51
|
Sanchez V, Galor A, Jensen K, Mondal K, Mandal N. Relationships between ocular surface sphingomyelinases, Meibum and Tear Sphingolipids, and clinical parameters of meibomian gland dysfunction. Ocul Surf 2022; 25:101-107. [PMID: 35714913 DOI: 10.1016/j.jtos.2022.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Sphingolipids (SPL) are a class of lipid molecules that play important functional and structural roles in our body and are a component of meibum. Sphingomyelinases (SMases) are key enzymes in sphingolipid metabolism that hydrolyze sphingomyelin (SM) and generate ceramide (Cer). The purpose of this study was to examine relationships between ocular surface SMases, SPL composition, and parameters of Meibomian gland dysfunction (MGD). METHODS Individuals were grouped by meibum quality (n = 25 with poor-quality, MGD, and n = 25 with good-quality, control). Meibum and tears were analyzed with LC-MS to quantify SPL classes: Cer, Hexosyl-Ceramide (Hex-Cer), SM, Sphingosine (Sph), and sphingosine 1-phosphate (S1P). SMase activity in tears were quantified using a commercially available 'SMase assay'. Statistical analysis included multiple linear regression analyses to assess the impact of SMase activity on lipid composition, as well as ocular surface symptoms and signs of MGD. RESULTS Demographic characteristics were similar between the two groups. nSMase and aSMase levels were lower in the poor vs good quality group. aSMase activity in tears negatively correlated with SM in meibum and tears and positively with Sph in meibum and S1P in tears. Lower SMase activity were associated with signs of MGD, most notably Meibomian gland dropout. CONCLUSION This study suggests that individuals with MGD have reduced enzymatic activity of SMases in tears. Specifically, individuals with poor vs good meibum quality were noted to have alterations in SMase activity and SPL composition of meibum and tears which may reflect deviations from normal lipid metabolism in individuals with MGD.
Collapse
Affiliation(s)
- Victor Sanchez
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Katherine Jensen
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA
| | - Koushik Mondal
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA; Departments of Anatomy and Neurobiology, Pharmaceutical Sciences, University of Tennessee Health Sciences Center, 930 Madison Avenue, Memphis, TN, 38163, USA; Memphis VA Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA.
| |
Collapse
|
52
|
Mitochondrial Lipids: From Membrane Organization to Apoptotic Facilitation. Int J Mol Sci 2022; 23:ijms23073738. [PMID: 35409107 PMCID: PMC8998749 DOI: 10.3390/ijms23073738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are the most complex intracellular organelles, their function combining energy production for survival and apoptosis facilitation for death. Such a multivariate physiology is structurally and functionally reflected upon their membrane configuration and lipid composition. Mitochondrial double membrane lipids, with cardiolipin as the protagonist, show an impressive level of complexity that is mandatory for maintenance of mitochondrial health and protection from apoptosis. Given that lipidomics is an emerging field in cancer research and that mitochondria are the organelles with the most important role in malignant maintenance knowledge of the mitochondrial membrane, lipid physiology in health is mandatory. In this review, we will thus describe the delicate nature of the healthy mitochondrial double membrane and its role in apoptosis. Emphasis will be given on mitochondrial membrane lipids and the changes that they undergo during apoptosis induction and progression.
Collapse
|
53
|
Rocchetti G, Vitali M, Zappaterra M, Righetti L, Sirri R, Lucini L, Dall’Asta C, Davoli R, Galaverna G. A molecular insight into the lipid changes of pig Longissimus thoracis muscle following dietary supplementation with functional ingredients. PLoS One 2022; 17:e0264953. [PMID: 35324931 PMCID: PMC8947141 DOI: 10.1371/journal.pone.0264953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/20/2022] [Indexed: 11/29/2022] Open
Abstract
In this work, the Longissimus thoracis pig skeletal muscle was used as a model to investigate the impact of two different diets, supplemented with n-3 polyunsaturated fatty acids from extruded linseed (L) and polyphenols from grape skin and oregano extracts (L+P), on the lipidomic profile of meat. A standard diet for growing-finishing pigs (CTRL) was used as a control. Changes in lipids profile were investigated through an untargeted lipidomics and transcriptomics combined investigation. The lipidomics identified 1507 compounds, with 195 compounds fitting with the MS/MS spectra of LipidBlast database. When compared with the CTRL group, the L+P diet significantly increased 15 glycerophospholipids and 8 sphingolipids, while the L diet determined a marked up-accumulation of glycerolipids. According to the correlations outlined between discriminant lipids and genes, the L diet may act preventing adipogenesis and the related inflammation processes, while the L+P diet promoted the expression of genes involved in lipids' biosynthesis and adipogenic extracellular matrix formation and functioning.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marika Vitali
- Interdepartmental centre for Industrial Agrifood research (CIRI-AGRO)—Università di Bologna, Cesena, Italy
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Laura Righetti
- Department of Food and Drug, Parco Area delle Scienze, Parma, Italy
| | - Rubina Sirri
- Interdepartmental centre for Industrial Agrifood research (CIRI-AGRO)—Università di Bologna, Cesena, Italy
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Chiara Dall’Asta
- Department of Food and Drug, Parco Area delle Scienze, Parma, Italy
| | - Roberta Davoli
- Interdepartmental centre for Industrial Agrifood research (CIRI-AGRO)—Università di Bologna, Cesena, Italy
- Department of Agricultural and Food sciences (DISTAL), Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Gianni Galaverna
- Department of Food and Drug, Parco Area delle Scienze, Parma, Italy
| |
Collapse
|
54
|
Platelet Membrane: An Outstanding Factor in Cancer Metastasis. MEMBRANES 2022; 12:membranes12020182. [PMID: 35207103 PMCID: PMC8875259 DOI: 10.3390/membranes12020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/02/2022]
Abstract
In addition to being biological barriers where the internalization or release of biomolecules is decided, cell membranes are contact structures between the interior and exterior of the cell. Here, the processes of cell signaling mediated by receptors, ions, hormones, cytokines, enzymes, growth factors, extracellular matrix (ECM), and vesicles begin. They triggering several responses from the cell membrane that include rearranging its components according to the immediate needs of the cell, for example, in the membrane of platelets, the formation of filopodia and lamellipodia as a tissue repair response. In cancer, the cancer cells must adapt to the new tumor microenvironment (TME) and acquire capacities in the cell membrane to transform their shape, such as in the case of epithelial−mesenchymal transition (EMT) in the metastatic process. The cancer cells must also attract allies in this challenging process, such as platelets, fibroblasts associated with cancer (CAF), stromal cells, adipocytes, and the extracellular matrix itself, which limits tumor growth. The platelets are enucleated cells with fairly interesting growth factors, proangiogenic factors, cytokines, mRNA, and proteins, which support the development of a tumor microenvironment and support the metastatic process. This review will discuss the different actions that platelet membranes and cancer cell membranes carry out during their relationship in the tumor microenvironment and metastasis.
Collapse
|
55
|
Vítová M, Čížková M, Náhlík V, Řezanka T. Changes in glycosyl inositol phosphoceramides during the cell cycle of the red alga Galdieria sulphuraria. PHYTOCHEMISTRY 2022; 194:113025. [PMID: 34839129 DOI: 10.1016/j.phytochem.2021.113025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Sphingolipids are significant component of plant-cell plasma membranes, as well as algal membranes, and mediate various biological processes. One of these processes is the change in lipid content during the cell cycle. This change is key to understanding cell viability and proliferation. There are relatively few papers describing highly glycosylated glycosyl inositol phosphorylceramide (GIPC) due to problems associated with the extractability of GIPCs and their analysis, especially in algae. After alkaline hydrolysis of total lipids from the red alga Galdieria sulphuraria, GIPCs were measured by high-resolution tandem mass spectrometry and fragmentation of precursor ions in an Orbitrap mass spectrometer in order to elucidate the structures of molecular species. Fragmentation experiments such as tandem mass spectrometry in the negative ion mode were performed to determine both the ceramide group and polar head structures. Measurement of mass spectra in the negative regime was possible because the phosphate group stabilizes negative molecular ions [M-H]-. ANALYSIS: of GIPCs at various stages of the cell cycle provided information on their abundance. It was found that, depending on the phases of the cell cycle, in particular during division, the uptake of all three components of GIPC, i.e., long-chain amino alcohols, fatty acids, and polar heads, changes. Structural modifications of the polar headgroup significantly increased the number of molecular species. Analysis demonstrated a convex characteristic for molecular species with only one saccharide (hexose or hexuronic acid) as the polar head. For two carbohydrates, the course of Hex-HexA was linear, while for HexA-HexA it was concave. The same was true for GIPC with three and four monosaccharides.
Collapse
Affiliation(s)
- Milada Vítová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Vít Náhlík
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, Novohradská 237, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Tomáš Řezanka
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
56
|
Wasserman E, Worgall S. Perinatal origins of chronic lung disease: mechanisms-prevention-therapy-sphingolipid metabolism and the genetic and perinatal origins of childhood asthma. Mol Cell Pediatr 2021; 8:22. [PMID: 34931265 PMCID: PMC8688659 DOI: 10.1186/s40348-021-00130-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Childhood asthma derives from complex host-environment interactions occurring in the perinatal and infant period, a critical time for lung development. Sphingolipids are bioactive molecules consistently implicated in the pathogenesis of childhood asthma. Genome wide association studies (GWAS) initially identified a link between alleles within the 17q21 asthma-susceptibility locus, childhood asthma, and overexpression of the ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3), an inhibitor of de novo sphingolipid synthesis. Subsequent studies of pediatric asthma offer strong evidence that these asthma-risk alleles correlate with early-life aberrancies of sphingolipid homeostasis and asthma. Relationships between sphingolipid metabolism and asthma-related risk factors, including maternal obesity and respiratory viral infections, are currently under investigation. This review will summarize how these perinatal and early life exposures can synergize with 17q21 asthma risk alleles to exacerbate disruptions of sphingolipid homeostasis and drive asthma pathogenesis.
Collapse
Affiliation(s)
- Emily Wasserman
- Department of Pediatrics, Weill Cornell Medicine, 525 East 68th Street, Box 225, New York, NY, 10065, USA.,Drukier Institute for Children's Health, Weill Cornell Medicine, 413 East 69th Street, 12th Floor, New York, NY, 10021, USA
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, 525 East 68th Street, Box 225, New York, NY, 10065, USA. .,Drukier Institute for Children's Health, Weill Cornell Medicine, 413 East 69th Street, 12th Floor, New York, NY, 10021, USA. .,Department of Genetic Medicine, Weill Cornell Medicine, 1305 York Avenue, 13th Floor, New York, NY, 10065, USA.
| |
Collapse
|
57
|
Liu J, Li T, Pei W, Zhao Y, Zhang X, Shi X, Li Y, Xu W. Lipidomics reveals the dysregulated ceramide metabolism in oxidized low-density lipoprotein-induced macrophage-derived foam cell. Biomed Chromatogr 2021; 36:e5297. [PMID: 34893994 DOI: 10.1002/bmc.5297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/01/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
Atherosclerosis (AS) is associated with increasing lipid peroxidation. Oxidative modification of low-density lipoproteins (ox-LDL) is one most important factors contributing to the pathogenesis and clinical features of AS. The lipid composition influenced by ox-LDL is not known clearly. In this work, a UHPLC/Orbitrap MS-based lipidomics approach integrated pathway analysis was performed to advance understanding of the lipid composition and feature pathway in an ox-LDL-induced foamy macrophage cell. In the lipid metabolic profiling, 196 lipid species from 15 (sub)classes were identified. Lipid profiling indicated that increasing ox-LDL caused lipid metabolic alternations, manifesting as phospholipids being down-regulated and sphingolipids being up-regulated. Pathway analysis explored glycerophospholipid and sphingolipid metabolism, which was involved in atherogenic changes. Notably, dysregulated ceramide metabolism was a typical feature of foamy cell formation. qRT-PCR analysis was conducted to explore the differentially expressed genes. It indicated that ceramide metabolic balance might be disordered, performing higher synthesis and lower hydrolysis, with the ratio of SMPD1/SGMS2 being significantly up-regulated (p < 0.05) in the ox-LDL induced group. Our work offers a comprehensive understanding of macrophage-derived foam cells and screen feature pathways associated with foamy cell formation, which provides a reference for the clinic diagnosis of AS and drug interventions.
Collapse
Affiliation(s)
- Jie Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenxuan Pei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ye Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiujia Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yanping Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjuan Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
58
|
Schlarmann P, Ikeda A, Funato K. Membrane Contact Sites in Yeast: Control Hubs of Sphingolipid Homeostasis. MEMBRANES 2021; 11:971. [PMID: 34940472 PMCID: PMC8707754 DOI: 10.3390/membranes11120971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023]
Abstract
Sphingolipids are the most diverse class of membrane lipids, in terms of their structure and function. Structurally simple sphingolipid precursors, such as ceramides, act as intracellular signaling molecules in various processes, including apoptosis, whereas mature and complex forms of sphingolipids are important structural components of the plasma membrane. Supplying complex sphingolipids to the plasma membrane, according to need, while keeping pro-apoptotic ceramides in check is an intricate task for the cell and requires mechanisms that tightly control sphingolipid synthesis, breakdown, and storage. As each of these processes takes place in different organelles, recent studies, using the budding yeast Saccharomyces cerevisiae, have investigated the role of membrane contact sites as hubs that integrate inter-organellar sphingolipid transport and regulation. In this review, we provide a detailed overview of the findings of these studies and put them into the context of established regulatory mechanisms of sphingolipid homeostasis. We have focused on the role of membrane contact sites in sphingolipid metabolism and ceramide transport, as well as the mechanisms that prevent toxic ceramide accumulation.
Collapse
Affiliation(s)
| | | | - Kouichi Funato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan; (P.S.); (A.I.)
| |
Collapse
|
59
|
Colicino E, Ferrari F, Cowell W, Niedzwiecki MM, Foppa Pedretti N, Joshi A, Wright RO, Wright RJ. Non-linear and non-additive associations between the pregnancy metabolome and birthweight. ENVIRONMENT INTERNATIONAL 2021; 156:106750. [PMID: 34256302 PMCID: PMC9244839 DOI: 10.1016/j.envint.2021.106750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 07/01/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Birthweight is an indicator of fetal growth and environmental-related alterations of birthweight have been linked with multiple disorders and conditions progressing into adulthood. Although a few studies have assessed the association between birthweight and the totality of exogenous exposures and their downstream molecular responses in maternal urine and cord blood; no prior research has considered a) the maternal serum prenatal metabolome, which is enriched for hormones, and b) non-linear and synergistic associations among exposures. METHODS We measured the maternal serum metabolome during pregnancy using an untargeted metabolomics approach and birthweight for gestational age (BWGA) z-score in 410 mother-child dyads enrolled in the PRogramming of Intergenerational Stress Mechanisms (PRISM) cohort. We leveraged a Bayesian factor analysis for interaction to select the most important metabolites associated with BWGA z-score and to evaluate their linear, non-linear and non-additive associations. We also assessed the primary biological functions of the identified proteins using the MetaboAnalyst, a centralized repository of curated functional information. We compared our findings with those of a traditional metabolite-wide association study (MWAS) in which metabolites are individually associated with BWGA z-score. RESULTS Among 1110 metabolites, 46 showed evidence of U-shape associations with BWGA z-score. Most of the identified metabolites (85%) were lipids primarily enriched for pathways central to energy production, immune function, and androgen and estrogen metabolism, which are essential for pregnancy and parturition processes. Metabolites within the same class, i.e. steroids and phospholipids, showed synergistic relationships with each other. CONCLUSIONS Our results support that the aspects of the maternal metabolome during pregnancy contribute linearly, non-linearly and synergistically to variation in newborn birthweight.
Collapse
Affiliation(s)
- E Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - F Ferrari
- Department of Statistical Science, Duke University, Durham, NC, USA
| | - W Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N Foppa Pedretti
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Joshi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
60
|
Wegner MS, Schömel N, Olzomer EM, Trautmann S, Olesch C, Byrne FL, Brüne B, Gurke R, Ferreirós N, Weigert A, Geisslinger G, Hoehn KL. Increased glucosylceramide production leads to decreased cell energy metabolism and lowered tumor marker expression in non-cancerous liver cells. Cell Mol Life Sci 2021; 78:7025-7041. [PMID: 34626204 PMCID: PMC8558193 DOI: 10.1007/s00018-021-03958-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most difficult cancer types to treat. Liver cancer is often diagnosed at late stages and therapeutic treatment is frequently accompanied by development of multidrug resistance. This leads to poor outcomes for cancer patients. Understanding the fundamental molecular mechanisms leading to liver cancer development is crucial for developing new therapeutic approaches, which are more efficient in treating cancer. Mice with a liver specific UDP-glucose ceramide glucosyltransferase (UGCG) knockout (KO) show delayed diethylnitrosamine (DEN)-induced liver tumor growth. Accordingly, the rationale for our study was to determine whether UGCG overexpression is sufficient to drive cancer phenotypes in liver cells. We investigated the effect of UGCG overexpression (OE) on normal murine liver (NMuLi) cells. Increased UGCG expression results in decreased mitochondrial respiration and glycolysis, which is reversible by treatment with EtDO-P4, an UGCG inhibitor. Furthermore, tumor markers such as FGF21 and EPCAM are lowered following UGCG OE, which could be related to glucosylceramide (GlcCer) and lactosylceramide (LacCer) accumulation in glycosphingolipid-enriched microdomains (GEMs) and subsequently altered signaling protein phosphorylation. These cellular processes lead to decreased proliferation in NMuLi/UGCG OE cells. Our data show that increased UGCG expression itself does not induce pro-cancerous processes in normal liver cells, which indicates that increased GlcCer expression leads to different outcomes in different cancer types.
Collapse
Affiliation(s)
- Marthe-Susanna Wegner
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany. .,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Nina Schömel
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Ellen M Olzomer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sandra Trautmann
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Catherine Olesch
- Faculty of Medicine, Institute of Biochemistry I, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Robert Gurke
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Nerea Ferreirós
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, House 74, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Kyle L Hoehn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
61
|
Cui M, Göbel V, Zhang H. Uncovering the 'sphinx' of sphingosine 1-phosphate signalling: from cellular events to organ morphogenesis. Biol Rev Camb Philos Soc 2021; 97:251-272. [PMID: 34585505 PMCID: PMC9292677 DOI: 10.1111/brv.12798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/02/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite, functioning as a signalling molecule in diverse cellular processes. Over the past few decades, studies of S1P signalling have revealed that the physiological activity of S1P largely depends on S1P metabolizing enzymes, transporters and receptors on the plasma membrane, as well as on the intracellular proteins that S1P binds directly to. In addition to its roles in cancer signalling, immunity and inflammation, a large body of evidence has identified a close link of S1P signalling with organ morphogenesis. Here we discuss the vital role of S1P signalling in orchestrating various cellular events during organ morphogenesis through analysing each component along the extracellular and intracellular S1P signalling axes. For each component, we review advances in our understanding of S1P signalling and function from the upstream regulators to the downstream effectors and from cellular behaviours to tissue organization, primarily in the context of morphogenetic mechanisms. S1P-mediated vesicular trafficking is also discussed as a function independent of its signalling function. A picture emerges that reveals a multifaceted role of S1P-dependent pathways in the development and maintenance of organ structure and function.
Collapse
Affiliation(s)
- Mengqiao Cui
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Verena Göbel
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, U.S.A
| | - Hongjie Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
62
|
Ishino Y, Komatsu N, Sakata KT, Yoshikawa D, Tani M, Maeda T, Morishige K, Yoshizawa K, Tanaka N, Tabuchi M. Regulation of sphingolipid biosynthesis in the endoplasmic reticulum via signals from the plasma membrane in budding yeast. FEBS J 2021; 289:457-472. [PMID: 34492164 DOI: 10.1111/febs.16189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022]
Abstract
Saccharomyces cerevisiae LIP1 encodes a regulatory subunit that forms a complex with the ceramide synthase catalytic subunits, Lag1/Lac1, which is localized on the membrane of endoplasmic reticulum. To understand the underlying regulatory mechanism of sphingolipid biosynthesis, we generated strains upon replacing the chromosomal LIP1 promoter with a Tet-off promoter, which enables the expression in Dox-dependent manner. The lip1-1 strain, obtained through the promoter substitution, exhibits severe growth inhibition and remarkable decrease in sphingolipid synthesis in the presence of Dox. Using this strain, we investigated the effect of a decrease in ceramide synthesis on TOR complex 2 (TORC2)-Ypk1 signaling, which senses the complex sphingolipid level at the plasma membrane and promotes sphingolipid biosynthesis. In lip1-1 cells, Ypk1 was activated via both upstream kinases, TORC2 and yeast PDK1 homologues, Pkh1/2, thereby inducing hyperphosphorylation of Lag1, but not of another Ypk1-substrate, Orm1, which is a known negative regulator of the first step of sphingolipid metabolism, in the presence of Dox. Therefore, our data suggest that the metabolic enzyme activities at each step of the sphingolipid biosynthetic pathway are controlled through a fine regulatory mechanism.
Collapse
Affiliation(s)
- Yuko Ishino
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| | - Nao Komatsu
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| | - Ken-Taro Sakata
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| | - Daichi Yoshikawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| | - Motohiro Tani
- Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, Japan
| | - Kanta Morishige
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| | - Koushiro Yoshizawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| | - Naotaka Tanaka
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| | - Mitsuaki Tabuchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| |
Collapse
|
63
|
Bosco A, Toto M, Pintus R, Fanos V, Dessì A. Human milk sphingomyelins and metabolomics: an enigma to be discovered. J Matern Fetal Neonatal Med 2021; 35:7649-7661. [PMID: 34362283 DOI: 10.1080/14767058.2021.1958314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Sphingomyelins, the most abundant sphingolipids in most mammalian cells, appear to be among the most represented polar lipids in breast milk. Despite the variability of the data reported in the literature, human milk sphingomyelins are qualitatively unique and their quantities are five times higher than in most formula milk. The structural and functional role within the milk fat globule membranes, the involvement in neonatal neurological maturation both in neuro-typical development and in some pathological circumstances, together with the possible contribution in the intestinal development of newborns, are certainly among the main characteristics that have fueled the curiosity of the scientific world. Metabolomics studies, providing a unique metabolic fingerprint, allow an in-depth analysis of the role of these molecules in the extreme variability and uniqueness of breast milk. In the perspective of preventive medicine, at the base of which there is certainly personalized nutrition, it is possible, in the presence of particular conditions, such as neonatal growth retardation or in preterm infants, to consider supplementation of some target nutrients, such as certain sphingomyelins. Nevertheless, further studies are needed to more accurately assess whether and how the type and quantity of sphingomyelins present in breast milk could affect the metabolic health of newborns.HIGHLIGHTSBreast milk is the golden standard for infants' nutritionSphingomyelins are the most represented polar lipids in breast milkThese molecules are involved in both intestinal and neural developments of newbornsMetabolomics is a very useful tool to investigate their precise roleFurther studies are needed to provide eventual nutritional treatment.
Collapse
Affiliation(s)
- Alice Bosco
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Martina Toto
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Roberta Pintus
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Angelica Dessì
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| |
Collapse
|
64
|
Garcia Corrales AV, Haidar M, Bogie JFJ, Hendriks JJA. Fatty Acid Synthesis in Glial Cells of the CNS. Int J Mol Sci 2021; 22:ijms22158159. [PMID: 34360931 PMCID: PMC8348209 DOI: 10.3390/ijms22158159] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty acids (FAs) are of crucial importance for brain homeostasis and neural function. Glia cells support the high demand of FAs that the central nervous system (CNS) needs for its proper functioning. Additionally, FAs can modulate inflammation and direct CNS repair, thereby contributing to brain pathologies such Alzheimer’s disease or multiple sclerosis. Intervention strategies targeting FA synthesis in glia represents a potential therapeutic opportunity for several CNS diseases.
Collapse
Affiliation(s)
- Aida V Garcia Corrales
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
65
|
Xu F, Chen Q, Huang L, Luo M. Advances about the Roles of Membranes in Cotton Fiber Development. MEMBRANES 2021; 11:membranes11070471. [PMID: 34202386 PMCID: PMC8307351 DOI: 10.3390/membranes11070471] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Cotton fiber is an extremely elongated single cell derived from the ovule epidermis and is an ideal model for studying cell development. The plasma membrane is tremendously expanded and accompanied by the coordination of various physiological and biochemical activities on the membrane, one of the three major systems of a eukaryotic cell. This review compiles the recent progress and advances for the roles of the membrane in cotton fiber development: the functions of membrane lipids, especially the fatty acids, sphingolipids, and phytosterols; membrane channels, including aquaporins, the ATP-binding cassette (ABC) transporters, vacuolar invertase, and plasmodesmata; and the regulation mechanism of membrane proteins, such as membrane binding enzymes, annexins, and receptor-like kinases.
Collapse
Affiliation(s)
- Fan Xu
- Biotechnology Research Center, Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Southwest University, Chongqing 400715, China; (F.X.); (L.H.)
| | - Qian Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China;
| | - Li Huang
- Biotechnology Research Center, Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Southwest University, Chongqing 400715, China; (F.X.); (L.H.)
| | - Ming Luo
- Biotechnology Research Center, Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Southwest University, Chongqing 400715, China; (F.X.); (L.H.)
- Correspondence:
| |
Collapse
|
66
|
Chemical and genetic rescue of in vivo progranulin-deficient lysosomal and autophagic defects. Proc Natl Acad Sci U S A 2021; 118:2022115118. [PMID: 34140407 DOI: 10.1073/pnas.2022115118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In 2006, GRN mutations were first linked to frontotemporal dementia (FTD), the leading cause of non-Alzheimer dementias. While much research has been dedicated to understanding the genetic causes of the disease, our understanding of the mechanistic impacts of GRN deficiency has only recently begun to take shape. With no known cure or treatment available for GRN-related FTD, there is a growing need to rapidly advance genetic and/or small-molecule therapeutics for this disease. This issue is complicated by the fact that, while lysosomal dysfunction seems to be a key driver of pathology, the mechanisms linking a loss of GRN to a pathogenic state remain unclear. In our attempt to address these key issues, we have turned to the nematode, Caenorhabditis elegans, to model, study, and find potential therapies for GRN-deficient FTD. First, we show that the loss of the nematode GRN ortholog, pgrn-1, results in several behavioral and molecular defects, including lysosomal dysfunction and defects in autophagic flux. Our investigations implicate the sphingolipid metabolic pathway in the regulation of many of the in vivo defects associated with pgrn-1 loss. Finally, we utilized these nematodes as an in vivo tool for high-throughput drug screening and identified two small molecules with potential therapeutic applications against GRN/pgrn-1 deficiency. These compounds reverse the biochemical, cellular, and functional phenotypes of GRN deficiency. Together, our results open avenues for mechanistic and therapeutic research into the outcomes of GRN-related neurodegeneration, both genetic and molecular.
Collapse
|
67
|
Iqbal N, Czékus Z, Poór P, Ördög A. Plant defence mechanisms against mycotoxin Fumonisin B1. Chem Biol Interact 2021; 343:109494. [PMID: 33915161 DOI: 10.1016/j.cbi.2021.109494] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Fumonisin B1 (FB1) is the most harmful mycotoxin which prevails in several crops and affects the growth and yield as well. Hence, keeping the alarming consequences of FB1 under consideration, there is still a need to seek other more reliable approaches and scientific knowledge for FB1-induced cell death and a comprehensive understanding of the mechanisms of plant defence strategies. FB1-induced disturbance in sphingolipid metabolism initiates programmed cell death (PCD) through various modes such as the elevated generation of reactive oxygen species, lipid peroxidation, cytochrome c release from the mitochondria, and activation of specific proteases and nucleases causing DNA fragmentation. There is a close interaction between sphingolipids and defence phytohormones in response to FB1 exposure regulating PCD and defence. In this review, the model plant Arabidopsis and various crops have been presented with different levels of susceptibility and resistivity exposed to various concentration of FB1. In addition to this, regulation of PCD and defence mechanisms have been also demonstrated at the physiological, biochemical and molecular levels to help the understanding of the role and function of FB1-inducible molecules and genes and their expressions in plants against pathogen attacks which could provide molecular and biochemical markers for the detection of toxin exposure.
Collapse
Affiliation(s)
- Nadeem Iqbal
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary.
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, H-6726, Szeged, Közép fasor 52., Hungary
| |
Collapse
|
68
|
Ghezellou P, Heiles S, Kadesch P, Ghassempour A, Spengler B. Venom Gland Mass Spectrometry Imaging of Saw-Scaled Viper, Echis carinatus sochureki, at High Lateral Resolution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1105-1115. [PMID: 33725446 DOI: 10.1021/jasms.1c00042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The snake venom gland is the place for the synthesis, storage, and secretion of a complex mixture of proteins and peptides, i.e., the venom. The morphology of the gland has been revealed by classical histology and microscopic studies. However, knowledge about the gland's cellular secretory and functional processes is still incomplete and has so far been neglected by the omics disciplines. We used autofocusing atmospheric-pressure matrix-assisted laser desorption/ionization (AP-SMALDI) mass spectrometry imaging (MSI) to investigate endogenous biomolecular distributions in the venom glands of the saw-scaled viper, Echis carinatus sochureki, employing different sample preparation methods. Fresh-freezing and formalin-fixation were tested for the gland to obtain intact tissue sections. Subsequently, MSI was conducted with 12 μm pixel resolution for both types of preparations, and the lateral distributions of the metabolites were identified. Experiments revealed that lipids belonging to the classes of PC, SM, PE, PS, PA, and TG are present in the venom gland. PC (32:0) and SM (36:1) were found to be specifically located in the areas where cells are present. The snake venom metalloprotease inhibitor pEKW (m/z 444.2233) was identified in the venom by top-down LC-MS/MS and localized by MALDI-MSI in the gland across secretory epithelial cells. The peptide can inhibit the venom's enzymatic activity during long-term storage within the venom gland. With a high degree of spectral similarities, we concluded that formalin-fixed tissue, in addition to its high ability to preserve tissue morphology, can be considered as an alternative method to fresh-frozen tissue in the case of lipid and peptide MS imaging in venom gland tissues.
Collapse
Affiliation(s)
- Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Patrik Kadesch
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
69
|
Rago D, Pedersen CET, Huang M, Kelly RS, Gürdeniz G, Brustad N, Knihtilä H, Lee-Sarwar KA, Morin A, Rasmussen MA, Stokholm J, Bønnelykke K, Litonjua AA, Wheelock CE, Weiss ST, Lasky-Su J, Bisgaard H, Chawes BL. Characteristics and Mechanisms of a Sphingolipid-associated Childhood Asthma Endotype. Am J Respir Crit Care Med 2021; 203:853-863. [PMID: 33535020 PMCID: PMC8017574 DOI: 10.1164/rccm.202008-3206oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Rationale: A link among sphingolipids, 17q21 genetic variants, and childhood asthma has been suggested, but the underlying mechanisms and characteristics of such an asthma endotype remain to be elucidated.Objectives: To study the sphingolipid-associated childhood asthma endotype using multiomic data.Methods: We used untargeted liquid chromatography-mass spectrometry plasma metabolomic profiles at the ages of 6 months and 6 years from more than 500 children in the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood) birth cohort focusing on sphingolipids, and we integrated the 17q21 genotype and nasal gene expression of SPT (serine palmitoyl-CoA transferase) (i.e., the rate-limiting enzyme in de novo sphingolipid synthesis) in relation to asthma development and lung function traits from infancy until the age 6 years. Replication was sought in the independent VDAART (Vitamin D Antenatal Asthma Reduction Trial) cohort.Measurements and Main Results: Lower concentrations of ceramides and sphingomyelins at the age of 6 months were associated with an increased risk of developing asthma before age 3, which was also observed in VDAART. At the age of 6 years, lower concentrations of key phosphosphingolipids (e.g., sphinganine-1-phosphate) were associated with increased airway resistance. This relationship was dependent on the 17q21 genotype and nasal SPT gene expression, with significant interactions occurring between the genotype and the phosphosphingolipid concentrations and between the genotype and SPT expression, in which lower phosphosphingolipid concentrations and reduced SPT expression were associated with increasing numbers of at-risk alleles. However, the findings did not pass the false discovery rate threshold of <0.05.Conclusions: This exploratory study suggests the existence of a childhood asthma endotype with early onset and increased airway resistance that is characterized by reduced sphingolipid concentrations, which are associated with 17q21 genetic variants and expression of the SPT enzyme.
Collapse
Affiliation(s)
- Daniela Rago
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital–University of Copenhagen, Gentofte, Denmark
| | - Casper-Emil T. Pedersen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital–University of Copenhagen, Gentofte, Denmark
| | - Mengna Huang
- Channing Division of Network Medicine, Brigham and Women’s Hospital–Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Rachel S. Kelly
- Channing Division of Network Medicine, Brigham and Women’s Hospital–Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Gözde Gürdeniz
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital–University of Copenhagen, Gentofte, Denmark
| | - Nicklas Brustad
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital–University of Copenhagen, Gentofte, Denmark
| | - Hanna Knihtilä
- Channing Division of Network Medicine, Brigham and Women’s Hospital–Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Kathleen A. Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women’s Hospital–Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Andréanne Morin
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Morten A. Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital–University of Copenhagen, Gentofte, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital–University of Copenhagen, Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital–University of Copenhagen, Gentofte, Denmark
| | - Augusto A. Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children’s Hospital, University of Rochester Medical Center, Rochester, New York; and
| | - Craig E. Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital–Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital–Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital–University of Copenhagen, Gentofte, Denmark
| | - Bo L. Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital–University of Copenhagen, Gentofte, Denmark
| |
Collapse
|
70
|
Giamogante F, Poggio E, Barazzuol L, Covallero A, Calì T. Apoptotic signals at the endoplasmic reticulum-mitochondria interface. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:307-343. [PMID: 34090618 DOI: 10.1016/bs.apcsb.2021.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The maintenance of cellular homeostasis involves the participation of multiple organelles, such as the endoplasmic reticulum (ER) and mitochondria. Specifically, ER plays a key role in calcium (Ca2+) storage, lipid synthesis, protein folding, and assembly, while mitochondria are the "energy factories" and provide energy to drive intracellular processes. Hence, alteration in ER or mitochondrial homeostasis has detrimental effects on cell survival, being linked to the triggering of apoptosis, a programmed form of cell death. Besides, ER stress conditions affect mitochondria functionality and vice-versa, as ER and mitochondria communicate via mitochondria-associated ER membranes (MAMs) to carry out a number of fundamental cellular functions. It is not surprising, thus, that also MAMs perturbations are involved in the regulation of apoptosis. This chapter intends to accurately discuss the involvement of MAMs in apoptosis, highlighting their crucial role in controlling this delicate cellular process.
Collapse
Affiliation(s)
- Flavia Giamogante
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Poggio
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alberto Covallero
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
71
|
Arumugam T, Ghazi T, Chuturgoon AA. Molecular and epigenetic modes of Fumonisin B 1 mediated toxicity and carcinogenesis and detoxification strategies. Crit Rev Toxicol 2021; 51:76-94. [PMID: 33605189 DOI: 10.1080/10408444.2021.1881040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fumonisin B1 (FB1) is a natural contaminant of agricultural commodities that has displayed a myriad of toxicities in animals. Moreover, it is known to be a hepatorenal carcinogen in rodents and may be associated with oesophageal and hepatocellular carcinomas in humans. The most well elucidated mode of FB1-mediated toxicity is its disruption of sphingolipid metabolism; however, enhanced oxidative stress, endoplasmic reticulum stress, autophagy, and alterations in immune response may also play a role in its toxicity and carcinogenicity. Alterations to the host epigenome may impact on the toxic and carcinogenic response to FB1. Seeing that the contamination of FB1 in food poses a considerable risk to human and animal health, a great deal of research has focused on new methods to prevent and attenuate FB1-induced toxic consequences. The focus of the present review is on the molecular and epigenetic interactions of FB1 as well as recent research involving FB1 detoxification.
Collapse
Affiliation(s)
- Thilona Arumugam
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
72
|
Noell K, Pitula JS. A Dual Omics Approach to Evaluate Transcriptional and Metabolic Responses During Lipid Deprivation in an Oyster Parasite, Perkinsus marinus. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:93-101. [PMID: 33571063 DOI: 10.1089/omi.2020.0172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Perkinsus marinus, a protozoan and the causative agent of perkinsosis (dermo disease) is a prevalent parasite found within the eastern oyster (Crassostrea virginica). In this study, we explore metabolic processes of P. marinus cells under lipid-depleted medium conditions to elucidate the interchanging flux of lipid and carbohydrate metabolism. Although P. marinus can synthesize their own lipids from available nutrients, they display a slower growth in medium not supplemented with lipids as opposed to medium with lipids. Under these conditions, using transcriptomics, we surprisingly observed evidence of stimulated lipid degradation through increased transcription of two core β-oxidation pathway enzymes. Simultaneously, phospholipid biosynthetic pathways were downregulated. Metabolomic analysis supported the transcriptomic results. Most fatty acids were decreased in lipid-deplete medium as opposed to lipid-replete medium, and available glucose was fermented to lactate. A significant increase in the cholesterol derivative zymosterol further supported a downregulation of membrane synthesis under the experimental conditions. A robust tricarboxylic acid (TCA) cycle was apparent by enhanced citrate synthase transcription, and a simultaneous reduction in branched chain amino acids. It is concluded that although P. marinus has the capacity for synthesizing its own lipids, it can respond to lipid deprivation in medium by oxidizing readily available stores, and likely transitioning into a resting stage.
Collapse
Affiliation(s)
- Kristin Noell
- Department of Natural Science, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Joseph S Pitula
- Department of Natural Science, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| |
Collapse
|
73
|
Yokota R, Bhunu B, Toba H, Intapad S. Sphingolipids and Kidney Disease: Possible Role of Preeclampsia and Intrauterine Growth Restriction (IUGR). KIDNEY360 2021; 2:534-541. [PMID: 35369015 PMCID: PMC8786006 DOI: 10.34067/kid.0006322020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/06/2021] [Indexed: 02/04/2023]
Abstract
Sphingolipids are now considered not only as constitutional components of the cellular membrane but also as essential bioactive factors regulating development and physiologic functions. Ceramide is a vital intermediate of sphingolipid metabolism, synthesized by de novo and salvage pathways, producing multiple types of sphingolipids and their metabolites. Although mutations in gene-encoding enzymes regulating sphingolipid synthesis and metabolism cause distinct diseases, an abnormal sphingolipid metabolism contributes to various pathologic conditions, including kidney diseases. Excessive accumulation of glycosphingolipids and promotion of the ceramide salvage and sphingosine-1-phosphate (S1P) pathways are found in the damaged kidney. Acceleration of the sphingosine kinase/S1P/S1P receptor (SphK/S1P/S1PR) axis plays a central role in deteriorating kidney functions. The SphK/S1P/S1PR signaling impairment is also found during pregnancy complications, such as preeclampsia and intrauterine growth restriction (IUGR). This mini-review discusses the current state of knowledge regarding the role of sphingolipid metabolism on kidney diseases, and the possible involvement of preeclampsia and IUGR conditions.
Collapse
Affiliation(s)
- Rodrigo Yokota
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Benjamin Bhunu
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hiroe Toba
- Division of Pathological Sciences, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
74
|
Tran A, Wan L, Xu Z, Haro JM, Li B, Jones JW. Lithium Hydroxide Hydrolysis Combined with MALDI TOF Mass Spectrometry for Rapid Sphingolipid Detection. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:289-300. [PMID: 33124427 PMCID: PMC7790884 DOI: 10.1021/jasms.0c00322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sphingolipids have diverse structural and bioactive functions that play important roles in many key biological processes. Factors such as low relative abundance, varied structures, and a dynamic concentration range provide a difficult analytical challenge for sphingolipid detection. To further improve mass-spectrometry-based sphingolipid analysis, lithium adduct consolidation was implemented to decrease spectral complexity and combine signal intensities, leading to increased specificity and sensitivity. We report the use of lithium hydroxide as a base in a routine hydrolysis procedure in order to effectively remove common ionization suppressants (such as glycolipids and glycerophospholipids) and introduce a source of lithium into the sample. In conjunction, an optimized MALDI matrix system, featuring 2',4',6'-trihydroxyacetophenone (THAP) is used to facilitate lithium adduct consolidation during the MALDI process. The result is a robust and high-throughput sphingolipid detection scheme, particularly of low-abundance ceramides. Application of our developed workflow includes the detection of differentially expressed liver sphingolipid profiles from a high-fat-induced obesity mouse model. We also demonstrate the method's effectiveness in detecting various sphingolipids in brain and plasma matrices. These results were corroborated with data from UHPLC HR MS/MS and MALDI FT-ICR, verifying the efficacy of the method application. Overall, we demonstrate a high-throughput workflow for sphingolipid analysis in various biological matrices by the use of MALDI TOF and lithium adduct consolidation.
Collapse
Affiliation(s)
- Anh Tran
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Liting Wan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Janette M Haro
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
75
|
Deng Y, Hu JC, He SH, Lou B, Ding TB, Yang JT, Mo MG, Ye DY, Zhou L, Jiang XC, Yu K, Dong JB. Sphingomyelin synthase 2 facilitates M2-like macrophage polarization and tumor progression in a mouse model of triple-negative breast cancer. Acta Pharmacol Sin 2021; 42:149-159. [PMID: 32451413 PMCID: PMC7921660 DOI: 10.1038/s41401-020-0419-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/14/2020] [Indexed: 12/31/2022]
Abstract
High infiltration of M2-polarized macrophages in the primary tumor indicates unfavorable prognosis and poor overall survival in the patients with triple-negative breast cancer (TNBC). Thus, reversing M2-polarized tumor-associated macrophages in the tumors has been considered as a potential therapeutic strategy for TNBC. Sphingomyelin synthase 2 (SMS2) is the key enzyme for sphingomyelin production, which plays an important role in plasma membrane integrity and function. In this study we investigated whether SMS2 inhibitor or SMS2 gene knockout could reduce macrophages M2 polarization and tumor progression in a mouse model of TNBC. We showed that SMS2 mRNA expression was linked to immunosuppressive tumor microenvironment and poor prognosis in TNBC patients. The knockout of SMS2 or application of 15w (a specific SMS2 inhibitor) markedly decreased the generation of M2-type macrophages in vitro, and reduced the tumor weight and lung metastatic niche formation in a 4T1-TNBC mouse model. We further demonstrated that the in vivo antitumor efficacy of 15w was accompanied by a multifaceted remodeling of tumor immune environment reflecting not only the suppression of M2-type macrophages but also diminished levels of regulatory T cells and myeloid-derived suppressor cells leading to a dramatically improved infiltration of antitumor CD8+ T lymphocytes. Collectively, our results reveal a novel and important role of SMS2 in the protumorigenic function and may offer a new strategy for macrophage-targeted anticancer therapy.
Collapse
Affiliation(s)
- Yan Deng
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jia-Chun Hu
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shu-Hua He
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Bin Lou
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ting-Bo Ding
- Experiment & Teaching Center, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jin-Tong Yang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ming-Guang Mo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - De-Yong Ye
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, 11203, USA
| | - Ker Yu
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Ji-Bin Dong
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.
- Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
76
|
Li L, Wang H, Jones JW. Sphingolipid metabolism as a marker of hepatotoxicity in drug-induced liver injury. Prostaglandins Other Lipid Mediat 2020; 151:106484. [PMID: 33007444 PMCID: PMC7669681 DOI: 10.1016/j.prostaglandins.2020.106484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/09/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) has a substantial impact on human health and is a major monetary burden on the drug development process. Presently, there is a lack of robust and analytically validated markers for predicting and early diagnosis of DILI. Sphingolipid metabolism and subsequent disruption of sphingolipid homeostasis has been documented to play a key role contributing to hepatocellular death and subsequent liver injury. A more comprehensive understanding of sphingolipid metabolism in response to liver toxicity has great potential to gain mechanistic insight into hepatotoxicity and define molecular markers that are responsible for hepatocyte dysfunction. Here, we present an analytical platform that provides multidimensional mass spectrometry-based datasets for comprehensive structure characterization of sphingolipids extracted from human primary hepatocytes (HPH) exposed to toxic levels of acetaminophen (APAP). Sphingolipid metabolism as measured by characterization of individual sphingolipid structure was sensitive to APAP toxicity displaying a concentration-dependent response. A number of sphingolipid structures were differentially expressed across varying APAP exposures highlighting the unique role sphingolipid metabolism has in response to hepatotoxicity and its potential use as a molecular marker in DILI.
Collapse
Affiliation(s)
- Linhao Li
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States
| | - Hongbing Wang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States
| | - Jace W Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States.
| |
Collapse
|
77
|
Materon EM, Nascimento GF, Shimizu FM, Câmara AS, Sandrino B, Faria RC, Oliveira ON. Role of sphingomyelin on the interaction of the anticancer drug gemcitabine hydrochloride with cell membrane models. Colloids Surf B Biointerfaces 2020; 196:111357. [DOI: 10.1016/j.colsurfb.2020.111357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
|
78
|
Santos FC, Marquês JT, Bento‐Oliveira A, Almeida RF. Sphingolipid‐enriched domains in fungi. FEBS Lett 2020; 594:3698-3718. [DOI: 10.1002/1873-3468.13986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Filipa C. Santos
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Joaquim T. Marquês
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Andreia Bento‐Oliveira
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Rodrigo F.M. Almeida
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| |
Collapse
|
79
|
Sphingomyelinases and Liver Diseases. Biomolecules 2020; 10:biom10111497. [PMID: 33143193 PMCID: PMC7692672 DOI: 10.3390/biom10111497] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids (SLs) are critical components of membrane bilayers that play a crucial role in their physico-chemical properties. Ceramide is the prototype and most studied SL due to its role as a second messenger in the regulation of multiple signaling pathways and cellular processes. Ceramide is a heterogeneous lipid entity determined by the length of the fatty acyl chain linked to its carbon backbone sphingosine, which can be generated either by de novo synthesis from serine and palmitoyl-CoA in the endoplasmic reticulum or via sphingomyelin (SM) hydrolysis by sphingomyelinases (SMases). Unlike de novo synthesis, SMase-induced SM hydrolysis represents a rapid and transient mechanism of ceramide generation in specific intracellular sites that accounts for the diverse biological effects of ceramide. Several SMases have been described at the molecular level, which exhibit different pH requirements for activity: neutral, acid or alkaline. Among the SMases, the neutral (NSMase) and acid (ASMase) are the best characterized for their contribution to signaling pathways and role in diverse pathologies, including liver diseases. As part of a Special Issue (Phospholipases: From Structure to Biological Function), the present invited review summarizes the physiological functions of NSMase and ASMase and their role in chronic and metabolic liver diseases, of which the most relevant is nonalcoholic steatohepatitis and its progression to hepatocellular carcinoma, due to the association with the obesity and type 2 diabetes epidemic. A better understanding of the regulation and role of SMases in liver pathology may offer the opportunity for novel treatments of liver diseases.
Collapse
|
80
|
Hu Z, Raucci S, Jaquenoud M, Hatakeyama R, Stumpe M, Rohr R, Reggiori F, De Virgilio C, Dengjel J. Multilayered Control of Protein Turnover by TORC1 and Atg1. Cell Rep 2020; 28:3486-3496.e6. [PMID: 31553916 DOI: 10.1016/j.celrep.2019.08.069] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
The target of rapamycin complex 1 (TORC1) is a master regulator of cell homeostasis, which promotes anabolic reactions and synchronously inhibits catabolic processes such as autophagy-mediated protein degradation. Its prime autophagy target is Atg13, a subunit of the Atg1 kinase complex that acts as the gatekeeper of canonical autophagy. To study whether the activities of TORC1 and Atg1 are coupled through additional, more intricate control mechanisms than simply this linear pathway, we analyzed the epistatic relationship between TORC1 and Atg1 by using quantitative phosphoproteomics. Our in vivo data, combined with targeted in vitro TORC1 and Atg1 kinase assays, not only uncover numerous TORC1 and Atg1 effectors, but also suggest distinct bi-directional regulatory feedback loops and characterize Atg29 as a commonly regulated downstream target of both TORC1 and Atg1. Thus, an exquisitely multilayered regulatory network appears to coordinate TORC1 and Atg1 activities to robustly tune autophagy in response to nutritional cues.
Collapse
Affiliation(s)
- Zehan Hu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Serena Raucci
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Malika Jaquenoud
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Riko Hatakeyama
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Rudolf Rohr
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | | | - Jörn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
81
|
Delfosse V, Bourguet W, Drin G. Structural and Functional Specialization of OSBP-Related Proteins. ACTA ACUST UNITED AC 2020. [DOI: 10.1177/2515256420946627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipids are precisely distributed in the eukaryotic cell where they help to define organelle identity and function, in addition to their structural role. Once synthesized, many lipids must be delivered to other compartments by non-vesicular routes, a process that is undertaken by proteins called Lipid Transfer Proteins (LTPs). OSBP and the closely-related ORP and Osh proteins constitute a major, evolutionarily conserved family of LTPs in eukaryotes. Most of these target one or more subcellular regions, and membrane contact sites in particular, where two organelle membranes are in close proximity. It was initially thought that such proteins were strictly dedicated to sterol sensing or transport. However, over the last decade, numerous studies have revealed that these proteins have many more functions, and we have expanded our understanding of their mechanisms. In particular, many of them are lipid exchangers that exploit PI(4)P or possibly other phosphoinositide gradients to directionally transfer sterol or PS between two compartments. Importantly, these transfer activities are tightly coupled to processes such as lipid metabolism, cellular signalling and vesicular trafficking. This review describes the molecular architecture of OSBP/ORP/Osh proteins, showing how their specific structural features and internal configurations impart unique cellular functions.
Collapse
Affiliation(s)
- Vanessa Delfosse
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - William Bourguet
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Guillaume Drin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| |
Collapse
|
82
|
Alcaide-Gavilán M, Lucena R, Banuelos S, Kellogg DR. Conserved Ark1-related kinases function in a TORC2 signaling network. Mol Biol Cell 2020; 31:2057-2069. [PMID: 32614710 PMCID: PMC7543068 DOI: 10.1091/mbc.e19-12-0685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In all orders of life, cell cycle progression in proliferating cells is dependent on cell growth, and the extent of growth required for cell cycle progression is proportional to growth rate. Thus, cells growing rapidly in rich nutrients are substantially larger than slow-growing cells. In budding yeast, a conserved signaling network surrounding Tor complex 2 (target of rapamycin complex 2; TORC2) controls growth rate and cell size in response to nutrient availability. Here, a search for new components of the TORC2 network identified a pair of redundant kinase paralogues called Ark1 and Prk1. Previous studies found that Ark/Prk play roles in endocytosis. Here, we show that Ark/Prk are embedded in the TORC2 network, where they appear to influence TORC2 signaling independently of their roles in endocytosis. We also show that reduced endocytosis leads to increased cell size, which suggests that cell size homeostasis requires coordinated control of plasma membrane growth and endocytosis. The discovery that Ark/Prk are embedded in the TORC2 network suggests a model in which TORC2-dependent signals control both plasma membrane growth and endocytosis, which would ensure that the rates of each process are matched to each other and to the availability of nutrients so that cells achieve and maintain an appropriate size.
Collapse
Affiliation(s)
- Maria Alcaide-Gavilán
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Rafael Lucena
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Selene Banuelos
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Douglas R Kellogg
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
83
|
Wu CW, Wang SG, Lee CH, Chan WL, Lin ML, Chen SS. Enforced C-Src Activation Causes Compartmental Dysregulation of PI3K and PTEN Molecules in Lipid Rafts of Tongue Squamous Carcinoma Cells by Attenuating Rac1-Akt-GLUT-1-Mediated Sphingolipid Synthesis. Int J Mol Sci 2020; 21:ijms21165812. [PMID: 32823607 PMCID: PMC7461551 DOI: 10.3390/ijms21165812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 01/03/2023] Open
Abstract
Pharmacologic intervention to affect the membrane lipid homeostasis of lipid rafts is a potent therapeutic strategy for cancer. Here we showed that gallic acid (GA) caused the complex formation of inactive Ras-related C3 botulinum toxin substrate 1 (Rac1)-phospho (p)-casein kinase 2 α (CK2α) (Tyr 255) in human tongue squamous carcinoma (TSC) cells, which disturbed the lipid raft membrane-targeting of phosphatidylinositol 3-kinase (PI3K)-Rac1-protein kinase B (Akt) signal molecules by inducing the association of p110α-free p85α with unphosphorylated phosphatase tensin homolog deleted on chromosome 10 (PTEN) in lipid rafts. The effects on induction of inactive Rac1-p-CK2α (Tyr 255) complex formation and attenuation of p-Akt (Ser 473), GTP-Rac1, glucose transporter-1 (GLUT-1) lipid raft membrane-targeting, and cell invasive activity by GA were counteracted either by CK2α short hairpin RNA or cellular-Src (c-Src) inhibitor PP1. PP1 treatment, GLUT-1 or constitutively active Rac1 ectopic-expression blocked GA-induced decreases in cellular glucose, sphingolipid and cholesterol of lipid raft membranes, p85α-p110α-GTP-Rac1 complexes, glucosylceramide synthase activity and increase in ceramide and p110α-free p85α-PTEN complex levels of lipid raft membranes, which reversed the inhibition on matrix metalloproteinase (MMP)-2/-9-mediated cell invasion induced by GA. Using transient ectopic expression of nuclear factor-kappa B (NF-κB) p65, MMP-2/-9 promoter-driven luciferase, and NF-κB-dependent luciferase reporter genes and NF-κB specific inhibitors or Rac1 specific inhibitor NSC23766, we confirmed that an attenuation of Rac1 activity by GA confers inhibition of NF-κB-mediated MMP-2/-9 expression and cell invasion. In conclusion, GA-induced c-Src activation is a key inductive event for the formation of inactive Rac1-p-CK2α (Tyr 255) complexes, which disturbed lipid raft compartment of PI3K and PTEN molecules by impairing Akt-regulated GLUT-1-mediated sphingolipid synthesis, and finally resulting in inhibition of TSC cell invasion.
Collapse
Affiliation(s)
- Chien-Wei Wu
- Division of Laboratory, Armed Force Taichung General Hospital, Taichung 411228, Taiwan;
| | - Shyang-Guang Wang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan;
| | - Ching-Hsiao Lee
- Department of Medical Technology, Jen-The Junior College of Medicine, Nursing and Management, Miaoli 356006, Taiwan;
| | - Wen-Ling Chan
- Department of Bioinformatics and Medical Enginerring, Asia University, Taichung 41354, Taiwan;
| | - Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan
- Correspondence: (M.-L.L.); (S.-S.C.); Tel.: +886-4-2205-3366 (ext. 7211) (M.-L.L.); +886-4-2239-1647 (ext. 7057) (S.-S.C.)
| | - Shih-Shun Chen
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan;
- Correspondence: (M.-L.L.); (S.-S.C.); Tel.: +886-4-2205-3366 (ext. 7211) (M.-L.L.); +886-4-2239-1647 (ext. 7057) (S.-S.C.)
| |
Collapse
|
84
|
Li Y, Li D, Chen J, Zhang S, Fu Y, Wang N, Liu Y, Zhang B. Presence of organophosphate esters in plasma of patients with hypertension in Hubei Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24059-24069. [PMID: 32301094 DOI: 10.1007/s11356-020-08563-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Organophosphate esters (OPEs) are widely used as fire retardants, so they are almost ubiquitous pollutants. Recent studies had found that OPEs were detectable in human blood samples. However, the studies on the presence of OPEs in hypertensive patients were limited. In this study, 12 OPEs were detected and analyzed in plasma samples collected from hypertensive patients (case group) and unpaid blood donors (control group). The values of ∑12 OPEs concentrations ranged from ND to 8.84 μg/L and ND to 20.11 μg/L in the case group and control group, respectively, with the average concentrations of 0.62 μg/L and 1.46 μg/L, respectively. Triethyl phosphate (TEP) was detected as the most abundant chemical in the case group while triphenyl phosphate (TPHP) in the control group. Correlation analysis showed that there was a significant correlation among OPEs. The correlation coefficients and principal component analysis (PCA) indicated different sources and/or metabolism existed between the case group and control group. Diastolic blood pressure (DBP) was associated with TEP concentration (p < 0.05) in hypertensive patients. Clustering analysis showed that a trend of OPEs exposure and hypertension. This study provided data on the composition profile of OPEs in plasma and human exposure to OPEs, which was the first to identify the association of OPEs with hypertension.
Collapse
Affiliation(s)
- Yang Li
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Li
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yourong Fu
- Blood Transfusion Department, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ning Wang
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
85
|
The S1P-S1PR Axis in Neurological Disorders-Insights into Current and Future Therapeutic Perspectives. Cells 2020; 9:cells9061515. [PMID: 32580348 PMCID: PMC7349054 DOI: 10.3390/cells9061515] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Sphingosine 1-phosphate (S1P), derived from membrane sphingolipids, is a pleiotropic bioactive lipid mediator capable of evoking complex immune phenomena. Studies have highlighted its importance regarding intracellular signaling cascades as well as membrane-bound S1P receptor (S1PR) engagement in various clinical conditions. In neurological disorders, the S1P–S1PR axis is acknowledged in neurodegenerative, neuroinflammatory, and cerebrovascular disorders. Modulators of S1P signaling have enabled an immense insight into fundamental pathological pathways, which were pivotal in identifying and improving the treatment of human diseases. However, its intricate molecular signaling pathways initiated upon receptor ligation are still poorly elucidated. In this review, the authors highlight the current evidence for S1P signaling in neurodegenerative and neuroinflammatory disorders as well as stroke and present an array of drugs targeting the S1P signaling pathway, which are being tested in clinical trials. Further insights on how the S1P–S1PR axis orchestrates disease initiation, progression, and recovery may hold a remarkable potential regarding therapeutic options in these neurological disorders.
Collapse
|
86
|
Wu Z, Bagarolo GI, Thoröe-Boveleth S, Jankowski J. "Lipidomics": Mass spectrometric and chemometric analyses of lipids. Adv Drug Deliv Rev 2020; 159:294-307. [PMID: 32553782 DOI: 10.1016/j.addr.2020.06.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 01/01/2023]
Abstract
Lipids are ubiquitous in the human organism and play essential roles as components of cell membranes and hormones, for energy storage or as mediators of cell signaling pathways. As crucial mediators of the human metabolism, lipids are also involved in metabolic diseases, cardiovascular and renal diseases, cancer and/or hepatological and neurological disorders. With rapidly growing evidence supporting the impact of lipids on both the genesis and progression of these diseases as well as patient wellbeing, the characterization of the human lipidome has gained high interest and importance in life sciences and clinical diagnostics within the last 15 years. This is mostly due to technically advanced molecular identification and quantification methods, mainly based on mass spectrometry. Mass spectrometry has become one of the most powerful tools for the identification of lipids. New lipidic mediators or biomarkers of diseases can be analysed by state-of-the art mass spectrometry techniques supported by sophisticated bioinformatics and biostatistics. The lipidomic approach has developed dramatically in the realm of life sciences and clinical diagnostics due to the available mass spectrometric methods and in particular due to the adaptation of biostatistical methods in recent years. Therefore, the current knowledge of lipid extraction methods, mass-spectrometric approaches, biostatistical data analysis, including workflows for the interpretation of lipidomic high-throughput data, are reviewed in this manuscript.
Collapse
Affiliation(s)
- Zhuojun Wu
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Giulia Ilaria Bagarolo
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sven Thoröe-Boveleth
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, Maastricht, The Netherlands.
| |
Collapse
|
87
|
Lee SH, Lee JH, Im SS. The cellular function of SCAP in metabolic signaling. Exp Mol Med 2020; 52:724-729. [PMID: 32385422 PMCID: PMC7272406 DOI: 10.1038/s12276-020-0430-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Sterol regulatory element binding protein (SREBP) cleavage activating protein (SCAP) is a key regulator of SREBP maturation. SCAP induces translocation of SREBP from the endoplasmic reticulum to the Golgi apparatus, allowing it to regulate cellular triglyceride and cholesterol levels. Previous studies have shown that suppression of SREBP activation in SCAP conditional knockout mice reduced the accumulation of intracellular triglycerides, which eventually causes the development of metabolic diseases such as atherosclerosis, diabetes, hepatic steatosis, and insulin resistance. However, despite the significance of SCAP as a regulator of SREBP, its function has not been thoroughly discussed. In this review, we have summarized the function of SCAP and its regulatory proteins. Furthermore, we discuss recent studies regarding SCAP as a possible therapeutic target for hypertriglyceridemia and hyperlipidemia.
Collapse
Affiliation(s)
- Sun Hee Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, South Korea
| | - Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, South Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, South Korea.
| |
Collapse
|
88
|
Discovery of 1,8-naphthyridin-2-one derivative as a potent and selective sphingomyelin synthase 2 inhibitor. Bioorg Med Chem 2020; 28:115376. [DOI: 10.1016/j.bmc.2020.115376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 12/21/2022]
|
89
|
Wang N, Shao X, Wei Y, Jiang S, Xu F, Wang H. Quantitative proteomics reveals that tea tree oil effects Botrytis cinerea mitochondria function. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:156-164. [PMID: 32284122 DOI: 10.1016/j.pestbp.2020.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 06/11/2023]
Abstract
Tea tree oil (TTO) inhibits the spore germination and mycelial growth of Botrytis cinerea, and induces mitochondrial dysfunction of B. cinerea. To further determine the effects of TTO on mitochondria in B. cinerea, label-free quantitative proteomics analysis was performed. A total of 85 differentially expression proteins (DEPs) were identified; Among them 51 were more abundant in TTO-treated samples, and 34 were less abundant. DEPs were then annotated and classified into 34 functional groups based on Gene Ontology analysis. Subsequent Kyoto Encyclopedia of Genes and Genomes analysis linked identified DEPs to 83 different pathways. This study suggests that TTO inhibits the tricarboxylic acid cycle, pyruvate metabolism, amino acid metabolism, and membrane-related pathways in mitochondria, and also promotes sphingolipid metabolism, which may accelerate cell death in B. cinerea.
Collapse
Affiliation(s)
- Nan Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xingfeng Shao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| | - Yingying Wei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Feng Xu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hongfei Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
90
|
Zhang H, Ren P, Huang Y, Zeng W, Zhong K, Gao H, Cen X, Bu Q. Untargeted lipidomic analysis of human hippocampus for temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Res 2020; 161:106299. [DOI: 10.1016/j.eplepsyres.2020.106299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/22/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022]
|
91
|
Clarke BA, Majumder S, Zhu H, Lee YT, Kono M, Li C, Khanna C, Blain H, Schwartz R, Huso VL, Byrnes C, Tuymetova G, Dunn TM, Allende ML, Proia RL. The Ormdl genes regulate the sphingolipid synthesis pathway to ensure proper myelination and neurologic function in mice. eLife 2019; 8:51067. [PMID: 31880535 PMCID: PMC6934382 DOI: 10.7554/elife.51067] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022] Open
Abstract
Sphingolipids are membrane and bioactive lipids that are required for many aspects of normal mammalian development and physiology. However, the importance of the regulatory mechanisms that control sphingolipid levels in these processes is not well understood. The mammalian ORMDL proteins (ORMDL1, 2 and 3) mediate feedback inhibition of the de novo synthesis pathway of sphingolipids by inhibiting serine palmitoyl transferase in response to elevated ceramide levels. To understand the function of ORMDL proteins in vivo, we studied mouse knockouts (KOs) of the Ormdl genes. We found that Ormdl1 and Ormdl3 function redundantly to suppress the levels of bioactive sphingolipid metabolites during myelination of the sciatic nerve. Without proper ORMDL-mediated regulation of sphingolipid synthesis, severe dysmyelination results. Our data indicate that the Ormdls function to restrain sphingolipid metabolism in order to limit levels of dangerous metabolic intermediates that can interfere with essential physiological processes such as myelination.
Collapse
Affiliation(s)
- Benjamin A Clarke
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Saurav Majumder
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Hongling Zhu
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Y Terry Lee
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Mari Kono
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Cuiling Li
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Caroline Khanna
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Hailey Blain
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Ronit Schwartz
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Vienna L Huso
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Colleen Byrnes
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Galina Tuymetova
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Teresa M Dunn
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - Maria L Allende
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
92
|
Sekova VY, Dergacheva DI, Isakova EP, Gessler NN, Tereshina VM, Deryabina YI. Soluble Sugar and Lipid Readjustments in the Yarrowia lipolytica Yeast at Various Temperatures and pH. Metabolites 2019; 9:metabo9120307. [PMID: 31861165 PMCID: PMC6950712 DOI: 10.3390/metabo9120307] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
Microorganisms cope with a wide range of environmental challenges using different mechanisms. Their ability to prosper at extreme ambient pH and high temperatures has been well reported, but the adaptation mechanism often remains unrevealed. In this study, we addressed the dynamics of lipid and sugar profiles upon different cultivation conditions. The results showed that the cells grown at various pH and optimal temperature contained mannitol as the major cytosol sugar alcohol. The elevated temperature of 38 °C led to a two- to three-fold increase in total cytosol sugars with concurrent substitution of mannitol for trehalose. Lipid composition in the cells at optimal temperature changed insignificantly at any pH tested. The increase in the temperature caused some drop in the storage and membrane lipid levels, remarkable changes in their composition, and the degree of unsaturated fatty acids. It was shown that the fatty acid composition of some membrane phospholipids varied considerably at changing pH and temperature values. The data showed a pivotal role and flexibility of the sugar and lipid composition of Y. lipolytica W29 in adaptation to unfavorable environmental conditions.
Collapse
Affiliation(s)
- Varvara Yu Sekova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, bld 33-2, Leninsly Prospect, Moscow 119071, Russia; (D.I.D.); (N.N.G.); (Y.I.D.)
- Correspondence: (V.Y.S.); (E.P.I.)
| | - Daria I. Dergacheva
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, bld 33-2, Leninsly Prospect, Moscow 119071, Russia; (D.I.D.); (N.N.G.); (Y.I.D.)
| | - Elena P. Isakova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, bld 33-2, Leninsly Prospect, Moscow 119071, Russia; (D.I.D.); (N.N.G.); (Y.I.D.)
- Correspondence: (V.Y.S.); (E.P.I.)
| | - Natalya N. Gessler
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, bld 33-2, Leninsly Prospect, Moscow 119071, Russia; (D.I.D.); (N.N.G.); (Y.I.D.)
| | - Vera M. Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia;
| | - Yulia I. Deryabina
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, bld 33-2, Leninsly Prospect, Moscow 119071, Russia; (D.I.D.); (N.N.G.); (Y.I.D.)
| |
Collapse
|
93
|
Cheng X, Jiang X, Tam KY, Li G, Zheng J, Zhang H. Sphingolipidomic Analysis of C. elegans reveals Development- and Environment-dependent Metabolic Features. Int J Biol Sci 2019; 15:2897-2910. [PMID: 31853226 PMCID: PMC6909964 DOI: 10.7150/ijbs.30499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/02/2019] [Indexed: 01/12/2023] Open
Abstract
Sphingolipids (SLs) serve as structural and signaling molecules in regulating various cellular events and growth. Given that SLs contain various bioactive species possessing distinct roles, quantitative analysis of sphingolipidome is essential for elucidating their differential requirement during development. Herein we developed a comprehensive sphingolipidomic profiling approach using liquid chromatography-mass spectrometry coupled with multiple reaction monitoring mode (LC-MS-MRM). SL profiling of C. elegans revealed organism-specific, development-dependent and environment-driven metabolic features. We showed for the first time the presence of a series of sphingoid bases in C. elegans sphingolipid profiles, although only C17-sphingoid base is used for generating complex SLs. Moreover, we successfully resolved growth-, temperature- and nutrition-dependent SL profiles at both individual metabolite-level and network-level. Sphingolipidomic analysis uncovered significant SL composition changes throughout development, with SMs/GluCers ratios dramatically increasing from larva to adult stage whereas total sphingolipid levels exhibiting opposing trends. We also identified a temperature-dependent alteration in SMs/GluCers ratios, suggesting an organism-specific strategy for environmental adaptation. Finally, we found serine-biased GluCer increases between serine- versus alanine-supplemented worms. Our study builds a “reference” resource for future SL analysis in the worm, provides insights into natural variability and plasticity of eukaryotic multicellular sphingolipid composition and is highly valuable for investigating their functional significance.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Xue Jiang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China.,Centre of Reproduction, Development and Ageing, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
94
|
Hernández-Coronado CG, Guzmán A, Castillo-Juárez H, Zamora-Gutiérrez D, Rosales-Torres AM. Sphingosine-1-phosphate (S1P) in ovarian physiology and disease. ANNALES D'ENDOCRINOLOGIE 2019; 80:263-272. [DOI: 10.1016/j.ando.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/06/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
|
95
|
Banhart S, Schäfer EK, Gensch JM, Heuer D. Sphingolipid Metabolism and Transport in Chlamydia trachomatis and Chlamydia psittaci Infections. Front Cell Dev Biol 2019; 7:223. [PMID: 31637241 PMCID: PMC6787139 DOI: 10.3389/fcell.2019.00223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/20/2019] [Indexed: 12/05/2022] Open
Abstract
Chlamydia species infect a large range of vertebral hosts and have become of major economic and public health concern over the last decades. They are obligate intracellular bacteria that undergo a unique cycle of development characterized by the presence of two distinct bacterial forms. After infection of the host cell, Chlamydia are found inside a membrane-bound compartment, the inclusion. The surrounding membrane of the inclusion contributes to the host-Chlamydia interface and specific pathogen-derived Inc proteins shape this interface allowing interactions with distinct cellular proteins. In contrast to many other bacteria, Chlamydia species acquire sphingomyelin from the host cell. In recent years a clearer picture of how Chlamydia trachomatis acquires this lipid emerged showing that the bacteria interact with vesicular and non-vesicular transport pathways that involve the recruitment of specific RAB proteins and the lipid-transfer protein CERT. These interactions contribute to the development of a new sphingomyelin-producing compartment inside the host cell. Interestingly, recruitment of CERT is conserved among different Chlamydia species including Chlamydia psittaci. Here we discuss our current understanding on the molecular mechanisms used by C. trachomatis and C. psittaci to establish these interactions and to create a novel sphingomyelin-producing compartment inside the host cell important for the infection.
Collapse
Affiliation(s)
- Sebastian Banhart
- Unit 'Sexually Transmitted Bacterial Infections', Department for Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Elena K Schäfer
- Unit 'Sexually Transmitted Bacterial Infections', Department for Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Jean-Marc Gensch
- Unit 'Sexually Transmitted Bacterial Infections', Department for Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Dagmar Heuer
- Unit 'Sexually Transmitted Bacterial Infections', Department for Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
96
|
Wigger D, Gulbins E, Kleuser B, Schumacher F. Monitoring the Sphingolipid de novo Synthesis by Stable-Isotope Labeling and Liquid Chromatography-Mass Spectrometry. Front Cell Dev Biol 2019; 7:210. [PMID: 31632963 PMCID: PMC6779703 DOI: 10.3389/fcell.2019.00210] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids are a class of lipids that share a sphingoid base backbone. They exert various effects in eukaryotes, ranging from structural roles in plasma membranes to cellular signaling. De novo sphingolipid synthesis takes place in the endoplasmic reticulum (ER), where the condensation of the activated C16 fatty acid palmitoyl-CoA and the amino acid L-serine is catalyzed by serine palmitoyltransferase (SPT). The product, 3-ketosphinganine, is then converted into more complex sphingolipids by additional ER-bound enzymes, resulting in the formation of ceramides. Since sphingolipid homeostasis is crucial to numerous cellular functions, improved assessment of sphingolipid metabolism will be key to better understanding several human diseases. To date, no assay exists capable of monitoring de novo synthesis sphingolipid in its entirety. Here, we have established a cell-free assay utilizing rat liver microsomes containing all the enzymes necessary for bottom-up synthesis of ceramides. Following lipid extraction, we were able to track the different intermediates of the sphingolipid metabolism pathway, namely 3-ketosphinganine, sphinganine, dihydroceramide, and ceramide. This was achieved by chromatographic separation of sphingolipid metabolites followed by detection of their accurate mass and characteristic fragmentations through high-resolution mass spectrometry and tandem-mass spectrometry. We were able to distinguish, unequivocally, between de novo synthesized sphingolipids and intrinsic species, inevitably present in the microsome preparations, through the addition of stable isotope-labeled palmitate-d3 and L-serine-d3. To the best of our knowledge, this is the first demonstration of a method monitoring the entirety of ER-associated sphingolipid biosynthesis. Proof-of-concept data was provided by modulating the levels of supplied cofactors (e.g., NADPH) or the addition of specific enzyme inhibitors (e.g., fumonisin B1). The presented microsomal assay may serve as a useful tool for monitoring alterations in sphingolipid de novo synthesis in cells or tissues. Additionally, our methodology may be used for metabolism studies of atypical substrates - naturally occurring or chemically tailored - as well as novel inhibitors of enzymes involved in sphingolipid de novo synthesis.
Collapse
Affiliation(s)
- Dominik Wigger
- Department of Toxicology, University of Potsdam, Nuthetal, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany.,Department of Surgery, University of Cincinnati, Cincinnati, OH, United States
| | - Burkhard Kleuser
- Department of Toxicology, University of Potsdam, Nuthetal, Germany
| | - Fabian Schumacher
- Department of Toxicology, University of Potsdam, Nuthetal, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
97
|
An electrostatic switching mechanism to control the lipid transfer activity of Osh6p. Nat Commun 2019; 10:3926. [PMID: 31477717 PMCID: PMC6718676 DOI: 10.1038/s41467-019-11780-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/01/2019] [Indexed: 02/01/2023] Open
Abstract
A central assumption is that lipid transfer proteins (LTPs) bind transiently to organelle membranes to distribute lipids in the eukaryotic cell. Osh6p and Osh7p are yeast LTPs that transfer phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM) via PS/phosphatidylinositol-4-phosphate (PI4P) exchange cycles. It is unknown how, at each cycle, they escape from the electrostatic attraction of the PM, highly anionic, to return to the ER. Using cellular and in vitro approaches, we show that Osh6p reduces its avidity for anionic membranes once it captures PS or PI4P, due to a molecular lid closing its lipid-binding pocket. Thus, Osh6p maintains its transport activity between ER- and PM-like membranes. Further investigations reveal that the lid governs the membrane docking and activity of Osh6p because it is anionic. Our study unveils how an LTP self-limits its residency time on membranes, via an electrostatic switching mechanism, to transfer lipids efficiently. Osh6p and Osh7p are yeast lipid transfer proteins (LTPs) that must transiently interact with membranes but how they escape from the electrostatic attraction of the plasma membrane is unclear. Here authors show that Osh6p reduces its avidity for anionic membranes once it captures PS or PI4P, due to a molecular lid closing its lipid-binding pocket.
Collapse
|
98
|
Alfatah M, Wong JH, Kong KW, Utama F, Hoon S, Arumugam P. Chemical-genetic interaction landscape of mono-(2-ethylhexyl)-phthalate using chemogenomic profiling in yeast. CHEMOSPHERE 2019; 228:219-231. [PMID: 31029968 DOI: 10.1016/j.chemosphere.2019.04.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/07/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Integration of chemical-genetic interaction data with biological functions provides a mechanistic understanding of how toxic compounds affect cells. Mono-(2-ethylhexyl)-phthalate (MEHP) is an active metabolite of di-(2-ethylhexyl)-phthalate (DEHP), a commonly used plasticizer. MEHP adversely affects human health causing hepatotoxicity and reproductive toxicity. How MEHP affects cellular physiology is not fully understood. We utilized a genome-wide competitive fitness-based assay called 'chemogenomic profiling' to determine the genetic interaction map of MEHP in Saccharomyces cerevisiae. Gene Ontology enrichment analysis of 218 genes that provide resistance to MEHP indicated that MEHP affects seven cellular processes namely: (1) cellular amino acid biosynthetic process, (2) sterol biosynthetic process, (3) cellular transport, (4) transcriptional and translational regulation, (5) protein glycosylation, (6) cytokinesis and cell morphogenesis and (7) ionic homeostasis. We show that MEHP protects yeast cells from membrane perturbing agents such as amphotericin B, dihydrosphingosine and phytosphingosine. Moreover, we also demonstrate that MEHP compromises the integrity of the yeast plasma membrane and cell wall. Our work provides a basis for further investigation of MEHP toxicity in humans.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore.
| | - Jin Huei Wong
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Kiat Whye Kong
- Molecular Engineering Laboratory, 61 Biopolis Drive, #03-12 Proteos, Singapore 13867, Singapore
| | - Felix Utama
- School of Chemical and Life Sciences, Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore
| | - Shawn Hoon
- Molecular Engineering Laboratory, 61 Biopolis Drive, #03-12 Proteos, Singapore 13867, Singapore
| | - Prakash Arumugam
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore.
| |
Collapse
|
99
|
Hammoudeh S, Gadelhak W, Janahi IA. Asthma and obesity in the Middle East region: An overview. Ann Thorac Med 2019; 14:116-121. [PMID: 31007762 PMCID: PMC6467016 DOI: 10.4103/atm.atm_115_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/07/2018] [Indexed: 01/03/2023] Open
Abstract
This paper aims to cover the current status of asthma and obesity in the Middle East, as well as to introduce the various studies tying the two diseases; further expanding on the proposed mechanisms. Finally, the paper covers recent literature related to sphingolipids and its role in asthma, followed by recommendations and future directions. In preparation of this paper, we searched PubMed and Google Scholar, with no restrictions, using the following terms; asthma, obesity, Middle East, sphingolipids. We also used the reference list of retrieved articles to further expand on the pool of articles that were used for this review.
Collapse
Affiliation(s)
- Samer Hammoudeh
- Medical Research Center, Research Affairs, Hamad Medical Corporation, Doha, Qatar
| | - Wessam Gadelhak
- Medical Research Center, Research Affairs, Hamad Medical Corporation, Doha, Qatar
| | - Ibrahim A. Janahi
- Medical Research Center, Research Affairs, Hamad Medical Corporation, Doha, Qatar
- Pediatric Pulmonology, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
100
|
Loewith R, Riezman H, Winssinger N. Sphingolipids and membrane targets for therapeutics. Curr Opin Chem Biol 2019; 50:19-28. [PMID: 30897494 DOI: 10.1016/j.cbpa.2019.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Lipids and membranes are often strongly altered in various diseases and pathologies, but are not often targeted for therapeutic advantage. In particular, the sphingolipids are particularly sensitive to altered physiology and have been implicated as important players in not only several rare hereditary diseases, but also other major pathologies, including cancer. This review discusses some potential targets in the sphingolipid pathway and describes how the initial drug compounds have been evolved to create potentially improved therapeutics. This reveals how lipids and their interactions with proteins can be used for therapeutic advantage. We also discuss the possibility that modification of the physical properties of membranes could also affect intracellular signaling and be of therapeutic interest.
Collapse
Affiliation(s)
- Robbie Loewith
- Department of Molecular Biology, NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland.
| | - Howard Riezman
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland.
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, 30 quai Ernest Ansermet, CH-1205 Geneva, Switzerland.
| |
Collapse
|