51
|
Sekimata M, Yoshida D, Araki A, Asao H, Iseki K, Murakami-Sekimata A. Runx1 and RORγt Cooperate to Upregulate IL-22 Expression in Th Cells through Its Distal Enhancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3198-3210. [PMID: 31028121 DOI: 10.4049/jimmunol.1800672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 04/01/2019] [Indexed: 12/29/2022]
Abstract
IL-22 is a cytokine that plays a pivotal role in regulating tissue homeostasis at barrier surfaces and is produced by activated CD4+ Th cells. Currently, the molecular mechanisms regulating Il22 gene expression are still unclear. In this study, we have identified a crucial cis-regulatory element located 32 kb upstream of the mouse Il22 promoter, termed conserved noncoding sequence (CNS)-32. We demonstrated that CNS-32 acts as an enhancer in reporter assays and contains binding motifs for Runt-related transcription factor (Runx)1 and retinoic acid-related orphan receptor γt (RORγt). Mutation of these motifs significantly abrogated the reporter activity, suggesting a role for both factors in the control of enhancer-mediated Il22 expression. Runx1 and RORγt occupancy and elevated histone H4 acetylation at CNS-32 were evident, as naive T cells differentiated into IL-22-producing Th22 cells. Overexpression of Runx1 promoted IL-22 production by inducing RORγt and IL-23 receptor, all critical to Th22 cell induction. Although Runx1 alone enhanced IL-22 production in Th22 cells, it was further enhanced in the presence of RORγt. Conversely, short hairpin RNA-mediated knockdown of core-binding factor β, a cofactor essential for Runx1 activity, was effective in limiting IL-22 production. Collectively, our results suggest that IL-22 production is controlled by a regulatory circuit in which Runx1 induces RORγt and then partners with RORγt to direct Il22 expression through their targeting of the Il22 enhancer.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Animals
- Cell Differentiation
- Cells, Cultured
- Conserved Sequence/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Enhancer Elements, Genetic/genetics
- Interleukins/genetics
- Interleukins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mutation/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Protein Binding
- RNA, Small Interfering/genetics
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- Up-Regulation
- Interleukin-22
Collapse
Affiliation(s)
- Masayuki Sekimata
- Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan;
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Daiki Yoshida
- Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Akemi Araki
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; and
| | - Hironobu Asao
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; and
| | - Ken Iseki
- Department of Emergency and Critical Care Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Akiko Murakami-Sekimata
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
52
|
Hou J, Wang X. The polycomb group proteins functions in epithelial to mesenchymal transition in lung cancer. Semin Cell Dev Biol 2019; 90:138-143. [PMID: 30004017 DOI: 10.1016/j.semcdb.2018.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/08/2018] [Indexed: 12/29/2022]
|
53
|
Sneppen K, Ringrose L. Theoretical analysis of Polycomb-Trithorax systems predicts that poised chromatin is bistable and not bivalent. Nat Commun 2019; 10:2133. [PMID: 31086177 PMCID: PMC6513952 DOI: 10.1038/s41467-019-10130-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Polycomb (PcG) and Trithorax (TrxG) group proteins give stable epigenetic memory of silent and active gene expression states, but also allow poised states in pluripotent cells. Here we systematically address the relationship between poised, active and silent chromatin, by integrating 73 publications on PcG/TrxG biochemistry into a mathematical model comprising 144 nucleosome modification states and 8 enzymatic reactions. Our model predicts that poised chromatin is bistable and not bivalent. Bivalent chromatin, containing opposing active and silent modifications, is present as an unstable background population in all system states, and different subtypes co-occur with active and silent chromatin. In contrast, bistability, in which the system switches frequently between stable active and silent states, occurs under a wide range of conditions at the transition between monostable active and silent system states. By proposing that bistability and not bivalency is associated with poised chromatin, this work has implications for understanding the molecular nature of pluripotency. Polycomb and Trithorax group proteins regulate silent and active gene expression states, but also allow poised states in pluripotent cells. Here the authors present a mathematical model that integrates data on Polycomb/ Trithorax biochemistry into a single coherent framework which predicts that poised chromatin is not bivalent as previously proposed, but is bistable, meaning that the system switches frequently between stable active and silent states.
Collapse
Affiliation(s)
- Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark.
| | - Leonie Ringrose
- Integrated Research Institute for Life Sciences, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 22, 10115, Berlin, Germany.
| |
Collapse
|
54
|
Chan HL, Morey L. Emerging Roles for Polycomb-Group Proteins in Stem Cells and Cancer. Trends Biochem Sci 2019; 44:688-700. [PMID: 31085088 DOI: 10.1016/j.tibs.2019.04.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023]
Abstract
Polycomb-group (PcG) complexes are multiprotein, evolutionarily conserved epigenetic machineries that regulate stem cell fate decisions and development, and are also implicated in cancer and other maladies. The PcG machinery can be divided into two major complexes: Polycomb repressive complex 1 and 2 (PRC1 and PRC2). Traditionally, PcG complexes have been associated with maintenance of gene repression mainly via histone-modifying activities. However, during the last years, increasing evidence indicates that the PcG complexes can also positively regulate gene transcription and modify non-histone substrates in multiple biological processes, cellular stages, and cancers. In this review, we will illustrate recent findings in PcG-mediated gene regulation, with special focus on the recently described non-classical functions of PcG complexes in stem cells and cancer.
Collapse
Affiliation(s)
- Ho Lam Chan
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA; Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA; Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
55
|
Brand M, Nakka K, Zhu J, Dilworth FJ. Polycomb/Trithorax Antagonism: Cellular Memory in Stem Cell Fate and Function. Cell Stem Cell 2019; 24:518-533. [PMID: 30951661 PMCID: PMC6866673 DOI: 10.1016/j.stem.2019.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stem cells are continuously challenged with the decision to either self-renew or adopt a new fate. Self-renewal is regulated by a system of cellular memory, which must be bypassed for differentiation. Previous studies have identified Polycomb group (PcG) and Trithorax group (TrxG) proteins as key modulators of cellular memory. In this Perspective, we draw from embryonic and adult stem cell studies to discuss the complex roles played by PcG and TrxG in maintaining cell identity while allowing for microenvironment-mediated alterations in cell fate. Finally, we discuss the potential for targeting these proteins as a therapeutic approach in cancer.
Collapse
Affiliation(s)
- Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8L6.
| | - Kiran Nakka
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8L6
| | - Jiayu Zhu
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8L6
| | - F Jeffrey Dilworth
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8L6.
| |
Collapse
|
56
|
Bosselut R. Control of Intra-Thymic αβ T Cell Selection and Maturation by H3K27 Methylation and Demethylation. Front Immunol 2019; 10:688. [PMID: 31001282 PMCID: PMC6456692 DOI: 10.3389/fimmu.2019.00688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/13/2019] [Indexed: 12/25/2022] Open
Abstract
In addition to transcription factor binding, the dynamics of DNA modifications (methylation) and chromatin structure are essential contributors to the control of transcription in eukaryotes. Research in the past few years has emphasized the importance of histone H3 methylation at lysine 27 for lineage specific gene repression, demonstrated that deposition of this mark at specific genes is subject to differentiation-induced changes during development, and identified enzymatic activities, methyl transferases and demethylases, that control these changes. The present review discusses the importance of these mechanisms during intrathymic αβ T cell selection and late differentiation.
Collapse
Affiliation(s)
- Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
57
|
Chrispijn ND, Elurbe DM, Mickoleit M, Aben M, de Bakker DEM, Andralojc KM, Huisken J, Bakkers J, Kamminga LM. Loss of the Polycomb group protein Rnf2 results in derepression of tbx-transcription factors and defects in embryonic and cardiac development. Sci Rep 2019; 9:4327. [PMID: 30867528 PMCID: PMC6416260 DOI: 10.1038/s41598-019-40867-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/07/2019] [Indexed: 12/24/2022] Open
Abstract
The Polycomb group (PcG) protein family is a well-known group of epigenetic modifiers. We used zebrafish to investigate the role of Rnf2, the enzymatic subunit of PRC1. We found a positive correlation between loss of Rnf2 and upregulation of genes, especially of those whose promoter is normally bound by Rnf2. The heart of rnf2 mutants shows a tubular shaped morphology and to further understand the underlying mechanism, we studied gene expression of single wildtype and rnf2 mutant hearts. We detected the most pronounced differences at 3 dpf, including upregulation of heart transcription factors, such as tbx2a, tbx2b, and tbx3a. These tbx genes were decorated by broad PcG domains in wildtype whole embryo lysates. Chamber specific genes such as vmhc, myh6, and nppa showed downregulation in rnf2 mutant hearts. The marker of the working myocard, nppa, is negatively regulated by Tbx2 and Tbx3. Based on our findings and literature we postulate that loss of Rnf2-mediated repression results in upregulation and ectopic expression of tbx2/3, whose expression is normally restricted to the cardiac conductive system. This could lead to repression of chamber specific gene expression, a misbalance in cardiac cell types, and thereby to cardiac defects observed in rnf2 mutants.
Collapse
Affiliation(s)
- Naomi D Chrispijn
- Radboud University, Radboud Institute for Molecular Life Sciences, Department of Molecular Biology, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Dei M Elurbe
- Radboud University, Radboud Institute for Molecular Life Sciences, Department of Molecular Biology, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Michaela Mickoleit
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Marco Aben
- Radboud University, Radboud Institute for Molecular Life Sciences, Department of Molecular Biology, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Karolina M Andralojc
- Radboud University, Radboud Institute for Molecular Life Sciences, Department of Molecular Biology, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
- Medical Engineering, Morgridge Institute for Research, 330N Orchard Street, Madison, Wisconsin, 53715, USA
| | - Jeroen Bakkers
- Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Leonie M Kamminga
- Radboud University, Radboud Institute for Molecular Life Sciences, Department of Molecular Biology, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands.
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
58
|
Abstract
Polycomb repressive complex 2 (PRC2) and its methylation of histone 3 at lysine 27 (H3K27me3) play a crucial role in epigenetic regulation of normal development and malignancy. Several factors regulate the recruitment of PRC2 and affects its chromatin modification function. Over the past years, emerging discoveries have portrayed the association of RNA (protein-coding and non-coding) with PRC2 as a critical factor in understanding PRC2 function. With PRC2 being a macromolecular complex of interest in development and diseases, further studies are needed to relate the rapidly evolving PRC2:RNA biology in that scenario. In this review, we summarize the current understanding of different modes of RNA binding by PRC2, and further discuss perspectives, key questions and therapeutic applications of PRC2 binding to RNAs.
Collapse
Affiliation(s)
- Junli Yan
- a Cancer Science Institute of Singapore , National University of Singapore , Singapore , Singapore
| | - Bibek Dutta
- b Department of Medicine , Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Yan Ting Hee
- c Lee Kong Chian School of Medicine , Nanyang Technological University , Singapore , Singapore
| | - Wee-Joo Chng
- a Cancer Science Institute of Singapore , National University of Singapore , Singapore , Singapore.,b Department of Medicine , Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,d Department of Hematology-Oncology , National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS) , Singapore , Singapore
| |
Collapse
|
59
|
Emmanuel AO, Arnovitz S, Haghi L, Mathur PS, Mondal S, Quandt J, Okoreeh MK, Maienschein-Cline M, Khazaie K, Dose M, Gounari F. TCF-1 and HEB cooperate to establish the epigenetic and transcription profiles of CD4 +CD8 + thymocytes. Nat Immunol 2018; 19:1366-1378. [PMID: 30420627 PMCID: PMC6867931 DOI: 10.1038/s41590-018-0254-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/11/2018] [Indexed: 01/29/2023]
Abstract
Thymocyte development requires a complex orchestration of multiple transcription factors. Ablating either TCF-1 or HEB in CD4+CD8+ thymocytes elicits similar developmental outcomes including increased proliferation, decreased survival, and fewer late Tcra rearrangements. Here, we provide a mechanistic explanation for these similarities by showing that TCF-1 and HEB share ~7,000 DNA-binding sites genome wide and promote chromatin accessibility. The binding of both TCF-1 and HEB was required at these shared sites for epigenetic and transcriptional gene regulation. Binding of TCF-1 and HEB to their conserved motifs in the enhancer regions of genes associated with T cell differentiation promoted their expression. Binding to sites lacking conserved motifs in the promoter regions of cell-cycle-associated genes limited proliferation. TCF-1 displaced nucleosomes, allowing for chromatin accessibility. Importantly, TCF-1 inhibited Notch signaling and consequently protected HEB from Notch-mediated proteasomal degradation. Thus, TCF-1 shifts nucleosomes and safeguards HEB, thereby enabling their cooperation in establishing the epigenetic and transcription profiles of CD4+CD8+ thymocytes.
Collapse
Affiliation(s)
| | | | - Leila Haghi
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Priya S Mathur
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Soumi Mondal
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jasmin Quandt
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | - Khashayarsha Khazaie
- Department of Immunology, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Marei Dose
- Department of Medicine, University of Chicago, Chicago, IL, USA.
| | - Fotini Gounari
- Department of Medicine, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
60
|
WDR68 is essential for the transcriptional activation of the PRC1-AUTS2 complex and neuronal differentiation of mouse embryonic stem cells. Stem Cell Res 2018; 33:206-214. [PMID: 30448639 DOI: 10.1016/j.scr.2018.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 11/22/2022] Open
Abstract
Recent studies on Polycomb repressive complexes (PRC) reveal a surprising role in transcriptional activation, yet the underlying mechanism remains poorly understood. We previously identified a type 1 PRC (PRC1) that contains Autism Susceptibility Candidate 2 (AUTS2), which positively regulates transcription of neuronal genes. However, the mechanism by which the PRC1-AUTS2 complex influences neurodevelopment is unclear. Here we demonstrate that WDR68 is not only an integral component of the PRC1-AUTS2 complex, but it is also required for PRC1-AUTS2-mediated transcription activation. Furthermore, deletion of Wdr68 in mouse embryonic stem cells leads to defects in neuronal differentiation without affecting self-renewal. Through transcriptomic analysis, we found that many genes responsible for neuronal differentiation are down-regulated in Wdr68 deficient neural progenitors. These genes include those targeted by the PRC1-AUTS2 complex. In summary, our studies uncovered a previously unknown but essential component of the active PRC1 complex and evidence of its role in regulating the expression of genes that are important for neuronal differentiation.
Collapse
|
61
|
Epstein-Barr Virus Nuclear Antigen 3C Inhibits Expression of COBLL1 and the ADAM28-ADAMDEC1 Locus via Interaction with the Histone Lysine Demethylase KDM2B. J Virol 2018; 92:JVI.01362-18. [PMID: 30135119 PMCID: PMC6189496 DOI: 10.1128/jvi.01362-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022] Open
Abstract
EBV is a virus associated with human cancers and is well known for its ability to transform B lymphocytes into continuously proliferating lymphoblastoid cell lines. EBNA3C is considered an oncoprotein and has been shown to be essential for B cell transformation by EBV. EBNA3C is well characterized as a viral transcription factor, but very little is known about its mechanisms of action. In the present study, we demonstrate that removal of the activating histone mark H3K4me3 and deposition of the repressive mark H3K27me3 by EBNA3C on COBLL1 are achieved by at least two distinct mechanisms. Furthermore, we discovered that EBNA3C interacts with the lysine demethylase KDM2B and that this interaction is important for its transcriptional repressive function. The findings in this study provide new insights into the mechanism used by the oncoprotein EBNA3C to repress cellular target genes. Epstein-Barr virus nuclear antigen 3C (EBNA3C) is a well-defined repressor of host gene expression in B cells transformed by Epstein-Barr virus (EBV) that cooperates with various cellular factors. It is established that EBNA3C interacts with the cellular factor RBPJ (RBP-Jκ or CBF1) through two distinct motifs: the TFGC motif, also called the homology domain (HD) motif, and the VWTP motif. In this study, we investigated the role of each motif in EBNA3C transcriptional repression activity by using two novel recombinant viruses with single RBPJ interaction motifs mutated (EBNA3C HDmut and EBNA3C W227S). Infection of primary B cells with either of these recombinant EBVs led to the successful establishment of lymphoblastoid cell lines (LCLs). Gene expression analysis showed that full repression of EBNA3C target genes is not achieved by EBNA3C HDmut compared to that with EBNA3C W227S or the EBNA3C wild type (WT). Focusing on the well-characterized EBNA3C-repressed genes COBLL1, ADAM28, and ADAMDEC1, we investigated the mechanism of EBNA3C-mediated transcriptional repression. Chromatin immunoprecipitation (ChIP) analysis indicated that EBNA3C HDmut is still able to recruit Polycomb proteins BMI1 and SUZ12 to COBLL1 as efficiently as EBNA3C WT does, leading to the full deposition of the repressive histone mark H3K27me3. However, we found that the activation-associated chromatin mark H3K4me3 is highly enriched at EBNA3C target genes in LCLs expressing EBNA3C HDmut. We show here that EBNA3C interacts with the histone lysine demethylase KDM2B and that this interaction is important for H3K4me3 removal and for the EBNA3C-mediated repression of COBLL1 and the ADAM28-ADAMDEC1 locus. IMPORTANCE EBV is a virus associated with human cancers and is well known for its ability to transform B lymphocytes into continuously proliferating lymphoblastoid cell lines. EBNA3C is considered an oncoprotein and has been shown to be essential for B cell transformation by EBV. EBNA3C is well characterized as a viral transcription factor, but very little is known about its mechanisms of action. In the present study, we demonstrate that removal of the activating histone mark H3K4me3 and deposition of the repressive mark H3K27me3 by EBNA3C on COBLL1 are achieved by at least two distinct mechanisms. Furthermore, we discovered that EBNA3C interacts with the lysine demethylase KDM2B and that this interaction is important for its transcriptional repressive function. The findings in this study provide new insights into the mechanism used by the oncoprotein EBNA3C to repress cellular target genes.
Collapse
|
62
|
Potluri S, Coleman D, Bonifer C. Pharmacological inhibition of aberrant transcription factor complexes in inversion 16 acute myeloid leukemia. Stem Cell Investig 2018; 5:30. [PMID: 30363728 PMCID: PMC6182015 DOI: 10.21037/sci.2018.09.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Sandeep Potluri
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Daniel Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
63
|
Nakagawa T, Yoneda M, Higashi M, Ohkuma Y, Ito T. Enhancer function regulated by combinations of transcription factors and cofactors. Genes Cells 2018; 23:808-821. [PMID: 30092612 DOI: 10.1111/gtc.12634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Regulation of the expression of diverse genes is essential for making possible the complexity of higher organisms, and the temporal and spatial regulation of gene expression allows for the alteration of cell types and growth patterns. A critical component of this regulation is the DNA sequence-specific binding of transcription factors (TFs). However, most TFs do not independently participate in gene transcriptional regulation, because they lack an effector function. Instead, TFs are thought to work by recruiting cofactors, including Mediator complex (Mediator), chromatin-remodeling complexes (CRCs), and histone-modifying complexes (HMCs). Mediator associates with the majority of transcribed genes and acts as an integrator of multiple signals. On the other hand, CRCs and HMCs are selectively recruited by TFs. Although all the pairings between TFs and CRCs or HMCs are not fully known, there are a growing number of established TF-CRC and TF-HMC combinations. In this review, we focused on the most important of these pairings and discuss how they control gene expression.
Collapse
Affiliation(s)
- Takeya Nakagawa
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Mitsuhiro Yoneda
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Miki Higashi
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Yoshiaki Ohkuma
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| |
Collapse
|
64
|
Cameron SR, Nandi S, Kahn TG, Barrasa JI, Stenberg P, Schwartz YB. PTE, a novel module to target Polycomb Repressive Complex 1 to the human cyclin D2 ( CCND2) oncogene. J Biol Chem 2018; 293:14342-14358. [PMID: 30068546 DOI: 10.1074/jbc.ra118.005010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 11/06/2022] Open
Abstract
Polycomb group proteins are essential epigenetic repressors. They form multiple protein complexes of which two kinds, PRC1 and PRC2, are indispensable for repression. Although much is known about their biochemical properties, how mammalian PRC1 and PRC2 are targeted to specific genes is poorly understood. Here, we establish the cyclin D2 (CCND2) oncogene as a simple model to address this question. We provide the evidence that the targeting of PRC1 to CCND2 involves a dedicated PRC1-targeting element (PTE). The PTE appears to act in concert with an adjacent cytosine-phosphate-guanine (CpG) island to arrange for the robust binding of PRC1 and PRC2 to repressed CCND2 Our findings pave the way to identify sequence-specific DNA-binding proteins implicated in the targeting of mammalian PRC1 complexes and provide novel link between polycomb repression and cancer.
Collapse
Affiliation(s)
| | - Soumyadeep Nandi
- From the Department of Molecular Biology and.,the Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden and
| | | | | | - Per Stenberg
- From the Department of Molecular Biology and.,the Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden and.,the Division of Chemical, Biological, Radioactive and Nuclear (CBRN) Security and Defence, FOI-Swedish Defence Research Agency, 906 21 Umeå Sweden
| | | |
Collapse
|
65
|
Pulikkan JA, Hegde M, Ahmad HM, Belaghzal H, Illendula A, Yu J, O'Hagan K, Ou J, Muller-Tidow C, Wolfe SA, Zhu LJ, Dekker J, Bushweller JH, Castilla LH. CBFβ-SMMHC Inhibition Triggers Apoptosis by Disrupting MYC Chromatin Dynamics in Acute Myeloid Leukemia. Cell 2018; 174:172-186.e21. [PMID: 29958106 PMCID: PMC6211564 DOI: 10.1016/j.cell.2018.05.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 02/12/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022]
Abstract
The fusion oncoprotein CBFβ-SMMHC, expressed in leukemia cases with chromosome 16 inversion, drives leukemia development and maintenance by altering the activity of the transcription factor RUNX1. Here, we demonstrate that CBFβ-SMMHC maintains cell viability by neutralizing RUNX1-mediated repression of MYC expression. Upon pharmacologic inhibition of the CBFβ-SMMHC/RUNX1 interaction, RUNX1 shows increased binding at three MYC distal enhancers, where it represses MYC expression by mediating the replacement of the SWI/SNF complex component BRG1 with the polycomb-repressive complex component RING1B, leading to apoptosis. Combining the CBFβ-SMMHC inhibitor with the BET inhibitor JQ1 eliminates inv(16) leukemia in human cells and a mouse model. Enhancer-interaction analysis indicated that the three enhancers are physically connected with the MYC promoter, and genome-editing analysis demonstrated that they are functionally implicated in deregulation of MYC expression. This study reveals a mechanism whereby CBFβ-SMMHC drives leukemia maintenance and suggests that inhibitors targeting chromatin activity may prove effective in inv(16) leukemia therapy.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Azepines/pharmacology
- Azepines/therapeutic use
- Benzimidazoles/pharmacology
- Benzimidazoles/therapeutic use
- Cell Line, Tumor
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosome Inversion/drug effects
- Core Binding Factor Alpha 2 Subunit/chemistry
- Core Binding Factor Alpha 2 Subunit/metabolism
- DNA/chemistry
- DNA/metabolism
- DNA Helicases/metabolism
- Disease Models, Animal
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/metabolism
- Polycomb Repressive Complex 1/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Triazoles/pharmacology
- Triazoles/therapeutic use
Collapse
Affiliation(s)
- John Anto Pulikkan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mahesh Hegde
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hafiz Mohd Ahmad
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Houda Belaghzal
- Howard Hughes Medical Institute, Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anuradha Illendula
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Jun Yu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kelsey O'Hagan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Carsten Muller-Tidow
- Department of Medicine, Hematology, Oncology, and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Job Dekker
- Howard Hughes Medical Institute, Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - John Hackett Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Lucio Hernán Castilla
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
66
|
Marasca F, Bodega B, Orlando V. How Polycomb-Mediated Cell Memory Deals With a Changing Environment. Bioessays 2018. [DOI: 10.1002/bies.201700137] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Federica Marasca
- Istituto Nazionale di Genetica Molecolare (INGM) “Romeo and Enrica Invernizzi”; Milan 20122 Italy
| | - Beatrice Bodega
- Istituto Nazionale di Genetica Molecolare (INGM) “Romeo and Enrica Invernizzi”; Milan 20122 Italy
| | - Valerio Orlando
- King Abdullah University of Science and Technology (KAUST); Environmental Epigenetics Research Program; Biological and Environmental Sciences and Engineering Division; Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
67
|
Kasper DM, Nicoli S. Epigenetic and Epitranscriptomic Factors Make a Mark on Hematopoietic Stem Cell Development. CURRENT STEM CELL REPORTS 2018; 4:22-32. [PMID: 29910999 PMCID: PMC5999335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF THE REVIEW Blood specification is a highly dynamic process, whereby committed hemogenic endothelial cells (ECs) progressively transdifferentiate into multipotent, self-renewing hematopoietic stem cells (HSCs). Massive changes in gene expression must occur to switch cell identity, however the factors that mediate such an effect were a mystery until recently. This review summarizes the higher-order mechanisms involved in endothelial to hematopoietic reprogramming identified thus far. RECENT FINDINGS Accumulating evidence from mouse and zebrafish studies reveal that numerous chromatin-modifying (epigenetic) and RNA-modifying (epitranscriptomic) factors are required for the formation of HSCs from hemogenic endothelium. These genes function throughout the endothelial-hematopoietic transition, suggesting a dynamic interplay between 'epi'-machineries. SUMMARY Epigenetic and epitranscriptomic regulation are key mechanisms for reshaping global EC gene expression patterns to those that support HSC production. Future studies that capture modification dynamics should bring us closer to a complete understanding of how HSCs transition from hemogenic endothelium at the molecular level.
Collapse
Affiliation(s)
- Dionna M. Kasper
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA,Corresponding author:, ; Mailing address: Yale Cardiovascular Research Center, 300 George St., Room 773K, New Haven, CT 06511
| | - Stefania Nicoli
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA,Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
68
|
Gu X, Wang X, Su D, Su X, Lin L, Li S, Wu Q, Liu S, Zhang P, Zhu X, Jiang X. CBX2 Inhibits Neurite Development by Regulating Neuron-Specific Genes Expression. Front Mol Neurosci 2018. [PMID: 29541019 PMCID: PMC5835719 DOI: 10.3389/fnmol.2018.00046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Polycomb group (PcG) proteins regulate the epigenetic status of transcription regulatory states during development. Progression from pluripotency to differentiation requires the sequential activation and repression of different PcG target genes, however, the relationship between early patterning signals, PcG expression, and the development of the central nervous system is still unclear. Using various models of neuronal differentiation, we provide evidence that CBX2 is a negative regulator of neuronal differentiation. Knock-down of CBX2 expression promotes neurite development, while overexpression of CBX2 inhibits neurite development. Further, we found that CBX2 is a direct target gene of miR-124. During neuronal differentiation, CBX2 was decreased while miR-124 was increased. Mechanistically, CBX2 directly interacts with the promoter region of several neuro-associated genes and regulates their expression. We found that the neuron-specific GAP-43 gene could contribute to the stimulating effect on neurite development associated with inhibition of CBX2.
Collapse
Affiliation(s)
- Xi Gu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xuemin Wang
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Dazhuang Su
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaohong Su
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Lifang Lin
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Shuji Li
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Qiaoqi Wu
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Shuhu Liu
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Peidong Zhang
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Xinhong Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
69
|
From Flies to Mice: The Emerging Role of Non-Canonical PRC1 Members in Mammalian Development. EPIGENOMES 2018. [DOI: 10.3390/epigenomes2010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
70
|
Kasper DM, Nicoli S. Epigenetic and Epitranscriptomic Factors Make a Mark on Hematopoietic Stem Cell Development. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0113-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
71
|
|
72
|
Megakaryocyte and polyploidization. Exp Hematol 2018; 57:1-13. [DOI: 10.1016/j.exphem.2017.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
|
73
|
Herkt SC, Kuvardina ON, Herglotz J, Schneider L, Meyer A, Pommerenke C, Salinas-Riester G, Seifried E, Bonig H, Lausen J. Protein arginine methyltransferase 6 controls erythroid gene expression and differentiation of human CD34 + progenitor cells. Haematologica 2017; 103:18-29. [PMID: 29025910 PMCID: PMC5777187 DOI: 10.3324/haematol.2017.174516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/06/2017] [Indexed: 01/22/2023] Open
Abstract
Hematopoietic differentiation is driven by transcription factors, which orchestrate a finely tuned transcriptional network. At bipotential branching points lineage decisions are made, where key transcription factors initiate cell type-specific gene expression programs. These programs are stabilized by the epigenetic activity of recruited chromatin-modifying cofactors. An example is the association of the transcription factor RUNX1 with protein arginine methyltransferase 6 (PRMT6) at the megakaryocytic/erythroid bifurcation. However, little is known about the specific influence of PRMT6 on this important branching point. Here, we show that PRMT6 inhibits erythroid gene expression during megakaryopoiesis of primary human CD34+ progenitor cells. PRMT6 is recruited to erythroid genes, such as glycophorin A. Consequently, a repressive histone modification pattern with high H3R2me2a and low H3K4me3 is established. Importantly, inhibition of PRMT6 by shRNA or small molecule inhibitors leads to upregulation of erythroid genes and promotes erythropoiesis. Our data reveal that PRMT6 plays a role in the control of erythroid/megakaryocytic differentiation and open up the possibility that manipulation of PRMT6 activity could facilitate enhanced erythropoiesis for therapeutic use.
Collapse
Affiliation(s)
- Stefanie C Herkt
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Olga N Kuvardina
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Julia Herglotz
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Lucas Schneider
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Annekarin Meyer
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | | | | | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Jörn Lausen
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| |
Collapse
|
74
|
Abstract
The question of how noncoding RNAs are involved in Polycomb group (PcG) and Trithorax group (TrxG) regulation has been on an extraordinary journey over the last three decades. Favored models have risen and fallen, and healthy debates have swept back and forth. The field has recently reached a critical mass of compelling data that throws light on several previously unresolved issues. The time is ripe for a fruitful combination of these findings with two other long-running avenues of research, namely the biochemical properties of the PcG/TrxG system and the application of theoretical mathematical models toward an understanding of the system's regulatory properties. I propose that integrating our current knowledge of noncoding RNA into a quantitative biochemical and theoretical framework for PcG and TrxG regulation has the potential to reconcile several apparently conflicting models and identifies fascinating questions for future research.
Collapse
Affiliation(s)
- Leonie Ringrose
- Integrated Research Institute for Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany;
| |
Collapse
|
75
|
Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity. Proc Natl Acad Sci U S A 2017; 114:E8264-E8273. [PMID: 28900001 DOI: 10.1073/pnas.1707021114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7-null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7-deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity.
Collapse
|
76
|
|
77
|
Draper JE, Sroczynska P, Leong HS, Fadlullah MZH, Miller C, Kouskoff V, Lacaud G. Mouse RUNX1C regulates premegakaryocytic/erythroid output and maintains survival of megakaryocyte progenitors. Blood 2017; 130:271-284. [PMID: 28490570 PMCID: PMC5833261 DOI: 10.1182/blood-2016-06-723635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 04/21/2017] [Indexed: 12/13/2022] Open
Abstract
RUNX1 is crucial for the regulation of megakaryocyte specification, maturation, and thrombopoiesis. Runx1 possesses 2 promoters: the distal P1 and proximal P2 promoters. The major protein isoforms generated by P1 and P2 are RUNX1C and RUNX1B, respectively, which differ solely in their N-terminal amino acid sequences. RUNX1C is the most abundantly expressed isoform in adult hematopoiesis, present in all RUNX1-expressing populations, including the cKit+ hematopoietic stem and progenitor cells. RUNX1B expression is more restricted, being highly expressed in the megakaryocyte lineage but downregulated during erythropoiesis. We generated a Runx1 P1 knock-in of RUNX1B, termed P1-MRIPV This mouse line lacks RUNX1C expression but has normal total RUNX1 levels, solely comprising RUNX1B. Using this mouse line, we establish a specific requirement for the P1-RUNX1C isoform in megakaryopoiesis, which cannot be entirely compensated for by RUNX1B overexpression. P1 knock-in megakaryocyte progenitors have reduced proliferative capacity and undergo increased cell death, resulting in thrombocytopenia. P1 knock-in premegakaryocyte/erythroid progenitors demonstrate an erythroid-specification bias, evident from increased erythroid colony-forming ability and decreased megakaryocyte output. At a transcriptional level, multiple erythroid-specific genes are upregulated and megakaryocyte-specific transcripts are downregulated. In addition, proapoptotic pathways are activated in P1 knock-in premegakaryocyte/erythroid progenitors, presumably accounting for the increased cell death in the megakaryocyte progenitor compartment. Unlike in the conditional adult Runx1 null models, megakaryocytic maturation is not affected in the P1 knock-in mice, suggesting that RUNX1B can regulate endomitosis and thrombopoiesis. Therefore, despite the high degree of structural similarity, RUNX1B and RUNX1C isoforms have distinct and specific roles in adult megakaryopoiesis.
Collapse
Affiliation(s)
- Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Patrycja Sroczynska
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
- Biotech Research and Innovation Center and
- Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark; and
| | - Hui Sun Leong
- Cancer Research UK Applied Computational Biology and Bioinformatics Group, Cancer Research UK Manchester Institute and
| | - Muhammad Z H Fadlullah
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Crispin Miller
- Cancer Research UK Applied Computational Biology and Bioinformatics Group, Cancer Research UK Manchester Institute and
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Manchester, United Kingdom
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
78
|
Paschos K, Bazot Q, Ho G, Parker GA, Lees J, Barton G, Allday MJ. Core binding factor (CBF) is required for Epstein-Barr virus EBNA3 proteins to regulate target gene expression. Nucleic Acids Res 2017; 45:2368-2383. [PMID: 27903901 PMCID: PMC5389572 DOI: 10.1093/nar/gkw1167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/14/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022] Open
Abstract
ChIP-seq performed on lymphoblastoid cell lines (LCLs), expressing epitope-tagged EBNA3A, EBNA3B or EBNA3C from EBV-recombinants, revealed important principles of EBNA3 binding to chromatin. When combined with global chromatin looping data, EBNA3-bound loci were found to have a singular character, each directly associating with either EBNA3-repressed or EBNA3-activated genes, but not with both. EBNA3A and EBNA3C showed significant association with repressed and activated genes. Significant direct association for EBNA3B loci could only be shown with EBNA3B-repressed genes. A comparison of EBNA3 binding sites with known transcription factor binding sites in LCL GM12878 revealed substantial co-localization of EBNA3s with RUNX3-a protein induced by EBV during B cell transformation. The beta-subunit of core binding factor (CBFβ), that heterodimerizes with RUNX3, could co-immunoprecipitate robustly EBNA3B and EBNA3C, but only weakly EBNA3A. Depletion of either RUNX3 or CBFβ with lentivirus-delivered shRNA impaired epitope-tagged EBNA3B and EBNA3C binding at multiple regulated gene loci, indicating a requirement for CBF heterodimers in EBNA3 recruitment during target-gene regulation. ShRNA-mediated depletion of CBFβ in an EBNA3C-conditional LCL confirmed the role of CBF in the regulation of EBNA3C-induced and -repressed genes. These results reveal an important role for RUNX3/CBF during B cell transformation and EBV latency that was hitherto unexplored.
Collapse
Affiliation(s)
- Kostas Paschos
- Molecular Virology, Department of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Quentin Bazot
- Molecular Virology, Department of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Guiyi Ho
- Molecular Virology, Department of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Gillian A. Parker
- Molecular Virology, Department of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Jonathan Lees
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Geraint Barton
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ, UK
| | - Martin J. Allday
- Molecular Virology, Department of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| |
Collapse
|
79
|
Polycomb complexes PRC1 and their function in hematopoiesis. Exp Hematol 2017; 48:12-31. [PMID: 28087428 DOI: 10.1016/j.exphem.2016.12.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022]
Abstract
Hematopoiesis, the process by which blood cells are continuously produced, is one of the best studied differentiation pathways. Hematological diseases are associated with reiterated mutations in genes encoding important gene expression regulators, including chromatin regulators. Among them, the Polycomb group (PcG) of proteins is an essential system of gene silencing involved in the maintenance of cell identities during differentiation. PcG proteins assemble into two major types of Polycomb repressive complexes (PRCs) endowed with distinct histone-tail-modifying activities. PRC1 complexes are histone H2A E3 ubiquitin ligases and PRC2 trimethylates histone H3. Established conceptions about their activities, mostly derived from work in embryonic stem cells, are being modified by new findings in differentiated cells. Here, we focus on PRC1 complexes, reviewing recent evidence on their intricate architecture, the diverse mechanisms of their recruitment to targets, and the different ways in which they engage in transcriptional control. We also discuss hematopoietic PRC1 gain- and loss-of-function mouse strains, including those that model leukemic and lymphoma diseases, in the belief that these genetic analyses provide the ultimate test for molecular mechanisms driving normal hematopoiesis and hematological malignancies.
Collapse
|
80
|
Yzaguirre AD, de Bruijn MFTR, Speck NA. The Role of Runx1 in Embryonic Blood Cell Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:47-64. [DOI: 10.1007/978-981-10-3233-2_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
81
|
Covalent Modifications of RUNX Proteins: Structure Affects Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:33-44. [DOI: 10.1007/978-981-10-3233-2_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
82
|
Bonifer C, Levantini E, Kouskoff V, Lacaud G. Runx1 Structure and Function in Blood Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:65-81. [PMID: 28299651 DOI: 10.1007/978-981-10-3233-2_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RUNX transcription factors belong to a highly conserved class of transcriptional regulators which play various roles in the development of the majority of metazoans. In this review we focus on the founding member of the family, RUNX1, and its role in the transcriptional control of blood cell development in mammals. We summarize data showing that RUNX1 functions both as activator and repressor within a chromatin environment, a feature that requires its interaction with multiple other transcription factors and co-factors. Furthermore, we outline how RUNX1 works together with other factors to reshape the epigenetic landscape and the three-dimensional structure of gene loci within the nucleus. Finally, we review how aberrant forms of RUNX1 deregulate blood cell development and cause hematopoietic malignancies.
Collapse
Affiliation(s)
- Constanze Bonifer
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | - Elena Levantini
- Beth Israel Diaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Richerche, Pisa, Italy
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Manchester, UK
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
83
|
Abstract
There has been speculation as to how bi-potent CD4(+) CD8(+) double-positive precursor thymocytes choose their distinct developmental fate, becoming either CD4(+) helper or CD8(+) cytotoxic T cells. Based on the clear correlation of αβT cell receptor (TCR) specificity to major histocompatibility complex (MHC) classes with this lineage choice, various studies have attempted to resolve this question by examining the cellular signaling events initiated by TCR engagements, a strategy referred to as a 'top-down' approach. On the other hand, based on the other correlation of CD4/CD8 co-receptor expression with its selected fate, other studies have addressed this question by gradually unraveling the sequential mechanisms that control the phenotypic outcome of this fate decision, a method known as the 'bottom-up' approach. Bridging these two approaches will contribute to a more comprehensive understanding of how TCR signals are coupled with developmental programs in the nucleus. Advances made during the last two decades seemed to make these two approaches more closely linked. For instance, identification of two transcription factors, ThPOK and Runx3, which play central roles in the development of helper and cytotoxic lineages, respectively, provided significant insights into the transcriptional network that controls a CD4/CD8 lineage choice. This review summarizes achievements made using the 'bottom-up' approach, followed by a perspective on future pathways toward coupling TCR signaling with nuclear programs.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
84
|
Connelly KE, Dykhuizen EC. Compositional and functional diversity of canonical PRC1 complexes in mammals. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:233-245. [PMID: 28007606 DOI: 10.1016/j.bbagrm.2016.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/17/2022]
Abstract
The compositional complexity of Polycomb Repressive Complex 1 (PRC1) increased dramatically during vertebrate evolution. What is considered the "canonical" PRC1 complex consists of four subunits originally identified as regulators of body segmentation in Drosophila. In mammals, each of these four canonical subunits consists of two to six paralogs that associate in a combinatorial manner to produce over a hundred possible distinct PRC1 complexes with unknown function. Genetic studies have begun to define the phenotypic roles for different PRC1 paralogs; however, relating these phenotypes to unique biochemical and transcriptional function for the different paralogs has been challenging. In this review, we attempt to address how the compositional diversity of canonical PRC1 complexes relates to unique roles for individual PRC1 paralogs in transcriptional regulation. This review focuses primarily on PRC1 complex composition, genome targeting, and biochemical function.
Collapse
Affiliation(s)
- Katelyn E Connelly
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907, USA.
| |
Collapse
|
85
|
Li Z, Li B, Liu J, Guo Z, Liu Y, Li Y, Shen WH, Huang Y, Huang H, Zhang Y, Dong A. Transcription factors AS1 and AS2 interact with LHP1 to repress KNOX genes in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:959-970. [PMID: 27273574 DOI: 10.1111/jipb.12485] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Polycomb group proteins are important repressors of numerous genes in higher eukaryotes. However, the mechanism by which Polycomb group proteins are recruited to specific genes is poorly understood. In Arabidopsis, LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), also known as TERMINAL FLOWER 2, was originally proposed as a subunit of polycomb repressive complex 1 (PRC1) that could bind the tri-methylated lysine 27 of histone H3 (H3K27me3) established by the PRC2. In this work, we show that LHP1 mainly functions with PRC2 to establish H3K27me3, but not with PRC1 to catalyze monoubiquitination at lysine 119 of histone H2A. Our results show that complexes of the transcription factors ASYMMETRIC LEAVES 1 (AS1) and AS2 could help to establish the H3K27me3 modification at the chromatin regions of Class-I KNOTTED1-like homeobox (KNOX) genes BREVIPEDICELLUS and KNAT2 via direct interactions with LHP1. Additionally, our transcriptome analysis indicated that there are probably more common target genes of AS1 and LHP1 besides Class-I KNOX genes during leaf development in Arabidopsis.
Collapse
Affiliation(s)
- Zhongfei Li
- State Key Laboratory of Genetic Engineering, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Bin Li
- State Key Laboratory of Genetic Engineering, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jian Liu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhihao Guo
- State Key Laboratory of Genetic Engineering, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yuhao Liu
- State Key Laboratory of Genetic Engineering, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yan Li
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Shanghai State Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cédex, France
| | - Ying Huang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Shanghai State Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yijing Zhang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
86
|
Cheng H, Ang HYK, A. EL Farran C, Li P, Fang HT, Liu TM, Kong SL, Chin ML, Ling WY, Lim EKH, Li H, Huber T, Loh KM, Loh YH, Lim B. Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors. Nat Commun 2016; 7:13396. [PMID: 27869129 PMCID: PMC5121332 DOI: 10.1038/ncomms13396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 09/27/2016] [Indexed: 12/15/2022] Open
Abstract
Recent efforts have attempted to convert non-blood cells into hematopoietic stem cells (HSCs) with the goal of generating blood lineages de novo. Here we show that hematopoietic transcription factors Scl, Lmo2, Runx1 and Bmi1 can convert a developmentally distant lineage (fibroblasts) into 'induced hematopoietic progenitors' (iHPs). Functionally, iHPs generate acetylcholinesterase+ megakaryocytes and phagocytic myeloid cells in vitro and can also engraft immunodeficient mice, generating myeloerythoid and B-lymphoid cells for up to 4 months in vivo. Molecularly, iHPs transcriptionally resemble native Kit+ hematopoietic progenitors. Mechanistically, reprogramming factor Lmo2 implements a hematopoietic programme in fibroblasts by rapidly binding to and upregulating the Hhex and Gfi1 genes within days. Moreover the reprogramming transcription factors also require extracellular BMP and MEK signalling to cooperatively effectuate reprogramming. Thus, the transcription factors that orchestrate embryonic hematopoiesis can artificially reconstitute this programme in developmentally distant fibroblasts, converting them into engraftable blood progenitors.
Collapse
Affiliation(s)
- Hui Cheng
- Stem Cell and Regenerative Biology Group, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Heather Yin-Kuan Ang
- Stem Cell and Regenerative Biology Group, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Chadi A. EL Farran
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Pin Li
- Stem Cell and Regenerative Biology Group, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Hai Tong Fang
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Tong Ming Liu
- Stem Cell and Regenerative Biology Group, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Say Li Kong
- Stem Cell and Regenerative Biology Group, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Michael Lingzi Chin
- Stem Cell and Regenerative Biology Group, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Wei Yin Ling
- Stem Cell and Regenerative Biology Group, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Edwin Kok Hao Lim
- Stem Cell and Regenerative Biology Group, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Tara Huber
- Stem Cell and Regenerative Biology Group, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Kyle M. Loh
- Department of Developmental Biology, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yuin-Han Loh
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Bing Lim
- Stem Cell and Regenerative Biology Group, Genome Institute of Singapore, Singapore 138672, Singapore
| |
Collapse
|
87
|
Barutcu AR, Hong D, Lajoie BR, McCord RP, van Wijnen AJ, Lian JB, Stein JL, Dekker J, Imbalzano AN, Stein GS. RUNX1 contributes to higher-order chromatin organization and gene regulation in breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:1389-1397. [PMID: 27514584 PMCID: PMC5071180 DOI: 10.1016/j.bbagrm.2016.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
RUNX1 is a transcription factor functioning both as an oncogene and a tumor suppressor in breast cancer. RUNX1 alters chromatin structure in cooperation with chromatin modifier and remodeling enzymes. In this study, we examined the relationship between RUNX1-mediated transcription and genome organization. We characterized genome-wide RUNX1 localization and performed RNA-seq and Hi-C in RUNX1-depleted and control MCF-7 breast cancer cells. RNA-seq analysis showed that RUNX1 depletion led to up-regulation of genes associated with chromatin structure and down-regulation of genes related to extracellular matrix biology, as well as NEAT1 and MALAT1 lncRNAs. Our ChIP-Seq analysis supports a prominent role for RUNX1 in transcriptional activation. About 30% of all RUNX1 binding sites were intergenic, indicating diverse roles in promoter and enhancer regulation and suggesting additional functions for RUNX1. Hi-C analysis of RUNX1-depleted cells demonstrated that overall three-dimensional genome organization is largely intact, but indicated enhanced association of RUNX1 near Topologically Associating Domain (TAD) boundaries and alterations in long-range interactions. These results suggest an architectural role for RUNX1 in fine-tuning local interactions rather than in global organization. Our results provide novel insight into RUNX1-mediated perturbations of higher-order genome organization that are functionally linked with RUNX1-dependent compromised gene expression in breast cancer cells.
Collapse
Affiliation(s)
- A Rasim Barutcu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Deli Hong
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA; Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Bryan R Lajoie
- Program in Systems Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Rachel Patton McCord
- Program in Systems Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Andre J van Wijnen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Jane B Lian
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA; Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Janet L Stein
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA; Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Job Dekker
- Howard Hughes Medical Institute, Program in Systems Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Anthony N Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | - Gary S Stein
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA; Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
88
|
Obier N, Bonifer C. Chromatin programming by developmentally regulated transcription factors: lessons from the study of haematopoietic stem cell specification and differentiation. FEBS Lett 2016; 590:4105-4115. [PMID: 27497427 DOI: 10.1002/1873-3468.12343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/26/2016] [Accepted: 07/31/2016] [Indexed: 01/08/2023]
Abstract
Although the body plan of individuals is encoded in their genomes, each cell type expresses a different gene expression programme and therefore has access to only a subset of this information. Alterations to gene expression programmes are the underlying basis for the differentiation of multiple cell types and are driven by tissue-specific transcription factors (TFs) that interact with the epigenetic regulatory machinery to programme the chromatin landscape into transcriptionally active and inactive states. The haematopoietic system has long served as a paradigm for studying the molecular principles that regulate gene expression in development. In this review article, we summarize the current knowledge on the mechanism of action of TFs regulating haematopoietic stem cell specification and differentiation, and place this information into the context of general principles governing development.
Collapse
Affiliation(s)
- Nadine Obier
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, UK
| |
Collapse
|
89
|
Battistelli C, Cicchini C, Santangelo L, Tramontano A, Grassi L, Gonzalez FJ, de Nonno V, Grassi G, Amicone L, Tripodi M. The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition. Oncogene 2016; 36:942-955. [PMID: 27452518 PMCID: PMC5318668 DOI: 10.1038/onc.2016.260] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/30/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022]
Abstract
The transcription factor Snail is a master regulator of cellular identity and epithelial-to-mesenchymal transition (EMT) directly repressing a broad repertoire of epithelial genes. How chromatin modifiers instrumental to its activity are recruited to Snail-specific binding sites is unclear. Here we report that the long non-coding RNA (lncRNA) HOTAIR (for HOX Transcript Antisense Intergenic RNA) mediates a physical interaction between Snail and enhancer of zeste homolog 2 (EZH2), an enzymatic subunit of the polycomb-repressive complex 2 and the main writer of chromatin-repressive marks. The Snail-repressive activity, here monitored on genes with a pivotal function in epithelial and hepatic morphogenesis, differentiation and cell-type identity, depends on the formation of a tripartite Snail/HOTAIR/EZH2 complex. These results demonstrate an lncRNA-mediated mechanism by which a transcriptional factor conveys a general chromatin modifier to specific genes, thereby allowing the execution of hepatocyte transdifferentiation; moreover, they highlight HOTAIR as a crucial player in the Snail-mediated EMT.
Collapse
Affiliation(s)
- C Battistelli
- Department of Cellular Biotechnologies and Haematology, Sezione di Genetica Molecolare, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - C Cicchini
- Department of Cellular Biotechnologies and Haematology, Sezione di Genetica Molecolare, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - L Santangelo
- Department of Cellular Biotechnologies and Haematology, Sezione di Genetica Molecolare, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - A Tramontano
- Department of Physics, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - L Grassi
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - F J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - V de Nonno
- Department of Cellular Biotechnologies and Haematology, Sezione di Genetica Molecolare, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - G Grassi
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | - L Amicone
- Department of Cellular Biotechnologies and Haematology, Sezione di Genetica Molecolare, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - M Tripodi
- Department of Cellular Biotechnologies and Haematology, Sezione di Genetica Molecolare, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| |
Collapse
|
90
|
Nagel S, Pommerenke C, Meyer C, Kaufmann M, Drexler HG, MacLeod RA. Deregulation of polycomb repressor complex 1 modifier AUTS2 in T-cell leukemia. Oncotarget 2016; 7:45398-45413. [PMID: 27322685 PMCID: PMC5216730 DOI: 10.18632/oncotarget.9982] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/29/2016] [Indexed: 11/25/2022] Open
Abstract
Recently, we identified deregulated expression of the B-cell specific transcription factor MEF2C in T-cell acute lymphoid leukemia (T-ALL). Here, we performed sequence analysis of a regulatory upstream section of MEF2C in T-ALL cell lines which, however, proved devoid of mutations. Unexpectedly, we found strong conservation between the regulatory upstream region of MEF2C (located at chromosomal band 5q14) and an intergenic stretch at 7q11 located between STAG3L4 and AUTS2, covering nearly 20 kb. While the non-coding gene STAG3L4 was inconspicuously expressed, AUTS2 was aberrantly upregulated in 6% of T-ALL patients (public dataset GSE42038) and in 3/24 T-ALL cell lines, two of which represented very immature differentiation stages. AUTS2 expression was higher in normal B-cells than in T-cells, indicating lineage-specific activity in lymphopoiesis. While excluding chromosomal aberrations, examinations of AUTS2 transcriptional regulation in T-ALL cells revealed activation by IL7-IL7R-STAT5-signalling and MEF2C. AUTS2 protein has been shown to interact with polycomb repressor complex 1 subtype 5 (PRC1.5), transforming this particular complex into an activator. Accordingly, expression profiling and functional analyses demonstrated that AUTS2 activated while PCGF5 repressed transcription of NKL homeobox gene MSX1 in T-ALL cells. Forced expression and pharmacological inhibition of EZH2 in addition to H3K27me3 analysis indicated that PRC2 repressed MSX1 as well. Taken together, we found that AUTS2 and MEF2C, despite lying on different chromosomes, share strikingly similar regulatory upstream regions and aberrant expression in T-ALL subsets. Our data implicate chromatin complexes PRC1/AUTS2 and PRC2 in a gene network in T-ALL regulating early lymphoid differentiation.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Maren Kaufmann
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A.F. MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
91
|
Asynchronous combinatorial action of four regulatory factors activates Bcl11b for T cell commitment. Nat Immunol 2016; 17:956-65. [PMID: 27376470 PMCID: PMC4955789 DOI: 10.1038/ni.3514] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/14/2016] [Indexed: 12/28/2022]
Abstract
During T cell development, multipotent progenitors relinquish competence for other fates and commit to the T cell lineage by turning on the transcription factor Bcl11b. To clarify lineage commitment mechanisms, we followed developing T cells at single-cell level using Bcl11b knock-in fluorescent reporter mice. Notch signaling and Notch-activated transcription factors collaborate to activate Bcl11b expression, irrespective of Notch-dependent proliferation. These inputs work via three distinct, asynchronous mechanisms: an early locus poising function dependent on TCF-1 and GATA-3; a stochastic permissivity function dependent on Notch signaling; and a separate amplitude-control function dependent on Runx1, a factor already present in multipotent progenitors. Despite all being necessary for Bcl11b activation, these inputs act in a stage specific manner, providing a multi-tiered mechanism for developmental gene regulation.
Collapse
|
92
|
Entrevan M, Schuettengruber B, Cavalli G. Regulation of Genome Architecture and Function by Polycomb Proteins. Trends Cell Biol 2016; 26:511-525. [PMID: 27198635 DOI: 10.1016/j.tcb.2016.04.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022]
Abstract
Polycomb group (PcG) proteins dynamically define cellular identities through the epigenetic repression of key developmental regulatory genes. PcG proteins are recruited to specific regulatory elements to modify the chromatin surrounding them. In addition, they regulate the organization of their target genes in the 3D space of the nucleus, and this regulatory function of the 3D genome architecture is involved in cell differentiation and the maintenance of cellular memory. In this review we discuss recent advances in our understanding of how PcG proteins are recruited to chromatin to induce local and global changes in chromosome conformation and regulate their target genes.
Collapse
Affiliation(s)
- Marianne Entrevan
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Bernd Schuettengruber
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| |
Collapse
|
93
|
|
94
|
The roles of Polycomb group proteins in hematopoietic stem cells and hematological malignancies. Int J Hematol 2016; 103:634-42. [PMID: 27086351 DOI: 10.1007/s12185-016-2011-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 12/19/2022]
Abstract
Polycomb group (PcG) proteins are epigenetic regulatory factors that maintain the repression of target gene expression through histone modification. PcG proteins control the repression of genes that regulate differentiation and the cell cycle in the maintenance of hematopoietic stem cells (HSC). Moreover, abnormalities in expression level and mutations in PcG genes have been reported in various types of cancer, including hematological malignancies. In this review, we present an overview of the roles of PcG proteins in HSC and various types of hematological malignancies.
Collapse
|
95
|
Linkage between the mechanisms of thrombocytopenia and thrombopoiesis. Blood 2016; 127:1234-41. [PMID: 26787737 DOI: 10.1182/blood-2015-07-607903] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/19/2015] [Indexed: 12/30/2022] Open
Abstract
Thrombocytopenia is defined as a status in which platelet numbers are reduced. Imbalance between the homeostatic regulation of platelet generation and destruction is 1 potential cause of thrombocytopenia. In adults, platelet generation is a 2-stage process entailing the differentiation of hematopoietic stem cells into mature megakaryocytes (MKs; known as megakaryopoiesis) and release of platelets from MKs (known as thrombopoiesis or platelet biogenesis). Until recently, information about the genetic defects responsible for congenital thrombocytopenia was only available for a few forms of the disease. However, investigations over the past 15 years have identified mutations in genes encoding >20 different proteins that are responsible for these disorders, which has advanced our understanding of megakaryopoiesis and thrombopoiesis. The underlying pathogenic mechanisms can be categorized as (1) defects in MK lineage commitment and differentiation, (2) defects in MK maturation, and (3) defect in platelet release. Using these developmental stage categories, we here update recently described mechanisms underlying megakaryopoiesis and thrombopoiesis and discuss the association between platelet generation systems and thrombocytopenia.
Collapse
|
96
|
Bosselut R. Pleiotropic Functions of H3K27Me3 Demethylases in Immune Cell Differentiation. Trends Immunol 2016; 37:102-113. [PMID: 26796037 DOI: 10.1016/j.it.2015.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/12/2015] [Accepted: 12/13/2015] [Indexed: 02/06/2023]
Abstract
The trimethylation of histone H3 lysine 27 (H3K27Me3) contributes to gene repression, notably through recruitment of Polycomb complexes, and has long been considered essential to maintain cell identity. Whereas H3K27Me3 was thought to be stable and not catalytically reversible, the discovery of the Utx and Jmjd3 demethylases changed this notion, raising new questions on the role of these enzymes in gene expression and cell differentiation. Recent studies have demonstrated critical roles for Utx and Jmjd3 in the development and function of immune cells, and revealed both demethylase and demethylase-independent activities of these enzymes. I review these finding here, and discuss the current understanding of the mechanisms that underlie the broad, yet highly cell- and gene-specific, impact of these enzymes in vivo.
Collapse
Affiliation(s)
- Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
97
|
EBNA3C Directs Recruitment of RBPJ (CBF1) to Chromatin during the Process of Gene Repression in EBV Infected B Cells. PLoS Pathog 2016; 12:e1005383. [PMID: 26751214 PMCID: PMC4708995 DOI: 10.1371/journal.ppat.1005383] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/14/2015] [Indexed: 12/05/2022] Open
Abstract
It is well established that Epstein-Barr virus nuclear antigen 3C (EBNA3C) can act as a potent repressor of gene expression, but little is known about the sequence of events occurring during the repression process. To explore further the role of EBNA3C in gene repression–particularly in relation to histone modifications and cell factors involved–the three host genes previously reported as most robustly repressed by EBNA3C were investigated. COBLL1, a gene of unknown function, is regulated by EBNA3C alone and the two co-regulated disintegrin/metalloproteases, ADAM28 and ADAMDEC1 have been described previously as targets of both EBNA3A and EBNA3C. For the first time, EBNA3C was here shown to be the main regulator of all three genes early after infection of primary B cells. Using various EBV-recombinants, repression over orders of magnitude was seen only when EBNA3C was expressed. Unexpectedly, full repression was not achieved until 30 days after infection. This was accurately reproduced in established LCLs carrying EBV-recombinants conditional for EBNA3C function, demonstrating the utility of the conditional system to replicate events early after infection. Using this system, detailed chromatin immunoprecipitation analysis revealed that the initial repression was associated with loss of activation-associated histone modifications (H3K9ac, H3K27ac and H3K4me3) and was independent of recruitment of polycomb proteins and deposition of the repressive H3K27me3 modification, which were only observed later in repression. Most remarkable, and in contrast to current models of RBPJ in repression, was the observation that this DNA-binding factor accumulated at the EBNA3C-binding sites only when EBNA3C was functional. Transient reporter assays indicated that repression of these genes was dependent on the interaction between EBNA3C and RBPJ. This was confirmed with a novel EBV-recombinant encoding a mutant of EBNA3C unable to bind RBPJ, by showing this virus was incapable of repressing COBLL1 or ADAM28/ADAMDEC1 in newly infected primary B cells. The Epstein-Barr nuclear protein EBNA3C is a well-characterised repressor of host gene expression in B cells growth-transformed by EBV. It is also well established that EBNA3C can interact with the cellular factor RBPJ, a DNA-binding factor in the Notch signalling pathway conserved from worms to humans. However, prior to this study, little was known about the role of the interaction between these two proteins during the repression of host genes. We therefore chose three genes–the expression of which is very robustly repressed by EBNA3C –to explore the molecular interactions involved. Hitherto these genes had not been shown to require RBPJ for EBNA3C-mediated repression. We have described the sequence of events during repression and challenge a widely held assumption that if a protein interacts with RBPJ it would be recruited to DNA because of the intrinsic capacity of RBPJ to bind specific sequences. We show that interaction with RBPJ is essential for the repression of all three genes during the infection of B cells by EBV, but that RBPJ itself is only recruited to the genes when EBNA3C is functional. These data suggest an unexpectedly complex interaction of multiple proteins when EBNA3C prevents the expression of cellular genes.
Collapse
|
98
|
RUNX1 haploinsufficiency results in granulocyte colony-stimulating factor hypersensitivity. Blood Cancer J 2016; 6:e379. [PMID: 26745853 PMCID: PMC4742622 DOI: 10.1038/bcj.2015.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/01/2023] Open
Abstract
RUNX1/AML1 is among the most commonly mutated genes in human leukemia. Haploinsufficiency of RUNX1 causes familial platelet disorder with predisposition to myeloid malignancies (FPD/MM). However, the molecular mechanism of FPD/MM remains unknown. Here we show that murine Runx1+/− hematopoietic cells are hypersensitive to granulocyte colony-stimulating factor (G-CSF), leading to enhanced expansion and mobilization of stem/progenitor cells and myeloid differentiation block. Upon G-CSF stimulation, Runx1+/− cells exhibited a more pronounced phosphorylation of STAT3 as compared with Runx1+/+ cells, which may be due to reduced expression of Pias3, a key negative regulator of STAT3 signaling, and reduced physical sequestration of STAT3 by RUNX1. Most importantly, blood cells from a FPD patient with RUNX1 mutation exhibited similar G-CSF hypersensitivity. Taken together, Runx1 haploinsufficiency appears to predispose FPD patients to MM by expanding the pool of stem/progenitor cells and blocking myeloid differentiation in response to G-CSF.
Collapse
|
99
|
Gao R, Chen S, Kobayashi M, Yu H, Zhang Y, Wan Y, Young SK, Soltis A, Yu M, Vemula S, Fraenkel E, Cantor A, Antipin Y, Xu Y, Yoder MC, Wek RC, Ellis SR, Kapur R, Zhu X, Liu Y. Bmi1 promotes erythroid development through regulating ribosome biogenesis. Stem Cells 2015; 33:925-38. [PMID: 25385494 DOI: 10.1002/stem.1896] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 10/23/2014] [Accepted: 10/26/2014] [Indexed: 12/26/2022]
Abstract
While Polycomb group protein Bmi1 is important for stem cell maintenance, its role in lineage commitment is largely unknown. We have identified Bmi1 as a novel regulator of erythroid development. Bmi1 is highly expressed in mouse erythroid progenitor cells and its deficiency impairs erythroid differentiation. BMI1 is also important for human erythroid development. Furthermore, we discovered that loss of Bmi1 in erythroid progenitor cells results in decreased transcription of multiple ribosomal protein genes and impaired ribosome biogenesis. Bmi1 deficiency stabilizes p53 protein, leading to upregulation of p21 expression and subsequent G0/G1 cell cycle arrest. Genetic inhibition of p53 activity rescues the erythroid defects seen in the Bmi1 null mice, demonstrating that a p53-dependent mechanism underlies the pathophysiology of the anemia. Mechanistically, Bmi1 is associated with multiple ribosomal protein genes and may positively regulate their expression in erythroid progenitor cells. Thus, Bmi1 promotes erythroid development, at least in part through regulating ribosome biogenesis. Ribosomopathies are human disorders of ribosome dysfunction, including Diamond-Blackfan anemia (DBA) and 5q- syndrome, in which genetic abnormalities cause impaired ribosome biogenesis, resulting in specific clinical phenotypes. We observed that BMI1 expression in human hematopoietic stem and progenitor cells from patients with DBA is correlated with the expression of some ribosomal protein genes, suggesting that BMI1 deficiency may play a pathological role in DBA and other ribosomopathies.
Collapse
Affiliation(s)
- Rui Gao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Aranda S, Mas G, Di Croce L. Regulation of gene transcription by Polycomb proteins. SCIENCE ADVANCES 2015; 1:e1500737. [PMID: 26665172 PMCID: PMC4672759 DOI: 10.1126/sciadv.1500737] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/17/2015] [Indexed: 05/14/2023]
Abstract
The Polycomb group (PcG) of proteins defines a subset of factors that physically associate and function to maintain the positional identity of cells from the embryo to adult stages. PcG has long been considered a paradigmatic model for epigenetic maintenance of gene transcription programs. Despite intensive research efforts to unveil the molecular mechanisms of action of PcG proteins, several fundamental questions remain unresolved: How many different PcG complexes exist in mammalian cells? How are PcG complexes targeted to specific loci? How does PcG regulate transcription? In this review, we discuss the diversity of PcG complexes in mammalian cells, examine newly identified modes of recruitment to chromatin, and highlight the latest insights into the molecular mechanisms underlying the function of PcGs in transcription regulation and three-dimensional chromatin conformation.
Collapse
Affiliation(s)
- Sergi Aranda
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Gloria Mas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- Institucio Catalana de Recerca i Estudis Avançats, Pg Lluis Companys 23, Barcelona 08010, Spain
- Corresponding author. E-mail:
| |
Collapse
|