51
|
Jacquet M, Hervouet E, Baudu T, Herfs M, Parratte C, Feugeas JP, Perez V, Reynders C, Ancion M, Vigneron M, Baguet A, Guittaut M, Fraichard A, Despouy G. GABARAPL1 Inhibits EMT Signaling through SMAD-Tageted Negative Feedback. BIOLOGY 2021; 10:biology10100956. [PMID: 34681055 PMCID: PMC8533302 DOI: 10.3390/biology10100956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary Epithelial–mesenchymal transition (EMT) is involved in metastasis formation, chemoresistance, apoptosis resistance, and acquisition of stem cell properties, making this process an attractive target in cancer. However, direct targeting of EMT remains challenging. Autophagy—an intracellular mechanism—has been noted to be involved in the regulation of EMT—mainly by its involvement in the degradation of EMT actors, explaining why understanding of how autophagy could regulate EMT might be promising in the development of new cancer therapies. Here, we found that GABARAPL1—an autophagy-related gene—was increased in human NSCLC mesenchymal tumors compared to epithelial tumors, and induction of EMT in an A549 lung cancer cell line by TGF-β/TNF-α cytokines also led to an increase in GABARAPL1 expression. This regulation could involve the EMT-related transcription factors of the SMAD family. To understand the role of GABARAPL1 in EMT regulation in lung cancer cells, A549 KO GABARAPL1 were designed and used to investigate whether GABARAPL1 could inhibit EMT via its involvement in SMAD degradation. The results indicate that GABARAPL1-mediated autophagic degradation could intervene as a negative EMT-regulatory loop. Abstract The pathway of selective autophagy, leading to a targeted elimination of specific intracellular components, is mediated by the ATG8 proteins, and has been previously suggested to be involved in the regulation of the Epithelial–mesenchymal transition (EMT) during cancer’s etiology. However, the molecular factors and steps of selective autophagy occurring during EMT remain unclear. We therefore analyzed a cohort of lung adenocarcinoma tumors using transcriptome analysis and immunohistochemistry, and found that the expression of ATG8 genes is correlated with that of EMT-related genes, and that GABARAPL1 protein levels are increased in EMT+ tumors compared to EMT- ones. Similarly, the induction of EMT in the A549 lung adenocarcinoma cell line using TGF-β/TNF-α led to a high increase in GABARAPL1 expression mediated by the EMT-related transcription factors of the SMAD family, whereas the other ATG8 genes were less modified. To determine the role of GABARAPL1 during EMT, we used the CRISPR/Cas9 technology in A549 and ACHN kidney adenocarcinoma cell lines to deplete GABARAPL1. We then observed that GABARAPL1 knockout induced EMT linked to a defect of GABARAPL1-mediated degradation of the SMAD proteins. These findings suggest that, during EMT, GABARAPL1 might intervene in an EMT-regulatory loop. Indeed, induction of EMT led to an increase in GABARAPL1 levels through the activation of the SMAD signaling pathway, and then GABARAPL1 induced the autophagy-selective degradation of SMAD proteins, leading to EMT inhibition.
Collapse
Affiliation(s)
- Marine Jacquet
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
| | - Eric Hervouet
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
- DImaCellplatform, Université Bourgogne Franche-Comté, F-25000 Besançon, France
- EPIGENExp, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Timothée Baudu
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
| | - Michaël Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium; (M.H.); (C.R.); (M.A.)
| | - Chloé Parratte
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
| | - Jean-Paul Feugeas
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
| | - Valérie Perez
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
| | - Célia Reynders
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium; (M.H.); (C.R.); (M.A.)
| | - Marie Ancion
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, 4000 Liege, Belgium; (M.H.); (C.R.); (M.A.)
| | - Marc Vigneron
- Team Replisome Dynamics and Cancer, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, CNRS-Université de Strasbourg, F-67412 Illkirch, France;
| | - Aurélie Baguet
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
| | - Michaël Guittaut
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
- DImaCellplatform, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Annick Fraichard
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
| | - Gilles Despouy
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; (M.J.); (E.H.); (T.B.); (C.P.); (J.-P.F.); (V.P.); (A.B.); (M.G.); (A.F.)
- Correspondence:
| |
Collapse
|
52
|
Zhou L, Wang J, Liu J, Liang J, Wang Y, Cai Q, Huang Y. YAP activation attenuates toxicarioside G‑induced lethal autophagy arrest in SW480 colorectal cancer cells. Oncol Rep 2021; 46:224. [PMID: 34458926 PMCID: PMC8424488 DOI: 10.3892/or.2021.8175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
Toxicarioside G (TCG), a natural product isolated from Calotropis gigantea, has been found to exhibit potent anticancer effects. The present study aimed to investigate the effect of TCG on the SW480 colorectal cancer cell line and the role of autophagy and Yes1 associated transcriptional regulator (YAP) in the TCG-mediated inhibition of cell proliferation and viability. Cell proliferation was detected using MTT, BrdU, colony formation and LDH release assays, while apoptosis was analyzed using flow cytometry and western blot analyses. Immunofluorescence and western blot analysis was used to determine TCG-induced autophagy and YAP activation. Pharmacological inhibition and siRNA was used to investigate the role of autophagy and YAP in TCG-mediated cell growth inhibition. The results revealed that TCG inhibited SW480 cell proliferation and viability, independent of apoptosis, and also induced autophagy. It was further demonstrated that TCG blocks autophagic flux, resulting in autophagy arrest in the SW480 cell line. The inhibition of autophagy restored the TCG-mediated inhibition of cell proliferation and viability, suggesting that TCG may induce lethal autophagy arrest in the SW480 cell line. Furthermore, TCG induced YAP activation in the SW480 cell line. Inhibition of YAP activity enhanced the TCG-mediated inhibition of cell proliferation and viability, suggesting that YAP may play a protective role in the TCG-induced effects. In conclusion, the findings of the present study indicated that TCG may induce lethal autophagy arrest and activate YAP, which serves a protective role in the SW480 cell line. These results suggested that the combined targeting of TCG and YAP may represent a promising strategy for TCG-mediated anticancer therapy.
Collapse
Affiliation(s)
- Limin Zhou
- Key Laboratory of Tropical Translational Medicine of The Ministry of Education and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jinyan Wang
- Key Laboratory of Tropical Translational Medicine of The Ministry of Education and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jiaqi Liu
- Key Laboratory of Tropical Translational Medicine of The Ministry of Education and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jiantang Liang
- Key Laboratory of Tropical Translational Medicine of The Ministry of Education and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Yansong Wang
- Hainan Haitai Biomedical Technology Co., Ltd., Haikou, Hainan 571199, P.R. China
| | - Qunfang Cai
- School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Yonghao Huang
- Key Laboratory of Tropical Translational Medicine of The Ministry of Education and Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
53
|
Xu W, Chen B, Ke D, Chen X. CD142 plays a key role in the carcinogenesis of gastric adenocarcinoma by inhibiting BCL2-dependent autophagy. Biochem Cell Biol 2021; 100:17-27. [PMID: 34289309 DOI: 10.1139/bcb-2021-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CD142 is expressed on the surface of multiple malignant tumors and contributes to various carcinogenesis. However, the role of CD142 in the pathogenesis of GAC remains unclear. This study aimed to investigate the role of CD142 in GAC carcinogenesis. Our results showed that CD142 expression was significantly increased in GAC cancer tissues, especially in those with significant invasion or metastasis. The invasion and migration of CD142-positive SNU16 cells were significantly increased compared with those of CD142-negative cells. Moreover, CD142 overexpression promoted the invasion and migration of SGC083 cells, but CD142 silencing was contrary. In addition, there was a positive correlation between CD142 expression of cancer tissues and serum IL-8 levels. CD142 overexpression promotes IL-8 production in SGC083 cells. In vivo analysis showed that the implantation of CD142-positive SNU16 cells promoted the growth of xenograft tumor and the production of IL-8. Mechanistically, CD142 silencing not only inhibited the expression of BCL2 and the interaction between BCL2 and Beclin1, but also promoted the autophagic response in SGC083. Furthermore, CD142 silencing-induced IL-8 degradation was recovered by treatment of autophagy inhibitor 3-MA. CD142 can inhibit autophagic cell death and the autophagic degradation of IL-8 in GAC, which exerts an effective effect on GAC carcinogenesis.
Collapse
Affiliation(s)
- Weifeng Xu
- Henan Cancer Hospital, 377327, Zhengzhou, China;
| | - Beibei Chen
- Henan Cancer Hospital, 377327, Zhengzhou, China;
| | - Dianshan Ke
- Southern Medical University, 70570, Guangzhou, Guangdong, China;
| | - Xiaobing Chen
- Henan Cancer Hospital, 377327, Zhengzhou, China, 450008;
| |
Collapse
|
54
|
Wang S, Qian H, Zhang L, Liu P, Zhuang D, Zhang Q, Bai F, Wang Z, Yan Y, Guo J, Huang J, Wu X. Inhibition of Calcineurin/NFAT Signaling Blocks Oncogenic H-Ras Induced Autophagy in Primary Human Keratinocytes. Front Cell Dev Biol 2021; 9:720111. [PMID: 34350189 PMCID: PMC8328491 DOI: 10.3389/fcell.2021.720111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Mutations of H-Ras, a member of the RAS family, are preferentially found in cutaneous squamous cell carcinomas (SCCs). H-Ras has been reported to induce autophagy, which plays an essential role in tissue homeostasis in multiple types of cancer cells and in fibroblasts, however, the potential role of H-Ras in regulating autophagy in human keratinocytes has not been reported. In this study, we found that the stable expression of the G12V mutant of H-RAS (H-Ras G12V ) induced autophagy in human keratinocytes, and interestingly, the induction of autophagy was strongly blocked by inhibiting the calcineurin/nuclear factor of activated T cells (NFAT) pathway with either a calcineurin inhibitor (Cyclosporin A) or a NFAT inhibitor (VIVIT), or by the small interfering RNA (siRNA) mediated knockdown of calcineurin B1 or NFATc1 in vitro, as well as in vivo. To characterize the role of the calcineurin/NFAT pathway in H-Ras induced autophagy, we found that H-Ras G12V promoted the nuclear translocation of NFATc1, an indication of the activation of the calcineurin/NFAT pathway, in human keratinocytes. However, activation of NFATc1 either by the forced expression of NFATc1 or by treatment with phenformin, an AMPK activator, did not increase the formation of autophagy in human keratinocytes. Further study revealed that inhibiting the calcineurin/NFAT pathway actually suppressed H-Ras expression in H-Ras G12V overexpressing cells. Finally, chromatin immunoprecipitation (ChIP) assays showed that NFATc1 potentially binds the promoter region of H-Ras and the binding efficiency was significantly enhanced by the overexpression of H-Ras G12V , which was abolished by treatment with the calcineurin/NFAT pathway inhibitors cyclosporine A (CsA) or VIVIT. Taking these data together, the present study demonstrates that the calcineurin/NFAT signaling pathway controls H-Ras expression and interacts with the H-Ras pathway, involving the regulation of H-Ras induced autophagy in human keratinocytes.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hua Qian
- Department of Stomatology, The Second Hospital of Shandong University, Jinan, China
| | - Liwei Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Panpan Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dexuan Zhuang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qun Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fuxiang Bai
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zhihong Wang
- Qilu Children's Hospital of Shandong University, Jinan, China
| | - Yonggan Yan
- Center for Advanced Jet Engineering Technologies, Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Jing Guo
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Savaid Stomatology School of Hangzhou Medical College, Ningbo Stomatology Hospital, Ningbo, China
| | - Jun Huang
- Center for Advanced Jet Engineering Technologies, Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
55
|
Saleem S. Apoptosis, Autophagy, Necrosis and Their Multi Galore Crosstalk in Neurodegeneration. Neuroscience 2021; 469:162-174. [PMID: 34166763 DOI: 10.1016/j.neuroscience.2021.06.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
The progression of neurodegenerative disorders is mainly characterized by immense neuron loss and death of glial cells. The mechanisms which are active and regulate neuronal cell death are namely necrosis, necroptosis, autophagy and apoptosis. These death paradigms are governed by a set of molecular determinants that are pivotal in their performance and also exhibit remarkable overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the switching of death paradigms in various neurodegenerative diseases. In this review, we discuss various molecules and the concurrent crosstalk mediated by them. According to our present knowledge and research in neurodegeneration, molecules like Atg1, Beclin1, LC3, p53, TRB3, RIPK1 play switching roles toggling from one death mechanism to another. In addition, the review also focuses on the exorbitant number of newer molecules with the potential to cross communicate between death pathways and create a complex cell death scenario. This review highlights recent studies on the inter-dependent regulation of cell death paradigms in neurodegeneration, mediated by cross-communication between pathways. This will help in identifying potential targets for therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Suraiya Saleem
- Stem Cell and Molecular Biology Laboratory Bhupat & Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600 036, Tamil Nadu, India.
| |
Collapse
|
56
|
Liu G, Lai D, Jiang Y, Yang H, Zhao H, Zhang Y, Liu D, Pang Y. Demethylzeylasteral Exerts Antitumor Effects via Disruptive Autophagic Flux and Apoptotic Cell Death in Human Colorectal Cancer Cells and Increases Cell Chemosensitivity to 5-Fluorouracil. Anticancer Agents Med Chem 2021; 22:851-863. [PMID: 34102996 DOI: 10.2174/1871520621666210608104021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/23/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Demethylzeylasteral (ZST93), a pharmacologically active triterpenoid monomer extracted from Tripterygium wilfordii Hook F (TWHF), has been reported to exert antineoplastic effects in several cancer cell types. However, the anti-tumour effects of ZST93 in human colorectal cancer (CRC) cells are unknown. OBJECTIVE The aim of the present study was to evaluate the antitumor effects of ZST93 on cell cycle arrest, disruptive autophagic flux, apoptotic cell death, and enhanced chemosensitivity to 5-FU in humans CRC cells. METHODS The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT) assay, colony formation assay, flow cytometry, immunoblotting, immunofluorescence, 5-ethynyl-20-deoxyuridine (EdU) incorporation assay, and autophagy analysis were used to evaluate the effects of ZST93 on cell viability, cell cycle progression, apoptosis and autophagy in two human CRC cell lines. Moreover, ZST93's combined anti-tumour effects with 5-fluorouracil (5-FU) were evaluated. RESULTS ZST93 inhibited CRC cell proliferation and growth. It was responsible for blocked cell cycle transition by arresting CRC cells in the G0/G1 phase via down-regulation of CDK4, CDK6, Cyclin D1, and c-MYC. Moreover, ZST93 induced suppressive autophagic flux and caspase-3-dependent cell death, which were further strengthened by the blocking of the autophagy process using chloroquine (CQ). Moreover, ZST93 enhanced CRC cells' chemosensitivity to 5-FU via modulation of autophagy and apoptosis. CONCLUSION ZST93 exerts anti-tumour effects via disruptive autophagic flux and apoptotic cell death in human CRC cells and increases cell chemosensitivity to 5-FU. These results provide insights into the utilisation of ZST93 as an adjuvant or direct autophagy inhibitor and suggest ZST93 as a novel therapeutic strategy for treating CRC.
Collapse
Affiliation(s)
- Guiyuan Liu
- The Affiliated Hospital of Chongqing Three Gorges Medical College, Chongqing, China
| | - Dengxiang Lai
- The Affiliated Hospital of Chongqing Three Gorges Medical College, Chongqing, China
| | - Yi Jiang
- The Affiliated Hospital of Chongqing Three Gorges Medical College, Chongqing, China
| | - Hongjing Yang
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Hui Zhao
- The Affiliated Hospital of Chongqing Three Gorges Medical College, Chongqing, China
| | - Yonghui Zhang
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Dan Liu
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Yi Pang
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| |
Collapse
|
57
|
Interactions between reactive oxygen species and autophagy: Special issue: Death mechanisms in cellular homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119041. [PMID: 33872672 DOI: 10.1016/j.bbamcr.2021.119041] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress is defined as "a serious imbalance between the generation of reactive oxygen species (ROS) and antioxidant defences in favour of ROS, causing excessive oxidative damage to biomolecules". Different stressors that induce autophagy, such as starvation and hypoxia, can increase production of ROS such as superoxide and hydrogen peroxide. This review provides brief summaries about oxidative stress and macroautophagy, and then considers current knowledge about the complex interactions between ROS and autophagy. ROS-induced autophagy could be a cellular protective mechanism that alleviates oxidative stress, or a destructive process. Increased ROS levels can regulate autophagy through several different pathways, such as activation of the AMPK signalling cascade and ULK1 complex, Atg4 oxidation, disruption of the Bcl-2/Beclin-1 interaction, and alteration of mitochondrial homeostasis leading to mitophagy. Autophagic degradation of Keap1 activates the antioxidant transcription factor Nrf2 and protects cells against ROS. Autophagy activation can, in turn, regulate oxidative stress by recycling damaged ROS-producing mitochondria. Macroautophagy plays an important role in degradation of large aggregates of oxidatively damaged/unfolded proteins, which are removed by the autophagy-lysosomal system. ROS can regulate autophagy, and in turn, autophagy can regulate oxidative stress. Future studies are necessary to improve understanding of the complex interactions between autophagy and oxidative stress.
Collapse
|
58
|
Patel NH, Bloukh S, Alwohosh E, Alhesa A, Saleh T, Gewirtz DA. Autophagy and senescence in cancer therapy. Adv Cancer Res 2021; 150:1-74. [PMID: 33858594 DOI: 10.1016/bs.acr.2021.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tumor cells can undergo diverse responses to cancer therapy. While apoptosis represents the most desirable outcome, tumor cells can alternatively undergo autophagy and senescence. Both autophagy and senescence have the potential to make complex contributions to tumor cell survival via both cell autonomous and cell non-autonomous pathways. The induction of autophagy and senescence in tumor cells, preclinically and clinically, either individually or concomitantly, has generated interest in the utilization of autophagy modulating and senolytic therapies to target autophagy and senescence, respectively. This chapter summarizes the current evidence for the promotion of autophagy and senescence as fundamental responses to cancer therapy and discusses the complexity of their functional contributions to cell survival and disease outcomes. We also highlight current modalities designed to exploit autophagy and senescence in efforts to improve the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Nipa H Patel
- Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA, United States; Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA, United States
| | - Sarah Bloukh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Enas Alwohosh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ahmad Alhesa
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - David A Gewirtz
- Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA, United States; Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
59
|
Lee XC, Werner E, Falasca M. Molecular Mechanism of Autophagy and Its Regulation by Cannabinoids in Cancer. Cancers (Basel) 2021; 13:cancers13061211. [PMID: 33802014 PMCID: PMC7999886 DOI: 10.3390/cancers13061211] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This review examines the complex function of autophagy in malignancy and explores its regulation by cannabinoids in different cancers. Autophagy is an important process in the maintenance of cellular homeostasis, through the degradation and recycling of cytoplasmic constituents. The action of autophagy is highly dependent on tumour stage and type and the receptors with which ligands interact. Cannabinoids are growingly being acknowledged for their anticancer activities and are known to stimulate several mechanisms such as apoptosis and autophagy. Better understanding the mechanism of action behind autophagy and its regulation by cannabinoids will allow the development of novel cancer therapeutics. Abstract Autophagy is a “self-degradation” process whereby malfunctioned cytoplasmic constituents and protein aggregates are engulfed by a vesicle called the autophagosome, and subsequently degraded by the lysosome. Autophagy plays a crucial role in sustaining protein homeostasis and can be an alternative source of energy under detrimental circumstances. Studies have demonstrated a paradoxical function for autophagy in cancer, displaying both tumour suppressive and tumour promotive roles. In early phases of tumour development autophagy promotes cancer cell death. In later phases, autophagy enables cancer cells to survive and withstand therapy. Cannabinoids, which are derivatives of the Cannabis sativa L. plant, have shown to be associated with autophagy induction in cells. There is an emerging interest in studying the signalling pathways involved in cannabinoid-induced autophagy and their potential application in anticancer therapies. In this review, the molecular mechanisms involved in the autophagy degradation process will be discussed. This review also highlights a role for autophagy in cancer progression, with cannabinoid-induced autophagy presenting a novel strategy for anticancer therapy.
Collapse
|
60
|
Abstract
The immune system can recognize tumor cells to mount antigen-specific T cell response. Central to the establishment of T cell-mediated adaptive immunity are the inflammatory events that facilitate antigen presentation by stimulating the expression of MHC and costimulatory molecules and the secretion of pro-inflammatory cytokines. Such inflammatory events can be triggered upon cytotoxic treatments that induce immunogenic cancer cell death modalities. However, cancers have acquired a plethora of mechanisms to subvert, or to hide from, host-encoded immunosurveillance. Here, we discuss how tumor intrinsic oncogenic factors subvert desirable intratumoral inflammation by suppressing immunogenic cell death.
Collapse
Affiliation(s)
- Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jonathan Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1138, Paris, France.,Equipe 11 Labellisée Par La Ligue Nationale Contre Le Cancer, Centre De Recherche Des Cordeliers, Paris, France.,Université De Paris, Paris, France.,Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1138, Paris, France.,Equipe 11 Labellisée Par La Ligue Nationale Contre Le Cancer, Centre De Recherche Des Cordeliers, Paris, France.,Université De Paris, Paris, France.,Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Institut Universitaire De France, Paris, France.,Pôle De Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
61
|
Targeting the stress support network regulated by autophagy and senescence for cancer treatment. Adv Cancer Res 2021; 150:75-112. [PMID: 33858601 DOI: 10.1016/bs.acr.2021.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Autophagy and cellular senescence are two potent tumor suppressive mechanisms activated by various cellular stresses, including the expression of activated oncogenes. However, emerging evidence has also indicated their pro-tumorigenic activities, strengthening the case for the complexity of tumorigenesis. More specifically, tumorigenesis is a systemic process emanating from the combined accumulation of changes in the tumor support pathways, many of which cannot cause cancer on their own but might still provide excellent therapeutic targets for cancer treatment. In this review, we discuss the dual roles of autophagy and senescence during tumorigenesis, with a specific focus on the stress support networks in cancer cells modulated by these processes. A deeper understanding of such context-dependent roles may help to enhance the effectiveness of cancer therapies targeting autophagy and senescence, while limiting their potential side effects. This will steer and accelerate the pace of research and drug development for cancer treatment.
Collapse
|
62
|
Verma AK, Bharti PS, Rafat S, Bhatt D, Goyal Y, Pandey KK, Ranjan S, Almatroodi SA, Alsahli MA, Rahmani AH, Almatroudi A, Dev K. Autophagy Paradox of Cancer: Role, Regulation, and Duality. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8832541. [PMID: 33628386 PMCID: PMC7892237 DOI: 10.1155/2021/8832541] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Autophagy, a catabolic process, degrades damaged and defective cellular materials through lysosomes, thus working as a recycling mechanism of the cell. It is an evolutionarily conserved and highly regulated process that plays an important role in maintaining cellular homeostasis. Autophagy is constitutively active at the basal level; however, it gets enhanced to meet cellular needs in various stress conditions. The process involves various autophagy-related genes that ultimately lead to the degradation of targeted cytosolic substrates. Many factors modulate both upstream and downstream autophagy pathways like nutritional status, energy level, growth factors, hypoxic conditions, and localization of p53. Any problem in executing autophagy can lead to various pathological conditions including neurodegeneration, aging, and cancer. In cancer, autophagy plays a contradictory role; it inhibits the formation of tumors, whereas, during advanced stages, autophagy promotes tumor progression. Besides, autophagy protects the tumor from various therapies by providing recycled nutrition and energy to the tumor cells. Autophagy is stimulated by tumor suppressor proteins, whereas it gets inhibited by oncogenes. Due to its dynamic and dual role in the pathogenesis of cancer, autophagy provides promising opportunities in developing novel and effective cancer therapies along with managing chemoresistant cancers. In this article, we summarize different strategies that can modulate autophagy in cancer to overcome the major obstacle, i.e., resistance developed in cancer to anticancer therapies.
Collapse
Affiliation(s)
- Amit Kumar Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institutes of Medical Sciences, New Delhi, India
| | - Sahar Rafat
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Deepti Bhatt
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Yamini Goyal
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Kamlesh Kumar Pandey
- Department of Anatomy, All India Institutes of Medical Sciences, New Delhi, India
| | - Sanjeev Ranjan
- Institute of Biomedicine, Cell and Tissue Imaging Unit, Finland
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
63
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
64
|
Acute Increases in Intracellular Zinc Lead to an Increased Lysosomal and Mitochondrial Autophagy and Subsequent Cell Demise in Malignant Melanoma. Int J Mol Sci 2021; 22:ijms22020667. [PMID: 33440911 PMCID: PMC7826594 DOI: 10.3390/ijms22020667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Changes in zinc content and dysregulated zinc homeostatic mechanisms have been recognized in several solid malignancies such as prostate cancer, breast cancer, or pancreatic cancer. Moreover, it has been shown that zinc serum and/or tissue levels are altered in melanoma with varying effects on melanoma development and biology. This study was conducted to explore the effects of acute increases of intracellular zinc in a set of melanoma tissue explants obtained from clinical samples. Measurements of their zinc content showed an extant heterogeneity in total and free intracellular zinc pools associated with varying biological behavior of individual cells, e.g., autophagy levels and propensity to cell death. Use of zinc pyrithione elevated intracellular zinc in a short time frame which resulted in marked changes in mitochondrial activity and lysosomes. These alterations were accompanied by significantly enhanced autophagy flux and subsequent cell demise in the absence of typical apoptotic cell death markers. The present results show for the first time that acutely increased intracellular zinc in melanoma cells specifically enhances their autophagic activity via mitochondria and lysosomes which leads to autophagic cell death. While biologically relevant, this discovery may contribute to our understanding and exploration of zinc in relation to autophagy as a means of controlling melanoma growth and survival.
Collapse
|
65
|
Kosmidou V, Vlassi M, Anagiotos K, Raftopoulou S, Kalogerakou E, Skarmalioraki S, Aggeli C, Choreftaki T, Zografos G, Pintzas A. Noxa upregulation and 5-gene apoptotic biomarker panel in colorectal cancer. Eur J Clin Invest 2021; 51:e13353. [PMID: 32682341 DOI: 10.1111/eci.13353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND NOXA and MCL1 are involved in the intrinsic pathway of apoptosis, where Noxa selectively binds to MCL1 and prevents it from inhibiting apoptosis. Both factors are considered as potential tumour biomarkers, while MCL1 has attracted interest as target in cancer. The purpose of this study was to investigate the expression of NOXA and MCL1 in 160 CRC tumour samples, to investigate their significance, also in combination with IAPs, DR5 expression and KRAS gene mutations in CRC. MATERIALS AND METHODS Fresh frozen colorectal tissue was obtained from patients undergoing surgery for CRC. Real-time quantitative PCR was performed for the determination of mRNA expression levels. Protein expression was determined immunohistochemically. Differences in the mRNA expression profile were evaluated with the nonparametric Wilcoxon signed ranks test. Statistical analysis was performed with the use of Mann-Whitney U test and receiver-operating characteristic (ROC) curve. RESULTS NOXA was found to be overexpressed in CRC tumours (P < .0001), even from early stage. Moreover, NOXA/MCL1 mRNA expression was significantly elevated in tumour samples compared to normal pairs (P < .0001). ROC curve analysis showed that both NOXA expression and its combination with Mcl1 expression have fair discriminatory value between CRC and normal colorectal tissue. Combinatorial ROC analysis revealed the most significant discriminatory value of NOXA, MCL1 with cIAP1 and cIAP2 (AUC = 0.834, P < .0001) as a 5-gene panel of markers. CONCLUSION Noxa, Mcl1, DR5, cIAP1 and cIAP2 mRNA expressions are significantly deregulated in CRC and could provide a panel of markers with significant discriminatory value between CRC and normal colorectal tissue.
Collapse
Affiliation(s)
- Vivian Kosmidou
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Margarita Vlassi
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Kyriakos Anagiotos
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Sofia Raftopoulou
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Eirini Kalogerakou
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Salomi Skarmalioraki
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Chrysanthi Aggeli
- 3rd Department of Surgery, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Theodosia Choreftaki
- Department of Pathology, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - George Zografos
- 3rd Department of Surgery, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Alexander Pintzas
- Laboratory of Signal Mediated Gene Expression, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
66
|
Zhao L, Li W, Luo X, Sheng S. The multifaceted roles of nucleophagy in cancer development and therapy. Cell Biol Int 2020; 45:246-257. [PMID: 33219602 DOI: 10.1002/cbin.11504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/12/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is an evolutionarily conserved process in which the cell degrades its own components and recycles the biomolecules for survival and homeostasis. It is an important cellular process to eliminate pathogens or damaged organelles. Nucleophagy, also termed as nuclear autophagy, is a more recently described subtype of autophagy, in which nuclear components, such as nuclear lamina and DNA, are to be degraded. Nucleophagy plays a double-facet role in the development of cancer. On one hand, the clearance of damaged DNA or nuclear structures via autophagic pathway is crucial to maintain nuclear integrity and prevent tumorigenesis. On the other hand, in later stages of tumor growth, nucleophagy may facilitate cancer cell survival and metastasis in the nutrient-depleted microenvironment. In this review, we discuss the relationship between nucleophagy and cancer along with potential intervention methods to target cancer through manipulating nucleophagy. Given the known observations about nucleophagy, it could be promising to target different nuclear components during the processes of nucleophagy, especially nuclear lamina. Further research on investigating the role of nucleophagy in oncological context could focus on dissecting its remaining molecular pathways and their connection to known tumor suppressors.
Collapse
Affiliation(s)
- Lili Zhao
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Nantong University, Nantong, Jiangsu, China
| | - Wenxi Li
- Northwood High School, Irvine, California, USA.,Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Luo
- Department of Wounds and Burns, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Surui Sheng
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
67
|
Targeting autophagy to overcome drug resistance: further developments. J Hematol Oncol 2020; 13:159. [PMID: 33239065 PMCID: PMC7687716 DOI: 10.1186/s13045-020-01000-2] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 12/13/2022] Open
Abstract
Inhibiting cell survival and inducing cell death are the main approaches of tumor therapy. Autophagy plays an important role on intracellular metabolic homeostasis by eliminating dysfunctional or unnecessary proteins and damaged or aged cellular organelles to recycle their constituent metabolites that enable the maintenance of cell survival and genetic stability and even promotes the drug resistance, which severely limits the efficacy of chemotherapeutic drugs. Currently, targeting autophagy has a seemingly contradictory effect to suppress and promote tumor survival, which makes the effect of targeting autophagy on drug resistance more confusing and fuzzier. In the review, we summarize the regulation of autophagy by emerging ways, the action of targeting autophagy on drug resistance and some of the new therapeutic approaches to treat tumor drug resistance by interfering with autophagy-related pathways. The full-scale understanding of the tumor-associated signaling pathways and physiological functions of autophagy will hopefully open new possibilities for the treatment of tumor drug resistance and the improvement in clinical outcomes.
Collapse
|
68
|
Tong CWS, Wu MMX, Yan VW, Cho WCS, To KKW. Repurposing loperamide to overcome gefitinib resistance by triggering apoptosis independent of autophagy induction in KRAS mutant NSCLC cells. Cancer Treat Res Commun 2020; 25:100229. [PMID: 33152554 DOI: 10.1016/j.ctarc.2020.100229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Gefitinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) approved for first-line treatment of non-small cell lung cancer (NSCLC) with sensitizing EGFR mutations. However, NSCLC patients bearing mutant KRAS are inherently unresponsive to gefitinib. Defective autophagy was proposed to mediate resistance to EGFR-TKIs. In this study, the reversal of primary resistance to gefitinib in NSCLC by putative autophagy inducers was investigated. MATERIALS AND METHODS A few putative autophagy inducers were investigated in NSCLC cells harboring KRAS or EGFR mutations. Quantitative real-time PCR and Western blot analysis were used to evaluate expression of autophagy-related genes and proteins. Sulforhodamine B assay was used to evaluate cytotoxicity of drug combinations. Flow cytometric asssays were used to study apoptotic and cell cycle effects. RESULTS The antidiarrheal agent loperamide was identified as an autophagy inducer. Loperamide promoted the formation of autophagosomes and it potentiated the cytotoxic effect of gefitinib specifically in NSCLC cells bearing mutant KRAS and wild-type EGFR. Gefitinib-loperamide combination enhanced apoptosis and G1 cell cycle arrest, both of which could not be reversed by pharmacological autophagy inhibitor (3-methyladenine). Moreover, synergistic anticancer effect of gefitinib-loperamide combination was observed in both autophagy-proficient (Atg5-wild type) and -deficient (Atg5-knockout) mouse embryonic fibroblasts. Loperamide overcome gefitinib resistance in NSCLC harboring mutant KRAS and wild-type EGFR through increased apoptosis but independent of autophagy induction. CONCLUSION Loperamide could be repurposed to overcome primary resistance to gefitinib in KRAS-mutation bearing NSCLC as it also helps relieve the common side effect of diarrhea caused by EGFR-TKIs.
Collapse
Affiliation(s)
- Christy W S Tong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mia M X Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vivi W Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
69
|
Alvarez-Meythaler JG, Garcia-Mayea Y, Mir C, Kondoh H, LLeonart ME. Autophagy Takes Center Stage as a Possible Cancer Hallmark. Front Oncol 2020; 10:586069. [PMID: 33194736 PMCID: PMC7643020 DOI: 10.3389/fonc.2020.586069] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide, despite significant advances in cancer research and improvements in anticancer therapies. One of the major obstacles to curing cancer is the difficulty of achieving the complete annihilation of resistant cancer cells. The resistance of cancer cells may not only be due to intrinsic factors or factors acquired during the evolution of the tumor but may also be caused by chemotherapeutic treatment failure. Conversely, autophagy is a conserved cellular process in which intracellular components, such as damaged organelles, aggregated or misfolded proteins and macromolecules, are degraded or recycled to maintain cellular homeostasis. Importantly, autophagy is an essential mechanism that plays a key role in tumor initiation and progression. Depending on the cellular context and microenvironmental conditions, autophagy acts as a double-edged sword, playing a role in inducing apoptosis or promoting cell survival. In this review, we propose several scenarios in which autophagy could contribute to cell survival or cell death. Moreover, a special focus on novel promising targets and therapeutic strategies based on autophagic resistant cells is presented.
Collapse
Affiliation(s)
- Jose G. Alvarez-Meythaler
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Hiroshi Kondoh
- Geriatric Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Matilde E. LLeonart
- Biomedical Research in Cancer Stem Cells Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Spanish Biomedical Research Network Center in Oncology, CIBERONC, Barcelona, Spain
| |
Collapse
|
70
|
Fonseca LL, Yang WS, Geerts D, Turkson J, Ji J, Ramos JW. RasGRP1 induces autophagy and transformation-associated changes in primary human keratinocytes. Transl Oncol 2020; 14:100880. [PMID: 33074128 PMCID: PMC7569238 DOI: 10.1016/j.tranon.2020.100880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/21/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022] Open
Abstract
Ras mutations are present in only a subset of sporadic human cutaneous squamous cell carcinomas (cSCC) even though Ras is activated in most. This suggests that other mechanisms of Ras activation play a role in the disease. The aberrant expression of RasGRP1, a guanyl nucleotide exchange factor for Ras, is critical for mouse cSCC development through its ability to increase Ras activity. However, the role of RasGRP1 in human keratinocyte carcinogenesis remains unknown. Here we report that RasGRP1 is significantly elevated in human cSCC and that high RasGRP1 expression in human primary keratinocytes triggered activation of endogenous Ras and significant morphological changes including cytoplasmic vacuole formation and growth arrest. Moreover, RasGRP1-expressing cells were autophagic as indicated by LC3-II increase and the formation of LC3 punctae. In an in vitro organotypic skin model, wild type keratinocytes generated a well-stratified epithelium, while RasGRP1-expressing cells failed to do so. Finally, RasGRP1 induced transformation-like changes in skin cells from Li-Fraumeni patients with inactivating p53 mutations, demonstrating the oncogenic potential of this protein. These results support a role for RasGRP1 in human epidermal keratinocyte carcinogenesis and might serve as an important new therapeutic target.
Collapse
Affiliation(s)
- Lauren L Fonseca
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA; Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Won Seok Yang
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam University Medical Center, AMC location, Amsterdam, 1105, AZ, the Netherlands
| | - James Turkson
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA; Department of Medicine and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles 90048, CA, USA
| | - Junfang Ji
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA; Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Joe W Ramos
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
| |
Collapse
|
71
|
Long J, He Q, Yin Y, Lei X, Li Z, Zhu W. The effect of miRNA and autophagy on colorectal cancer. Cell Prolif 2020; 53:e12900. [PMID: 32914514 PMCID: PMC7574865 DOI: 10.1111/cpr.12900] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) has become a concern because of its high recurrence rate and metastasis rate, low early diagnosis rate and poor therapeutic effect. At present, various studies have shown that autophagy is closely connected with the occurrence and progression of CRC. Autophagy is a highly cytosolic catabolic process involved in lysosomes in biological evolution. Cells degrade proteins and damaged organelles by autophagy to achieve material circulation and maintain cell homeostasis. Moreover, microRNAs are key regulators of autophagy, and their mediated regulation of transcriptional and post-transcriptional levels plays an important role in autophagy in CRC cells. This review focuses on the recent research advances of how autophagy and related microRNAs are involved in affecting occurrence and progression of CRC and provides a new perspective for the study of CRC treatment strategies.
Collapse
Affiliation(s)
- Jiali Long
- Department of PathologyGuangdong Medical UniversityDongguanChina
- Department of Pathologythe Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Qinglian He
- Department of PathologyGuangdong Medical UniversityDongguanChina
| | - Yuting Yin
- Department of PathologyGuangdong Medical UniversityDongguanChina
| | - Xue Lei
- Department of PathologyGuangdong Medical UniversityDongguanChina
| | - Ziqi Li
- Department of PathologyGuangdong Medical UniversityDongguanChina
| | - Wei Zhu
- Department of PathologyGuangdong Medical UniversityDongguanChina
| |
Collapse
|
72
|
Muresanu C, Somasundaram SG, Vissarionov SV, Torres Solis LF, Solís Herrera A, Kirkland CE, Aliev G. Updated Understanding of Cancer as a Metabolic and Telomere-Driven Disease, and Proposal for Complex Personalized Treatment, a Hypothesis. Int J Mol Sci 2020; 21:E6521. [PMID: 32906638 PMCID: PMC7555410 DOI: 10.3390/ijms21186521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
In this review, we propose a holistic approach to understanding cancer as a metabolic disease. Our search for relevant studies in medical databases concludes that cancer cells do not evolve directly from normal healthy cells. We hypothesize that aberrant DNA damage accumulates over time-avoiding the natural DNA controls that otherwise repair or replace the rapidly replicating cells. DNA damage starts to accumulate in non-replicating cells, leading to senescence and aging. DNA damage is linked with genetic and epigenetic factors, but the development of cancer is favored by telomerase activity. Evidence indicates that telomere length is affected by chronic inflammations, alterations of mitochondrial DNA, and various environmental factors. Emotional stress also influences telomere length. Chronic inflammation can cause oxidative DNA damage. Oxidative stress, in turn, can trigger mitochondrial changes, which ultimately alter nuclear gene expression. This vicious cycle has led several scientists to view cancer as a metabolic disease. We have proposed complex personalized treatments that seek to correct multiple changes simultaneously using a psychological approach to reduce chronic stress, immune checkpoint therapy with reduced doses of chemo and radiotherapy, minimal surgical intervention, if any, and mitochondrial metabolic reprogramming protocols supplemented by intermittent fasting and personalized dietary plans without interfering with the other therapies.
Collapse
Affiliation(s)
- Cristian Muresanu
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapies, Str. Trifoiului nr. 12 G, 400478 Cluj-Napoca, Romania;
| | - Siva G. Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Sergey V. Vissarionov
- The Department of Spinal Pathology and Neurosurgery, Turner Scientific and Research Institute for Children’s Orthopedics, Street Parkovskya 64-68, Pushkin, 196603 Saint-Petersburg, Russia;
| | | | | | - Cecil E. Kirkland
- Department of Biological Sciences, Salem University, Salem, WV 26426, USA; (S.G.S.); (C.E.K.)
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia
- Research Institute of Human Morphology, Russian Academy of Medical Science, Street Tsyurupa 3, 117418 Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA
| |
Collapse
|
73
|
Towers CG, Wodetzki D, Thorburn A. Autophagy and cancer: Modulation of cell death pathways and cancer cell adaptations. J Cell Biol 2020; 219:jcb.201909033. [PMID: 31753861 PMCID: PMC7039213 DOI: 10.1083/jcb.201909033] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy is intricately linked with many intracellular signaling pathways, particularly nutrient-sensing mechanisms and cell death signaling cascades. In cancer, the roles of autophagy are context dependent. Tumor cell-intrinsic effects of autophagy can be both tumor suppressive and tumor promotional. Autophagy can therefore not only activate and inhibit cell death, but also facilitate the switch between cell death mechanisms. Moreover, autophagy can play opposing roles in the tumor microenvironment via non-cell-autonomous mechanisms. Preclinical data support a tumor-promotional role of autophagy in established tumors and during cancer therapy; this has led to the launch of dozens of clinical trials targeting autophagy in multiple cancer types. However, many questions remain: which tumors and genetic backgrounds are the most sensitive to autophagy inhibition, and which therapies should be combined with autophagy inhibitors? Additionally, since cancer cells are under selective pressure and are prone to adaptation, particularly after treatment, it is unclear if and how cells adapt to autophagy inhibition. Here we review recent literature addressing these issues.
Collapse
Affiliation(s)
- Christina G Towers
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Darya Wodetzki
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
74
|
Kaur S, Changotra H. The beclin 1 interactome: Modification and roles in the pathology of autophagy-related disorders. Biochimie 2020; 175:34-49. [PMID: 32428566 DOI: 10.1016/j.biochi.2020.04.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Beclin 1 a yeast Atg6/VPS30 orthologue has a significant role in autophagy process (Macroautophagy) and protein sorting. The function of beclin 1 depends on the interaction with several autophagy-related genes (Atgs) and other proteins during the autophagy process. The role mediated by beclin 1 is controlled by various conditions and factors. Beclin 1 is regulated at the gene and protein levels by different factors. These regulations could subsequently alter the beclin 1 induced autophagy process. Therefore, it is important to study the components of beclin 1 interactome and factors affecting its expression. Expression of this gene is differentially regulated under different conditions in different cells or tissues. So, the regulation part is important to study as beclin 1 is one of the candidate genes involved in diseases related to autophagy dysfunction. This review focuses on the functions of beclin 1, its interacting partners, regulations at gene and protein level, and the role of beclin 1 interactome in relation to various diseases along with the recent developments in the field.
Collapse
Affiliation(s)
- Sargeet Kaur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, 173 234, Himachal Pradesh, India
| | - Harish Changotra
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, 173 234, Himachal Pradesh, India.
| |
Collapse
|
75
|
Vališ K, Novák P. Targeting ERK-Hippo Interplay in Cancer Therapy. Int J Mol Sci 2020; 21:ijms21093236. [PMID: 32375238 PMCID: PMC7247570 DOI: 10.3390/ijms21093236] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK) is a part of the mitogen-activated protein kinase (MAPK) signaling pathway which allows the transduction of various cellular signals to final effectors and regulation of elementary cellular processes. Deregulation of the MAPK signaling occurs under many pathological conditions including neurodegenerative disorders, metabolic syndromes and cancers. Targeted inhibition of individual kinases of the MAPK signaling pathway using synthetic compounds represents a promising way to effective anti-cancer therapy. Cross-talk of the MAPK signaling pathway with other proteins and signaling pathways have a crucial impact on clinical outcomes of targeted therapies and plays important role during development of drug resistance in cancers. We discuss cross-talk of the MAPK/ERK signaling pathway with other signaling pathways, in particular interplay with the Hippo/MST pathway. We demonstrate the mechanism of cell death induction shared between MAPK/ERK and Hippo/MST signaling pathways and discuss the potential of combination targeting of these pathways in the development of more effective anti-cancer therapies.
Collapse
Affiliation(s)
- Karel Vališ
- Correspondence: (K.V.); (P.N.); Tel.: +420-325873610 (P.N.)
| | - Petr Novák
- Correspondence: (K.V.); (P.N.); Tel.: +420-325873610 (P.N.)
| |
Collapse
|
76
|
Wang L, Tan Z, Zhang Y, Kady Keita N, Liu H, Zhang Y. ADAM12 silencing promotes cellular apoptosis by activating autophagy in choriocarcinoma cells. Int J Oncol 2020; 56:1162-1174. [PMID: 32319603 PMCID: PMC7115740 DOI: 10.3892/ijo.2020.5007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
ADAM metallopeptidase domain 12 (ADAM12) has been demonstrated to mediate cell proliferation and apoptosis resistance in several types of cancer cells. However, the effect of ADAM12 silencing on the proliferation and apoptosis of choriocarcinoma cells remains unknown. The present study revealed that ADAM12 silencing significantly inhibited cellular activity and proliferation in the human choriocarcinoma JEG3 cell line and increased the rate of apoptosis. In addition, ADAM12 silencing significantly increased the expression levels of the autophagy proteins microtubule-associated protein-light-chain 3 (LC3B) and autophagy related 5 (ATG5) and the fluorescence density of LC3B in JEG-3 cells. However, the suppression of autophagy by 3-methyladenine could block ADAM12 silencing-induced cellular apoptosis. ADAM12 silencing reduced the levels of the inflammatory factors interleukin-1β, interferon-γ and TNF-α, and inactivated nuclear p65-NF-κB and p-mTOR in JEG-3 cells. The downregulation of p-mTOR expression by ADAM12 silencing was rescued in 3-methyladenine-treated JEG-3 cells, indicating that mTOR might participate in the autophagy-mediated pro-apoptotic effect of ADAM12 silencing. In conclusion, ADAM12 silencing promoted cellular apoptosis in human choriocarcinoma JEG3 cells, which might be associated with autophagy and the mTOR response. These findings indicate that ADAM12 silencing might be a potential novel therapeutic target for choriocarcinoma.
Collapse
Affiliation(s)
- Lin Wang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Zhihui Tan
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ying Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Nankoria Kady Keita
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Huining Liu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yu Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
77
|
Vanzo R, Bartkova J, Merchut-Maya JM, Hall A, Bouchal J, Dyrskjøt L, Frankel LB, Gorgoulis V, Maya-Mendoza A, Jäättelä M, Bartek J. Autophagy role(s) in response to oncogenes and DNA replication stress. Cell Death Differ 2020; 27:1134-1153. [PMID: 31409894 PMCID: PMC7206042 DOI: 10.1038/s41418-019-0403-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved process that captures aberrant intracellular proteins and/or damaged organelles for delivery to lysosomes, with implications for cellular and organismal homeostasis, aging and diverse pathologies, including cancer. During cancer development, autophagy may play both tumour-supporting and tumour-suppressing roles. Any relationships of autophagy to the established oncogene-induced replication stress (RS) and the ensuing DNA damage response (DDR)-mediated anti-cancer barrier in early tumorigenesis remain to be elucidated. Here, assessing potential links between autophagy, RS and DDR, we found that autophagy is enhanced in both early and advanced stages of human urinary bladder and prostate tumorigenesis. Furthermore, a high-content, single-cell-level microscopy analysis of human cellular models exposed to diverse genotoxic insults showed that autophagy is enhanced in cells that experienced robust DNA damage, independently of the cell-cycle position. Oncogene- and drug-induced RS triggered first DDR and later autophagy. Unexpectedly, genetic inactivation of autophagy resulted in RS, despite cellular retention of functional mitochondria and normal ROS levels. Moreover, recovery from experimentally induced RS required autophagy to support DNA synthesis. Consistently, RS due to the absence of autophagy could be partly alleviated by exogenous supply of deoxynucleosides. Our results highlight the importance of autophagy for DNA synthesis, suggesting that autophagy may support cancer progression, at least in part, by facilitating tumour cell survival and fitness under replication stress, a feature shared by most malignancies. These findings have implications for better understanding of the role of autophagy in tumorigenesis, as well as for attempts to manipulate autophagy as an anti-tumour therapeutic strategy.
Collapse
Affiliation(s)
- Riccardo Vanzo
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jirina Bartkova
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | | | - Arnaldur Hall
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lisa B Frankel
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Vassilis Gorgoulis
- Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Marja Jäättelä
- Danish Cancer Society Research Center, Copenhagen, Denmark.
| | - Jiri Bartek
- Danish Cancer Society Research Center, Copenhagen, Denmark.
- Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
78
|
Lu X, Fu H, Chen R, Wang Y, Zhan Y, Song G, Hu T, Xia C, Tian X, Zhang B. Phosphoinositide specific phospholipase Cγ1 inhibition-driven autophagy caused cell death in human lung adenocarcinoma A549 cells in vivo and in vitro. Int J Biol Sci 2020; 16:1427-1440. [PMID: 32210730 PMCID: PMC7085223 DOI: 10.7150/ijbs.42962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
Our previous studies indicated that phosphoinositide specific phospholipase Cγ1 (PLCγ1) was involved in autophagy induction in colon and hepatic carcinoma cells. However, whether and how PLCγ1 regulation in human lung adenocarcinoma is linked to autophagy remains unclear. Here, we assessed the protein expression of PLCγ1 in human lung adenocarcinoma tissue using immunohistochemistry assay and the relationship between PLCG1 and autophagy in The Cancer Genome Atlas Network (TCGA) using Spearman correlation analysis and GSEA software. Furthermore, the interaction between PLCγ1 and autophagy-related signal molecules was investigated in human lung adenocarcinoma A549 cells treated with different inhibitors or transduction with lentivirus-mediated PLCγ1 gene short-hairpin RNA (shRNA) vectors using MTT, clonogenicity, Transwell migration, RT-PCR, Caspase-3, mitochondrial transmembrane potential, and western blotting assays, as well as transmission electron microscope technique. Additionally, the effect of shRNA/PLCγ1 alone or combined with autophagic activator Lithium Chloride (LiCl) on tumor growth and metastasis was measured using immunohistochemistry and assays in A549 xenograft nude mouse model. The results showed that increased PLCγ1 expression occurred frequently in human lung adenocarcinoma tissue with higher grades of T in TNM staging classification. PLCγ1 significantly enriched in autophagic process and regulation, which negatively regulating autophagy was enriched in higher expression of PLCγ1. PLCγ1 inhibition partially reduced cell proliferation and migration of A549 cells, with an increased autophagic flux involving alterations of AMPKα, mTOR, and ERK levels. However, PLCγ1 inhibition-driven autophagy led to cell death without depending on Caspase-3 and RIP1. Additionally, the abrogation of PLCγ1 signaling by shRNA and combination with autophagic activator LiCl could efficaciously suppress tumor growth and metastasis in A549 xenograft nude mice, in combination with a decrease in P62 level. These findings collectively suggest that reduction of cell proliferation and migration by PLCγ1 inhibition could be partially attributed to PLCγ1 inhibition-driven autophagic cell death (ACD). It highlights the potential role of a combination between targeting PLCγ1 and autophagy pathway in anti-tumor therapy, which may be an efficacious new strategy to overcome the autophagy addition of tumor and acquired resistance to current therapy.
Collapse
Affiliation(s)
- Xiaohong Lu
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Haijing Fu
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Rui Chen
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Yue Wang
- Zhongshan Hospital, Xiamen University,361004, Xiamen, Fujian, China
| | - Yanyan Zhan
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| | - Chun Xia
- Zhongshan Hospital, Xiamen University,361004, Xiamen, Fujian, China
| | - Xuemei Tian
- School of Life Sciences, South China Normal University, 510631, Guangzhou, Gangdong, China
| | - Bing Zhang
- Cancer Research Center, School of Medicine, Xiamen University, 361102, Fujian, China
| |
Collapse
|
79
|
Janus P, Toma-Jonik A, Vydra N, Mrowiec K, Korfanty J, Chadalski M, Widłak P, Dudek K, Paszek A, Rusin M, Polańska J, Widłak W. Pro-death signaling of cytoprotective heat shock factor 1: upregulation of NOXA leading to apoptosis in heat-sensitive cells. Cell Death Differ 2020; 27:2280-2292. [PMID: 31996779 PMCID: PMC7308270 DOI: 10.1038/s41418-020-0501-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/15/2023] Open
Abstract
Heat shock can induce either cytoprotective mechanisms or cell death. We found that in certain human and mouse cells, including spermatocytes, activated heat shock factor 1 (HSF1) binds to sequences located in the intron(s) of the PMAIP1 (NOXA) gene and upregulates its expression which induces apoptosis. Such a mode of PMAIP1 activation is not dependent on p53. Therefore, HSF1 not only can activate the expression of genes encoding cytoprotective heat shock proteins, which prevents apoptosis, but it can also positively regulate the proapoptotic PMAIP1 gene, which facilitates cell death. This could be the primary cause of hyperthermia-induced elimination of heat-sensitive cells, yet other pro-death mechanisms might also be involved.
Collapse
Affiliation(s)
- Patryk Janus
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Agnieszka Toma-Jonik
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Natalia Vydra
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Katarzyna Mrowiec
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Joanna Korfanty
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Marek Chadalski
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Piotr Widłak
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Karolina Dudek
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Anna Paszek
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland.,Department of Data Science and Engineering, The Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Marek Rusin
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Joanna Polańska
- Department of Data Science and Engineering, The Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Wiesława Widłak
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland.
| |
Collapse
|
80
|
Glab JA, Cao Z, Puthalakath H. Bcl-2 family proteins, beyond the veil. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:1-22. [PMID: 32247577 DOI: 10.1016/bs.ircmb.2019.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis is an important part of both health and disease and is often regulated by the BCL-2 family of proteins. These proteins are either pro- or anti-apoptotic, existing in a delicate balance during homeostasis. They are best known for their role in regulating the activation of caspases and the execution of a cell in response to a variety of stimuli. However, it is often forgotten that these BCL-2 family proteins also have important roles to play in cell maintenance that are not associated with apoptosis. These include roles in regulating processes such as cell cycle progression, mitochondrial function, autophagy, intracellular calcium concentration, glucose and lipid metabolism, and the unfolded protein response. In addition to these established alternate functions, further discoveries are being made that have potential therapeutic benefits in diseases such as cancer. BOK, a BCL-2 family protein thought comparable to multidomain pro-apoptotic proteins BAX and BAK, has recently been identified as a key player in metabolism of and resistance to the commonly used chemotherapeutic 5-FU. As a result of such findings, which could see the potential use of BOK as a biomarker for 5-FU sensitivity or mimetic molecules as a resensitization strategy, new targets and mechanisms of pathology may arise from further investigation into the realm of alternate functions of BCL-2 family proteins.
Collapse
Affiliation(s)
- Jason Andrew Glab
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia
| | - Zhipeng Cao
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia
| | - Hamsa Puthalakath
- Department of Biochemistry and Genetics, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
81
|
Fairlie WD, Tran S, Lee EF. Crosstalk between apoptosis and autophagy signaling pathways. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:115-158. [DOI: 10.1016/bs.ircmb.2020.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
82
|
Ropolo A, Catrinacio C, Renna FJ, Boggio V, Orquera T, Gonzalez CD, Vaccaro MI. A Novel E2F1-EP300-VMP1 Pathway Mediates Gemcitabine-Induced Autophagy in Pancreatic Cancer Cells Carrying Oncogenic KRAS. Front Endocrinol (Lausanne) 2020; 11:411. [PMID: 32655498 PMCID: PMC7324546 DOI: 10.3389/fendo.2020.00411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily preserved degradation process of cytoplasmic cellular constituents, which participates in cell response to disease. We previously characterized VMP1 (Vacuole Membrane Protein 1) as an essential autophagy related protein that mediates autophagy in pancreatic diseases. We also demonstrated that VMP1-mediated autophagy is induced by HIF-1A (hypoxia inducible factor 1 subunit alpha) in colon-cancer tumor cell lines, conferring resistance to photodynamic treatment. Here we identify a new molecular pathway, mediated by VMP1, by which gemcitabine is able to trigger autophagy in human pancreatic tumor cell lines. We demonstrated that gemcitabine requires the VMP1 expression to induce autophagy in the highly resistant pancreatic cancer cells PANC-1 and MIAPaCa-2 that carry activated KRAS. E2F1 is a transcription factor that is regulated by the retinoblastoma pathway. We found that E2F1 is an effector of gemcitabine-induced autophagy and regulates the expression and promoter activity of VMP1. Chromatin immunoprecipitation assays demonstrated that E2F1 binds to the VMP1 promoter in PANC-1 cells. We have also identified the histone acetyltransferase EP300 as a modulator of VMP1 promoter activity. Our data showed that the E2F1-EP300 activator/co-activator complex is part of the regulatory pathway controlling the expression and promoter activity of VMP1 triggered by gemcitabine in PANC-1 cells. Finally, we found that neither VMP1 nor E2F1 are induced by gemcitabine treatment in BxPC-3 cells, which do not carry oncogenic KRAS and are sensitive to chemotherapy. In conclusion, we have identified the E2F1-EP300-VMP1 pathway that mediates gemcitabine-induced autophagy in pancreatic cancer cells. These results strongly support that VMP1-mediated autophagy may integrate the complex network of events involved in pancreatic ductal adenocarcinoma chemo-resistance. Our experimental findings point at E2F1 and VMP1 as novel potential therapeutic targets in precise treatment strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Alejandro Ropolo
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Alejandro Ropolo
| | - Cintia Catrinacio
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Felipe Javier Renna
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Veronica Boggio
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Tamara Orquera
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Claudio D. Gonzalez
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- CEMIC University Institute, Buenos Aires, Argentina
| | - Maria I. Vaccaro
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
83
|
Wu M, Zhang P. EGFR-mediated autophagy in tumourigenesis and therapeutic resistance. Cancer Lett 2020; 469:207-216. [DOI: 10.1016/j.canlet.2019.10.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
|
84
|
Liao Y, Duan B, Zhang Y, Zhang X, Xia B. Excessive ER-phagy mediated by the autophagy receptor FAM134B results in ER stress, the unfolded protein response, and cell death in HeLa cells. J Biol Chem 2019; 294:20009-20023. [PMID: 31748416 PMCID: PMC6937584 DOI: 10.1074/jbc.ra119.008709] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
Autophagy is typically a prosurvival cellular process that promotes the turnover of long-lived proteins and damaged organelles, but it can also induce cell death. We have previously reported that the small molecule Z36 induces autophagy along with autophagic cell death in HeLa cells. In this study, we analyzed differential gene expression in Z36-treated HeLa cells and found that Z36-induced endoplasmic reticulum-specific autophagy (ER-phagy) results in ER stress and the unfolded protein response (UPR). This result is in contrast to the common notion that autophagy is generally activated in response to ER stress and the UPR. We demonstrate that Z36 up-regulates the expression levels of FAM134B, LC3, and Atg9, which together mediate excessive ER-phagy, characterized by forming increased numbers of autophagosomes with larger sizes. We noted that the excessive ER-phagy accelerates ER degradation and impairs ER homeostasis and thereby triggers ER stress and the UPR as well as ER-phagy-dependent cell death. Interestingly, overexpression of FAM134B alone in HeLa cells is sufficient to impair ER homeostasis and cause ER stress and cell death. These findings suggest a mechanism involving FAM134B activity for ER-phagy to promote cell death.
Collapse
Affiliation(s)
- Yangjie Liao
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bo Duan
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yufei Zhang
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
85
|
Wang H, Liu Y, Wang D, Xu Y, Dong R, Yang Y, Lv Q, Chen X, Zhang Z. The Upstream Pathway of mTOR-Mediated Autophagy in Liver Diseases. Cells 2019; 8:E1597. [PMID: 31835352 PMCID: PMC6953127 DOI: 10.3390/cells8121597] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy, originally found in liver experiments, is a cellular process that degrades damaged organelle or protein aggregation. This process frees cells from various stress states is a cell survival mechanism under stress stimulation. It is now known that dysregulation of autophagy can cause many liver diseases. Therefore, how to properly regulate autophagy is the key to the treatment of liver injury. mechanistic target of rapamycin (mTOR)is the core hub regulating autophagy, which is subject to different upstream signaling pathways to regulate autophagy. This review summarizes three upstream pathways of mTOR: the phosphoinositide 3-kinase (PI3K)/protein kinase (AKT) signaling pathway, the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, and the rat sarcoma (Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen-extracellular activated protein kinase kinase (MEK)/ extracellular-signal-regulated kinase (ERK) signaling pathway, specifically explored their role in liver fibrosis, hepatitis B, non-alcoholic fatty liver, liver cancer, hepatic ischemia reperfusion and other liver diseases through the regulation of mTOR-mediated autophagy. Moreover, we also analyzed the crosstalk between these three pathways, aiming to find new targets for the treatment of human liver disease based on autophagy.
Collapse
Affiliation(s)
- Haojie Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Dongmei Wang
- College of Medical, Henan University of Science and Technology, Luoyang 471000, China;
| | - Yaolu Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Ruiqi Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Yuxiang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Qiongxia Lv
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Xiaoguang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; (H.W.); (Y.X.); (R.D.); (Y.Y.); (Q.L.); (X.C.)
| |
Collapse
|
86
|
Medeiros HCD, Colturato-Kido C, Ferraz LS, Costa CA, Moraes VWR, Paredes-Gamero EJ, Tersariol ILS, Rodrigues T. AMPK activation induced by promethazine increases NOXA expression and Beclin-1 phosphorylation and drives autophagy-associated apoptosis in chronic myeloid leukemia. Chem Biol Interact 2019; 315:108888. [PMID: 31682805 DOI: 10.1016/j.cbi.2019.108888] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 01/12/2023]
Abstract
Relapse and drug resistance is still major challenges in the treatment of leukemia. Promethazine, an antihistaminic phenothiazine derivative, has been used to prevent chemotherapy-induced emesis, although there is no report about its antitumor potential. Thus, we evaluated the promethazine cytotoxicity against several leukemia cells and the underlying mechanisms were investigated. Promethazine exhibited potent and selective cytotoxicity against all leukemia cell types in vitro at clinically relevant concentrations. Philadelphia positive chronic myeloid leukemia (CML) K562 cells were the most sensitive cell line. The cytotoxicity of promethazine in these cells was triggered by the activation of AMPK and inhibition of PI3K/AKT/mTOR pathway. The subsequent downstream effects were NOXA increase, MCL-1 decrease, and Beclin-1 activation, resulting in autophagy-associated apoptosis. These data highlight targeting autophagy may represent an interesting strategy in CML therapy, and also the antitumor potential of promethazine by acting in AMPK and PI3K/AKT/mTOR signaling pathways. Since this drug is currently used with relative low side effects, its repurposing may represent a new therapeutic opportunity for leukemia treatment.
Collapse
Affiliation(s)
- Hyllana C D Medeiros
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Carina Colturato-Kido
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Letícia S Ferraz
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Claudia A Costa
- Interdisciplinary Center of Biochemistry Investigation (CIIB), University of Mogi das Cruzes (UMC), Mogi das Cruzes, SP, Brazil
| | - Vivian W R Moraes
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Edgar Julian Paredes-Gamero
- School of Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Ivarne L S Tersariol
- Department of Biochemistry, São Paulo School of Medicine, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Tiago Rodrigues
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
87
|
Su BC, Hsu PL, Mo FE. CCN1 triggers adaptive autophagy in cardiomyocytes to curb its apoptotic activities. J Cell Commun Signal 2019; 14:93-100. [PMID: 31659628 DOI: 10.1007/s12079-019-00534-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy occurs at basal levels for cellular homeostasis under normal conditions and is increased in response to nutrient starvation or stress to ensure cell survival. However, excessive autophagy can be deleterious to cardiomyocytes. CCN1/Cyr61, a matricellular protein, is expressed in the stressed heart to induce cardiomyopathy. The role of autophagy in CCN1-associated cardiotoxicity was not clear. Here, we found that autophagy was induced in the myocardium of the isoproterenol (ISO; 100 mg/kg/day for 5 days; s.c.) treated mice, where CCN1 expression is colocalized. The knock-in mice carrying an integrin α6β1-binding-defective mutant allele Ccn1-dm were resistant to the ISO-induced cardiac injury and autophagy. Our in vitro studies demonstrated that CCN1 dose- and time-dependently induced GFP-LC3-labeled autophagosome formation in rat cardiomyoblast H9c2 cells. The formation of autolysosomes in response to CCN1 (5 μg/ml; 3 h) treatment was identified by the acridine orange staining. The autophagy induction was confirmed by the elevated protein levels of Beclin 1, Atg5, and LC3-II, and the decrease of p62. Inhibition of autophagy by 3-methyladenine or by silencing Atg5 gene enabled CCN1-induced apoptosis in H9c2 cells, suggesting a protective role of autophagy. CCN1 binds to integrin α6β1 to induce autophagy through reactive oxygen species, and the activation of ERK and JNK. Furthermore, mitophagy was observed after CCN1 treatment for the clearance of depolarized mitochondria. Together, these results demonstrated that autophagy is induced in response to CCN1/α6β1 signaling in cardiomyocytes to alleviate CCN1-associated cardiotoxicity.
Collapse
Affiliation(s)
- Bor-Chyuan Su
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ling Hsu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fan-E Mo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
88
|
Senichkin VV, Streletskaia AY, Zhivotovsky B, Kopeina GS. Molecular Comprehension of Mcl-1: From Gene Structure to Cancer Therapy. Trends Cell Biol 2019; 29:549-562. [DOI: 10.1016/j.tcb.2019.03.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023]
|
89
|
Sale MJ, Balmanno K, Cook SJ. Resistance to ERK1/2 pathway inhibitors; sweet spots, fitness deficits and drug addiction. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:365-380. [PMID: 35582726 PMCID: PMC8992624 DOI: 10.20517/cdr.2019.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 11/12/2022]
Abstract
MEK1/2 inhibitors are clinically approved for the treatment of BRAF-mutant melanoma, where they are used in combination with BRAF inhibitors, and are undergoing evaluation in other malignancies. Acquired resistance to MEK1/2 inhibitors, including selumetinib (AZD6244/ARRY-142866), can arise through amplification of BRAFV600E or KRASG13D to reinstate ERK1/2 signalling. We have found that BRAFV600E amplification and selumetinib resistance are fully reversible following drug withdrawal. This is because resistant cells with BRAFV600E amplification become addicted to selumetinib to maintain a precise level of ERK1/2 signalling (2%-3% of total ERK1/2 active), that is optimal for cell proliferation and survival. Selumetinib withdrawal drives ERK1/2 activation outside of this critical "sweet spot" (~20%-30% of ERK1/2 active) resulting in a p57KIP2-dependent G1 cell cycle arrest and senescence or expression of NOXA and cell death with features of autophagy; these terminal responses select against cells with amplified BRAFV600E. ERK1/2-dependent p57KIP2 expression is required for loss of BRAFV600E amplification and determines the rate of reversal of selumetinib resistance. Growth of selumetinib-resistant cells with BRAFV600E amplification as tumour xenografts also requires the presence of selumetinib to "clamp" ERK1/2 activity within the sweet spot. Thus, BRAFV600E amplification confers a selective disadvantage or "fitness deficit" during drug withdrawal, providing a rationale for intermittent dosing to forestall resistance. Remarkably, selumetinib resistance driven by KRASG13D amplification/upregulation is not reversible. In these cells ERK1/2 reactivation does not inhibit proliferation but drives a ZEB1-dependent epithelial-to-mesenchymal transition that increases cell motility and promotes resistance to traditional chemotherapy agents. Our results reveal that the emergence of drug-addicted, MEKi-resistant cells, and the opportunity this may afford for intermittent dosing schedules ("drug holidays"), may be determined by the nature of the amplified driving oncogene (BRAFV600E vs. KRASG13D), further exemplifying the difficulties of targeting KRAS mutant tumour cells.
Collapse
Affiliation(s)
- Matthew J. Sale
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Kathryn Balmanno
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon J. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
90
|
Huang X, Li Y, Shou L, Li L, Chen Z, Ye X, Qian W. The molecular mechanisms underlying BCR/ABL degradation in chronic myeloid leukemia cells promoted by Beclin1-mediated autophagy. Cancer Manag Res 2019; 11:5197-5208. [PMID: 31239774 PMCID: PMC6559765 DOI: 10.2147/cmar.s202442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
Background: The development of drug resistance and the persistence of leukemia stem cells are major obstacles for the use of tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia (CML). The induction of autophagic death in tumor cells represents a new route for leukemia treatment. Our previous study showed that infection of CML cells with oncolytic viruses carrying the autophagy gene Beclin1 downregulated BCR/ABL protein expression and significantly increased the killing effect of the oncolytic viruses on CML cells via autophagy activation. However, the specific molecular mechanisms underlying the regulation of BCR/ABL and Beclin1-dependent CML cell killing remain unclear. Methods: A physical interaction between BCR/ABL and Beclin1 was characterized via GST-pulldown, co-IP and dual-luciferase reporter assays. Cell proliferation was examined via CCK-8 and clone formation assays. The expression levels of the related proteins were measured via Western blotting. Autophagosomes were observed under transmission electron microscopy. Lentiviral vectors carrying Atg7/UVRAG shRNA or the Beclin1 gene were used to modulate the expression levels of the indicated genes. Immunofluorescence were performed to examine colocalization of BCR/ABL and p62/SQSTM1. CD34+CD38− cells were isolated from bone marrow samples from CML patients via fluorescence-activated cell sorting. Results: In this study, we observed that Beclin1 directly interacts with BCR/ABL. Beclin1 inhibited the activity of the BCR/ABL promoter to downregulate the level of BCR/ABL protein and to promote the downstream colocalization of p62/SQSTM1 and BCR/ABL to autolysosomes for degradation via activation of the autophagy signaling pathway. In CML cell lines, primary cells and CD34+CD38− leukemia stem cells, Beclin1 overexpression significantly inhibited cell growth and proliferation and induced autophagy. Conclusion: Taken together, our results suggest that autophagy induction via Beclin1 overexpression might offer new approaches for treating TKI-resistant CML and for promoting the clearance of leukemia stem cells, both of which have important clinical implications.
Collapse
Affiliation(s)
- Xianbo Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Ying Li
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Lihong Shou
- Department of Hematology, The Central Hospital of Huzhou City, Huzhou 313000, People's Republic of China
| | - Li Li
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Zhenzhen Chen
- Department of Hematology, Hangzhou First People's Hospital, Hangzhou 310003, People's Republic of China
| | - Xiujin Ye
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Wenbin Qian
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| |
Collapse
|
91
|
Sale MJ, Balmanno K, Saxena J, Ozono E, Wojdyla K, McIntyre RE, Gilley R, Woroniuk A, Howarth KD, Hughes G, Dry JR, Arends MJ, Caro P, Oxley D, Ashton S, Adams DJ, Saez-Rodriguez J, Smith PD, Cook SJ. MEK1/2 inhibitor withdrawal reverses acquired resistance driven by BRAF V600E amplification whereas KRAS G13D amplification promotes EMT-chemoresistance. Nat Commun 2019; 10:2030. [PMID: 31048689 PMCID: PMC6497655 DOI: 10.1038/s41467-019-09438-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
Acquired resistance to MEK1/2 inhibitors (MEKi) arises through amplification of BRAFV600E or KRASG13D to reinstate ERK1/2 signalling. Here we show that BRAFV600E amplification and MEKi resistance are reversible following drug withdrawal. Cells with BRAFV600E amplification are addicted to MEKi to maintain a precise level of ERK1/2 signalling that is optimal for cell proliferation and survival, and tumour growth in vivo. Robust ERK1/2 activation following MEKi withdrawal drives a p57KIP2-dependent G1 cell cycle arrest and senescence or expression of NOXA and cell death, selecting against those cells with amplified BRAFV600E. p57KIP2 expression is required for loss of BRAFV600E amplification and reversal of MEKi resistance. Thus, BRAFV600E amplification confers a selective disadvantage during drug withdrawal, validating intermittent dosing to forestall resistance. In contrast, resistance driven by KRASG13D amplification is not reversible; rather ERK1/2 hyperactivation drives ZEB1-dependent epithelial-to-mesenchymal transition and chemoresistance, arguing strongly against the use of drug holidays in cases of KRASG13D amplification.
Collapse
Affiliation(s)
- Matthew J Sale
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Kathryn Balmanno
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Jayeta Saxena
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Eiko Ozono
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Katarzyna Wojdyla
- Proteomics Facility, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Rebecca E McIntyre
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Rebecca Gilley
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Anna Woroniuk
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Karen D Howarth
- Hutchison-MRC Research Centre, Department of Pathology, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, UK
| | - Gareth Hughes
- Oncology Bioscience, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, CRUK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Jonathan R Dry
- Oncology Bioscience, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, 35 Gatehouse Drive, Waltham, MA, 02451, USA
| | - Mark J Arends
- Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Pilar Caro
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - David Oxley
- Proteomics Facility, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Susan Ashton
- Oncology Bioscience, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG, UK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Paul D Smith
- Oncology Bioscience, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, CRUK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Simon J Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
92
|
Tang H, Xu X, Xiao W, Liao Y, Xiao X, Li L, Li K, Jia X, Feng H. Silencing of microRNA-27a facilitates autophagy and apoptosis of melanoma cells through the activation of the SYK-dependent mTOR signaling pathway. J Cell Biochem 2019; 120:13262-13274. [PMID: 30994959 DOI: 10.1002/jcb.28600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/11/2019] [Indexed: 12/19/2022]
Abstract
Melanoma is considered as an aggressive neoplastic transformation and featured with high metastatic potential. Although some studies have provided targets for novel therapeutic interventions, clinical development of targeted drugs for melanoma still remains obscure. Therefore, this study aims to identify the role of microRNA-27a (miR-27a) in autophagy and apoptosis of melanoma cells in regulating spleen tyrosine kinase (SYK)-mediated the mammalian target of rapamycin (mTOR) signaling pathway. A microarray-based analysis was made to screen differentially expressed genes and predict target miRNA. Melanoma specimens were collected with pigmented nevus as a control. Melanoma cell line Mel-RM was treated with miR-27a inhibitor or pcDNA-SYK to prove their effects on autophagy and apoptosis of melanoma cells. The volume change and tumor mass of nude mice in each group were detected by the tumorigenesis assay. Microarray-based analysis results showed that SYK was lowly expressed in melanoma cells and may be regulated by miR-27a. Besides, miR-27a expression was increased whereas SYK expression was decreased in melanoma tissues. Meanwhile, miR-27a was positively correlated with tumor stage and lymph node metastasis of melanoma tissues. Furthermore, miR-27a targeted SYK and silencing of miR-27a or overexpression of SYK cells promoted autophagy and apoptosis of melanoma cells and reduced their tumorigenic ability in vivo. In conclusion, this study proves that silencing of miR-27a facilitates autophagy and apoptosis of melanoma cells by upregulating SYK expression and activating the mTOR signaling pathway. The finding offers new ideas for the clinical development of melanoma.
Collapse
Affiliation(s)
- Hua Tang
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Xiaopeng Xu
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Weirong Xiao
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Yangying Liao
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Xiao Xiao
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Lan Li
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Ke Li
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Xiaomin Jia
- Department of Pathology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| |
Collapse
|
93
|
Kriel J, Loos B. The good, the bad and the autophagosome: exploring unanswered questions of autophagy-dependent cell death. Cell Death Differ 2019; 26:640-652. [PMID: 30659234 PMCID: PMC6460391 DOI: 10.1038/s41418-018-0267-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/04/2018] [Accepted: 12/07/2018] [Indexed: 01/15/2023] Open
Abstract
The recent discovery of autosis as a variant of autophagy-dependent cell death has challenged the conventional understanding of cell death and programmed cell death in cellular decision making. In contrast to previous accounts of distinct cell death modalities, autosis occurs with high autophagic activity, in the absence of apoptotic and necrotic markers and yet is not fully regulated by typical autophagy markers. Given the metabolic importance of autophagic responses and the extensive cross-talk with both apoptosis and necrosis signalling, the classical and morphotype-driven characterization of cell death as pre-determined subroutines is being increasingly called into question. Furthermore, the conflicting evidence with regards to cell death induction through autophagy modulation in various cancer models highlights the lack of consensus over the extent to which autophagy assists in cell death ontrol and whether it is capable of being a bona fide lethal process. This review evaluates the evidence and context of autophagy-dependent cell death and delineates the role of an autophagic flux threshold associated with 'lethal' and 'non-lethal' autophagy and its role in autosis control. In doing so, cancer treatment avenues will be explored with regards to precision modulation of tumour autophagic flux to ascertain whether autosis induction may present a novel therapeutic strategy.
Collapse
Affiliation(s)
- Jurgen Kriel
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, 7600, South Africa
| | - Ben Loos
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, 7600, South Africa.
| |
Collapse
|
94
|
Wang Y, Xiong H, Liu D, Hill C, Ertay A, Li J, Zou Y, Miller P, White E, Downward J, Goldin RD, Yuan X, Lu X. Autophagy inhibition specifically promotes epithelial-mesenchymal transition and invasion in RAS-mutated cancer cells. Autophagy 2019; 15:886-899. [PMID: 30782064 PMCID: PMC6517269 DOI: 10.1080/15548627.2019.1569912] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macroautophagy/autophagy inhibition is a novel anticancer therapeutic strategy, especially for tumors driven by mutant RAS. Here, we demonstrate that autophagy inhibition in RAS-mutated cells induces epithelial-mesenchymal transition (EMT), which is associated with enhanced tumor invasion. This is at least partially achieved by triggering the NFKB/NF-κB pathway via SQSTM1/p62. Knockdown of ATG3 or ATG5 increases oncogenic RAS-induced expression of ZEB1 and SNAI2/Snail2, and activates NFKB activity. Depletion of SQSTM1 abolishes the activation of the NFKB pathway induced by autophagy inhibition in RAS-mutated cells. NFKB pathway inhibition by depletion of RELA/p65 blocks this EMT induction. Finally, accumulation of SQSTM1 protein correlates with loss of CDH1/E-cadherin expression in pancreatic adenocarcinoma. Together, we suggest that combining autophagy inhibition with NFKB inhibitors may therefore be necessary to treat RAS-mutated cancer. Abbreviations: 4-OHT: 4-hydroxytamoxifen; DIC: differential interference contrast; EMT: epithelial-mesenchymal transition; ESR: estrogen receptor; MAPK/ERK: mitogen-activated protein kinase; iBMK: immortalized baby mouse kidney epithelial cells; MET: mesenchymal-epithelial transition; PI3K: phosphoinositide 3-kinase; RNAi: RNA interference; TGFB/TGF-β: transforming growth factor beta; TNF: tumor necrosis factor; TRAF6: TNF receptor associated factor 6.
Collapse
Affiliation(s)
- Yihua Wang
- a Department of Oncology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Biological Sciences, Faculty of Environmental and Life Sciences , University of Southampton , Southampton , UK.,c Institute for Life Sciences , University of Southampton , Southampton , UK.,d Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine , University of Oxford , Oxford , UK
| | - Hua Xiong
- a Department of Oncology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Dian Liu
- a Department of Oncology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Charlotte Hill
- b Biological Sciences, Faculty of Environmental and Life Sciences , University of Southampton , Southampton , UK
| | - Ayse Ertay
- b Biological Sciences, Faculty of Environmental and Life Sciences , University of Southampton , Southampton , UK
| | - Juanjuan Li
- b Biological Sciences, Faculty of Environmental and Life Sciences , University of Southampton , Southampton , UK
| | - Yanmei Zou
- a Department of Oncology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Paul Miller
- d Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine , University of Oxford , Oxford , UK
| | - Eileen White
- e Rutgers Cancer Institute of New Jersey , New Brunswick , NJ , USA
| | - Julian Downward
- f Oncogene Biology Laboratory , The Francis Crick Institute , London , UK
| | - Robert D Goldin
- g Centre for Pathology , St Mary's Hospital, Imperial College London , London , UK
| | - Xianglin Yuan
- a Department of Oncology, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Xin Lu
- d Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
95
|
Deng S, Shanmugam MK, Kumar AP, Yap CT, Sethi G, Bishayee A. Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer 2019; 125:1228-1246. [DOI: 10.1002/cncr.31978] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/24/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Shuo Deng
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Muthu K. Shanmugam
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Alan Prem Kumar
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Cancer Science Institute of Singapore National University of Singapore Singapore
- Cancer Program, Medical Science Cluster Yong Loo Lin School of Medicine, National University of Singapore Singapore
- National University Cancer Institute National University Health System Singapore
- Curtin Medical School, Faculty of Health Sciences Curtin University Perth West Australia Australia
| | - Celestial T. Yap
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- National University Cancer Institute National University Health System Singapore
| | - Gautam Sethi
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | | |
Collapse
|
96
|
Wang XH, Li W, Wang XH, Han MY, Muhammad I, Zhang XY, Sun XQ, Cui XX. Water-soluble substances of wheat: a potential preventer of aflatoxin B1-induced liver damage in broilers. Poult Sci 2019; 98:136-149. [PMID: 30107611 DOI: 10.3382/ps/pey358] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/26/2018] [Indexed: 02/04/2023] Open
Abstract
Aflatoxin B1 (AFB1) is very harmful for broiler production and public health. The water-soluble castoff in gluten production, i.e., the water-soluble substances of wheat (WSW) that contains 14% pentosan has positive effect on animal nutrient absorption, immunity, and antioxidation. Our study aims to investigate the preventive effects of WSW against AFB1-induced broiler liver injury. One day-old Arbor Acres broilers were randomly separated to 4 groups and were, respectively, fed with control diet, diet with 5 mg/kg AFB1 standard, diet with 5 mg/kg AFB1 standard and 214 ml/kg WSW, and diet with 214 ml/kg WSW continuously for 28 d. The histopathological, ultra-structural, and serological changes were tested to evaluate liver damage. The hallmarks of hepatocellular autophagy, apoptosis, and inflammation were measured by Western Blot and real-time polymerase chain reaction. The content of AFB1 in chicken liver was detected with an ultra-high performance liquid chromatography linked with the fluorescence detection method. The results showed that (i) WSW restored AFB1-induced changes in serum biochemical parameters, and ameliorated histomorphological changes in hepatocytes, (ii) WSW reduced the content of AFB1 in chicken liver, (iii) WSW alleviated AFB1-induced autophagy inhibition by up-regulating hepatic LC3, beclin-1, and down-regulating hepatic mTOR and cytoplasmic P53 expressions, (iv) WSW alleviated AFB1-induced hepatocellular apoptosis via inhibiting pro-apoptotic gene expression (nuclear P53, Caspase3, Bax), and promoting anti-apoptotic gene expression (bcl-2), (v) WSW feeding ameliorated AFB1-induced liver inflammation via impeding TLR4/NF-${{\bf \kappa }}$B and IL-1/NF-${{\bf \kappa }}$B signaling pathways, down-regulating pro-inflammatory cytokines (IL-1${{\bf \beta }}$, IL-6, and IL-8), and markedly up-regulating anti-inflammatory genes (IL-10 and HO-1). Conclusively, WSW is a potential preventer of AFB1-induced broiler liver damage by reducing the AFB1 content in liver, accelerating hepatocellular autophagy and inhibiting hepatocytes apoptosis and liver inflammation.
Collapse
Affiliation(s)
- Xing-He Wang
- Department of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No. 120, Dongling Road, Shenyang, P R China.,Department of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai street, Harbin, P R China
| | - Wei Li
- Department of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai street, Harbin, P R China
| | - Xing-Hui Wang
- Department of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai street, Harbin, P R China
| | - Mei-Yu Han
- Department of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai street, Harbin, P R China
| | - Ishfaq Muhammad
- Department of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai street, Harbin, P R China
| | - Xiu-Ying Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai street, Harbin, P R China
| | - Xiao-Qi Sun
- Department of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai street, Harbin, P R China
| | - Xiao-Xu Cui
- Department of Veterinary Medicine, Northeast Agricultural University, No. 59, Mucai street, Harbin, P R China
| |
Collapse
|
97
|
Niu C, Chen Z, Kim KT, Sun J, Xue M, Chen G, Li S, Shen Y, Zhu Z, Wang X, Liang J, Jiang C, Cong W, Jin L, Li X. Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway. Autophagy 2019; 15:843-870. [PMID: 30653446 PMCID: PMC6526809 DOI: 10.1080/15548627.2019.1569913] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an endothelial protective effect of metformin, but the underlying mechanisms remain unclear. We aimed to investigate whether metformin exerts its protective role against hyperglycemia-induced endothelial impairment through the autophagy machinery. db/db mice were treated with intravitreal metformin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of metformin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered autophagosome synthesis in both the diabetic retinal vasculature and cultured HUVECs by metformin, along with restoration of hyperglycemia-impaired Hedgehog (Hh) pathway activity. Specifically, deletion of ATG7 in retinal vascular ECs of db/db mice and cultured HUVECs indicated a detrimental role of autophagy in hyperglycemia-induced endothelial dysfunction. Pretreatment with GANT61, a Hh pathway inhibitor, abolished the metformin-mediated downregulation of autophagy and endothelial protective action. Furthermore, GLI-family (transcription factors of the Hh pathway) knockdown in HUVECs and retinal vasculature revealed that downregulation of hyperglycemia-activated autophagy by the metformin-mediated Hh pathway activation was GLI1 dependent. Mechanistically, GLI1 knockdown-triggered autophagy was related to upregulation of BNIP3, which subsequently disrupted the association of BECN1/Beclin 1 and BCL2. The role of BNIP3 in BECN1 dissociation from BCL2 was further confirmed by BNIP3 overexpression or BNIP3 RNAi. Taken together, the endothelial protective effect of metformin under hyperglycemia conditions could be partly attributed to its role in downregulating autophagy via Hh pathway activation. Abbreviations: 3-MA = 3-methyladenine; 8×GLI BS-FL = 8×GLI-binding site firefly luciferase; AAV = adeno-associated virus; AAV-Cdh5-sh-Atg7 = AAV vectors carrying shRNA against murine Atg7 under control of murine Cdh5 promoter; AAV-Cdh5-sh-Gli1 = AAV vectors carrying shRNA against murine Gli1 under control of murine Cdh5 promoter; AAV-Cdh5-Gli1 = AAV vectors carrying murine Gli1 cDNA under the control of murine Cdh5 core promoter; ACAC = acetyl-CoA carboxylase; Ad-BNIP3 = adenoviruses harboring human BNIP3`; Ad-GLI1 = adenoviruses harboring human GLI1; Ad-sh-ATG7 = adenoviruses harboring shRNA against human ATG7; Ad-sh-BNIP3 = adenoviruses harboring shRNA against human BNIP3; Ad-sh-GLI = adenoviruses harboring shRNA against human GLI; AGEs = advanced glycation end products; ATG = autophagy-related; atg7flox/flox mice = mice bearing an Atg7flox allele, in which exon 14 of the Atg7 gene is flanked by 2 loxP sites; BafA1 = bafilomycin A1; BECN1 = beclin 1; CDH5/VE-cadherin = cadherin 5; CASP3 = caspase 3; CASP8 = caspase 8; CASP9 = caspase 9; ECs = endothelial cells; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; GCL = ganglion cell layer; GFP-LC3B = green fluorescent protein labelled LC3B; HG = high glucose; Hh = Hedgehog; HHIP = hedgehog interacting protein; HUVECs = human umbilical vein endothelial cells; IB4 = isolectin B4; INL = inner nuclear layer; i.p. = intraperitoneal; MAP1LC3/LC3 = microtubule-associated protein 1 light chain 3; MAN = mannitol; MET = metformin; NG = normal glucose; ONL = outer nuclear layer; p-ACAC = phosphorylated acetyl-CoA carboxylase; PECAM1/CD31= platelet/endothelial cell adhesion molecule 1; PRKAA1/2 = protein kinase AMP-activated catalytic subunits alpha 1/2; p-PRKAA1/2 = phosphorylated PRKAA1/2; PTCH1 = patched 1; RAPA = rapamycin; RL = Renilla luciferase; SHH = sonic hedgehog; shRNA = short hairpin RNA; sh-PRKAA1/2 = short hairpin RNA against human PRKAA1/2; scrambled shRNA = the scrambled short hairpin RNA serves as a negative control for the target-specific short hairpin RNA, which has the same nucleotide composition as the input sequence and has no match with any mRNA of the selected organism database; SMO = smoothened, frizzled class receptor; sqRT-PCR = semi-quantitative RT-PCR; TEK/Tie2 = TEK receptor tyrosine kinase; Tek-Cre (+) mice = a mouse strain expressing Cre recombinase under the control of the promoter/enhancer of Tek, in a pan-endothelial fashion; TUNEL = terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling.
Collapse
Affiliation(s)
- Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, P.R. China,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Zhiwei Chen
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, P.R. China,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Kyoung Tae Kim
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jia Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Mei Xue
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Gen Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Santie Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Yingjie Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Zhongxin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jiaojiao Liang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Chao Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China,CONTACT Litai Jin ; Weitao Cong ; Chao Jiang School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China,CONTACT Litai Jin ; Weitao Cong ; Chao Jiang School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China,CONTACT Litai Jin ; Weitao Cong ; Chao Jiang School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| |
Collapse
|
98
|
Guzmán EA. Regulated Cell Death Signaling Pathways and Marine Natural Products That Target Them. Mar Drugs 2019; 17:md17020076. [PMID: 30678065 PMCID: PMC6410226 DOI: 10.3390/md17020076] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Our understanding of cell death used to consist in necrosis, an unregulated form, and apoptosis, regulated cell death. That understanding expanded to acknowledge that apoptosis happens through the intrinsic or extrinsic pathways. Actually, many other regulated cell death processes exist, including necroptosis, a regulated form of necrosis, and autophagy-dependent cell death. We also understand that apoptosis occurs beyond the intrinsic and extrinsic pathways with caspase independent forms of apoptosis existing. Our knowledge of the signaling continues to grow, and with that, so does our ability to target different parts of the pathways with small molecules. Marine natural products co-evolve with their targets, and these unique molecules have complex structures with exquisite biological activities and specificities. This article offers a review of our current understanding of the signaling pathways regulating cell death, and highlights marine natural products that can affect these signaling pathways.
Collapse
Affiliation(s)
- Esther A Guzmán
- Marine Biomedical and Biotechnology Research, Harbor Branch Oceanographic Institute at Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL 34946, USA.
| |
Collapse
|
99
|
Napoletano F, Baron O, Vandenabeele P, Mollereau B, Fanto M. Intersections between Regulated Cell Death and Autophagy. Trends Cell Biol 2019; 29:323-338. [PMID: 30665736 DOI: 10.1016/j.tcb.2018.12.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 12/17/2022]
Abstract
In multicellular organisms, cell death is an essential aspect of life. Over the past decade, the spectrum of different forms of regulated cell death (RCD) has expanded dramatically with relevance in several pathologies such as inflammatory and neurodegenerative diseases. This has been paralleled by the growing awareness of the central importance of autophagy as a stress response that influences decisions of cell life and cell death. Here, we first introduce criteria and methodologies for correct identification of the different RCD forms. We then discuss how the autophagy machinery is directly associated with specific cell death forms and dissect the complex interactions between autophagy and apoptotic and necrotic cell death. This highlights how the balance of the relationship between other cell death pathways and autophagy presides over life and death in specific cellular contexts.
Collapse
Affiliation(s)
- Francesco Napoletano
- Department of Life Sciences, University of Trieste, Via Weiss 2 - Pal. Q, 34128 Trieste, Italy; CIB National Laboratory, Area Science Park, Padriciano 99, 34149, Trieste, Italy
| | - Olga Baron
- Wolfson Centre for Age-Related Disorders, King's College London, Guy's Campus, SE1 1UL, London; Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, SE5 9NU, London, UK
| | - Peter Vandenabeele
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent 9052, Belgium; VIB-UGent Center for Inflammation Research, UGent-VIB, Research Building FSVM, Technologiepark 71, 9052 Ghent, Belgium
| | - Bertrand Mollereau
- Université de Lyon, ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, 46 Allée d'Italie, 69007, Lyon, France.
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, SE5 9NU, London, UK; Institut du Cerveau et de la Moelle épinière (ICM), 47, bd de l'hôpital, F-75013 Paris, France.
| |
Collapse
|
100
|
Denton D, Kumar S. Autophagy-dependent cell death. Cell Death Differ 2018; 26:605-616. [PMID: 30568239 DOI: 10.1038/s41418-018-0252-y] [Citation(s) in RCA: 546] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/09/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy-dependent cell death can be defined as cell demise that has a strict requirement of autophagy. Although autophagy often accompanies cell death following many toxic insults, the requirement of autophagic machinery for cell death execution, as established through specific genetic or chemical inhibition of the process, is highly contextual. During animal development, perhaps the best validated model of autophagy-dependent cell death is the degradation of the larval midgut during larval-pupal metamorphosis, where a number of key autophagy genes are required for the removal of the tissues. Surprisingly though, even in the midgut, not all of the 'canonical' autophagic machinery appears to be required. In other organisms and cancer cells many variations of autophagy-dependent cell death are apparent, pointing to the lack of a unifying cell death pathway. It is thus possible that components of the autophagy machinery are selectively utilised or repurposed for this type of cell death. In this review, we discuss examples of cell death that utilise autophagy machinery (or part thereof), the current knowledge of the complexity of autophagy-dependent cellular demise and the potential mechanisms and regulatory pathways involved in such cell death.
Collapse
Affiliation(s)
- Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia.
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA, 5001, Australia.
| |
Collapse
|