51
|
Affiliation(s)
- Yang Yang
- a Department of Biology , Indiana University , Bloomington , IN , USA
| | - Soni Lacefield
- a Department of Biology , Indiana University , Bloomington , IN , USA
| |
Collapse
|
52
|
Li Q, Chang L, Aibara S, Yang J, Zhang Z, Barford D. WD40 domain of Apc1 is critical for the coactivator-induced allosteric transition that stimulates APC/C catalytic activity. Proc Natl Acad Sci U S A 2016; 113:10547-52. [PMID: 27601667 PMCID: PMC5035875 DOI: 10.1073/pnas.1607147113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a large multimeric cullin-RING E3 ubiquitin ligase that orchestrates cell-cycle progression by targeting cell-cycle regulatory proteins for destruction via the ubiquitin proteasome system. The APC/C assembly comprises two scaffolding subcomplexes: the platform and the TPR lobe that together coordinate the juxtaposition of the catalytic and substrate-recognition modules. The platform comprises APC/C subunits Apc1, Apc4, Apc5, and Apc15. Although the role of Apc1 as an APC/C scaffolding subunit has been characterized, its specific functions in contributing toward APC/C catalytic activity are not fully understood. Here, we report the crystal structure of the N-terminal domain of human Apc1 (Apc1N) determined at 2.2-Å resolution and provide an atomic-resolution description of the architecture of its WD40 (WD40 repeat) domain (Apc1(WD40)). To understand how Apc1(WD40) contributes to APC/C activity, a mutant form of the APC/C with Apc1(WD40) deleted was generated and evaluated biochemically and structurally. We found that the deletion of Apc1(WD40) abolished the UbcH10-dependent ubiquitination of APC/C substrates without impairing the Ube2S-dependent ubiquitin chain elongation activity. A cryo-EM structure of an APC/C-Cdh1 complex with Apc1(WD40) deleted showed that the mutant APC/C is locked into an inactive conformation in which the UbcH10-binding site of the catalytic module is inaccessible. Additionally, an EM density for Apc15 is not visible. Our data show that Apc1(WD40) is required to mediate the coactivator-induced conformational change of the APC/C that is responsible for stimulating APC/C catalytic activity by promoting UbcH10 binding. In contrast, Ube2S activity toward APC/C substrates is not dependent on the initiation-competent conformation of the APC/C.
Collapse
Affiliation(s)
- Qiuhong Li
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; Section of Structural Biology, Chester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Leifu Chang
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Shintaro Aibara
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Jing Yang
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ziguo Zhang
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - David Barford
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| |
Collapse
|
53
|
Alfieri C, Chang L, Zhang Z, Yang J, Maslen S, Skehel M, Barford D. Molecular basis of APC/C regulation by the spindle assembly checkpoint. Nature 2016; 536:431-436. [PMID: 27509861 PMCID: PMC5019344 DOI: 10.1038/nature19083] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022]
Abstract
In the dividing eukaryotic cell, the spindle assembly checkpoint (SAC) ensures that each daughter cell inherits an identical set of chromosomes. The SAC coordinates the correct attachment of sister chromatid kinetochores to the mitotic spindle with activation of the anaphase-promoting complex (APC/C), the E3 ubiquitin ligase responsible for initiating chromosome separation. In response to unattached kinetochores, the SAC generates the mitotic checkpoint complex (MCC), which inhibits the APC/C and delays chromosome segregation. By cryo-electron microscopy, here we determine the near-atomic resolution structure of a human APC/C–MCC complex (APC/C(MCC)). Degron-like sequences of the MCC subunit BubR1 block degron recognition sites on Cdc20, the APC/C coactivator subunit responsible for substrate interactions. BubR1 also obstructs binding of the initiating E2 enzyme UbcH10 to repress APC/C ubiquitination activity. Conformational variability of the complex enables UbcH10 association, and structural analysis shows how the Cdc20 subunit intrinsic to the MCC (Cdc20(MCC)) is ubiquitinated, a process that results in APC/C reactivation when the SAC is silenced.
Collapse
Affiliation(s)
- Claudio Alfieri
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Leifu Chang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jing Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
54
|
Yamaguchi M, VanderLinden R, Weissmann F, Qiao R, Dube P, Brown NG, Haselbach D, Zhang W, Sidhu SS, Peters JM, Stark H, Schulman BA. Cryo-EM of Mitotic Checkpoint Complex-Bound APC/C Reveals Reciprocal and Conformational Regulation of Ubiquitin Ligation. Mol Cell 2016; 63:593-607. [PMID: 27522463 DOI: 10.1016/j.molcel.2016.07.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/17/2016] [Accepted: 07/07/2016] [Indexed: 01/10/2023]
Abstract
The mitotic checkpoint complex (MCC) coordinates proper chromosome biorientation on the spindle with ubiquitination activities of CDC20-activated anaphase-promoting complex/cyclosome (APC/C(CDC20)). APC/C(CDC20) and two E2s, UBE2C and UBE2S, catalyze ubiquitination through distinct architectures for linking ubiquitin (UB) to substrates and elongating polyUB chains, respectively. MCC, which contains a second molecule of CDC20, blocks APC/C(CDC20)-UBE2C-dependent ubiquitination of Securin and Cyclins, while differentially determining or inhibiting CDC20 ubiquitination to regulate spindle surveillance, checkpoint activation, and checkpoint termination. Here electron microscopy reveals conformational variation of APC/C(CDC20)-MCC underlying this multifaceted regulation. MCC binds APC/C-bound CDC20 to inhibit substrate access. However, rotation about the CDC20-MCC assembly and conformational variability of APC/C modulate UBE2C-catalyzed ubiquitination of MCC's CDC20 molecule. Access of UBE2C is limiting for subsequent polyubiquitination by UBE2S. We propose that conformational dynamics of APC/C(CDC20)-MCC modulate E2 activation and determine distinctive ubiquitination activities as part of a response mechanism ensuring accurate sister chromatid segregation.
Collapse
Affiliation(s)
- Masaya Yamaguchi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ryan VanderLinden
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Florian Weissmann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Renping Qiao
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Prakash Dube
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Nicholas G Brown
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Haselbach
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Wei Zhang
- Donnelly Centre for Cellular and Biomolecular Research and Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Sachdev S Sidhu
- Donnelly Centre for Cellular and Biomolecular Research and Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria.
| | - Holger Stark
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
55
|
Sedgwick GG, Larsen MSY, Lischetti T, Streicher W, Jersie-Christensen RR, Olsen JV, Nilsson J. Conformation-specific anti-Mad2 monoclonal antibodies for the dissection of checkpoint signaling. MAbs 2016; 8:689-97. [PMID: 26986935 DOI: 10.1080/19420862.2016.1160988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures accurate chromosome segregation during mitosis by delaying the activation of the anaphase-promoting complex/cyclosome (APC/C) in response to unattached kinetochores. The Mad2 protein is essential for a functional checkpoint because it binds directly to Cdc20, the mitotic co-activator of the APC/C, thereby inhibiting progression into anaphase. Mad2 exists in at least 2 different conformations, open-Mad2 (O-Mad2) and closed-Mad2 (C-Mad2), with the latter representing the active form that is able to bind Cdc20. Our ability to dissect Mad2 biology in vivo is limited by the absence of monoclonal antibodies (mAbs) useful for recognizing the different conformations of Mad2. Here, we describe and extensively characterize mAbs specific for either O-Mad2 or C-Mad2, as well as a pan-Mad2 antibody, and use these to investigate the different Mad2 complexes present in mitotic cells. Our antibodies validate current Mad2 models but also suggest that O-Mad2 can associate with checkpoint complexes, most likely through dimerization with C-Mad2. Furthermore, we investigate the makeup of checkpoint complexes bound to the APC/C, which indicate the presence of both Cdc20-BubR1-Bub3 and Mad2-Cdc20-BubR1-Bub3 complexes, with Cdc20 being ubiquitinated in both. Thus, our defined mAbs provide insight into checkpoint signaling and provide useful tools for future research on Mad2 function and regulation.
Collapse
Affiliation(s)
- Garry G Sedgwick
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Marie Sofie Yoo Larsen
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Tiziana Lischetti
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Werner Streicher
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Rosa Rakownikow Jersie-Christensen
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jesper V Olsen
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jakob Nilsson
- a The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
56
|
Zich J, May K, Paraskevopoulos K, Sen O, Syred HM, van der Sar S, Patel H, Moresco JJ, Sarkeshik A, Yates JR, Rappsilber J, Hardwick KG. Mps1Mph1 Kinase Phosphorylates Mad3 to Inhibit Cdc20Slp1-APC/C and Maintain Spindle Checkpoint Arrests. PLoS Genet 2016; 12:e1005834. [PMID: 26882497 PMCID: PMC4755545 DOI: 10.1371/journal.pgen.1005834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/09/2016] [Indexed: 01/01/2023] Open
Abstract
The spindle checkpoint is a mitotic surveillance system which ensures equal segregation of sister chromatids. It delays anaphase onset by inhibiting the action of the E3 ubiquitin ligase known as the anaphase promoting complex or cyclosome (APC/C). Mad3/BubR1 is a key component of the mitotic checkpoint complex (MCC) which binds and inhibits the APC/C early in mitosis. Mps1Mph1 kinase is critical for checkpoint signalling and MCC-APC/C inhibition, yet few substrates have been identified. Here we identify Mad3 as a substrate of fission yeast Mps1Mph1 kinase. We map and mutate phosphorylation sites in Mad3, producing mutants that are targeted to kinetochores and assembled into MCC, yet display reduced APC/C binding and are unable to maintain checkpoint arrests. We show biochemically that Mad3 phospho-mimics are potent APC/C inhibitors in vitro, demonstrating that Mad3p modification can directly influence Cdc20Slp1-APC/C activity. This genetic dissection of APC/C inhibition demonstrates that Mps1Mph1 kinase-dependent modifications of Mad3 and Mad2 act in a concerted manner to maintain spindle checkpoint arrests. When cells divide they need to ensure that a complete copy of their genetic material is transmitted to both daughter cells. Cells have evolved many controls to ensure that every division is carried out with very high fidelity. The spindle checkpoint is one such control, which acts as a surveillance system during mitosis. Defects in this checkpoint control lead to unequal segregation of DNA/chromosomes, termed aneuploidy, which is responsible for human birth defects and is very common in tumour cells. The molecular components of the spindle checkpoint, identified initially through yeast genetics, include several protein kinases. Surprisingly few of their substrates have been identified. Here we identify the checkpoint protein Mad3 as an important substrate of the Mps1Mph1 kinase. We show that Mps1Mph1-dependent modification of Mad3 and Mad2 acts to delay cell division in situations where the genetic material would not be equally inherited by daughter cells. This delay enables the cell to correct any problems within the division machinery and thus avoid aneuploidy.
Collapse
Affiliation(s)
- Judith Zich
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen May
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Konstantinos Paraskevopoulos
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Onur Sen
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather M. Syred
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Sjaak van der Sar
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Hitesh Patel
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - James J. Moresco
- Scripps Research Institute, La Jolla, California, United States of America
| | - Ali Sarkeshik
- Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Scripps Research Institute, La Jolla, California, United States of America
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Bioanalytics, Institute of Biotechnology, Technische Universitat Berlin, Berlin, Germany
| | - Kevin G. Hardwick
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
57
|
Lu D, Girard JR, Li W, Mizrak A, Morgan DO. Quantitative framework for ordered degradation of APC/C substrates. BMC Biol 2015; 13:96. [PMID: 26573515 PMCID: PMC4647693 DOI: 10.1186/s12915-015-0205-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/23/2015] [Indexed: 01/07/2023] Open
Abstract
Background During cell-cycle progression, substrates of a single master regulatory enzyme can be modified in a specific order. Here, we used experimental and computational approaches to dissect the quantitative mechanisms underlying the ordered degradation of the substrates of the ubiquitin ligase APC/CCdc20, a key regulator of chromosome segregation in mitosis. Results We show experimentally that the rate of catalysis varies with different substrates of APC/CCdc20. Using a computational model based on multi-step ubiquitination, we then show how changes in the interaction between a single substrate and APC/CCdc20 can alter the timing of degradation onset relative to APC/CCdc20 activation, while ensuring a fast degradation rate. Degradation timing and dynamics depend on substrate affinity for the enzyme as well as the catalytic rate at which the substrate is modified. When two substrates share the same pool of APC/CCdc20, their relative enzyme affinities and rates of catalysis influence the partitioning of APC/CCdc20 among substrates, resulting in substrate competition. Depending on how APC/CCdc20 is partitioned among its substrates, competition can have minor or major effects on the degradation of certain substrates. We show experimentally that increased expression of the early APC/CCdc20 substrate Clb5 does not delay the degradation of the later substrate securin, arguing against a role for competition with Clb5 in establishing securin degradation timing. Conclusions The degradation timing of APC/CCdc20 substrates depends on the multi-step nature of ubiquitination, differences in substrate-APC/CCdc20 interactions, and competition among substrates. Our studies provide a conceptual framework for understanding how ordered modification can be established among substrates of the same regulatory enzyme, and facilitate our understanding of how precise temporal control is achieved by a small number of master regulators to ensure a successful cell division cycle. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0205-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Lu
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Juliet R Girard
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Weihan Li
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Arda Mizrak
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA
| | - David O Morgan
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
58
|
Abstract
The segregation of sister chromatids during mitosis is one of the most easily visualized, yet most remarkable, events during the life cycle of a cell. The accuracy of this process is essential to maintain ploidy during cell duplication. Over the past 20 years, substantial progress has been made in identifying components of both the kinetochore and the mitotic spindle that generate the force to move mitotic chromosomes. Additionally, we now have a reasonable, albeit incomplete, understanding of the molecular and biochemical events that are involved in establishing and dissolving sister-chromatid cohesion. However, it is less well-understood how this dissolution of cohesion occurs synchronously on all chromosomes at the onset of anaphase. At the centre of the action is the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase that, in association with its activator cell-division cycle protein 20 homologue (Cdc20), is responsible for the destruction of securin. This leads to the activation of separase, a specialized protease that cleaves the kleisin-subunit of the cohesin complex, to relieve cohesion between sister chromatids. APC/C-Cdc20 is also responsible for the destruction of cyclin B and therefore inactivation of the cyclin B-cyclin-dependent kinase 1 (Cdk1). This latter event induces a change in the microtubule dynamics that results in the movement of sister chromatids to spindle poles (anaphase A), spindle elongation (anaphase B) and the onset of cytokinesis. In the present paper, we review the emerging evidence that multiple, spatially and temporally regulated feedback loops ensure anaphase onset is rapid, co-ordinated and irreversible.
Collapse
|
59
|
Girard JR, Tenthorey JL, Morgan DO. An E2 accessory domain increases affinity for the anaphase-promoting complex and ensures E2 competition. J Biol Chem 2015; 290:24614-25. [PMID: 26306044 DOI: 10.1074/jbc.m115.678193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Indexed: 11/06/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a member of the RING family of E3 ubiquitin ligases, which promote ubiquitin transfer from an E2 ubiquitin-conjugating enzyme to a substrate. In budding yeast, the APC/C collaborates with two E2s, Ubc4 and Ubc1, to promote the initiation and elongation, respectively, of polyubiquitin chains on the substrate. Ubc4 and Ubc1 are thought to compete for the same site on the APC/C, but it is not clear how their affinities are balanced. Here, we demonstrate that a C-terminal ubiquitin-associated (UBA) domain enhances the affinity of Ubc1 for the APC/C. Deletion of the UBA domain reduced apparent APC/C affinity for Ubc1 and decreased polyubiquitin chain length. Surprisingly, the positive effect of the UBA domain was not due to an interaction with the acceptor ubiquitin attached to the APC/C substrate or the donor ubiquitin attached to Ubc1 itself. Instead, our evidence suggests that the UBA domain binds to a site on the APC/C core, thereby increasing Ubc1 affinity and enhancing its ability to compete with Ubc4. The UBA domain is required for normal Ubc1 function and E2 competition in vivo. Thus, the UBA domain of Ubc1 ensures efficient polyubiquitination of substrate by balancing Ubc1 affinity with that of Ubc4.
Collapse
Affiliation(s)
- Juliet R Girard
- From the Departments of Physiology and Biochemistry and Biophysics and Tetrad Graduate Program, University of California, San Francisco, California 94143
| | | | - David O Morgan
- From the Departments of Physiology and Biochemistry and Biophysics and Tetrad Graduate Program, University of California, San Francisco, California 94143
| |
Collapse
|
60
|
Ostapenko D, Burton JL, Solomon MJ. The Ubp15 deubiquitinase promotes timely entry into S phase in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:2205-16. [PMID: 25877870 PMCID: PMC4462939 DOI: 10.1091/mbc.e14-09-1400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 12/22/2022] Open
Abstract
The anaphase-promoting complex in partnership with its activator, Cdh1, is an E3 ubiquitin ligase responsible for targeting cell cycle proteins during G1 phase. In the budding yeast Saccharomyces cerevisiae, Cdh1 associates with the deubiquitinating enzyme Ubp15, but the significance of this interaction is unclear. To better understand the physiological role(s) of Ubp15, we examined cell cycle phenotypes of cells lacking Ubp15. We found that ubp15∆ cells exhibited delayed progression from G1 into S phase and increased sensitivity to the DNA synthesis inhibitor hydroxyurea. Both phenotypes of ubp15∆ cells were rescued by additional copies of the S-phase cyclin gene CLB5. Clb5 is an unstable protein targeted for proteasome-mediated degradation by several pathways. We found that during G1 phase, the APC(Cdh1)-mediated degradation of Clb5 was accelerated in ubp15∆ cells. Ubp15 interacted with Clb5 independent of Cdh1 and deubiquitinated Clb5 in a reconstituted system. Thus deubiquitination by Ubp15 counteracts APC activity toward cyclin Clb5 to allow Clb5 accumulation and a timely entry into S phase.
Collapse
Affiliation(s)
- Denis Ostapenko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | - Janet L Burton
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | - Mark J Solomon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| |
Collapse
|
61
|
Yang Y, Tsuchiya D, Lacefield S. Bub3 promotes Cdc20-dependent activation of the APC/C in S. cerevisiae. ACTA ACUST UNITED AC 2015; 209:519-27. [PMID: 25987604 PMCID: PMC4442811 DOI: 10.1083/jcb.201412036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/16/2015] [Indexed: 12/19/2022]
Abstract
Bub3 and its kinetochore localization are required for the normal timing of anaphase onset and for normal binding of APC/C and Cdc20 in S. cerevisiae. The spindle checkpoint ensures accurate chromosome segregation by sending a signal from an unattached kinetochore to inhibit anaphase onset. Numerous studies have described the role of Bub3 in checkpoint activation, but less is known about its functions apart from the spindle checkpoint. In this paper, we demonstrate that Bub3 has an unexpected role promoting metaphase progression in budding yeast. Loss of Bub3 resulted in a metaphase delay that was not a consequence of aneuploidy or the activation of a checkpoint. Instead, bub3Δ cells had impaired binding of the anaphase-promoting complex/cyclosome (APC/C) with its activator Cdc20, and the delay could be rescued by Cdc20 overexpression. Kinetochore localization of Bub3 was required for normal mitotic progression, and Bub3 and Cdc20 colocalized at the kinetochore. Although Bub1 binds Bub3 at the kinetochore, bub1Δ cells did not have compromised APC/C and Cdc20 binding. The results demonstrate that Bub3 has a previously unknown function at the kinetochore in activating APC/C-Cdc20 for normal mitotic progression.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Dai Tsuchiya
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
62
|
Scialpi F, Mellis D, Ditzel M. EDD, a ubiquitin-protein ligase of the N-end rule pathway, associates with spindle assembly checkpoint components and regulates the mitotic response to nocodazole. J Biol Chem 2015; 290:12585-94. [PMID: 25833949 PMCID: PMC4432279 DOI: 10.1074/jbc.m114.625673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/01/2015] [Indexed: 01/09/2023] Open
Abstract
In this work, we identify physical and genetic interactions that implicate E3 identified by differential display (EDD) in promoting spindle assembly checkpoint (SAC) function. During mitosis, the SAC initiates a mitotic checkpoint in response to chromosomes with kinetochores unattached to spindle pole microtubules. Similar to Budding uninhibited by benzimidazoles-related 1 (BUBR1) siRNA, a bona fide SAC component, EDD siRNA abrogated G2/M accumulation in response to the mitotic destabilizing agent nocodazole. Furthermore, EDD siRNA reduced mitotic cell viability and, in nocodazole-treated cells, increased expression of the promitotic progression protein cell division cycle 20 (CDC20). Copurification studies also identified physical interactions with CDC20, BUBR1, and other components of the SAC. Taken together, these observations highlight the potential role of EDD in regulating mitotic progression and the cellular response to perturbed mitosis.
Collapse
Affiliation(s)
- Flavia Scialpi
- From the MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, Scotland, United Kingdom
| | - David Mellis
- From the MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, Scotland, United Kingdom
| | - Mark Ditzel
- From the MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, Scotland, United Kingdom
| |
Collapse
|
63
|
Sivakumar S, Gorbsky GJ. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol 2015; 16:82-94. [PMID: 25604195 DOI: 10.1038/nrm3934] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The appropriate timing of events that lead to chromosome segregation during mitosis and cytokinesis is essential to prevent aneuploidy, and defects in these processes can contribute to tumorigenesis. Key mitotic regulators are controlled through ubiquitylation and proteasome-mediated degradation. The APC/C (anaphase-promoting complex; also known as the cyclosome) is an E3 ubiquitin ligase that has a crucial function in the regulation of the mitotic cell cycle, particularly at the onset of anaphase and during mitotic exit. Co-activator proteins, inhibitor proteins, protein kinases and phosphatases interact with the APC/C to temporally and spatially control its activity and thus ensure accurate timing of mitotic events.
Collapse
Affiliation(s)
- Sushama Sivakumar
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, Oklahoma 73104, USA
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
64
|
Barford D. Understanding the structural basis for controlling chromosome division. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:20130392. [PMID: 25624511 PMCID: PMC4308986 DOI: 10.1098/rsta.2013.0392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The process of chromosome division, termed mitosis, involves a complex sequence of events that is tightly controlled to ensure that the faithful segregation of duplicated chromosomes is coordinated with each cell division cycle. The large macromolecular complex responsible for regulating this process is the anaphase-promoting complex or cyclosome (APC/C). In humans, the APC/C is assembled from 20 subunits derived from 15 different proteins. The APC/C functions to ubiquitinate cell cycle regulatory proteins, thereby targeting them for destruction by the proteasome. This review describes our research aimed at understanding the structure and mechanism of the APC/C. We have determined the crystal structures of individual subunits and subcomplexes that provide atomic models to interpret density maps of the whole complex derived from single particle cryo-electron microscopy. With this information, we are generating pseudo-atomic models of functional states of the APC/C that provide insights into its overall architecture and mechanisms of substrate recognition, catalysis and regulation by inhibitory complexes.
Collapse
Affiliation(s)
- David Barford
- Division of Structural Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
65
|
Di Fiore B, Davey NE, Hagting A, Izawa D, Mansfeld J, Gibson TJ, Pines J. The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators. Dev Cell 2015; 32:358-372. [PMID: 25669885 PMCID: PMC4713905 DOI: 10.1016/j.devcel.2015.01.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 09/03/2014] [Accepted: 01/05/2015] [Indexed: 11/30/2022]
Abstract
The anaphase-promoting complex or cyclosome (APC/C) is the ubiquitin ligase that regulates mitosis by targeting specific proteins for degradation at specific times under the control of the spindle assembly checkpoint (SAC). How the APC/C recognizes its different substrates is a key problem in the control of cell division. Here, we have identified the ABBA motif in cyclin A, BUBR1, BUB1, and Acm1, and we show that it binds to the APC/C coactivator CDC20. The ABBA motif in cyclin A is required for its proper degradation in prometaphase through competing with BUBR1 for the same site on CDC20. Moreover, the ABBA motifs in BUBR1 and BUB1 are necessary for the SAC to work at full strength and to recruit CDC20 to kinetochores. Thus, we have identified a conserved motif integral to the proper control of mitosis that connects APC/C substrate recognition with the SAC.
Collapse
Affiliation(s)
- Barbara Di Fiore
- The Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Norman E. Davey
- Department of Physiology and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg 69117, Germany
| | - Anja Hagting
- The Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Daisuke Izawa
- The Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Jörg Mansfeld
- Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Toby J. Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Baden-Württemberg 69117, Germany
| | - Jonathon Pines
- The Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge, CB2 1QN, UK
| |
Collapse
|
66
|
Abstract
In this article, we will discuss the biochemistry of mitosis in eukaryotic cells. We will focus on conserved principles that, importantly, are adapted to the biology of the organism. It is vital to bear in mind that the structural requirements for division in a rapidly dividing syncytial Drosophila embryo, for example, are markedly different from those in a unicellular yeast cell. Nevertheless, division in both systems is driven by conserved modules of antagonistic protein kinases and phosphatases, underpinned by ubiquitin-mediated proteolysis, which create molecular switches to drive each stage of division forward. These conserved control modules combine with the self-organizing properties of the subcellular architecture to meet the specific needs of the cell. Our discussion will draw on discoveries in several model systems that have been important in the long history of research on mitosis, and we will try to point out those principles that appear to apply to all cells, compared with those in which the biochemistry has been specifically adapted in a particular organism.
Collapse
Affiliation(s)
- Samuel Wieser
- The Gurdon Institute, Cambridge CB2 1QN, United Kingdom
| | | |
Collapse
|
67
|
Lischetti T, Nilsson J. Regulation of mitotic progression by the spindle assembly checkpoint. Mol Cell Oncol 2015; 2:e970484. [PMID: 27308407 PMCID: PMC4905242 DOI: 10.4161/23723548.2014.970484] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 11/25/2022]
Abstract
Equal segregation of sister chromatids during mitosis requires that pairs of kinetochores establish proper attachment to microtubules emanating from opposite poles of the mitotic spindle. The spindle assembly checkpoint (SAC) protects against errors in segregation by delaying sister separation in response to improper kinetochore–microtubule interactions, and certain checkpoint proteins help to establish proper attachments. Anaphase entry is inhibited by the checkpoint through assembly of the mitotic checkpoint complex (MCC) composed of the 2 checkpoint proteins, Mad2 and BubR1, bound to Cdc20. The outer kinetochore acts as a catalyst for MCC production through the recruitment and proper positioning of checkpoint proteins and recently there has been remarkable progress in understanding how this is achieved. Here, we highlight recent advances in our understanding of kinetochore–checkpoint protein interactions and inhibition of the anaphase promoting complex by the MCC.
Collapse
Affiliation(s)
- Tiziana Lischetti
- The Novo Nordisk Foundation Center for Protein Research; Faculty of Health and Medical Sciences, University of Copenhagen ; Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research; Faculty of Health and Medical Sciences, University of Copenhagen ; Copenhagen, Denmark
| |
Collapse
|
68
|
Boekhout M, Wolthuis R. Nek2A destruction marks APC/C activation at the prophase-to-prometaphase transition by spindle-checkpoint restricted Cdc20. J Cell Sci 2015; 128:1639-53. [DOI: 10.1242/jcs.163279] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/06/2015] [Indexed: 12/31/2022] Open
Abstract
Nek2A is a presumed APC/CCdc20 substrate, which, like cyclin A, is degraded in mitosis while the spindle checkpoint is active. Cyclin A prevents spindle checkpoint proteins from binding to Cdc20 and is recruited to the APC/C in prometaphase. We found that Nek2A and cyclin A avoid stabilization by the spindle checkpoint in different ways. First, enhancing mitotic checkpoint complex (MCC) formation by nocodazole treatment inhibited the degradation of geminin and cyclin A while Nek2A disappeared at normal rate. Secondly, depleting Cdc20 effectively stabilized cyclin A but not Nek2A. Nevertheless, Nek2A destruction critically depended on Cdc20 binding to the APC/C. Thirdly, in contrast to cyclin A, Nek2A was recruited to the APC/C before the start of mitosis. Interestingly, the spindle checkpoint very effectively stabilized an APC/C-binding mutant of Nek2A, which required the Nek2A KEN box. Apparently, in cells, the spindle checkpoint primarily prevents Cdc20 from binding destruction motifs. Nek2A disappearance marks the prophase-to-prometaphase transition, when Cdc20, regardless of the spindle checkpoint, activates the APC/C. However, Mad2 depletion accelerated Nek2A destruction, showing that spindle checkpoint release further increases APC/CCdc20 catalytic activity.
Collapse
|
69
|
Diaz-Martinez LA, Tian W, Li B, Warrington R, Jia L, Brautigam CA, Luo X, Yu H. The Cdc20-binding Phe box of the spindle checkpoint protein BubR1 maintains the mitotic checkpoint complex during mitosis. J Biol Chem 2014; 290:2431-43. [PMID: 25505175 DOI: 10.1074/jbc.m114.616490] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spindle checkpoint ensures accurate chromosome segregation by monitoring kinetochore-microtubule attachment. Unattached or tensionless kinetochores activate the checkpoint and enhance the production of the mitotic checkpoint complex (MCC) consisting of BubR1, Bub3, Mad2, and Cdc20. MCC is a critical checkpoint inhibitor of the anaphase-promoting complex/cyclosome, a ubiquitin ligase required for anaphase onset. The N-terminal region of BubR1 binds to both Cdc20 and Mad2, thus nucleating MCC formation. The middle region of human BubR1 (BubR1M) also interacts with Cdc20, but the nature and function of this interaction are not understood. Here we identify two critical motifs within BubR1M that contribute to Cdc20 binding and anaphase-promoting complex/cyclosome inhibition: a destruction box (D box) and a phenylalanine-containing motif termed the Phe box. A BubR1 mutant lacking these motifs is defective in MCC maintenance in mitotic human cells but is capable of supporting spindle-checkpoint function. Thus, the BubR1M-Cdc20 interaction indirectly contributes to MCC homeostasis. Its apparent dispensability in the spindle checkpoint might be due to functional duality or redundant, competing mechanisms.
Collapse
Affiliation(s)
| | - Wei Tian
- From the Department of Pharmacology
| | - Bing Li
- From the Department of Pharmacology, Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Ross Warrington
- From the Department of Pharmacology, Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | | | | | | | - Hongtao Yu
- From the Department of Pharmacology, Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| |
Collapse
|
70
|
Chang L, Barford D. Insights into the anaphase-promoting complex: a molecular machine that regulates mitosis. Curr Opin Struct Biol 2014; 29:1-9. [PMID: 25174288 DOI: 10.1016/j.sbi.2014.08.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/13/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a large multimeric complex that functions as a RING domain E3 ubiquitin ligase to regulate ordered transitions through the cell cycle. It does so by controlling the ubiquitin-mediated proteolysis of cell cycle proteins, notably cyclins and securins, whose degradation triggers sister chromatid disjunction and mitotic exit. Regulation of APC/C activity and modulation of its substrate specificity are subject to intricate cell cycle checkpoints and control mechanisms involving the switching of substrate-specifying cofactors, association of regulatory protein complexes and post-translational modifications. This review discusses the recent progress towards understanding the overall architecture of the APC/C, the molecular basis for degron recognition and ubiquitin chain synthesis, and how these activities are regulated.
Collapse
Affiliation(s)
- Leifu Chang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
71
|
Lee H. How chromosome mis-segregation leads to cancer: lessons from BubR1 mouse models. Mol Cells 2014; 37:713-8. [PMID: 25256220 PMCID: PMC4213761 DOI: 10.14348/molcells.2014.0233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 12/12/2022] Open
Abstract
Alteration in chromosome numbers and structures instigate and foster massive genetic instability. As Boveri has seen a hundred years ago (Boveri, 1914; 2008), aneuploidy is hallmark of many cancers. However, whether aneuploidy is the cause or the result of cancer is still at debate. The molecular mechanism behind aneuploidy includes the chromo-some mis-segregation in mitosis by the compromise of spindle assembly checkpoint (SAC). SAC is an elaborate network of proteins, which monitor that all chromosomes are bipolarly attached with the spindles. Therefore, the weakening of the SAC is the major reason for chromosome number instability, while complete compromise of SAC results in detrimental death, exemplified in natural abortion in embryonic stage. Here, I will review on the recent progress on the understanding of chromosome mis-segregation and cancer, based on the comparison of different mouse models of BubR1, the core component of SAC.
Collapse
Affiliation(s)
- Hyunsook Lee
- Department of Biological Sciences and the Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742,
Korea
| |
Collapse
|
72
|
Lu D, Hsiao JY, Davey NE, Van Voorhis VA, Foster SA, Tang C, Morgan DO. Multiple mechanisms determine the order of APC/C substrate degradation in mitosis. ACTA ACUST UNITED AC 2014; 207:23-39. [PMID: 25287299 PMCID: PMC4195823 DOI: 10.1083/jcb.201402041] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To ensure proper mitotic progression, robust ordering of the destruction of APC/CCdc20 substrates is driven by the integration of molecular mechanisms ranging from phosphorylation-dependent interaction with substrates to sensing of the status of the spindle assembly checkpoint. The ubiquitin protein ligase anaphase-promoting complex or cyclosome (APC/C) controls mitosis by promoting ordered degradation of securin, cyclins, and other proteins. The mechanisms underlying the timing of APC/C substrate degradation are poorly understood. We explored these mechanisms using quantitative fluorescence microscopy of GFP-tagged APC/CCdc20 substrates in living budding yeast cells. Degradation of the S cyclin, Clb5, begins early in mitosis, followed 6 min later by the degradation of securin and Dbf4. Anaphase begins when less than half of securin is degraded. The spindle assembly checkpoint delays the onset of Clb5 degradation but does not influence securin degradation. Early Clb5 degradation depends on its interaction with the Cdk1–Cks1 complex and the presence of a Cdc20-binding “ABBA motif” in its N-terminal region. The degradation of securin and Dbf4 is delayed by Cdk1-dependent phosphorylation near their Cdc20-binding sites. Thus, a remarkably diverse array of mechanisms generates robust ordering of APC/CCdc20 substrate destruction.
Collapse
Affiliation(s)
- Dan Lu
- Department of Physiology and Department of Biochemistry and Biophysics and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Jennifer Y Hsiao
- Department of Physiology and Department of Biochemistry and Biophysics and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Norman E Davey
- Department of Physiology and Department of Biochemistry and Biophysics and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Vanessa A Van Voorhis
- Department of Physiology and Department of Biochemistry and Biophysics and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Scott A Foster
- Department of Physiology and Department of Biochemistry and Biophysics and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Chao Tang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - David O Morgan
- Department of Physiology and Department of Biochemistry and Biophysics and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| |
Collapse
|
73
|
Sacristan C, Kops GJPL. Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling. Trends Cell Biol 2014; 25:21-8. [PMID: 25220181 DOI: 10.1016/j.tcb.2014.08.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 01/01/2023]
Abstract
Error-free chromosome segregation relies on stable connections between kinetochores and spindle microtubules. The spindle assembly checkpoint (SAC) monitors such connections and relays their absence to the cell cycle machinery to delay cell division. The molecular network at kinetochores that is responsible for microtubule binding is integrated with the core components of the SAC signaling system. Molecular-mechanistic understanding of how the SAC is coupled to the kinetochore-microtubule interface has advanced significantly in recent years. The latest insights not only provide a striking view of the dynamics and regulation of SAC signaling events at the outer kinetochore but also create a framework for understanding how that signaling may be terminated when kinetochores and microtubules connect.
Collapse
Affiliation(s)
- Carlos Sacristan
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Geert J P L Kops
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
74
|
Abstract
The spindle assembly checkpoint is a conserved mitotic signalling pathway that ensures the equal segregation of chromosomes to daughter cells. Despite intensive work in many model organisms, key features of this safety mechanism remain unexplained. In the present review, I briefly summarize advances made in the last few years, and then focus on unexplored corners of this signalling pathway.
Collapse
|
75
|
Meyer HJ, Rape M. Enhanced protein degradation by branched ubiquitin chains. Cell 2014; 157:910-21. [PMID: 24813613 DOI: 10.1016/j.cell.2014.03.037] [Citation(s) in RCA: 353] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/20/2013] [Accepted: 03/14/2014] [Indexed: 11/28/2022]
Abstract
Posttranslational modification of cell-cycle regulators with ubiquitin chains is essential for eukaryotic cell division. Such chains can be connected through seven lysine residues or the amino terminus of ubiquitin, thereby allowing the assembly of eight homogenous and multiple mixed or branched conjugates. Although functions of homogenous chain types have been described, physiological roles of branched structures are unknown. Here, we report that the anaphase-promoting complex (APC/C) efficiently synthesizes branched conjugates that contain multiple blocks of K11-linked chains. Compared to homogenous chains, the branched conjugates assembled by the APC/C strongly enhance substrate recognition by the proteasome, thereby driving degradation of cell-cycle regulators during early mitosis. Our work, therefore, identifies an enzyme and substrates for modification with branched ubiquitin chains and points to an important role of these conjugates in providing an improved signal for proteasomal degradation.
Collapse
Affiliation(s)
- Hermann-Josef Meyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
76
|
Nagai M, Ushimaru T. Cdh1 is an antagonist of the spindle assembly checkpoint. Cell Signal 2014; 26:2217-22. [PMID: 25025567 DOI: 10.1016/j.cellsig.2014.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
The spindle assembly checkpoint (SAC) monitors unsatisfied connections of microtubules to kinetochores and prevents anaphase onset by inhibition of the ubiquitin ligase E3 anaphase-promoting complex or cyclosome (APC/C) in association with the activator Cdc20. Another APC/C activator, Cdh1, exists permanently throughout the cell cycle but it becomes active from telophase to G1. Here, we show that Cdh1 is partially active and mediates securin degradation even in SAC-active metaphase cells. Additionally, Cdh1 mediates Cdc20 degradation in metaphase, promoting formation of the APC/C-Cdh1. These results indicate that Cdh1 opposes the SAC and promotes anaphase transition.
Collapse
Affiliation(s)
- Masayoshi Nagai
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | - Takashi Ushimaru
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| |
Collapse
|
77
|
Wang K, Sturt-Gillespie B, Hittle JC, Macdonald D, Chan GK, Yen TJ, Liu ST. Thyroid hormone receptor interacting protein 13 (TRIP13) AAA-ATPase is a novel mitotic checkpoint-silencing protein. J Biol Chem 2014; 289:23928-37. [PMID: 25012665 DOI: 10.1074/jbc.m114.585315] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mitotic checkpoint (or spindle assembly checkpoint) is a fail-safe mechanism to prevent chromosome missegregation by delaying anaphase onset in the presence of defective kinetochore-microtubule attachment. The target of the checkpoint is the E3 ubiquitin ligase anaphase-promoting complex/cyclosome. Once all chromosomes are properly attached and bioriented at the metaphase plate, the checkpoint needs to be silenced. Previously, we and others have reported that TRIP13 AAA-ATPase binds to the mitotic checkpoint-silencing protein p31(comet). Here we show that endogenous TRIP13 localizes to kinetochores. TRIP13 knockdown delays metaphase-to-anaphase transition. The delay is caused by prolonged presence of the effector for the checkpoint, the mitotic checkpoint complex, and its association and inhibition of the anaphase-promoting complex/cyclosome. These results suggest that TRIP13 is a novel mitotic checkpoint-silencing protein. The ATPase activity of TRIP13 is essential for its checkpoint function, and interference with TRIP13 abolished p31(comet)-mediated mitotic checkpoint silencing. TRIP13 overexpression is a hallmark of cancer cells showing chromosomal instability, particularly in certain breast cancers with poor prognosis. We suggest that premature mitotic checkpoint silencing triggered by TRIP13 overexpression may promote cancer development.
Collapse
Affiliation(s)
- Kexi Wang
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | | | - James C Hittle
- the Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, and
| | - Dawn Macdonald
- the Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Gordon K Chan
- the Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Tim J Yen
- the Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, and
| | - Song-Tao Liu
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606,
| |
Collapse
|
78
|
Genschik P, Marrocco K, Bach L, Noir S, Criqui MC. Selective protein degradation: a rheostat to modulate cell-cycle phase transitions. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2603-15. [PMID: 24353246 DOI: 10.1093/jxb/ert426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant growth control has become a major focus due to economic reasons and results from a balance of cell proliferation in meristems and cell elongation that occurs during differentiation. Research on plant cell proliferation over the last two decades has revealed that the basic cell-cycle machinery is conserved between human and plants, although specificities exist. While many regulatory circuits control each step of the cell cycle, the ubiquitin proteasome system (UPS) appears in fungi and metazoans as a major player. In particular, the UPS promotes irreversible proteolysis of a set of regulatory proteins absolutely required for cell-cycle phase transitions. Not unexpectedly, work over the last decade has brought the UPS to the forefront of plant cell-cycle research. In this review, we will summarize our knowledge of the function of the UPS in the mitotic cycle and in endoreduplication, and also in meiosis in higher plants.
Collapse
Affiliation(s)
- Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier Cedex, France
| | - Katia Marrocco
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier Cedex, France
| | - Lien Bach
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier Cedex, France
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Marie-Claire Criqui
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
79
|
Wang Y, Jin F, Higgins R, McKnight K. The current view for the silencing of the spindle assembly checkpoint. Cell Cycle 2014; 13:1694-701. [PMID: 24776751 DOI: 10.4161/cc.29027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chromosome bipolar attachment is achieved when sister kinetochores are attached by microtubules emanating from opposite spindle poles, and this process is essential for faithful chromosome segregation during anaphase. A fundamental question in cell biology is how cells ensure that chromosome segregation only occurs after bipolar attachment. It is well documented that unattached kinetochores activate the spindle assembly checkpoint (SAC) to delay chromosome segregation. Therefore, the silencing of the SAC is thought to trigger anaphase onset, but how correct chromosome attachment is coupled with SAC silencing and the subsequent anaphase onset is poorly understood. The establishment of chromosome bipolar attachment not only results in the occupancy of kinetochores by microtubules but also applies tension on sister kinetochores. A long-standing debate is whether the kinetochore attachment (occupancy) or the tension silences the SAC. Recent work in budding yeast reveals the SAC silencing network SSN that prevents SAC silencing prior to tension generation at kinetochores. Therefore, this signaling pathway ensures that SAC silencing and the subsequent anaphase onset occur only after chromosome bipolar attachment applies tension on chromosomes. This review will summarize the recent advances in the understanding of the SAC silencing process.
Collapse
Affiliation(s)
- Yanchang Wang
- Department of Biomedical Sciences; College of Medicine; Florida State University; Tallahassee, FL USA
| | - Fengzhi Jin
- Department of Biomedical Sciences; College of Medicine; Florida State University; Tallahassee, FL USA
| | - Ryan Higgins
- Department of Biomedical Sciences; College of Medicine; Florida State University; Tallahassee, FL USA
| | - Kelly McKnight
- Department of Biomedical Sciences; College of Medicine; Florida State University; Tallahassee, FL USA
| |
Collapse
|
80
|
Song L, Craney A, Rape M. Microtubule-dependent regulation of mitotic protein degradation. Mol Cell 2014; 53:179-92. [PMID: 24462202 DOI: 10.1016/j.molcel.2013.12.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/18/2013] [Accepted: 12/20/2013] [Indexed: 01/10/2023]
Abstract
Accurate cell division depends on tightly regulated ubiquitylation events catalyzed by the anaphase-promoting complex (APC/C). Among its many substrates, the APC/C triggers the degradation of proteins that stabilize the mitotic spindle, and loss or accumulation of such spindle assembly factors can result in aneuploidy and cancer. Although critical for cell division, it has remained poorly understood how the timing of spindle assembly factor degradation is established during mitosis. Here, we report that active spindle assembly factors are protected from APC/C-dependent degradation by microtubules. In contrast, those molecules that are not bound to microtubules are highly susceptible to proteolysis and turned over immediately after APC/C activation. The correct timing of spindle assembly factor degradation, as achieved by this regulatory circuit, is required for accurate spindle structure and function. We propose that the localized stabilization of APC/C substrates provides a mechanism for the selective disposal of cell-cycle regulators that have fulfilled their mitotic roles.
Collapse
Affiliation(s)
- Ling Song
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Allison Craney
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael Rape
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
81
|
Kuijt TEF, Omerzu M, Saurin AT, Kops GJPL. Conditional targeting of MAD1 to kinetochores is sufficient to reactivate the spindle assembly checkpoint in metaphase. Chromosoma 2014; 123:471-80. [PMID: 24695965 PMCID: PMC4169584 DOI: 10.1007/s00412-014-0458-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 01/27/2023]
Abstract
Fidelity of chromosome segregation is monitored by the spindle assembly checkpoint (SAC). Key components of the SAC include MAD1, MAD2, BUB1, BUB3, BUBR1, and MPS1. These proteins accumulate on kinetochores in early prometaphase but are displaced when chromosomes attach to microtubules and/or biorient on the mitotic spindle. As a result, stable attachment of the final chromosome satisfies the SAC, permitting activation of the anaphase promoting complex/cyclosome (APC/C) and subsequent anaphase onset. SAC satisfaction is reversible, however, as addition of taxol during metaphase stops cyclin B1 degradation by the APC/C. We now show that targeting MAD1 to kinetochores during metaphase is sufficient to reestablish SAC activity after initial silencing. Using rapamycin-induced heterodimerization of FKBP-MAD1 to FRB-MIS12 and live monitoring of cyclin B1 degradation, we show that timed relocalization of MAD1 during metaphase can stop cyclin B1 degradation without affecting chromosome-spindle attachments. APC/C inhibition represented true SAC reactivation, as FKBP-MAD1 required an intact MAD2-interaction motif and MPS1 activity to accomplish this. Our data show that MAD1 kinetochore localization dictates SAC activity and imply that SAC regulatory mechanisms downstream of MAD1 remain functional in metaphase.
Collapse
Affiliation(s)
- Timo E F Kuijt
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
82
|
Abstract
The propagation of all organisms depends on the accurate and orderly segregation of chromosomes in mitosis and meiosis. Budding yeast has long served as an outstanding model organism to identify the components and underlying mechanisms that regulate chromosome segregation. This review focuses on the kinetochore, the macromolecular protein complex that assembles on centromeric chromatin and maintains persistent load-bearing attachments to the dynamic tips of spindle microtubules. The kinetochore also serves as a regulatory hub for the spindle checkpoint, ensuring that cell cycle progression is coupled to the achievement of proper microtubule-kinetochore attachments. Progress in understanding the composition and overall architecture of the kinetochore, as well as its properties in making and regulating microtubule attachments and the spindle checkpoint, is discussed.
Collapse
|
83
|
Marston AL. Chromosome segregation in budding yeast: sister chromatid cohesion and related mechanisms. Genetics 2014; 196:31-63. [PMID: 24395824 PMCID: PMC3872193 DOI: 10.1534/genetics.112.145144] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/18/2013] [Indexed: 12/28/2022] Open
Abstract
Studies on budding yeast have exposed the highly conserved mechanisms by which duplicated chromosomes are evenly distributed to daughter cells at the metaphase-anaphase transition. The establishment of proteinaceous bridges between sister chromatids, a function provided by a ring-shaped complex known as cohesin, is central to accurate segregation. It is the destruction of this cohesin that triggers the segregation of chromosomes following their proper attachment to microtubules. Since it is irreversible, this process must be tightly controlled and driven to completion. Furthermore, during meiosis, modifications must be put in place to allow the segregation of maternal and paternal chromosomes in the first division for gamete formation. Here, I review the pioneering work from budding yeast that has led to a molecular understanding of the establishment and destruction of cohesion.
Collapse
Affiliation(s)
- Adele L Marston
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
84
|
Abstract
Mammalian oocytes are particularly error prone in segregating their chromosomes during their two meiotic divisions. This results in the creation of an embryo that has inherited the wrong number of chromosomes: it is aneuploid. The incidence of aneuploidy rises significantly with maternal age and so there is much interest in understanding this association and the underlying causes of aneuploidy. The spindle assembly checkpoint, a surveillance mechanism that operates in all cells to prevent chromosome mis-segregation, and the cohesive ties that hold those chromosomes together, have thus both been the subject of intensive investigation in oocytes. It is possible that a lowered sensitivity of the spindle assembly checkpoint to certain types of chromosome attachment error may endow oocytes with an innate susceptibility to aneuploidy, which is made worse by an age-related loss in the factors that hold the chromosomes together.
Collapse
Affiliation(s)
- Keith T Jones
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | | |
Collapse
|
85
|
Wang Z, Wan L, Zhong J, Inuzuka H, Liu P, Sarkar FH, Wei W. Cdc20: a potential novel therapeutic target for cancer treatment. Curr Pharm Des 2013; 19:3210-4. [PMID: 23151139 DOI: 10.2174/1381612811319180005] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 11/22/2022]
Abstract
The Anaphase Promoting Complex (APC) has been characterized to play pivotal roles in regulating the timely cell cycle progression by forming two functionally distinct E3 ubiquitin ligase sub-complexes, APC(Cdc20) and APC(Cdh1). Interestingly, recent studies have shown that Cdh1 is functioning as a tumor suppressor whereas Cdc20 may function as an oncoprotein to promote the development and progression of human cancers. In this review, we will discuss the physiological role of Cdc20 and its downstream substrates in vitro and in the transgenic mouse model reminiscent of the pathogenesis of human cancers. Furthermore, we summarize recent findings to indicate that Cdc20 may represent a promising therapeutic target, thus development of Cdc20 inhibitors could be useful for achieving better treatment outcome of cancer patients.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
86
|
Dick AE, Gerlich DW. Kinetic framework of spindle assembly checkpoint signalling. Nat Cell Biol 2013; 15:1370-7. [PMID: 24096243 DOI: 10.1038/ncb2842] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/14/2013] [Indexed: 12/20/2022]
Abstract
The mitotic spindle assembly checkpoint (SAC) delays anaphase onset until all chromosomes have attached to both spindle poles. Here, we investigated SAC signalling kinetics in response to acute detachment of individual chromosomes using laser microsurgery. Most detached chromosomes delayed anaphase until they had realigned to the metaphase plate. A substantial fraction of cells, however, entered anaphase in the presence of unaligned chromosomes. We identify two mechanisms by which cells can bypass the SAC: first, single unattached chromosomes inhibit the anaphase-promoting complex/cyclosome (APC/C) less efficiently than a full complement of unattached chromosomes; second, because of the relatively slow kinetics of re-imposing APC/C inhibition during metaphase, cells were unresponsive to chromosome detachment up to several minutes before anaphase onset. Our study defines when cells irreversibly commit to enter anaphase and shows that the SAC signal strength correlates with the number of unattached chromosomes. Detailed knowledge about SAC signalling kinetics is important for understanding the emergence of aneuploidy and the response of cancer cells to chemotherapeutics targeting the mitotic spindle.
Collapse
Affiliation(s)
- Amalie E Dick
- 1] Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria [2] Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland [3] Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | | |
Collapse
|
87
|
Visconti R, Palazzo L, Pepe A, Della Monica R, Grieco D. The end of mitosis from a phosphatase perspective. Cell Cycle 2013; 12:17-9. [PMID: 23255109 DOI: 10.4161/cc.22875] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transition through mitosis, the cell division cycle phase deputed to segregate replicated chromosomes, requires a wave of protein phosphorylation. While in the past decades a wealth of information has been gathered on the major kinase activities responsible for the onset of mitosis, only recently has a picture emerged of how their effects are reversed by protein phosphatases at the end of mitosis. Here, we summarized some recent data on the relevance for protein phosphatases in the reversal of mitotic phosphorylation required to complete mitosis in vertebrate cells.
Collapse
|
88
|
Craney A, Rape M. Dynamic regulation of ubiquitin-dependent cell cycle control. Curr Opin Cell Biol 2013; 25:704-10. [PMID: 23890701 DOI: 10.1016/j.ceb.2013.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 06/29/2013] [Accepted: 07/04/2013] [Indexed: 12/13/2022]
Abstract
Recent work revealed that cullin-RING ligases and the anaphase-promoting complex, two classes of ubiquitin ligases that are essential for cell division in all eukaryotes, are regulated in a highly dynamic manner. Here, we describe mechanisms that establish the dynamic regulation of these crucial ubiquitylation enzymes and discuss the functional consequences for cell division control.
Collapse
Affiliation(s)
- Allison Craney
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | | |
Collapse
|
89
|
Ibrahim B, Henze R, Gruenert G, Egbert M, Huwald J, Dittrich P. Spatial rule-based modeling: a method and its application to the human mitotic kinetochore. Cells 2013; 2:506-44. [PMID: 24709796 PMCID: PMC3972674 DOI: 10.3390/cells2030506] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/05/2013] [Accepted: 06/25/2013] [Indexed: 12/23/2022] Open
Abstract
A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed for a restricted state space with fixed dimensionality. To overcome this problem, the rule-based modeling language, BioNetGen, and the spatial extension, SRSim, have been developed. Here, we describe how to apply rule-based modeling to integrate experimental data from different sources into a single spatial simulation model and how to analyze the output of that model. The starting point for this approach can be a combination of molecular interaction data, reaction network data, proximities, binding and diffusion kinetics and molecular geometries at different levels of detail. We describe the technique and then use it to construct a model of the human mitotic inner and outer kinetochore, including the spindle assembly checkpoint signaling pathway. This allows us to demonstrate the utility of the procedure, show how a novel perspective for understanding such complex systems becomes accessible and elaborate on challenges that arise in the formulation, simulation and analysis of spatial rule-based models.
Collapse
Affiliation(s)
- Bashar Ibrahim
- Bio Systems Analysis Group, Institute of Computer Science, Jena Centre for Bioinformatics and Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, D-0007743 Jena, Germany.
| | - Richard Henze
- Bio Systems Analysis Group, Institute of Computer Science, Jena Centre for Bioinformatics and Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, D-0007743 Jena, Germany.
| | - Gerd Gruenert
- Bio Systems Analysis Group, Institute of Computer Science, Jena Centre for Bioinformatics and Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, D-0007743 Jena, Germany.
| | - Matthew Egbert
- Bio Systems Analysis Group, Institute of Computer Science, Jena Centre for Bioinformatics and Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, D-0007743 Jena, Germany.
| | - Jan Huwald
- Bio Systems Analysis Group, Institute of Computer Science, Jena Centre for Bioinformatics and Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, D-0007743 Jena, Germany.
| | - Peter Dittrich
- Bio Systems Analysis Group, Institute of Computer Science, Jena Centre for Bioinformatics and Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, D-0007743 Jena, Germany.
| |
Collapse
|
90
|
Mutually dependent degradation of Ama1p and Cdc20p terminates APC/C ubiquitin ligase activity at the completion of meiotic development in yeast. Cell Div 2013; 8:9. [PMID: 23816140 PMCID: PMC3734102 DOI: 10.1186/1747-1028-8-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/12/2013] [Indexed: 12/18/2022] Open
Abstract
Background The execution of meiotic nuclear divisions in S. cerevisiae is regulated by protein degradation mediated by the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase. The correct timing of APC/C activity is essential for normal chromosome segregation. During meiosis, the APC/C is activated by the association of either Cdc20p or the meiosis-specific factor Ama1p. Both Ama1p and Cdc20p are targeted for degradation as cells exit meiosis II with Cdc20p being destroyed by APC/CAma1. In this study we investigated how Ama1p is down regulated at the completion of meiosis. Findings Here we show that Ama1p is a substrate of APC/CCdc20 but not APC/CCdh1 in meiotic cells. Cdc20p binds Ama1p in vivo and APC/CCdc20 ubiquitylates Ama1p in vitro. Ama1p ubiquitylation requires one of two degradation motifs, a D-box and a “KEN-box” like motif called GxEN. Finally, Ama1p degradation does not require its association with the APC/C via its conserved APC/C binding motifs (C-box and IR) and occurs simultaneously with APC/CAma1-mediated Cdc20p degradation. Conclusions Unlike the cyclical nature of mitotic cell division, meiosis is a linear pathway leading to the production of quiescent spores. This raises the question of how the APC/C is reset prior to spore germination. This and a previous study revealed that Cdc20p and Ama1p direct each others degradation via APC/C-dependent degradation. These findings suggest a model that the APC/C is inactivated by mutual degradation of the activators. In addition, these results support a model in which Ama1p and Cdc20p relocate to the substrate address within the APC/C cavity prior to degradation.
Collapse
|
91
|
Abstract
The anaphase-promoting complex or cyclosome (APC/C) is a conserved, multisubunit E3 ubiquitin (Ub) ligase that is active both in dividing and in postmitotic cells. Its contributions to life are especially well studied in the domain of cell division, in which the APC/C lies at the epicenter of a regulatory network that controls the directionality and timing of cell cycle events. Biochemical and structural work is shedding light on the overall organization of APC/C subunits and on the mechanism of substrate recognition and Ub chain initiation and extension as well as on the molecular mechanisms of a checkpoint that seizes control of APC/C activity during mitosis. Here, we review how these recent advancements are modifying our understanding of the APC/C.
Collapse
Affiliation(s)
- Ivana Primorac
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | | |
Collapse
|
92
|
Roles of different pools of the mitotic checkpoint complex and the mechanisms of their disassembly. Proc Natl Acad Sci U S A 2013; 110:10568-73. [PMID: 23754430 DOI: 10.1073/pnas.1308928110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The mitotic (or spindle assembly) checkpoint system prevents premature separation of sister chromatids in mitosis. When the checkpoint is turned on, the mitotic checkpoint complex (MCC) inhibits the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C). MCC is composed of the checkpoint proteins BubR1, Bub3, and Mad2 associated with the APC/C activator Cdc20. The mechanisms of the assembly of MCC when the checkpoint is turned on, and of its disassembly when the checkpoint is inactivated, are not sufficiently understood. Previous reports indicated that APC/C-mediated polyubiquitylation of Cdc20 in MCC is required for the dissociation of APC/C-associated MCC, but not of free MCC. The pool of free MCC is disassembled by an ATP-dependent process stimulated by the Mad2-binding protein p31(comet). It remained unknown whether free MCC is the precursor or the dissociation product of APC/C-bound MCC. By characterizing the mechanisms of the disassembly of APC/C-bound MCC in a purified system, we find that it cannot be the source of free MCC, because it is bound at high affinity and is released only in ubiquitylated or partially disassembled forms. By the use of a cell-free system from Xenopus eggs that reproduces the mitotic checkpoint, we show that MCC can be assembled in the absence of APC/C in a checkpoint-dependent manner. We propose that when the checkpoint is turned on, free MCC is the precursor of APC/C-bound MCC. When the mitotic checkpoint is extinguished, both APC/C-bound and free MCC pools have to be disassembled to release APC/C from inhibition.
Collapse
|
93
|
Fry AM. Cdc20 turnover rate: a key determinant in cancer patient response to anti-mitotic therapies? Bioessays 2013; 35:762. [PMID: 23681847 DOI: 10.1002/bies.201300053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrew M Fry
- Department of Biochemistry, University of Leicester, Leicester, UK.
| |
Collapse
|
94
|
Abstract
During mitosis and meiosis, the spindle assembly checkpoint acts to maintain genome stability by delaying cell division until accurate chromosome segregation can be guaranteed. Accuracy requires that chromosomes become correctly attached to the microtubule spindle apparatus via their kinetochores. When not correctly attached to the spindle, kinetochores activate the spindle assembly checkpoint network, which in turn blocks cell cycle progression. Once all kinetochores become stably attached to the spindle, the checkpoint is inactivated, which alleviates the cell cycle block and thus allows chromosome segregation and cell division to proceed. Here we review recent progress in our understanding of how the checkpoint signal is generated, how it blocks cell cycle progression and how it is extinguished.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
95
|
Tracking spindle checkpoint signals from kinetochores to APC/C. Trends Biochem Sci 2013; 38:302-11. [PMID: 23598156 DOI: 10.1016/j.tibs.2013.03.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 12/13/2022]
Abstract
Accurate chromosome segregation during mitosis is critical for maintaining genomic stability. The kinetochore--a large protein assembly on centromeric chromatin--functions as the docking site for spindle microtubules and a signaling hub for the spindle checkpoint. At metaphase, spindle microtubules from opposing spindle poles capture each pair of sister kinetochores, exert pulling forces, and create tension across sister kinetochores. The spindle checkpoint detects improper kinetochore-microtubule attachments and translates these defects into biochemical activities that inhibit the anaphase-promoting complex or cyclosome (APC/C) throughout the cell to delay anaphase onset. A deficient spindle checkpoint leads to premature sister-chromatid separation and aneuploidy. Here, we review recent progress on the generation, propagation, transmission, and silencing of the spindle checkpoint signals from kinetochores to APC/C.
Collapse
|
96
|
Funabiki H, Wynne DJ. Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma 2013; 122:135-58. [PMID: 23512483 DOI: 10.1007/s00412-013-0401-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 01/23/2023]
Abstract
The kinetochore, the proteinaceous structure on the mitotic centromere, functions as a mechanical latch that hooks onto microtubules to support directional movement of chromosomes. The structure also brings in a number of signaling molecules, such as kinases and phosphatases, which regulate microtubule dynamics and cell cycle progression. Erroneous microtubule attachment is destabilized by Aurora B-mediated phosphorylation of multiple microtubule-binding protein complexes at the kinetochore, such as the KMN network proteins and the Ska/Dam1 complex, while Plk-dependent phosphorylation of BubR1 stabilizes kinetochore-microtubule attachment by recruiting PP2A-B56. Spindle assembly checkpoint (SAC) signaling, which is activated by unattached kinetochores and inhibits the metaphase-to-anaphase transition, depends on kinetochore recruitment of the kinase Bub1 through Mps1-mediated phosphorylation of the kinetochore protein KNL1 (also known as Blinkin in mammals, Spc105 in budding yeast, and Spc7 in fission yeast). Recruitment of protein phosphatase 1 to KNL1 is necessary to silence the SAC upon bioriented microtubule attachment. One of the key unsolved questions in the mitosis field is how a mechanical change at the kinetochore upon microtubule attachment is converted to these and other chemical signals that control microtubule attachment and the SAC. Rapid progress in the field is revealing the existence of an intricate signaling network created right on the kinetochore. Here we review the current understanding of phosphorylation-mediated regulation of kinetochore functions and discuss how this signaling network generates an accurate switch that turns on and off the signaling output in response to kinetochore-microtubule attachment.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | | |
Collapse
|
97
|
Verdugo A, Vinod PK, Tyson JJ, Novak B. Molecular mechanisms creating bistable switches at cell cycle transitions. Open Biol 2013; 3:120179. [PMID: 23486222 PMCID: PMC3718337 DOI: 10.1098/rsob.120179] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Progression through the eukaryotic cell cycle is characterized by specific transitions, where cells move irreversibly from stage i−1 of the cycle into stage i. These irreversible cell cycle transitions are regulated by underlying bistable switches, which share some common features. An inhibitory protein stalls progression, and an activatory protein promotes progression. The inhibitor and activator are locked in a double-negative feedback loop, creating a one-way toggle switch that guarantees an irreversible commitment to move forward through the cell cycle, and it opposes regression from stage i to stage i−1. In many cases, the activator is an enzyme that modifies the inhibitor in multiple steps, whereas the hypo-modified inhibitor binds strongly to the activator and resists its enzymatic activity. These interactions are the basis of a reaction motif that provides a simple and generic account of many characteristic properties of cell cycle transitions. To demonstrate this assertion, we apply the motif in detail to the G1/S transition in budding yeast and to the mitotic checkpoint in mammalian cells. Variations of the motif might support irreversible cellular decision-making in other contexts.
Collapse
Affiliation(s)
- Anael Verdugo
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
98
|
Horikoshi Y, Habu T, Matsumoto T. An E2 enzyme Ubc11 is required for ubiquitination of Slp1/Cdc20 and spindle checkpoint silencing in fission yeast. Cell Cycle 2013; 12:961-71. [PMID: 23442800 DOI: 10.4161/cc.23946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
For ordered mitotic progression, various proteins have to be regulated by an ubiquitin ligase, the anaphase-promoting complex or cyclosome (APC/C) with appropriate timing. Recent studies have implied that the activity of APC/C also contributes to release of mitotic checkpoint complexes (MCCs) from its target Cdc20 in the process of silencing the spindle assembly checkpoint (SAC). Here we describe a temperature-sensitive mutant (ubc11-P93L) in which cell cycle progression is arrested at mitosis. The mutant grows normally at the restrictive temperature when SAC is inactivated, suggesting that the arrest is not due to abnormal spindle assembly, but rather due to prolonged activation of SAC. Supporting this notion, MCCs remain bound to APC/C even when SAC is satisfied. The ubc11 (+) gene encodes one of the two E2 enzymes required for progression through mitosis in fission yeast. Remarkably, Slp1 (a fission yeast homolog of Cdc20), which is degraded in an APC/C-dependent manner, stays stable throughout the cell cycle in the ubc11-P93L mutant lacking the functional SAC. Other APC/C substrates, in contrast, were degraded on schedule. We have also found that a loss of Ubc4, the other E2 required for progression through mitosis, does not affect the stability of Slp1. We propose that each of the two E2 enzymes is responsible for collaborating with APC/C for a specific set of substrates, and that Ubc11 is responsible for regulating Slp1 with APC/C for silencing the SAC.
Collapse
|
99
|
Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 2013; 14:25-37. [PMID: 23258294 DOI: 10.1038/nrm3494] [Citation(s) in RCA: 497] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In eukaryotes, chromosome segregation during cell division is facilitated by the kinetochore, a multiprotein structure that is assembled on centromeric DNA. The kinetochore attaches chromosomes to spindle microtubules, modulates the stability of these attachments and relays the microtubule-binding status to the spindle assembly checkpoint (SAC), a cell cycle surveillance pathway that delays chromosome segregation in response to unattached kinetochores. Recent studies are shaping current thinking on how each of these kinetochore-centred processes is achieved, and how their integration ensures faithful chromosome segregation, focusing on the essential roles of kinase-phosphatase signalling and the microtubule-binding KMN protein network.
Collapse
|
100
|
The spindle-assembly checkpoint and the beauty of self-destruction. Nat Struct Mol Biol 2013; 19:1059-61. [PMID: 23132380 DOI: 10.1038/nsmb.2429] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|