Francisco Monge Neria
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Jesús Monge Neria
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Xiangyu Chen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - G Valentin Börner
- Center for Gene Regulation in Health and Disease and Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
61
|
O'Rourke JJ, Bythell-Douglas R, Dunn EA, Deans AJ. ALT control, delete: FANCM as an anti-cancer target in Alternative Lengthening of Telomeres. Nucleus 2020; 10:221-230. [PMID: 31663812 PMCID: PMC6949022 DOI: 10.1080/19491034.2019.1685246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Break-induced replication is a specific type of DNA repair that has a co-opted role in telomere extension by telomerase-negative cancer cells. This Alternative Lengthening of Telomeres (or ‘ALT’) is required for viability in approximately 10% of all carcinomas, but up to 50% of the soft-tissue derived sarcomas. In several recent studies, we and others demonstrate that expression and activity of FANCM, a DNA translocase protein, is essential for the viability of ALT-associated cancers. Here we provide a summary of how and why FANCM depletion leads to deletion of ALT-controlled cancers, predominantly through a hyper-activation of break-induced replication. We also discuss how FANCM can and has been targeted in cancer cell killing, including potential opportunities in ALT and other genetic backgrounds.
Collapse
Affiliation(s)
- Julienne J O'Rourke
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, (St Vincent's) University of Melbourne, Fitzroy, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Elyse A Dunn
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, (St Vincent's) University of Melbourne, Fitzroy, Australia
| |
Collapse
|
62
|
Tan W, van Twest S, Leis A, Bythell-Douglas R, Murphy VJ, Sharp M, Parker MW, Crismani W, Deans AJ. Monoubiquitination by the human Fanconi anemia core complex clamps FANCI:FANCD2 on DNA in filamentous arrays. eLife 2020; 9:e54128. [PMID: 32167469 PMCID: PMC7156235 DOI: 10.7554/elife.54128] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
FANCI:FANCD2 monoubiquitination is a critical event for replication fork stabilization by the Fanconi anemia (FA) DNA repair pathway. It has been proposed that at stalled replication forks, monoubiquitinated-FANCD2 serves to recruit DNA repair proteins that contain ubiquitin-binding motifs. Here, we have reconstituted the FA pathway in vitro to study functional consequences of FANCI:FANCD2 monoubiquitination. We report that monoubiquitination does not promote any specific exogenous protein:protein interactions, but instead stabilizes FANCI:FANCD2 heterodimers on dsDNA. This clamping requires monoubiquitination of only the FANCD2 subunit. We further show using electron microscopy that purified monoubiquitinated FANCI:FANCD2 forms filament-like arrays on long dsDNA. Our results reveal how monoubiquitinated FANCI:FANCD2, defective in many cancer types and all cases of FA, is activated upon DNA binding.
Collapse
Affiliation(s)
- Winnie Tan
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- Department of Medicine (St. Vincent’s Health), The University of MelbourneMelbourneAustralia
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | - Andrew Leis
- Bio21 Institute, University of MelbourneParkvilleAustralia
| | | | - Vincent J Murphy
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | - Michael Sharp
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | - Michael W Parker
- Bio21 Institute, University of MelbourneParkvilleAustralia
- Structural Biology Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
| | - Wayne Crismani
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- Department of Medicine (St. Vincent’s Health), The University of MelbourneMelbourneAustralia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent’s Institute of Medical ResearchFitzroyAustralia
- Department of Medicine (St. Vincent’s Health), The University of MelbourneMelbourneAustralia
| |
Collapse
|
63
|
Brosh RM, Matson SW. History of DNA Helicases. Genes (Basel) 2020; 11:genes11030255. [PMID: 32120966 PMCID: PMC7140857 DOI: 10.3390/genes11030255] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the DNA double helix, there has been a fascination in understanding the molecular mechanisms and cellular processes that account for: (i) the transmission of genetic information from one generation to the next and (ii) the remarkable stability of the genome. Nucleic acid biologists have endeavored to unravel the mysteries of DNA not only to understand the processes of DNA replication, repair, recombination, and transcription but to also characterize the underlying basis of genetic diseases characterized by chromosomal instability. Perhaps unexpectedly at first, DNA helicases have arisen as a key class of enzymes to study in this latter capacity. From the first discovery of ATP-dependent DNA unwinding enzymes in the mid 1970's to the burgeoning of helicase-dependent pathways found to be prevalent in all kingdoms of life, the story of scientific discovery in helicase research is rich and informative. Over four decades after their discovery, we take this opportunity to provide a history of DNA helicases. No doubt, many chapters are left to be written. Nonetheless, at this juncture we are privileged to share our perspective on the DNA helicase field - where it has been, its current state, and where it is headed.
Collapse
Affiliation(s)
- Robert M. Brosh
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| | - Steven W. Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| |
Collapse
|
64
|
Tan W, van Twest S, Murphy VJ, Deans AJ. ATR-Mediated FANCI Phosphorylation Regulates Both Ubiquitination and Deubiquitination of FANCD2. Front Cell Dev Biol 2020; 8:2. [PMID: 32117957 PMCID: PMC7010609 DOI: 10.3389/fcell.2020.00002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/03/2020] [Indexed: 01/02/2023] Open
Abstract
DNA interstrand crosslinks (ICLs) are a physical barrier to replication and therefore toxic to cell viability. An important mechanism for the removal of ICLs is the Fanconi Anemia DNA repair pathway, which is initiated by mono-ubiquitination of FANCD2 and its partner protein FANCI. Here, we show that maintenance of FANCD2 and FANCI proteins in a monoubiquitinated form is regulated by the ATR-kinase. Using recombinant proteins in biochemical reconstitution experiments we show that ATR directly phosphorylates FANCI on serine 556, 559, and 565 to stabilize its association with DNA and FANCD2. This increased association with DNA stimulates the conjugation of ubiquitin to both FANCI and FANCD2, but also inhibits ubiquitin deconjugation. Using phosphomimetic and phosphodead mutants of FANCI we show that S559 and S565 are particularly important for protecting the complex from the activity of the deubiquitinating enzyme USP1:UAF1. Our results reveal a major mechanism by which ATR kinase maintains the activation of the FA pathway, by promoting the accumulation of FANCD2 in the ubiquitinated form active in DNA repair.
Collapse
Affiliation(s)
- Winnie Tan
- Genome Stability Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine (St Vincent’s Hospital), The University of Melbourne, Melbourne, VIC, Australia
| | - Sylvie van Twest
- Genome Stability Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Vincent J. Murphy
- Genome Stability Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J. Deans
- Genome Stability Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine (St Vincent’s Hospital), The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
65
|
Ryland GL, Fox LC, Wootton V, Thompson ER, Lickiss J, Trainer AH, Barbaro P, Whyte M, Ritchie D, Blombery P. Severe chemotherapy toxicity in a 10-year-old with T-acute lymphoblastic lymphoma harboring biallelic FANCM variants. Leuk Lymphoma 2020; 61:1257-1259. [PMID: 31942822 DOI: 10.1080/10428194.2019.1711075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Georgina L Ryland
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Lucy C Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Epworth Healthcare, Melbourne, Australia.,Department of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | | | - Ella R Thompson
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Jennifer Lickiss
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Alison H Trainer
- Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Morag Whyte
- Queensland Children's Hospital, Brisbane, Australia
| | - David Ritchie
- Department of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia.,Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, Australia
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
66
|
Figlioli G, Bogliolo M, Catucci I, Caleca L, Lasheras SV, Pujol R, Kiiski JI, Muranen TA, Barnes DR, Dennis J, Michailidou K, Bolla MK, Leslie G, Aalfs CM, Adank MA, Adlard J, Agata S, Cadoo K, Agnarsson BA, Ahearn T, Aittomäki K, Ambrosone CB, Andrews L, Anton-Culver H, Antonenkova NN, Arndt V, Arnold N, Aronson KJ, Arun BK, Asseryanis E, Auber B, Auvinen P, Azzollini J, Balmaña J, Barkardottir RB, Barrowdale D, Barwell J, Beane Freeman LE, Beauparlant CJ, Beckmann MW, Behrens S, Benitez J, Berger R, Bermisheva M, Blanco AM, Blomqvist C, Bogdanova NV, Bojesen A, Bojesen SE, Bonanni B, Borg A, Brady AF, Brauch H, Brenner H, Brüning T, Burwinkel B, Buys SS, Caldés T, Caliebe A, Caligo MA, Campa D, Campbell IG, Canzian F, Castelao JE, Chang-Claude J, Chanock SJ, Claes KBM, Clarke CL, Collavoli A, Conner TA, Cox DG, Cybulski C, Czene K, Daly MB, de la Hoya M, Devilee P, Diez O, Ding YC, Dite GS, Ditsch N, Domchek SM, Dorfling CM, dos-Santos-Silva I, Durda K, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Ellberg C, Eriksson M, Evans DG, Fasching PA, Figueroa J, Flyger H, Foulkes WD, Friebel TM, Friedman E, Gabrielson M, Gaddam P, Gago-Dominguez M, et alFiglioli G, Bogliolo M, Catucci I, Caleca L, Lasheras SV, Pujol R, Kiiski JI, Muranen TA, Barnes DR, Dennis J, Michailidou K, Bolla MK, Leslie G, Aalfs CM, Adank MA, Adlard J, Agata S, Cadoo K, Agnarsson BA, Ahearn T, Aittomäki K, Ambrosone CB, Andrews L, Anton-Culver H, Antonenkova NN, Arndt V, Arnold N, Aronson KJ, Arun BK, Asseryanis E, Auber B, Auvinen P, Azzollini J, Balmaña J, Barkardottir RB, Barrowdale D, Barwell J, Beane Freeman LE, Beauparlant CJ, Beckmann MW, Behrens S, Benitez J, Berger R, Bermisheva M, Blanco AM, Blomqvist C, Bogdanova NV, Bojesen A, Bojesen SE, Bonanni B, Borg A, Brady AF, Brauch H, Brenner H, Brüning T, Burwinkel B, Buys SS, Caldés T, Caliebe A, Caligo MA, Campa D, Campbell IG, Canzian F, Castelao JE, Chang-Claude J, Chanock SJ, Claes KBM, Clarke CL, Collavoli A, Conner TA, Cox DG, Cybulski C, Czene K, Daly MB, de la Hoya M, Devilee P, Diez O, Ding YC, Dite GS, Ditsch N, Domchek SM, Dorfling CM, dos-Santos-Silva I, Durda K, Dwek M, Eccles DM, Ekici AB, Eliassen AH, Ellberg C, Eriksson M, Evans DG, Fasching PA, Figueroa J, Flyger H, Foulkes WD, Friebel TM, Friedman E, Gabrielson M, Gaddam P, Gago-Dominguez M, Gao C, Gapstur SM, Garber J, García-Closas M, García-Sáenz JA, Gaudet MM, Gayther SA, Giles GG, Glendon G, Godwin AK, Goldberg MS, Goldgar DE, Guénel P, Gutierrez-Barrera AM, Haeberle L, Haiman CA, Håkansson N, Hall P, Hamann U, Harrington PA, Hein A, Heyworth J, Hillemanns P, Hollestelle A, Hopper JL, Hosgood HD, Howell A, Hu C, Hulick PJ, Hunter DJ, Imyanitov EN, Isaacs C, Jakimovska M, Jakubowska A, James P, Janavicius R, Janni W, John EM, Jones ME, Jung A, Kaaks R, Karlan BY, Khusnutdinova E, Kitahara CM, Konstantopoulou I, Koutros S, Kraft P, Lambrechts D, Lazaro C, Le Marchand L, Lester J, Lesueur F, Lilyquist J, Loud JT, Lu KH, Luben RN, Lubinski J, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Martens JWM, Maurer T, Mavroudis D, Mebirouk N, Meindl A, Menon U, Miller A, Montagna M, Nathanson KL, Neuhausen SL, Newman WG, Nguyen-Dumont T, Nielsen FC, Nielsen S, Nikitina-Zake L, Offit K, Olah E, Olopade OI, Olshan AF, Olson JE, Olsson H, Osorio A, Ottini L, Peissel B, Peixoto A, Peto J, Plaseska-Karanfilska D, Pocza T, Presneau N, Pujana MA, Punie K, Rack B, Rantala J, Rashid MU, Rau-Murthy R, Rennert G, Lejbkowicz F, Rhenius V, Romero A, Rookus MA, Ross EA, Rossing M, Rudaitis V, Ruebner M, Saloustros E, Sanden K, Santamariña M, Scheuner MT, Schmutzler RK, Schneider M, Scott C, Senter L, Shah M, Sharma P, Shu XO, Simard J, Singer CF, Sohn C, Soucy P, Southey MC, Spinelli JJ, Steele L, Stoppa-Lyonnet D, Tapper WJ, Teixeira MR, Terry MB, Thomassen M, Thompson J, Thull DL, Tischkowitz M, Tollenaar RA, Torres D, Troester MA, Truong T, Tung N, Untch M, Vachon CM, van Rensburg EJ, van Veen EM, Vega A, Viel A, Wappenschmidt B, Weitzel JN, Wendt C, Wieme G, Wolk A, Yang XR, Zheng W, Ziogas A, Zorn KK, Dunning AM, Lush M, Wang Q, McGuffog L, Parsons MT, Pharoah PDP, Fostira F, Toland AE, Andrulis IL, Ramus SJ, Swerdlow AJ, Greene MH, Chung WK, Milne RL, Chenevix-Trench G, Dörk T, Schmidt MK, Easton DF, Radice P, Hahnen E, Antoniou AC, Couch FJ, Nevanlinna H, Surrallés J, Peterlongo P. The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. NPJ Breast Cancer 2019; 5:38. [PMID: 31700994 PMCID: PMC6825205 DOI: 10.1038/s41523-019-0127-5] [Show More Authors] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/30/2019] [Indexed: 01/12/2023] Open
Abstract
Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors.
Collapse
Affiliation(s)
- Gisella Figlioli
- IFOM - the FIRC Institute for Molecular Oncology, Genome Diagnostics Program, Milan, Italy
| | - Massimo Bogliolo
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
- Institute of Biomedical Research, Sant Pau Hospital, Barcelona, Spain
| | - Irene Catucci
- IFOM - the FIRC Institute for Molecular Oncology, Genome Diagnostics Program, Milan, Italy
| | - Laura Caleca
- Fondazione IRCCS Istituto Nazionale dei Tumori, Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Milan, Italy
| | - Sandra Viz Lasheras
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona Spain
| | - Roser Pujol
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
- Institute of Biomedical Research, Sant Pau Hospital, Barcelona, Spain
| | - Johanna I. Kiiski
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Taru A. Muranen
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Daniel R. Barnes
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Joe Dennis
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Kyriaki Michailidou
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
- The Cyprus Institute of Neurology & Genetics, Department of Electron Microscopy/Molecular Pathology and The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Manjeet K. Bolla
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Goska Leslie
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Cora M. Aalfs
- Amsterdam UMC, lokatie AMC, Department of Clinical Genetics, Amsterdam, The Netherlands
| | - Muriel A. Adank
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Family Cancer Clinic, Amsterdam, The Netherlands
| | - Julian Adlard
- Chapel Allerton Hospital, Yorkshire Regional Genetics Service, Leeds, UK
| | - Simona Agata
- Veneto Institute of Oncology IOV - IRCCS, Immunology and Molecular Oncology Unit, Padua, Italy
| | - Karen Cadoo
- Memorial Sloan-Kettering Cancer Center, Department of Medicine, New York, NY USA
| | - Bjarni A. Agnarsson
- Landspitali University Hospital, Department of Pathology, Reykjavik, Iceland
- University of Iceland, School of Medicine, Reykjavik, Iceland
| | - Thomas Ahearn
- National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD USA
| | - Kristiina Aittomäki
- University of Helsinki, Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | | | - Lesley Andrews
- Nelune Comprehensive Cancer Care Centre, The Bright Alliance Building, Randwick, NSW Australia
| | - Hoda Anton-Culver
- University of California Irvine, Department of Epidemiology, Genetic Epidemiology Research Institute, Irvine, CA USA
| | | | - Volker Arndt
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
| | - Norbert Arnold
- University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Department of Gynaecology and Obstetrics, and Institute of Clinical Molecular Biology, Kiel, Germany
| | - Kristan J. Aronson
- Queen’s University, Department of Public Health Sciences, and Cancer Research Institute, Kingston, ON Canada
| | - Banu K. Arun
- University of Texas MD Anderson Cancer Center, Department of Breast Medical Oncology, Houston, TX USA
| | - Ella Asseryanis
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
| | - Bernd Auber
- Hannover Medical School, Institute of Human Genetics, Hannover, Germany
| | - Päivi Auvinen
- Kuopio University Hospital, Cancer Center, Kuopio, Finland
- University of Eastern Finland, Institute of Clinical Medicine, Oncology, Kuopio, Finland
- University of Eastern Finland, Translational Cancer Research Area, Kuopio, Finland
| | - Jacopo Azzollini
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Department of Medical Oncology and Hematology, Unit of Medical Genetics, Milan, Italy
| | - Judith Balmaña
- Vall d’Hebron Institute of Oncology, High Risk and Cancer Prevention Group, Barcelona, Spain
- University Hospital, Vall d’Hebron, Department of Medical Oncology, Barcelona, Spain
| | - Rosa B. Barkardottir
- Landspitali University Hospital, Department of Pathology, Reykjavik, Iceland
- University of Iceland, BMC (Biomedical Centre), Faculty of Medicine, Reykjavik, Iceland
| | - Daniel Barrowdale
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Julian Barwell
- University Hospitals of Leicester NHS Trust, Leicestershire Clinical Genetics Service, Leicester, UK
| | - Laura E. Beane Freeman
- National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD USA
| | - Charles Joly Beauparlant
- Centre Hospitalier Universitaire de Québec – Université Laval, Research Center, Genomics Center, Québec City, QC Canada
| | - Matthias W. Beckmann
- University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, Erlangen, Germany
| | - Sabine Behrens
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Javier Benitez
- Spanish National Cancer Research Centre (CNIO), Human Genetics Group, Human Cancer Genetics Programme, Madrid, Spain
- Spanish Network on Rare Diseases (CIBERER), Madrid, Spain
- Spanish National Cancer Research Centre (CNIO), Genotyping Unit (CEGEN), Human Cancer Genetics Programme, Madrid, Spain
| | - Raanan Berger
- Chaim Sheba Medical Center, The Institute of Oncology, Ramat Gan, Israel
| | - Marina Bermisheva
- Ufa Federal Research Center of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, Ufa, Russia
| | - Amie M. Blanco
- University of California San Francisco, Cancer Genetics and Prevention Program, San Francisco, CA USA
| | - Carl Blomqvist
- University of Helsinki, Department of Oncology, Helsinki University Hospital, Helsinki, Finland
- Örebro University Hospital, Department of Oncology, Örebro, Sweden
| | - Natalia V. Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
- Hannover Medical School, Department of Radiation Oncology, Hannover, Germany
- Hannover Medical School, Gynaecology Research Unit, Hannover, Germany
| | - Anders Bojesen
- Aarhus University Hospital, Department of Clinical Genetics, Aarhus, Denmark
| | - Stig E. Bojesen
- Copenhagen University Hospital, Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
- Copenhagen University Hospital, Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Herlev, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Bernardo Bonanni
- IEO, European Institute of Oncology IRCCS, Division of Cancer Prevention and Genetics, Milan, Italy
| | - Ake Borg
- Lund University and Skåne University Hospital, Department of Oncology, Lund, Sweden
| | - Angela F. Brady
- London North West University Hospitals NHS Trust, Northwick Park Hospital, North West Thames Regional Genetics Service, Kennedy Galton Centre, Harrow, UK
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, iFIT-Cluster of Excellence, Tübingen, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hermann Brenner
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Division of Preventive Oncology, Heidelberg, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, Bochum, Germany
| | - Barbara Burwinkel
- German Cancer Research Center (DKFZ), Molecular Epidemiology Group, C080 Heidelberg, Germany
- University of Heidelberg, Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, Heidelberg, Germany
| | - Saundra S. Buys
- Huntsman Cancer Institute, Department of Medicine, Salt Lake City, UT USA
| | - Trinidad Caldés
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Almuth Caliebe
- University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Institute of Human Genetics, Kiel, Germany
| | - Maria A. Caligo
- University Hospital of Pisa, Section of Molecular Genetics, Dept. of Laboratory Medicine, Pisa, Italy
| | - Daniele Campa
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
- University of Pisa, Department of Biology, Pisa, Italy
| | - Ian G. Campbell
- Peter MacCallum Cancer Center, Research Division, Melbourne, VIC Australia
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, VIC Australia
| | - Federico Canzian
- German Cancer Research Center (DKFZ), Genomic Epidemiology Group, Heidelberg, Germany
| | - Jose E. Castelao
- Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Oncology and Genetics Unit, Vigo, Spain
| | - Jenny Chang-Claude
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
- University Medical Center Hamburg-Eppendorf, Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), Hamburg, Germany
| | - Stephen J. Chanock
- National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD USA
| | | | - Christine L. Clarke
- University of Sydney, Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Anita Collavoli
- University and University Hospital of Pisa, Section of Genetic Oncology, Dept. of Laboratory Medicine, Pisa, Italy
| | | | - David G. Cox
- Imperial College London, Department of Epidemiology and Biostatistics, School of Public Health, London, UK
- Cancer Research Center of Lyon, INSERM, U1052 Lyon, France
| | - Cezary Cybulski
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
| | - Kamila Czene
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Mary B. Daly
- Fox Chase Cancer Center, Department of Clinical Genetics, Philadelphia, PA USA
| | - Miguel de la Hoya
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Peter Devilee
- Leiden University Medical Center, Department of Pathology, Leiden, The Netherlands
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
| | - Orland Diez
- Vall d’Hebron Institute of Oncology (VHIO), Oncogenetics Group, Barcelona, Spain
- University Hospital Vall d’Hebron, Area of Clinical and Molecular Genetics, Barcelona, Spain
| | - Yuan Chun Ding
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA USA
| | - Gillian S. Dite
- The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Victoria, Australia
| | - Nina Ditsch
- Ludwig Maximilian University of Munich, Department of Gynecology and Obstetrics, Munich, Germany
| | - Susan M. Domchek
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Abramson Cancer Center, Philadelphia, PA USA
| | | | - Isabel dos-Santos-Silva
- London School of Hygiene and Tropical Medicine, Department of Non-Communicable Disease Epidemiology, London, UK
| | - Katarzyna Durda
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
| | - Miriam Dwek
- University of Westminster, Department of Biomedical Sciences, Faculty of Science and Technology, London, UK
| | - Diana M. Eccles
- University of Southampton, Cancer Sciences Academic Unit, Faculty of Medicine, Southampton, UK
| | - Arif B. Ekici
- Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Institute of Human Genetics, University Hospital Erlangen, Erlangen, Germany
| | - A. Heather Eliassen
- Harvard Medical School, Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA USA
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA USA
| | - Carolina Ellberg
- Lund University, Department of Cancer Epidemiology, Clinical Sciences, Lund, Sweden
| | - Mikael Eriksson
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - D. Gareth Evans
- University of Manchester, Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester, UK
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester Centre for Genomic Medicine, Manchester, UK
| | - Peter A. Fasching
- University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, Erlangen, Germany
- University of California at Los Angeles, David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, Los Angeles, CA USA
| | - Jonine Figueroa
- National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD USA
- The University of Edinburgh Medical School, Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Edinburgh, UK
| | - Henrik Flyger
- Copenhagen University Hospital, Department of Breast Surgery, Herlev and Gentofte Hospital, Herlev, Denmark
| | - William D. Foulkes
- McGill University, Program in Cancer Genetics, Departments of Human Genetics and Oncology, Montréal, QC Canada
| | - Tara M. Friebel
- Harvard T.H. Chan School of Public Health, Boston, MA USA
- Dana-Farber Cancer Institute, Boston, MA USA
| | - Eitan Friedman
- Chaim Sheba Medical Center, The Susanne Levy Gertner Oncogenetics Unit, Ramat Gan, Israel
- Tel Aviv University, Sackler Faculty of Medicine, Ramat Aviv, Israel
| | - Marike Gabrielson
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Pragna Gaddam
- Memorial Sloan-Kettering Cancer Center, Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, New York, NY USA
| | - Manuela Gago-Dominguez
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Genomic Medicine Group, Galician Foundation of Genomic Medicine, Santiago de Compostela, Spain
- University of California San Diego, Moores Cancer Center, La Jolla, CA USA
| | - Chi Gao
- Harvard T.H. Chan School of Public Health, Program in Genetic Epidemiology and Statistical Genetics, Boston, MA USA
| | - Susan M. Gapstur
- American Cancer Society, Epidemiology Research Program, Atlanta, GA USA
| | - Judy Garber
- Dana-Farber Cancer Institute, Cancer Risk and Prevention Clinic, Boston, MA USA
| | - Montserrat García-Closas
- National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD USA
| | - José A. García-Sáenz
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Mia M. Gaudet
- American Cancer Society, Epidemiology Research Program, Atlanta, GA USA
| | - Simon A. Gayther
- Cedars-Sinai Medical Center, The Center for Bioinformatics and Functional Genomics at the Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA USA
| | - Graham G. Giles
- The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Victoria, Australia
- Cancer Council Victoria, Cancer Epidemiology Division, Melbourne, VIC Australia
- Monash University, Department of Epidemiology and Preventive Medicine, Melbourne, VIC Australia
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON Canada
| | - Andrew K. Godwin
- Kansas University Medical Center, Department of Pathology and Laboratory Medicine, Kansas City, KS USA
| | - Mark S. Goldberg
- McGill University, Department of Medicine, Montréal, QC Canada
- McGill University, Division of Clinical Epidemiology, Royal Victoria Hospital, Montréal, QC Canada
| | - David E. Goldgar
- Huntsman Cancer Institute, University of Utah School of Medicine, Department of Dermatology, Salt Lake City, UT USA
| | - Pascal Guénel
- INSERM, University Paris-Sud, University Paris-Saclay, Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), Villejuif, France
| | - Angelica M. Gutierrez-Barrera
- University of Texas MD Anderson Cancer Center, Department of Breast Medical Oncology and Clinical Genetics Program, Houston, TX USA
| | - Lothar Haeberle
- Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Department of Gynaecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Christopher A. Haiman
- University of Southern California, Department of Preventive Medicine, Keck School of Medicine, Los Angeles, CA USA
| | - Niclas Håkansson
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
| | - Per Hall
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
- Södersjukhuset, Department of Oncology, Stockholm, Sweden
| | - Ute Hamann
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg, Germany
| | - Patricia A. Harrington
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Alexander Hein
- University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, Erlangen, Germany
| | - Jane Heyworth
- The University of Western Australia, School of Population and Global Health, Perth, WA Australia
| | - Peter Hillemanns
- Hannover Medical School, Gynaecology Research Unit, Hannover, Germany
| | - Antoinette Hollestelle
- Erasmus MC Cancer Institute, Department of Medical Oncology, Family Cancer Clinic, Rotterdam, The Netherlands
| | - John L. Hopper
- The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Victoria, Australia
| | - H. Dean Hosgood
- Albert Einstein College of Medicine, Department of Epidemiology and Public Health, Bronx, NY USA
| | - Anthony Howell
- University of Manchester, Division of Cancer Sciences, Manchester, UK
| | - Chunling Hu
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN USA
| | - Peter J. Hulick
- NorthShore University HealthSystem, Center for Medical Genetics, Evanston, IL USA
- The University of Chicago Pritzker School of Medicine, Chicago, IL USA
| | - David J. Hunter
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA USA
- Harvard T.H. Chan School of Public Health, Program in Genetic Epidemiology and Statistical Genetics, Boston, MA USA
- University of Oxford, Nuffield Department of Population Health, Oxford, UK
| | | | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC USA
| | - Milena Jakimovska
- Macedonian Academy of Sciences and Arts, Research Centre for Genetic Engineering and Biotechnology ‘Georgi D. Efremov’, Skopje, Republic of Macedonia
| | - Anna Jakubowska
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
- Pomeranian Medical University, Independent Laboratory of Molecular Biology and Genetic Diagnostics, Szczecin, Poland
| | - Paul James
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, VIC Australia
- Peter MacCallum Cancer Center, Parkville Familial Cancer Centre, Melbourne, VIC Australia
| | - Ramunas Janavicius
- Vilnius University Hospital Santariskiu Clinics, Hematology, oncology and transfusion medicine center, Dept. of Molecular and Regenerative Medicine, Vilnius, Lithuania
- State Research Institute Innovative Medicine Center, Vilnius, Lithuania
| | - Wolfgang Janni
- University Hospital Ulm, Department of Gynaecology and Obstetrics, Ulm, Germany
| | - Esther M. John
- Stanford University School of Medicine, Department of Medicine (Oncology) and Stanford Cancer Institute, Stanford, CA USA
| | - Michael E. Jones
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
| | - Audrey Jung
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Rudolf Kaaks
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Beth Y. Karlan
- Cedars-Sinai Medical Center, Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA USA
| | - Elza Khusnutdinova
- Ufa Federal Research Center of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, Ufa, Russia
- Bashkir State Medical University, Department of Medical Genetics, Ufa, Russia
| | - Cari M. Kitahara
- National Cancer Institute, Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, Bethesda, MD USA
| | - Irene Konstantopoulou
- National Centre for Scientific Research ‘Demokritos’, Molecular Diagnostics Laboratory, INRASTES, Athens, Greece
| | - Stella Koutros
- National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD USA
| | - Peter Kraft
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA USA
- Harvard T.H. Chan School of Public Health, Program in Genetic Epidemiology and Statistical Genetics, Boston, MA USA
| | - Diether Lambrechts
- VIB, VIB Center for Cancer Biology, Leuven, Belgium
- University of Leuven, Laboratory for Translational Genetics, Department of Human Genetics, Leuven, Belgium
| | - Conxi Lazaro
- IDIBELL (Bellvitge Biomedical Research Institute),Catalan Institute of Oncology, CIBERONC, Molecular Diagnostic Unit, Hereditary Cancer Program, Barcelona, Spain
| | - Loic Le Marchand
- University of Hawaii Cancer Center, Epidemiology Program, Honolulu, HI USA
| | - Jenny Lester
- Cedars-Sinai Medical Center, Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA USA
| | - Fabienne Lesueur
- Inserm U900, Genetic Epidemiology of Cancer team, Paris, France
- PSL University, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Jenna Lilyquist
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN USA
| | - Jennifer T. Loud
- National Cancer Institute, Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, Bethesda, MD USA
| | - Karen H. Lu
- University of Texas MD Anderson Cancer Center, Department of Gynecologic Oncology and Clinical Cancer Genetics Program, Houston, TX USA
| | - Robert N. Luben
- University of Cambridge, Clinical Gerontology, Department of Public Health and Primary Care, Cambridge, UK
| | - Jan Lubinski
- Pomeranian Medical University, Department of Genetics and Pathology, Szczecin, Poland
| | - Arto Mannermaa
- University of Eastern Finland, Translational Cancer Research Area, Kuopio, Finland
- University of Eastern Finland, Institute of Clinical Medicine, Pathology and Forensic Medicine, Kuopio, Finland
- Kuopio University Hospital, Imaging Center, Department of Clinical Pathology, Kuopio, Finland
| | - Mehdi Manoochehri
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg, Germany
| | - Siranoush Manoukian
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Department of Medical Oncology and Hematology, Unit of Medical Genetics, Milan, Italy
| | - Sara Margolin
- Södersjukhuset, Department of Oncology, Stockholm, Sweden
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Stockholm, Sweden
| | - John W. M. Martens
- Erasmus MC Cancer Institute, Department of Medical Oncology, Family Cancer Clinic, Rotterdam, The Netherlands
| | - Tabea Maurer
- University Medical Center Hamburg-Eppendorf, Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), Hamburg, Germany
| | - Dimitrios Mavroudis
- University Hospital of Heraklion, Department of Medical Oncology, Heraklion, Greece
| | - Noura Mebirouk
- Inserm U900, Genetic Epidemiology of Cancer team, Paris, France
- PSL University, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Alfons Meindl
- Ludwig Maximilian University of Munich, Department of Gynecology and Obstetrics, Munich, Germany
| | - Usha Menon
- University College London, MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, London, UK
| | - Austin Miller
- Roswell Park Cancer Institute, NRG Oncology, Clinical Trials Development Division, Buffalo, NY USA
| | - Marco Montagna
- Veneto Institute of Oncology IOV - IRCCS, Immunology and Molecular Oncology Unit, Padua, Italy
| | - Katherine L. Nathanson
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Abramson Cancer Center, Philadelphia, PA USA
| | - Susan L. Neuhausen
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA USA
| | - William G. Newman
- University of Manchester, Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester, UK
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester Centre for Genomic Medicine, Manchester, UK
| | - Tu Nguyen-Dumont
- Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, VIC Australia
- The University of Melbourne, Department of Clinical Pathology, Melbourne, VIC Australia
| | - Finn Cilius Nielsen
- Rigshospitalet, Copenhagen University Hospital, Center for Genomic Medicine, Copenhagen, Denmark
| | - Sarah Nielsen
- The University of Chicago, Center for Clinical Cancer Genetics, Chicago, IL USA
| | | | - Kenneth Offit
- Memorial Sloan-Kettering Cancer Center, Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, New York, NY USA
- Memorial Sloan-Kettering Cancer Center, Clinical Genetics Service, Department of Medicine, New York, NY USA
| | - Edith Olah
- National Institute of Oncology, Department of Molecular Genetics, Budapest, Hungary
| | | | - Andrew F. Olshan
- University of North Carolina at Chapel Hill, Department of Epidemiology, Lineberger Comprehensive Cancer Center, Chapel Hill, NC USA
| | - Janet E. Olson
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN USA
| | - Håkan Olsson
- Lund University, Department of Cancer Epidemiology, Clinical Sciences, Lund, Sweden
| | - Ana Osorio
- Spanish National Cancer Research Centre (CNIO), Human Genetics Group, Human Cancer Genetics Programme, Madrid, Spain
- Spanish Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Laura Ottini
- University La Sapienza, Department of Molecular Medicine, Rome, Italy
| | - Bernard Peissel
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Department of Medical Oncology and Hematology, Unit of Medical Genetics, Milan, Italy
| | - Ana Peixoto
- Portuguese Oncology Institute, Department of Genetics, Porto, Portugal
| | - Julian Peto
- London School of Hygiene and Tropical Medicine, Department of Non-Communicable Disease Epidemiology, London, UK
| | - Dijana Plaseska-Karanfilska
- Macedonian Academy of Sciences and Arts, Research Centre for Genetic Engineering and Biotechnology ‘Georgi D. Efremov’, Skopje, Republic of Macedonia
| | - Timea Pocza
- National Institute of Oncology, Department of Molecular Genetics, Budapest, Hungary
| | - Nadege Presneau
- University of Westminster, Department of Biomedical Sciences, Faculty of Science and Technology, London, UK
| | - Miquel Angel Pujana
- IDIBELL (Bellvitge Biomedical Research Institute),Catalan Institute of Oncology, CIBERONC, ProCURE, Oncobell, Barcelona, Spain
| | - Kevin Punie
- Leuven Cancer Institute, University Hospitals Leuven, Multidisciplinary Breast Center, Department of General Medical Oncology, Leuven, Belgium
| | - Brigitte Rack
- University Hospital Ulm, Department of Gynaecology and Obstetrics, Ulm, Germany
| | | | - Muhammad U. Rashid
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg, Germany
- Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Department of Basic Sciences, Lahore, Pakistan
| | - Rohini Rau-Murthy
- Memorial Sloan-Kettering Cancer Center, Clinical Genetics Service, Department of Medicine, New York, NY USA
| | - Gad Rennert
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Flavio Lejbkowicz
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Valerie Rhenius
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Atocha Romero
- Hospital Universitario Puerta de Hierro, Medical Oncology Department, Madrid, Spain
| | - Matti A. Rookus
- The Netherlands Cancer Institute, Department of Epidemiology, Amsterdam, The Netherlands
| | - Eric A. Ross
- Fox Chase Cancer Center, Biostatistics and Bioinformatics Facility, Philadelphia, PA USA
| | - Maria Rossing
- Rigshospitalet, Copenhagen University Hospital, Center for Genomic Medicine, Copenhagen, Denmark
| | - Vilius Rudaitis
- Vilnius University, Medical Faculty, Institute of Clinical Medicine, Vilnius, Lithuania
| | - Matthias Ruebner
- Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Department of Gynaecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | | | - Kristin Sanden
- University of Wisconsin, Cancer Center at ProHealth Care, Waukesha, WI USA
| | - Marta Santamariña
- Spanish Network on Rare Diseases (CIBERER), Madrid, Spain
- Fundación Pública Galega Medicina Xenómica, Santiago De Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago De Compostela, Spain
| | - Maren T. Scheuner
- University of California San Francisco, Cancer Genetics and Prevention Program, San Francisco, CA USA
| | - Rita K. Schmutzler
- University Hospital of Cologne, Center for Hereditary Breast and Ovarian Cancer, Cologne, Germany
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Michael Schneider
- Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Department of Gynaecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Christopher Scott
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN USA
| | - Leigha Senter
- The Ohio State University, Clinical Cancer Genetics Program, Division of Human Genetics, Department of Internal Medicine, The Comprehensive Cancer Center, Columbus, OH USA
| | - Mitul Shah
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Priyanka Sharma
- University of Kansas Medical Center, Department of Internal Medicine, Division of Oncology, Westwood, KS USA
| | - Xiao-Ou Shu
- Vanderbilt University School of Medicine, Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN USA
| | - Jacques Simard
- Centre Hospitalier Universitaire de Québec – Université Laval, Research Center, Genomics Center, Québec City, QC Canada
| | - Christian F. Singer
- Medical University of Vienna, Dept of OB/GYN and Comprehensive Cancer Center, Vienna, Austria
| | - Christof Sohn
- University of Heidelberg, National Center for Tumor Diseases, Heidelberg, Germany
| | - Penny Soucy
- Centre Hospitalier Universitaire de Québec – Université Laval, Research Center, Genomics Center, Québec City, QC Canada
| | - Melissa C. Southey
- Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, VIC Australia
- The University of Melbourne, Department of Clinical Pathology, Melbourne, VIC Australia
| | - John J. Spinelli
- BC Cancer, Population Oncology, Vancouver, BC Canada
- University of British Columbia, School of Population and Public Health, Vancouver, BC Canada
| | - Linda Steele
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA USA
| | - Dominique Stoppa-Lyonnet
- Institut Curie, Service de Génétique, Paris, France
- INSERM U830, Department of Tumour Biology, Paris, France
- Université Paris Descartes, Paris, France
| | | | - Manuel R. Teixeira
- Portuguese Oncology Institute, Department of Genetics, Porto, Portugal
- University of Porto, Biomedical Sciences Institute (ICBAS), Porto, Portugal
| | - Mary Beth Terry
- Columbia University, Department of Epidemiology, Mailman School of Public Health, New York, NY USA
| | - Mads Thomassen
- Odense University Hospital, Department of Clinical Genetics, Odence C, Denmark
| | - Jennifer Thompson
- NorthShore University HealthSystem, Center for Medical Genetics, Evanston, IL USA
| | - Darcy L. Thull
- Magee-Womens Hospital, University of Pittsburgh School of Medicine, Department of Medicine, Pittsburgh, PA USA
| | - Marc Tischkowitz
- McGill University, Program in Cancer Genetics, Departments of Human Genetics and Oncology, Montréal, QC Canada
- University of Cambridge, Department of Medical Genetics, Cambridge, UK
| | - Rob A.E.M. Tollenaar
- Leiden University Medical Center, Department of Surgery, Leiden, The Netherlands
| | - Diana Torres
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, Heidelberg, Germany
- Pontificia Universidad Javeriana, Institute of Human Genetics, Bogota, Colombia
| | - Melissa A. Troester
- University of North Carolina at Chapel Hill, Department of Epidemiology, Lineberger Comprehensive Cancer Center, Chapel Hill, NC USA
| | - Thérèse Truong
- INSERM, University Paris-Sud, University Paris-Saclay, Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), Villejuif, France
| | - Nadine Tung
- Beth Israel Deaconess Medical Center, Department of Medical Oncology, Boston, MA USA
| | - Michael Untch
- Helios Clinics Berlin-Buch, Department of Gynecology and Obstetrics, Berlin, Germany
| | - Celine M. Vachon
- Mayo Clinic, Department of Health Sciences Research, Rochester, MN USA
| | | | - Elke M. van Veen
- University of Manchester, Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester, UK
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester Centre for Genomic Medicine, Manchester, UK
| | - Ana Vega
- Spanish Network on Rare Diseases (CIBERER), Madrid, Spain
- Fundación Pública Galega Medicina Xenómica, Santiago De Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago De Compostela, Spain
| | - Alessandra Viel
- Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Division of Functional onco-genomics and genetics, Aviano, Italy
| | - Barbara Wappenschmidt
- University Hospital of Cologne, Center for Hereditary Breast and Ovarian Cancer, Cologne, Germany
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | | | - Camilla Wendt
- Södersjukhuset, Department of Oncology, Stockholm, Sweden
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Stockholm, Sweden
| | - Greet Wieme
- Ghent University, Centre for Medical Genetics, Gent, Belgium
| | - Alicja Wolk
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
- Uppsala University, Department of Surgical Sciences, Uppsala, Sweden
| | - Xiaohong R. Yang
- National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD USA
| | - Wei Zheng
- Vanderbilt University School of Medicine, Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN USA
| | - Argyrios Ziogas
- University of California Irvine, Department of Epidemiology, Genetic Epidemiology Research Institute, Irvine, CA USA
| | - Kristin K. Zorn
- Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Alison M. Dunning
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Michael Lush
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Qin Wang
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Lesley McGuffog
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Michael T. Parsons
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD Australia
| | - Paul D. P. Pharoah
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Florentia Fostira
- National Centre for Scientific Research ‘Demokritos’, Molecular Diagnostics Laboratory, INRASTES, Athens, Greece
| | - Amanda E. Toland
- The Ohio State University, Department of Cancer Biology and Genetics, Columbus, OH USA
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON Canada
| | - Susan J. Ramus
- University of NSW Sydney, School of Women’s and Children’s Health, Faculty of Medicine, Sydney, NSW Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW Australia
| | - Anthony J. Swerdlow
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
- The Institute of Cancer Research, Division of Breast Cancer Research, London, UK
| | - Mark H. Greene
- National Cancer Institute, Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, Bethesda, MD USA
| | - Wendy K. Chung
- Columbia University, Departments of Pediatrics and Medicine, New York, NY USA
| | - Roger L. Milne
- The University of Melbourne, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, Melbourne, Victoria, Australia
- Cancer Council Victoria, Cancer Epidemiology Division, Melbourne, VIC Australia
- Monash University, Precision Medicine, School of Clinical Sciences at Monash Health, Clayton, VIC Australia
| | - Georgia Chenevix-Trench
- QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, Brisbane, QLD Australia
| | - Thilo Dörk
- Hannover Medical School, Gynaecology Research Unit, Hannover, Germany
| | - Marjanka K. Schmidt
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Division of Molecular Pathology, Amsterdam, The Netherlands
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Division of Psychosocial Research and Epidemiology, Amsterdam, The Netherlands
| | - Douglas F. Easton
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Paolo Radice
- Fondazione IRCCS Istituto Nazionale dei Tumori, Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Milan, Italy
| | - Eric Hahnen
- University Hospital of Cologne, Center for Hereditary Breast and Ovarian Cancer, Cologne, Germany
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Antonis C. Antoniou
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - Fergus J. Couch
- Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN USA
| | - Heli Nevanlinna
- University of Helsinki, Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Jordi Surrallés
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
- Institute of Biomedical Research, Sant Pau Hospital, Barcelona, Spain
- Department of Genetics, Sant Pau Hospital, Barcelona, Spain
| | - Paolo Peterlongo
- IFOM - the FIRC Institute for Molecular Oncology, Genome Diagnostics Program, Milan, Italy
| |
Collapse
|
67
|
Chang EYC, Tsai S, Aristizabal MJ, Wells JP, Coulombe Y, Busatto FF, Chan YA, Kumar A, Dan Zhu Y, Wang AYH, Fournier LA, Hieter P, Kobor MS, Masson JY, Stirling PC. MRE11-RAD50-NBS1 promotes Fanconi Anemia R-loop suppression at transcription-replication conflicts. Nat Commun 2019; 10:4265. [PMID: 31537797 PMCID: PMC6753070 DOI: 10.1038/s41467-019-12271-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/30/2019] [Indexed: 12/25/2022] Open
Abstract
Ectopic R-loop accumulation causes DNA replication stress and genome instability. To avoid these outcomes, cells possess a range of anti-R-loop mechanisms, including RNaseH that degrades the RNA moiety in R-loops. To comprehensively identify anti-R-loop mechanisms, we performed a genome-wide trigenic interaction screen in yeast lacking RNH1 and RNH201. We identified >100 genes critical for fitness in the absence of RNaseH, which were enriched for DNA replication fork maintenance factors including the MRE11-RAD50-NBS1 (MRN) complex. While MRN has been shown to promote R-loops at DNA double-strand breaks, we show that it suppresses R-loops and associated DNA damage at transcription-replication conflicts. This occurs through a non-nucleolytic function of MRE11 that is important for R-loop suppression by the Fanconi Anemia pathway. This work establishes a novel role for MRE11-RAD50-NBS1 in directing tolerance mechanisms at transcription-replication conflicts.
Collapse
Affiliation(s)
| | - Shuhe Tsai
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Maria J Aristizabal
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, V5Z 4H4, Canada
| | - James P Wells
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yan Coulombe
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Franciele F Busatto
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Yujia A Chan
- The Broad Institute of MIT and Harvard University, Cambridge, MA, 02142, USA
| | - Arun Kumar
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yi Dan Zhu
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | | | | | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, V5Z 4H4, Canada
| | - Jean-Yves Masson
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada.
| |
Collapse
|
68
|
Taylor AMR, Rothblum-Oviatt C, Ellis NA, Hickson ID, Meyer S, Crawford TO, Smogorzewska A, Pietrucha B, Weemaes C, Stewart GS. Chromosome instability syndromes. Nat Rev Dis Primers 2019; 5:64. [PMID: 31537806 PMCID: PMC10617425 DOI: 10.1038/s41572-019-0113-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 01/28/2023]
Abstract
Fanconi anaemia (FA), ataxia telangiectasia (A-T), Nijmegen breakage syndrome (NBS) and Bloom syndrome (BS) are clinically distinct, chromosome instability (or breakage) disorders. Each disorder has its own pattern of chromosomal damage, with cells from these patients being hypersensitive to particular genotoxic drugs, indicating that the underlying defect in each case is likely to be different. In addition, each syndrome shows a predisposition to cancer. Study of the molecular and genetic basis of these disorders has revealed mechanisms of recognition and repair of DNA double-strand breaks, DNA interstrand crosslinks and DNA damage during DNA replication. Specialist clinics for each disorder have provided the concentration of expertise needed to tackle their characteristic clinical problems and improve outcomes. Although some treatments of the consequences of a disorder may be possible, for example, haematopoietic stem cell transplantation in FA and NBS, future early intervention to prevent complications of disease will depend on a greater understanding of the roles of the affected DNA repair pathways in development. An important realization has been the predisposition to cancer in carriers of some of these gene mutations.
Collapse
Affiliation(s)
- A Malcolm R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | | | - Nathan A Ellis
- The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, and Paediatric and Adolescent Oncology, Institute of Cancer Sciences, University of Manchester, Manchester, UK
- Department of Paediatric and Adolescent Haematology and Oncology, Royal Manchester Children's Hospital and The Christie NHS Trust, Manchester, UK
| | - Thomas O Crawford
- Department of Neurology and Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Barbara Pietrucha
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Corry Weemaes
- Department of Pediatrics (Pediatric Immunology), Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
69
|
Domingues-Silva B, Silva B, Azzalin CM. ALTernative Functions for Human FANCM at Telomeres. Front Mol Biosci 2019; 6:84. [PMID: 31552268 PMCID: PMC6743340 DOI: 10.3389/fmolb.2019.00084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/26/2019] [Indexed: 01/13/2023] Open
Abstract
The human FANCM ATPase/translocase is involved in various cellular pathways including DNA damage repair, replication fork remodeling and R-loop resolution. Recently, reports from three independent laboratories have disclosed a previously unappreciated role for FANCM in telomerase-negative human cancer cells that maintain their telomeres through the Alternative Lengthening of Telomeres (ALT) pathway. In ALT cells, FANCM limits telomeric replication stress and damage, and, in turn, ALT activity by suppressing accumulation of telomeric R-loops and by regulating the action of the BLM helicase. As a consequence, FANCM inactivation leads to exaggerated ALT activity and ultimately cell death. The studies reviewed here not only unveil a novel function for human FANCM, but also point to this enzyme as a promising target for anti-ALT cancer therapy.
Collapse
Affiliation(s)
- Beatriz Domingues-Silva
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Bruno Silva
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
70
|
Tanaka H, Takeda K, Imai A. Polyamines alleviate the inhibitory effect of the DNA cross-linking agent mitomycin C on root growth. PLANT SIGNALING & BEHAVIOR 2019; 14:1659687. [PMID: 31446839 PMCID: PMC6804717 DOI: 10.1080/15592324.2019.1659687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Polyamines (putrescine, spermidine and spermine) are ubiquitously present in various types of cells of living organisms. They are involved in a variety of cellular processes, including cell proliferation and cell differentiation, and are required for abiotic stress tolerances in plants. However, it is still not understood whether polyamines are involved in the plant growth inhibition caused by DNA-damaging agents. In this study, we examined the effects of polyamines on the inhibition of plant root growth and gene expression in Arabidopsis thaliana treated with mitomycin C (MMC), a genotoxic agent that induces DNA interstrand crosslinks. We found that polyamines alleviated the inhibitory effect caused by MMC on root growth. In addition, we also found that polyamines alleviated the increased expression of AtBRCA1 and AtRAD51 genes induced by MMC treatment. Our study provides the first evidence that polyamines contribute to tolerance against plant-growth inhibition caused by a DNA-damaging chemical.
Collapse
Affiliation(s)
- Hidenori Tanaka
- Department of Biomedical Engineering, Graduate School of Science and Technology, Hiroshima Institute of Technology, Hiroshima, Japan
| | - Kazuya Takeda
- Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, Hiroshima, Japan
| | - Akihiro Imai
- Department of Biomedical Engineering, Graduate School of Science and Technology, Hiroshima Institute of Technology, Hiroshima, Japan
- Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, Hiroshima, Japan
| |
Collapse
|
71
|
FANCM limits ALT activity by restricting telomeric replication stress induced by deregulated BLM and R-loops. Nat Commun 2019; 10:2253. [PMID: 31138795 PMCID: PMC6538666 DOI: 10.1038/s41467-019-10179-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Telomerase negative immortal cancer cells elongate telomeres through the Alternative Lengthening of Telomeres (ALT) pathway. While sustained telomeric replicative stress is required to maintain ALT, it might also lead to cell death when excessive. Here, we show that the ATPase/translocase activity of FANCM keeps telomeric replicative stress in check specifically in ALT cells. When FANCM is depleted in ALT cells, telomeres become dysfunctional, and cells stop proliferating and die. FANCM depletion also increases ALT-associated marks and de novo synthesis of telomeric DNA. Depletion of the BLM helicase reduces the telomeric replication stress and cell proliferation defects induced by FANCM inactivation. Finally, FANCM unwinds telomeric R-loops in vitro and suppresses their accumulation in cells. Overexpression of RNaseH1 completely abolishes the replication stress remaining in cells codepleted for FANCM and BLM. Thus, FANCM allows controlled ALT activity and ALT cell proliferation by limiting the toxicity of uncontrolled BLM and telomeric R-loops. In cancer cells, telomeres can be elongated through homology directed-repair pathways in a process known as Alternative Lengthening of Telomeres (ALT). Here, the authors reveal that FANCM regulates ALT activity and ALT cell proliferation by limiting the activity of uncontrolled BLM and telomeric R-loops.
Collapse
|
72
|
Lu R, O'Rourke JJ, Sobinoff AP, Allen JAM, Nelson CB, Tomlinson CG, Lee M, Reddel RR, Deans AJ, Pickett HA. The FANCM-BLM-TOP3A-RMI complex suppresses alternative lengthening of telomeres (ALT). Nat Commun 2019; 10:2252. [PMID: 31138797 PMCID: PMC6538672 DOI: 10.1038/s41467-019-10180-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
The collapse of stalled replication forks is a major driver of genomic instability. Several committed mechanisms exist to resolve replication stress. These pathways are particularly pertinent at telomeres. Cancer cells that use Alternative Lengthening of Telomeres (ALT) display heightened levels of telomere-specific replication stress, and co-opt stalled replication forks as substrates for break-induced telomere synthesis. FANCM is a DNA translocase that can form independent functional interactions with the BLM-TOP3A-RMI (BTR) complex and the Fanconi anemia (FA) core complex. Here, we demonstrate that FANCM depletion provokes ALT activity, evident by increased break-induced telomere synthesis, and the induction of ALT biomarkers. FANCM-mediated attenuation of ALT requires its inherent DNA translocase activity and interaction with the BTR complex, but does not require the FA core complex, indicative of FANCM functioning to restrain excessive ALT activity by ameliorating replication stress at telomeres. Synthetic inhibition of FANCM-BTR complex formation is selectively toxic to ALT cancer cells.
Collapse
Affiliation(s)
- Robert Lu
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Julienne J O'Rourke
- Genome Stability Unit, St. Vincent's Institute, 9 Princes St, Fitzroy, 3065, VIC, Australia
- Department of Medicine (St. Vincent's), University of Melbourne, Parkville, 3052, VIC, Australia
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Joshua A M Allen
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Christopher B Nelson
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Christopher G Tomlinson
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Michael Lee
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute, 9 Princes St, Fitzroy, 3065, VIC, Australia.
- Department of Medicine (St. Vincent's), University of Melbourne, Parkville, 3052, VIC, Australia.
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia.
| |
Collapse
|
73
|
Huang J, Zhang J, Bellani MA, Pokharel D, Gichimu J, James RC, Gali H, Ling C, Yan Z, Xu D, Chen J, Meetei AR, Li L, Wang W, Seidman MM. Remodeling of Interstrand Crosslink Proximal Replisomes Is Dependent on ATR, FANCM, and FANCD2. Cell Rep 2019; 27:1794-1808.e5. [PMID: 31067464 PMCID: PMC6676478 DOI: 10.1016/j.celrep.2019.04.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 12/19/2018] [Accepted: 04/04/2019] [Indexed: 11/23/2022] Open
Abstract
Eukaryotic replisomes are driven by the mini chromosome maintenance (MCM [M]) helicase complex, an offset ring locked around the template for leading strand synthesis by CDC45 (C) and GINS (G) proteins. Although the CDC45 MCM GINS (CMG) structure implies that interstrand crosslinks (ICLs) are absolute blocks to replisomes, recent studies indicate that cells can restart DNA synthesis on the side of the ICL distal to the initial encounter. Here, we report that restart requires ATR and is promoted by FANCD2 and phosphorylated FANCM. Following introduction of genomic ICLs and dependent on ATR and FANCD2 but not on the Fanconi anemia core proteins or FAAP24, FANCM binds the replisome complex, with concomitant release of the GINS proteins. In situ analysis of replisomes proximal to ICLs confirms the ATR-dependent release of GINS proteins while CDC45 is retained on the remodeled replisome. The results demonstrate the plasticity of CMG composition in response to replication stress.
Collapse
Affiliation(s)
- Jing Huang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China.
| | - Jing Zhang
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Marina A Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Durga Pokharel
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Julia Gichimu
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Ryan C James
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Himabindu Gali
- Department of Pharmacology & Experimental Therapeutics and Medicine, Boston University School of Medicine, 72 East Concord St., K-712D, Boston, MA 02118-2526
| | - Chen Ling
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Zhijiang Yan
- Institute of DNA Repair Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dongyi Xu
- Peking University, Beijing 100871, China
| | - Junjie Chen
- Department Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77225-0334, USA
| | - Amom Ruhikanta Meetei
- Division of Experimental Hematology and Cancer Biology and Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lei Li
- Department Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77225-0334, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| |
Collapse
|
74
|
The Fanconi Anemia Pathway and Fertility. Trends Genet 2019; 35:199-214. [DOI: 10.1016/j.tig.2018.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
|
75
|
Basbous J, Constantinou A. A tumor suppressive DNA translocase named FANCM. Crit Rev Biochem Mol Biol 2019; 54:27-40. [DOI: 10.1080/10409238.2019.1568963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jihane Basbous
- Institute of Human Genetics (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Angelos Constantinou
- Institute of Human Genetics (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| |
Collapse
|
76
|
van de Vrugt HJ, Harmsen T, Riepsaame J, Alexantya G, van Mil SE, de Vries Y, Bin Ali R, Huijbers IJ, Dorsman JC, Wolthuis RMF, Te Riele H. Effective CRISPR/Cas9-mediated correction of a Fanconi anemia defect by error-prone end joining or templated repair. Sci Rep 2019; 9:768. [PMID: 30683899 PMCID: PMC6347620 DOI: 10.1038/s41598-018-36506-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
Fanconi anemia (FA) is a cancer predisposition syndrome characterized by congenital abnormalities, bone marrow failure, and hypersensitivity to aldehydes and crosslinking agents. For FA patients, gene editing holds promise for therapeutic applications aimed at functionally restoring mutated genes in hematopoietic stem cells. However, intrinsic FA DNA repair defects may obstruct gene editing feasibility. Here, we report on the CRISPR/Cas9-mediated correction of a disruptive mutation in Fancf. Our experiments revealed that gene editing could effectively restore Fancf function via error-prone end joining resulting in a 27% increased survival in the presence of mitomycin C. In addition, templated gene correction could be achieved after double strand or single strand break formation. Although templated gene editing efficiencies were low (≤6%), FA corrected embryonic stem cells acquired a strong proliferative advantage over non-corrected cells, even without imposing genotoxic stress. Notably, Cas9 nickase activity resulted in mono-allelic gene editing and avoidance of undesired mutagenesis. In conclusion: DNA repair defects associated with FANCF deficiency do not prohibit CRISPR/Cas9 gene correction. Our data provide a solid basis for the application of pre-clinical models to further explore the potential of gene editing against FA, with the eventual aim to obtain therapeutic strategies against bone marrow failure.
Collapse
Affiliation(s)
- Henri J van de Vrugt
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. .,Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| | - Tim Harmsen
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Joey Riepsaame
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Genome Engineering Oxford, Sir William Dunn School of Pathology, University of Oxford South Parks Road, OX1 3RE, Oxford, UK
| | - Georgina Alexantya
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Saskia E van Mil
- Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Yne de Vries
- Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Rahmen Bin Ali
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Ivo J Huijbers
- Mouse Clinic for Cancer and Aging research (MCCA) Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Josephine C Dorsman
- Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Rob M F Wolthuis
- Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Hein Te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. .,Section of Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
77
|
RAD-ical New Insights into RAD51 Regulation. Genes (Basel) 2018; 9:genes9120629. [PMID: 30551670 PMCID: PMC6316741 DOI: 10.3390/genes9120629] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 01/17/2023] Open
Abstract
The accurate repair of DNA is critical for genome stability and cancer prevention. DNA double-strand breaks are one of the most toxic lesions; however, they can be repaired using homologous recombination. Homologous recombination is a high-fidelity DNA repair pathway that uses a homologous template for repair. One central HR step is RAD51 nucleoprotein filament formation on the single-stranded DNA ends, which is a step required for the homology search and strand invasion steps of HR. RAD51 filament formation is tightly controlled by many positive and negative regulators, which are collectively termed the RAD51 mediators. The RAD51 mediators function to nucleate, elongate, stabilize, and disassemble RAD51 during repair. In model organisms, RAD51 paralogs are RAD51 mediator proteins that structurally resemble RAD51 and promote its HR activity. New functions for the RAD51 paralogs during replication and in RAD51 filament flexibility have recently been uncovered. Mutations in the human RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3, and SWSAP1) are found in a subset of breast and ovarian cancers. Despite their discovery three decades ago, few advances have been made in understanding the function of the human RAD51 paralogs. Here, we discuss the current perspective on the in vivo and in vitro function of the RAD51 paralogs, and their relationship with cancer in vertebrate models.
Collapse
|
78
|
The Unresolved Problem of DNA Bridging. Genes (Basel) 2018; 9:genes9120623. [PMID: 30545131 PMCID: PMC6316547 DOI: 10.3390/genes9120623] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022] Open
Abstract
Accurate duplication and transmission of identical genetic information into offspring cells lies at the heart of a cell division cycle. During the last stage of cellular division, namely mitosis, the fully replicated DNA molecules are condensed into X-shaped chromosomes, followed by a chromosome separation process called sister chromatid disjunction. This process allows for the equal partition of genetic material into two newly born daughter cells. However, emerging evidence has shown that faithful chromosome segregation is challenged by the presence of persistent DNA intertwining structures generated during DNA replication and repair, which manifest as so-called ultra-fine DNA bridges (UFBs) during anaphase. Undoubtedly, failure to disentangle DNA linkages poses a severe threat to mitosis and genome integrity. This review will summarize the possible causes of DNA bridges, particularly sister DNA inter-linkage structures, in an attempt to explain how they may be processed and how they influence faithful chromosome segregation and the maintenance of genome stability.
Collapse
|
79
|
Wang H, Li S, Zhang H, Wang Y, Hao S, Wu X. BLM prevents instability of structure-forming DNA sequences at common fragile sites. PLoS Genet 2018; 14:e1007816. [PMID: 30496191 PMCID: PMC6289451 DOI: 10.1371/journal.pgen.1007816] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/11/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023] Open
Abstract
Genome instability often arises at common fragile sites (CFSs) leading to cancer-associated chromosomal rearrangements. However, the underlying mechanisms of how CFS protection is achieved is not well understood. We demonstrate that BLM plays an important role in the maintenance of genome stability of structure-forming AT-rich sequences derived from CFSs (CFS-AT). BLM deficiency leads to increased DSB formation and hyper mitotic recombination at CFS-AT and induces instability of the plasmids containing CFS-AT. We further showed that BLM is required for suppression of CFS breakage upon oncogene expression. Both helicase activity and ATR-mediated phosphorylation of BLM are important for preventing genetic instability at CFS-AT sequences. Furthermore, the role of BLM in protecting CFS-AT is not epistatic to that of FANCM, a translocase that is involved in preserving CFS stability. Loss of BLM helicase activity leads to drastic decrease of cell viability in FANCM deficient cells. We propose that BLM and FANCM utilize different mechanisms to remove DNA secondary structures forming at CFS-AT on replication forks, thereby preventing DSB formation and maintaining CFS stability. Common fragile sites (CFSs) are large chromosomal regions which are more prone to breakage than other places in the genome. They are a part of normal chromosome structure and are present in all human beings, but are also hotspots for chromosomal rearrangement during oncogenesis. Understanding how CFSs are protected to prevent genome instability is thus extremely important for revealing the mechanism underlying cancer development. We found that Bloom syndrome protein BLM is involved in resolving DNA secondary structures that arise at AT-rich sequences in CFSs, suggesting a critical function of BLM in protecting CFSs. We also found that this BLM function is distinct from the role of Fanconi anemia protein FANCM in protecting CFSs, and loss of both BLM and FANCM activities leads to cell death. These studies reveal important mechanisms of the maintenance of CFS stability in mammalian cells.
Collapse
Affiliation(s)
- Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Huimin Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ya Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
80
|
Thapar R. Regulation of DNA Double-Strand Break Repair by Non-Coding RNAs. Molecules 2018; 23:molecules23112789. [PMID: 30373256 PMCID: PMC6278438 DOI: 10.3390/molecules23112789] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/12/2023] Open
Abstract
DNA double-strand breaks (DSBs) are deleterious lesions that are generated in response to ionizing radiation or replication fork collapse that can lead to genomic instability and cancer. Eukaryotes have evolved two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ) to repair DSBs. Whereas the roles of protein-DNA interactions in HR and NHEJ have been fairly well defined, the functions of small and long non-coding RNAs and RNA-DNA hybrids in the DNA damage response is just beginning to be elucidated. This review summarizes recent discoveries on the identification of non-coding RNAs and RNA-mediated regulation of DSB repair.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
81
|
Abstract
Timely recruitment of DNA damage response proteins to sites of genomic structural lesions is very important for signaling mechanisms to activate appropriate cell cycle checkpoints but also repair the altered DNA sequence to suppress mutagenesis. The eukaryotic cell is characterized by a complex cadre of players and pathways to ensure genomic stability in the face of replication stress or outright genomic insult by endogenous metabolites or environmental agents. Among the key performers are molecular motor DNA unwinding enzymes known as helicases that sense genomic perturbations and separate structured DNA strands so that replacement of a damaged base or sugar-phosphate backbone lesion can occur efficiently. Mutations in the BLM gene encoding the DNA helicase BLM leads to a rare chromosomal instability disorder known as Bloom's syndrome. In a recent paper by the Sengupta lab, BLM's role in the correction of double-strand breaks (DSB), a particularly dangerous form of DNA damage, was investigated. Adding to the complexity, BLM appears to be a key ringmaster of DSB repair as it acts both positively and negatively to regulate correction pathways of high or low fidelity. The FANCJ DNA helicase, mutated in another chromosomal instability disorder known as Fanconi Anemia, is an important player that likely coordinates with BLM in the balancing act. Further studies to dissect the roles of DNA helicases like FANCJ and BLM in DSB repair are warranted.
Collapse
Affiliation(s)
- Srijita Dhar
- a Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , NIH Biomedical Research Center , Baltimore , MD , USA
| | - Robert M Brosh
- a Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , NIH Biomedical Research Center , Baltimore , MD , USA
| |
Collapse
|
82
|
RUNX Poly(ADP-Ribosyl)ation and BLM Interaction Facilitate the Fanconi Anemia Pathway of DNA Repair. Cell Rep 2018; 24:1747-1755. [DOI: 10.1016/j.celrep.2018.07.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/31/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
|
83
|
Zhai B, DuPrez K, Han X, Yuan Z, Ahmad S, Xu C, Gu L, Ni J, Fan L, Shen Y. The archaeal ATPase PINA interacts with the helicase Hjm via its carboxyl terminal KH domain remodeling and processing replication fork and Holliday junction. Nucleic Acids Res 2018; 46:6627-6641. [PMID: 29846688 PMCID: PMC6061704 DOI: 10.1093/nar/gky451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 11/27/2022] Open
Abstract
PINA is a novel ATPase and DNA helicase highly conserved in Archaea, the third domain of life. The PINA from Sulfolobus islandicus (SisPINA) forms a hexameric ring in crystal and solution. The protein is able to promote Holliday junction (HJ) migration and physically and functionally interacts with Hjc, the HJ specific endonuclease. Here, we show that SisPINA has direct physical interaction with Hjm (Hel308a), a helicase presumably targeting replication forks. In vitro biochemical analysis revealed that Hjm, Hjc, and SisPINA are able to coordinate HJ migration and cleavage in a concerted way. Deletion of the carboxyl 13 amino acid residues impaired the interaction between SisPINA and Hjm. Crystal structure analysis showed that the carboxyl 70 amino acid residues fold into a type II KH domain which, in other proteins, functions in binding RNA or ssDNA. The KH domain not only mediates the interactions of PINA with Hjm and Hjc but also regulates the hexameric assembly of PINA. Our results collectively suggest that SisPINA, Hjm and Hjc work together to function in replication fork regression, HJ formation and HJ cleavage.
Collapse
Affiliation(s)
- Binyuan Zhai
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Kevin DuPrez
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Xiaoyun Han
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Zenglin Yuan
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Sohail Ahmad
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Cheng Xu
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Li Fan
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| |
Collapse
|
84
|
The concerted roles of FANCM and Rad52 in the protection of common fragile sites. Nat Commun 2018; 9:2791. [PMID: 30022024 PMCID: PMC6052092 DOI: 10.1038/s41467-018-05066-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/10/2018] [Indexed: 12/18/2022] Open
Abstract
Common fragile sites (CFSs) are prone to chromosomal breakage and are hotspots for chromosomal rearrangements in cancer cells. We uncovered a novel function of Fanconi anemia (FA) protein FANCM in the protection of CFSs that is independent of the FA core complex and the FANCI–FANCD2 complex. FANCM, along with its binding partners FAAP24 and MHF1/2, is recruited to CFS-derived structure-prone AT-rich sequences, where it suppresses DNA double-strand break (DSB) formation and mitotic recombination in a manner dependent on FANCM translocase activity. Interestingly, we also identified an indispensable function of Rad52 in the repair of DSBs at CFS-derived AT-rich sequences, despite its nonessential function in general homologous recombination (HR) in mammalian cells. Suppression of Rad52 expression in combination with FANCM knockout drastically reduces cell and tumor growth, suggesting a synthetic lethality interaction between these two genes, which offers a potential targeted treatment strategy for FANCM-deficient tumors with Rad52 inhibition. Fanconi anemia core proteins have been linked to common fragile site stability. Here the authors shed light into the role of FANCM in common fragile site protection by suppressing double-strand break formation and mitotic recombination.
Collapse
|
85
|
A senataxin-associated exonuclease SAN1 is required for resistance to DNA interstrand cross-links. Nat Commun 2018; 9:2592. [PMID: 29968717 PMCID: PMC6030175 DOI: 10.1038/s41467-018-05008-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/07/2018] [Indexed: 02/02/2023] Open
Abstract
Interstrand DNA cross-links (ICLs) block both replication and transcription, and are commonly repaired by the Fanconi anemia (FA) pathway. However, FA-independent repair mechanisms of ICLs remain poorly understood. Here we report a previously uncharacterized protein, SAN1, as a 5′ exonuclease that acts independently of the FA pathway in response to ICLs. Deletion of SAN1 in HeLa cells and mouse embryonic fibroblasts causes sensitivity to ICLs, which is prevented by re-expression of wild type but not nuclease-dead SAN1. SAN1 deletion causes DNA damage and radial chromosome formation following treatment with Mitomycin C, phenocopying defects in the FA pathway. However, SAN1 deletion is not epistatic with FANCD2, a core FA pathway component. Unexpectedly, SAN1 binds to Senataxin (SETX), an RNA/DNA helicase that resolves R-loops. SAN1-SETX binding is increased by ICLs, and is required to prevent cross-link sensitivity. We propose that SAN1 functions with SETX in a pathway necessary for resistance to ICLs. When DNA interstrand cross-links damage occurs, it causes disruption of replication and transcription. Here the authors identify FAM120B/SAN1, a 5′ exonuclease involved in the repair process of Interstrand Crosslinks independently of the Fanconi Anemia pathway.
Collapse
|
86
|
Yin H, Ma H, Hussain S, Zhang H, Xie X, Jiang L, Jiang X, Iqbal F, Bukhari I, Jiang H, Ali A, Zhong L, Li T, Fan S, Zhang B, Gao J, Li Y, Nazish J, Khan T, Khan M, Zubair M, Hao Q, Fang H, Huang J, Huleihel M, Sha J, Pandita TK, Zhang Y, Shi Q. A homozygous FANCM frameshift pathogenic variant causes male infertility. Genet Med 2018; 21:62-70. [PMID: 29895858 PMCID: PMC6752308 DOI: 10.1038/s41436-018-0015-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/20/2018] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Fanconi anemia (FA) genes play important roles in spermatogenesis. In mice, disruption of Fancm impairs male fertility and testicular integrity, but whether FANCM pathogenic variants (PV) similarly affect fertility in men is unknown. Here we characterize a Pakistani family having three infertile brothers, two manifesting oligoasthenospermia and one exhibiting azoospermia, born to first-cousin parents. A homozygous PV in FANCM (c.1946_1958del, p.P648Lfs*16) was found cosegregating with male infertility. Our objective is to validate that FANCM p.P648Lfs*16 is the PV causing infertility in this family. METHODS Exome and Sanger sequencing were used for PV screening. DNA interstrand crosslink (ICL) sensitivity was assessed in lymphocytes from patients. A mouse model carrying a PV nearly equivalent to that in the patients (FancmΔC/ΔC) was generated, followed by functional analysis in spermatogenesis. RESULTS The loss-of-function FANCM PV increased ICL sensitivity in lymphocytes of patients and FancmΔC/ΔC spermatogonia. Adult FancmΔC/ΔC mice showed spermatogenic failure, with germ cell loss in 50.2% of testicular tubules and round-spermatid maturation arrest in 43.5% of tubules. In addition, neither bone marrow failure nor cancer/tumor was detected in all the patients or adult FancmΔC/ΔC mice. CONCLUSION These findings revealed male infertility to be a novel phenotype of human patients with a biallelic FANCM PV.
Collapse
Affiliation(s)
- Hao Yin
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Hui Ma
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Sajjad Hussain
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Huan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Xuefeng Xie
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Long Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Xiaohua Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Furhan Iqbal
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Ihtisham Bukhari
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Hanwei Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Asim Ali
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Liangwen Zhong
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Tao Li
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Suixing Fan
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Beibei Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Jianing Gao
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Yang Li
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Jabeen Nazish
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Teka Khan
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Manan Khan
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Muhammad Zubair
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Qiaomei Hao
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Hui Fang
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Mahmoud Huleihel
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Yuanwei Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China.
| | - Qinghua Shi
- Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
87
|
Panneerselvam J, Wang H, Zhang J, Che R, Yu H, Fei P. BLM promotes the activation of Fanconi Anemia signaling pathway. Oncotarget 2017; 7:32351-61. [PMID: 27083049 PMCID: PMC5078018 DOI: 10.18632/oncotarget.8707] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/28/2016] [Indexed: 12/21/2022] Open
Abstract
Mutations in the human RecQ helicase, BLM, causes Bloom Syndrome, which is a rare autosomal recessive disorder and characterized by genomic instability and an increased risk of cancer. Fanconi Anemia (FA), resulting from mutations in any of the 19 known FA genes and those yet to be known, is also characterized by chromosomal instability and a high incidence of cancer. BLM helicase and FA proteins, therefore, may work in a common tumor-suppressor signaling pathway. To date, it remains largely unclear as to how BLM and FA proteins work concurrently in the maintenance of genome stability. Here we report that BLM is involved in the early activation of FA group D2 protein (FANCD2). We found that FANCD2 activation is substantially delayed and attenuated in crosslinking agent-treated cells harboring deficient Blm compared to similarly treated control cells with sufficient BLM. We also identified that the domain VI of BLM plays an essential role in promoting FANCD2 activation in cells treated with DNA crosslinking agents, especially ultraviolet B. The similar biological effects performed by ΔVI-BLM and inactivated FANCD2 further confirm the relationship between BLM and FANCD2. Mutations within the domain VI of BLM detected in human cancer samples demonstrate the functional importance of this domain, suggesting human tumorigenicity resulting from mtBLM may be at least partly attributed to mitigated FANCD2 activation. Collectively, our data show a previously unknown regulatory liaison in advancing our understanding of how the cancer susceptibility gene products act in concert to maintain genome stability.
Collapse
Affiliation(s)
| | - Hong Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Current address: Sun Yat-Sen University, Guangzhou, China
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Raymond Che
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Herbert Yu
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
88
|
Sarlós K, Biebricher A, Petermann EJG, Wuite GJL, Hickson ID. Knotty Problems during Mitosis: Mechanistic Insight into the Processing of Ultrafine DNA Bridges in Anaphase. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:187-195. [PMID: 29167280 DOI: 10.1101/sqb.2017.82.033647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To survive and proliferate, cells have to faithfully segregate their newly replicated genomic DNA to the two daughter cells. However, the sister chromatids of mitotic chromosomes are frequently interlinked by so-called ultrafine DNA bridges (UFBs) that are visible in the anaphase of mitosis. UFBs can only be detected by the proteins bound to them and not by staining with conventional DNA dyes. These DNA bridges are presumed to represent entangled sister chromatids and hence pose a threat to faithful segregation. A failure to accurately unlink UFB DNA results in chromosome segregation errors and binucleation. This, in turn, compromises genome integrity, which is a hallmark of cancer. UFBs are actively removed during anaphase, and most known UFB-associated proteins are enzymes involved in DNA repair in interphase. However, little is known about the mitotic activities of these enzymes or the exact DNA structures present on UFBs. We focus on the biology of UFBs, with special emphasis on their underlying DNA structure and the decatenation machineries that process UFBs.
Collapse
Affiliation(s)
- Kata Sarlós
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Andreas Biebricher
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Erwin J G Petermann
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
89
|
Nepal M, Che R, Zhang J, Ma C, Fei P. Fanconi Anemia Signaling and Cancer. Trends Cancer 2017; 3:840-856. [PMID: 29198440 DOI: 10.1016/j.trecan.2017.10.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022]
Abstract
The extremely high cancer incidence associated with patients suffering from a rare human genetic disease, Fanconi anemia (FA), demonstrates the importance of FA genes. Over the course of human tumor development, FA genes perform critical tumor-suppression roles. In doing so, FA provides researchers with a unique genetic model system to study cancer etiology. Here, we review how aberrant function of the 22 FA genes and their signaling network contributes to malignancy. From this perspective, we will also discuss how the knowledge discovered from FA research serves basic and translational cancer research.
Collapse
Affiliation(s)
- Manoj Nepal
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Raymond Che
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, USA
| | - Chi Ma
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
90
|
Moder M, Velimezi G, Owusu M, Mazouzi A, Wiedner M, Ferreira da Silva J, Robinson-Garcia L, Schischlik F, Slavkovsky R, Kralovics R, Schuster M, Bock C, Ideker T, Jackson SP, Menche J, Loizou JI. Parallel genome-wide screens identify synthetic viable interactions between the BLM helicase complex and Fanconi anemia. Nat Commun 2017; 8:1238. [PMID: 29089570 PMCID: PMC5663702 DOI: 10.1038/s41467-017-01439-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 09/15/2017] [Indexed: 02/08/2023] Open
Abstract
Maintenance of genome integrity via repair of DNA damage is a key biological process required to suppress diseases, including Fanconi anemia (FA). We generated loss-of-function human haploid cells for FA complementation group C (FANCC), a gene encoding a component of the FA core complex, and used genome-wide CRISPR libraries as well as insertional mutagenesis to identify synthetic viable (genetic suppressor) interactions for FA. Here we show that loss of the BLM helicase complex suppresses FANCC phenotypes and we confirm this interaction in cells deficient for FA complementation group I and D2 (FANCI and FANCD2) that function as part of the FA I-D2 complex, indicating that this interaction is not limited to the FA core complex, hence demonstrating that systematic genome-wide screening approaches can be used to reveal genetic viable interactions for DNA repair defects.
Collapse
Affiliation(s)
- Martin Moder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Georgia Velimezi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Michel Owusu
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Abdelghani Mazouzi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Marc Wiedner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Joana Ferreira da Silva
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Lydia Robinson-Garcia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Fiorella Schischlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Rastislav Slavkovsky
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Trey Ideker
- Department of Medicine, Division of Genetics, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- The Cancer Cell Map Initiative, La Jolla, CA, 92093, USA
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria.
| |
Collapse
|
91
|
Moriel-Carretero M, Ovejero S, Gérus-Durand M, Vryzas D, Constantinou A. Fanconi anemia FANCD2 and FANCI proteins regulate the nuclear dynamics of splicing factors. J Cell Biol 2017; 216:4007-4026. [PMID: 29030393 PMCID: PMC5716273 DOI: 10.1083/jcb.201702136] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/02/2017] [Accepted: 08/25/2017] [Indexed: 01/20/2023] Open
Abstract
Moriel-Carretero et al. show that the Fanconi anemia proteins FANCI and FANCD2 associate with the splicing factor SF3B1 and that DNA replication stress induces the FANCI-dependent release of SF3B1 from nuclear speckles. FANCI and FANCD2 prevent accumulation of postcatalytic intron lariats, suggesting that they help coordinate DNA replication and transcription. Proteins disabled in the cancer-prone disorder Fanconi anemia (FA) ensure the maintenance of chromosomal stability during DNA replication. FA proteins regulate replication dynamics, coordinate replication-coupled repair of interstrand DNA cross-links, and mitigate conflicts between replication and transcription. Here we show that FANCI and FANCD2 associate with splicing factor 3B1 (SF3B1), a key spliceosomal protein of the U2 small nuclear ribonucleoprotein (U2 snRNP). FANCI is in close proximity to SF3B1 in the nucleoplasm of interphase and mitotic cells. Furthermore, we find that DNA replication stress induces the release of SF3B1 from nuclear speckles in a manner that depends on FANCI and on the activity of the checkpoint kinase ATR. In chromatin, both FANCD2 and FANCI associate with SF3B1, prevent accumulation of postcatalytic intron lariats, and contribute to the timely eviction of splicing factors. We propose that FANCD2 and FANCI contribute to the organization of functional domains in chromatin, ensuring the coordination of DNA replication and cotranscriptional processes.
Collapse
Affiliation(s)
- María Moriel-Carretero
- Institute of Human Genetics, Centre National de la Recherche Scientifique UMR 9002, Université de Montpellier, Montpellier, France
| | - Sara Ovejero
- Institute of Human Genetics, Centre National de la Recherche Scientifique UMR 9002, Université de Montpellier, Montpellier, France
| | - Marie Gérus-Durand
- Institute of Human Genetics, Centre National de la Recherche Scientifique UMR 9002, Université de Montpellier, Montpellier, France
| | - Dimos Vryzas
- Institute of Human Genetics, Centre National de la Recherche Scientifique UMR 9002, Université de Montpellier, Montpellier, France
| | - Angelos Constantinou
- Institute of Human Genetics, Centre National de la Recherche Scientifique UMR 9002, Université de Montpellier, Montpellier, France
| |
Collapse
|
92
|
Bogliolo M, Bluteau D, Lespinasse J, Pujol R, Vasquez N, d'Enghien CD, Stoppa-Lyonnet D, Leblanc T, Soulier J, Surrallés J. Biallelic truncating FANCM mutations cause early-onset cancer but not Fanconi anemia. Genet Med 2017; 20:458-463. [DOI: 10.1038/gim.2017.124] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/08/2017] [Indexed: 01/01/2023] Open
|
93
|
Crouch JD, Brosh RM. Mechanistic and biological considerations of oxidatively damaged DNA for helicase-dependent pathways of nucleic acid metabolism. Free Radic Biol Med 2017; 107:245-257. [PMID: 27884703 PMCID: PMC5440220 DOI: 10.1016/j.freeradbiomed.2016.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022]
Abstract
Cells are under constant assault from reactive oxygen species that occur endogenously or arise from environmental agents. An important consequence of such stress is the generation of oxidatively damaged DNA, which is represented by a wide range of non-helix distorting and helix-distorting bulkier lesions that potentially affect a number of pathways including replication and transcription; consequently DNA damage tolerance and repair pathways are elicited to help cells cope with the lesions. The cellular consequences and metabolism of oxidatively damaged DNA can be quite complex with a number of DNA metabolic proteins and pathways involved. Many of the responses to oxidative stress involve a specialized class of enzymes known as helicases, the topic of this review. Helicases are molecular motors that convert the energy of nucleoside triphosphate hydrolysis to unwinding of structured polynucleic acids. Helicases by their very nature play fundamentally important roles in DNA metabolism and are implicated in processes that suppress chromosomal instability, genetic disease, cancer, and aging. We will discuss the roles of helicases in response to nuclear and mitochondrial oxidative stress and how this important class of enzymes help cells cope with oxidatively generated DNA damage through their functions in the replication stress response, DNA repair, and transcriptional regulation.
Collapse
Affiliation(s)
- Jack D Crouch
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|
94
|
Ishiai M, Sato K, Tomida J, Kitao H, Kurumizaka H, Takata M. Activation of the FA pathway mediated by phosphorylation and ubiquitination. Mutat Res 2017; 803-805:89-95. [PMID: 28552166 DOI: 10.1016/j.mrfmmm.2017.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022]
Abstract
Fanconi anemia (FA) is a devastating hereditary condition that impacts genome integrity, leading to clinical features such as skeletal and visceral organ malformations, attrition of bone marrow stem cells, and carcinogenesis. At least 21 proteins, when absent or defective, have been implicated in this disorder, and they together constitute the FA pathway, which functions in detection and repair of, and tolerance to, endogenous DNA damage. The damage primarily handled by the FA pathway has been assumed to be related to DNA interstrand crosslinks (ICLs). The FA pathway is activated upon ICL damage, and a hallmark of this activation is the mono-ubiquitination events of the key FANCD2-FANCI protein complex. Recent data have revealed unexpectedly complex details in the regulation of FA pathway activation by ICLs. In this short review, we summarize the knowledge accumulated over the years regarding how the FA pathway is activated via protein modifications.
Collapse
Affiliation(s)
- Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Koichi Sato
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Junya Tomida
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Hiroyuki Kitao
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan.
| |
Collapse
|
95
|
Palovcak A, Liu W, Yuan F, Zhang Y. Maintenance of genome stability by Fanconi anemia proteins. Cell Biosci 2017; 7:8. [PMID: 28239445 PMCID: PMC5320776 DOI: 10.1186/s13578-016-0134-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022] Open
Abstract
Persistent dysregulation of the DNA damage response and repair in cells causes genomic instability. The resulting genetic changes permit alterations in growth and proliferation observed in virtually all cancers. However, an unstable genome can serve as a double-edged sword by providing survival advantages in the ability to evade checkpoint signaling, but also creating vulnerabilities through dependency on alternative genomic maintenance factors. The Fanconi anemia pathway comprises an intricate network of DNA damage signaling and repair that are critical for protection against genomic instability. The importance of this pathway is underlined by the severity of the cancer predisposing syndrome Fanconi anemia which can be caused by biallelic mutations in any one of the 21 genes known thus far. This review delineates the roles of the Fanconi anemia pathway and the molecular actions of Fanconi anemia proteins in confronting replicative, oxidative, and mitotic stress.
Collapse
Affiliation(s)
- Anna Palovcak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Wenjun Liu
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Fenghua Yuan
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| |
Collapse
|
96
|
Abstract
Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.
Collapse
Affiliation(s)
- Michalis Fragkos
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| | - Valeria Naim
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| |
Collapse
|
97
|
Replication Fork Protection Factors Controlling R-Loop Bypass and Suppression. Genes (Basel) 2017; 8:genes8010033. [PMID: 28098815 PMCID: PMC5295027 DOI: 10.3390/genes8010033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 12/17/2022] Open
Abstract
Replication–transcription conflicts have been a well-studied source of genome instability for many years and have frequently been linked to defects in RNA processing. However, recent characterization of replication fork-associated proteins has revealed that defects in fork protection can directly or indirectly stabilize R-loop structures in the genome and promote transcription–replication conflicts that lead to genome instability. Defects in essential DNA replication-associated activities like topoisomerase, or the minichromosome maintenance (MCM) helicase complex, as well as fork-associated protection factors like the Fanconi anemia pathway, both appear to mitigate transcription–replication conflicts. Here, we will highlight recent advances that support the concept that normal and robust replisome function itself is a key component of mitigating R-loop coupled genome instability.
Collapse
|
98
|
Bloom's syndrome: Why not premature aging?: A comparison of the BLM and WRN helicases. Ageing Res Rev 2017; 33:36-51. [PMID: 27238185 DOI: 10.1016/j.arr.2016.05.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/19/2023]
Abstract
Genomic instability is a hallmark of cancer and aging. Premature aging (progeroid) syndromes are often caused by mutations in genes whose function is to ensure genomic integrity. The RecQ family of DNA helicases is highly conserved and plays crucial roles as genome caretakers. In humans, mutations in three RecQ genes - BLM, WRN, and RECQL4 - give rise to Bloom's syndrome (BS), Werner syndrome (WS), and Rothmund-Thomson syndrome (RTS), respectively. WS is a prototypic premature aging disorder; however, the clinical features present in BS and RTS do not indicate accelerated aging. The BLM helicase has pivotal functions at the crossroads of DNA replication, recombination, and repair. BS cells exhibit a characteristic form of genomic instability that includes excessive homologous recombination. The excessive homologous recombination drives the development in BS of the many types of cancers that affect persons in the normal population. Replication delay and slower cell turnover rates have been proposed to explain many features of BS, such as short stature. More recently, aberrant transcriptional regulation of growth and survival genes has been proposed as a hypothesis to explain features of BS.
Collapse
|
99
|
Ling C, Huang J, Yan Z, Li Y, Ohzeki M, Ishiai M, Xu D, Takata M, Seidman M, Wang W. Bloom syndrome complex promotes FANCM recruitment to stalled replication forks and facilitates both repair and traverse of DNA interstrand crosslinks. Cell Discov 2016; 2:16047. [PMID: 28058110 PMCID: PMC5167996 DOI: 10.1038/celldisc.2016.47] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/10/2016] [Indexed: 12/26/2022] Open
Abstract
The recruitment of FANCM, a conserved DNA translocase and key component of several DNA repair protein complexes, to replication forks stalled by DNA interstrand crosslinks (ICLs) is a step upstream of the Fanconi anemia (FA) repair and replication traverse pathways of ICLs. However, detection of the FANCM recruitment has been technically challenging so that its mechanism remains exclusive. Here, we successfully observed recruitment of FANCM at stalled forks using a newly developed protocol. We report that the FANCM recruitment depends upon its intrinsic DNA translocase activity, and its DNA-binding partner FAAP24. Moreover, it is dependent on the replication checkpoint kinase, ATR; but is independent of the FA core and FANCD2-FANCI complexes, two essential components of the FA pathway, indicating that the FANCM recruitment occurs downstream of ATR but upstream of the FA pathway. Interestingly, the recruitment of FANCM requires its direct interaction with Bloom syndrome complex composed of BLM helicase, Topoisomerase 3α, RMI1 and RMI2; as well as the helicase activity of BLM. We further show that the FANCM-BLM complex interaction is critical for replication stress-induced FANCM hyperphosphorylation, for normal activation of the FA pathway in response to ICLs, and for efficient traverse of ICLs by the replication machinery. Epistasis studies demonstrate that FANCM and BLM work in the same pathway to promote replication traverse of ICLs. We conclude that FANCM and BLM complex work together at stalled forks to promote both FA repair and replication traverse pathways of ICLs.
Collapse
Affiliation(s)
- Chen Ling
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Jing Huang
- Lab of Molecular Gerontology, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Zhijiang Yan
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Yongjiang Li
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Mioko Ohzeki
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Dongyi Xu
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Michael Seidman
- Lab of Molecular Gerontology, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Weidong Wang
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| |
Collapse
|
100
|
Hudson DF, Amor DJ, Boys A, Butler K, Williams L, Zhang T, Kalitsis P. Loss of RMI2 Increases Genome Instability and Causes a Bloom-Like Syndrome. PLoS Genet 2016; 12:e1006483. [PMID: 27977684 PMCID: PMC5157948 DOI: 10.1371/journal.pgen.1006483] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/15/2016] [Indexed: 12/03/2022] Open
Abstract
Bloom syndrome is a recessive human genetic disorder with features of genome instability, growth deficiency and predisposition to cancer. The only known causative gene is the BLM helicase that is a member of a protein complex along with topoisomerase III alpha, RMI1 and 2, which maintains replication fork stability and dissolves double Holliday junctions to prevent genome instability. Here we report the identification of a second gene, RMI2, that is deleted in affected siblings with Bloom-like features. Cells from homozygous individuals exhibit elevated rates of sister chromatid exchange, anaphase DNA bridges and micronuclei. Similar genome and chromosome instability phenotypes are observed in independently derived RMI2 knockout cells. In both patient and knockout cell lines reduced localisation of BLM to ultra fine DNA bridges and FANCD2 at foci linking bridges are observed. Overall, loss of RMI2 produces a partially active BLM complex with mild features of Bloom syndrome. Cells contain specific protein complexes that are needed to correct errors during the replication and segregation of DNA. Impairment in the activity of these proteins can be detrimental to the viability of the cell and organism development. Bloom syndrome is an example of a genome instability disorder where cells cannot efficiently untangle DNA after replication. The only gene that is known to cause Bloom syndrome is the BLM helicase. In this article, we describe two affected individuals with Bloom-like features with a homozygous deletion of the RMI2 gene. The RMI2 protein has previously been shown to form a complex with BLM, topoisomerase III alpha and RMI1. Deletion of RMI2 in patient and unrelated cell lines show hyper-recombination and chromosome entanglements during cell division. Furthermore, we show that the BLM and FANCD2 proteins are diminished in the binding of DNA bridges that need to be dissolved during the late stages of cell division. Therefore, loss of RMI2 produces a milder Bloom phenotype and impairs the full activity of the BLM complex.
Collapse
Affiliation(s)
- Damien F. Hudson
- Murdoch Childrens Research Institute, Royal Children’s Hospital, Melbourne, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (PK); (DFH)
| | - David J. Amor
- Murdoch Childrens Research Institute, Royal Children’s Hospital, Melbourne, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Amber Boys
- Cytogenetics Laboratory, Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Royal Children’s Hospital, Melbourne, Parkville, Victoria, Australia
| | - Kathy Butler
- Cytogenetics Laboratory, Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Royal Children’s Hospital, Melbourne, Parkville, Victoria, Australia
| | - Lorna Williams
- Cytogenetics Laboratory, Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Royal Children’s Hospital, Melbourne, Parkville, Victoria, Australia
| | - Tao Zhang
- Murdoch Childrens Research Institute, Royal Children’s Hospital, Melbourne, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Paul Kalitsis
- Murdoch Childrens Research Institute, Royal Children’s Hospital, Melbourne, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (PK); (DFH)
| |
Collapse
|