51
|
Zhou Y, Han C, Wang E, Lorch AH, Serafin V, Cho BK, Gutierrez Diaz BT, Calvo J, Fang C, Khodadadi-Jamayran A, Tabaglio T, Marier C, Kuchmiy A, Sun L, Yacu G, Filip SK, Jin Q, Takahashi YH, Amici DR, Rendleman EJ, Rawat R, Bresolin S, Paganin M, Zhang C, Li H, Kandela I, Politanska Y, Abdala-Valencia H, Mendillo ML, Zhu P, Palhais B, Van Vlierberghe P, Taghon T, Aifantis I, Goo YA, Guccione E, Heguy A, Tsirigos A, Wee KB, Mishra RK, Pflumio F, Accordi B, Basso G, Ntziachristos P. Posttranslational Regulation of the Exon Skipping Machinery Controls Aberrant Splicing in Leukemia. Cancer Discov 2020; 10:1388-1409. [PMID: 32444465 DOI: 10.1158/2159-8290.cd-19-1436] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/21/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Splicing alterations are common in diseases such as cancer, where mutations in splicing factor genes are frequently responsible for aberrant splicing. Here we present an alternative mechanism for splicing regulation in T-cell acute lymphoblastic leukemia (T-ALL) that involves posttranslational stabilization of the splicing machinery via deubiquitination. We demonstrate there are extensive exon skipping changes in disease, affecting proteasomal subunits, cell-cycle regulators, and the RNA machinery. We present that the serine/arginine-rich splicing factors (SRSF), controlling exon skipping, are critical for leukemia cell survival. The ubiquitin-specific peptidase 7 (USP7) regulates SRSF6 protein levels via active deubiquitination, and USP7 inhibition alters the exon skipping pattern and blocks T-ALL growth. The splicing inhibitor H3B-8800 affects splicing of proteasomal transcripts and proteasome activity and acts synergistically with proteasome inhibitors in inhibiting T-ALL growth. Our study provides the proof-of-principle for regulation of splicing factors via deubiquitination and suggests new therapeutic modalities in T-ALL. SIGNIFICANCE: Our study provides a new proof-of-principle for posttranslational regulation of splicing factors independently of mutations in aggressive T-cell leukemia. It further suggests a new drug combination of splicing and proteasomal inhibitors, a concept that might apply to other diseases with or without mutations affecting the splicing machinery.This article is highlighted in the In This Issue feature, p. 1241.
Collapse
Affiliation(s)
- Yalu Zhou
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Cuijuan Han
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Eric Wang
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Adam H Lorch
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Valentina Serafin
- Oncohematology Laboratory, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Byoung-Kyu Cho
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois
| | - Blanca T Gutierrez Diaz
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Julien Calvo
- Team Niche and Cancer in hematopoiesis, CEA, Fontenay-aux-Roses, France.,Laboratory of Hematopoietic Stem Cells and Leukemia/Service Stem Cells and Radiation/iRCM/JACOB/DRF, CEA, Fontenay-aux-Roses, France
| | - Celestia Fang
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University School of Medicine, New York, New York
| | - Tommaso Tabaglio
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christian Marier
- Genome Technology Center, New York University School of Medicine, New York, New York
| | - Anna Kuchmiy
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Limin Sun
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - George Yacu
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Szymon K Filip
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois
| | - Qi Jin
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yoh-Hei Takahashi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David R Amici
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Emily J Rendleman
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Radhika Rawat
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Silvia Bresolin
- Oncohematology Laboratory, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Maddalena Paganin
- Oncohematology Laboratory, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Irawati Kandela
- Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois
| | - Yuliya Politanska
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiam Abdala-Valencia
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ping Zhu
- H3 Biomedicine, Inc., Cambridge, Massachusetts
| | - Bruno Palhais
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Iannis Aifantis
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Young Ah Goo
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.,Proteomics Center of Excellence, Northwestern University, Evanston, Illinois
| | - Ernesto Guccione
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pharmacological Sciences and Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Adriana Heguy
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Genome Technology Center, New York University School of Medicine, New York, New York
| | - Aristotelis Tsirigos
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Applied Bioinformatics Laboratories, Office of Science and Research, New York University School of Medicine, New York, New York
| | - Keng Boon Wee
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University School of Medicine, New York, New York.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Rama K Mishra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.,Center for Molecular Innovation and Drug Discovery, Northwestern University, Chicago, Illinois
| | - Francoise Pflumio
- Team Niche and Cancer in hematopoiesis, CEA, Fontenay-aux-Roses, France.,Laboratory of Hematopoietic Stem Cells and Leukemia/Service Stem Cells and Radiation/iRCM/JACOB/DRF, CEA, Fontenay-aux-Roses, France
| | - Benedetta Accordi
- Oncohematology Laboratory, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Giuseppe Basso
- Oncohematology Laboratory, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois. .,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| |
Collapse
|
52
|
Falo-Sanjuan J, Bray SJ. Decoding the Notch signal. Dev Growth Differ 2019; 62:4-14. [PMID: 31886523 DOI: 10.1111/dgd.12644] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023]
Abstract
Notch signalling controls many key cellular processes which differ according to the context where the pathway is deployed due to the transcriptional activation of specific sets of genes. The pathway is unusual in its lack of amplification, also raising the question of how it can efficiently activate transcription with limited amounts of nuclear activity. Here, we focus on mechanisms that enable Notch to produce appropriate transcriptional responses and speculate on models that could explain the current gaps in knowledge.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
53
|
Identification of CHD4-β1 integrin axis as a prognostic marker in triple-negative breast cancer using next-generation sequencing and bioinformatics. Life Sci 2019; 238:116963. [DOI: 10.1016/j.lfs.2019.116963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 01/07/2023]
|
54
|
Gahr BM, Brändle F, Zimmermann M, Nagel AC. An RBPJ- Drosophila Model Reveals Dependence of RBPJ Protein Stability on the Formation of Transcription-Regulator Complexes. Cells 2019; 8:cells8101252. [PMID: 31615108 PMCID: PMC6829621 DOI: 10.3390/cells8101252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 01/07/2023] Open
Abstract
Notch signaling activity governs widespread cellular differentiation in higher animals, including humans, and is involved in several congenital diseases and different forms of cancer. Notch signals are mediated by the transcriptional regulator RBPJ in a complex with activated Notch (NICD). Analysis of Notch pathway regulation in humans is hampered by a partial redundancy of the four Notch receptor copies, yet RBPJ is solitary, allowing its study in model systems. In Drosophila melanogaster, the RBPJ orthologue is encoded by Suppressor of Hairless [Su(H)]. Using genome engineering, we replaced Su(H) by murine RBPJ in order to study its function in the fly. In fact, RBPJ largely substitutes for Su(H)’s function, yet subtle phenotypes reflect increased Notch signaling activity. Accordingly, the binding of RBPJ to Hairless (H) protein, the general Notch antagonist in Drosophila, was considerably reduced compared to that of Su(H). An H-binding defective RBPJLLL mutant matched the respective Su(H)LLL allele: homozygotes were lethal due to extensive Notch hyperactivity. Moreover, RBPJLLL protein accumulated at lower levels than wild type RBPJ, except in the presence of NICD. Apparently, RBPJ protein stability depends on protein complex formation with either H or NICD, similar to Su(H), demonstrating that the murine homologue underlies the same regulatory mechanisms as Su(H) in Drosophila. These results underscore the importance of regulating the availability of RBPJ protein to correctly mediate Notch signaling activity in the fly.
Collapse
Affiliation(s)
- Bernd M. Gahr
- Institute of Genetics (240), University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (B.M.G.); (F.B.); (M.Z.)
- Present address: Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Franziska Brändle
- Institute of Genetics (240), University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (B.M.G.); (F.B.); (M.Z.)
| | - Mirjam Zimmermann
- Institute of Genetics (240), University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (B.M.G.); (F.B.); (M.Z.)
| | - Anja C. Nagel
- Institute of Genetics (240), University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; (B.M.G.); (F.B.); (M.Z.)
- Correspondence: ; Tel.: +49-711-45922210
| |
Collapse
|
55
|
Ho AS, Ochoa A, Jayakumaran G, Zehir A, Valero Mayor C, Tepe J, Makarov V, Dalin MG, He J, Bailey M, Montesion M, Ross JS, Miller VA, Chan L, Ganly I, Dogan S, Katabi N, Tsipouras P, Ha P, Agrawal N, Solit DB, Futreal PA, El Naggar AK, Reis-Filho JS, Weigelt B, Ho AL, Schultz N, Chan TA, Morris LG. Genetic hallmarks of recurrent/metastatic adenoid cystic carcinoma. J Clin Invest 2019. [DOI: 10.1172/jci128227 pmid:314832902019-10-01]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
56
|
Giaimo BD, Ferrante F, Vallejo DM, Hein K, Gutierrez-Perez I, Nist A, Stiewe T, Mittler G, Herold S, Zimmermann T, Bartkuhn M, Schwarz P, Oswald F, Dominguez M, Borggrefe T. Histone variant H2A.Z deposition and acetylation directs the canonical Notch signaling response. Nucleic Acids Res 2019; 46:8197-8215. [PMID: 29986055 PMCID: PMC6144792 DOI: 10.1093/nar/gky551] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 06/28/2018] [Indexed: 02/04/2023] Open
Abstract
A fundamental as yet incompletely understood feature of Notch signal transduction is a transcriptional shift from repression to activation that depends on chromatin regulation mediated by transcription factor RBP-J and associated cofactors. Incorporation of histone variants alter the functional properties of chromatin and are implicated in the regulation of gene expression. Here, we show that depletion of histone variant H2A.Z leads to upregulation of canonical Notch target genes and that the H2A.Z-chaperone TRRAP/p400/Tip60 complex physically associates with RBP-J at Notch-dependent enhancers. When targeted to RBP-J-bound enhancers, the acetyltransferase Tip60 acetylates H2A.Z and upregulates Notch target gene expression. Importantly, the Drosophila homologs of Tip60, p400 and H2A.Z modulate Notch signaling response and growth in vivo. Together, our data reveal that loading and acetylation of H2A.Z are required to assure tight control of canonical Notch activation.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albertstrasse 19A, 79104 Freiburg, Germany
| | - Francesca Ferrante
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Diana M Vallejo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas and Universidad Miguel Hernández, Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Kerstin Hein
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Irene Gutierrez-Perez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas and Universidad Miguel Hernández, Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Gerhard Mittler
- Max-Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Susanne Herold
- Department of Internal Medicine II, Universities Giessen & Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Tobias Zimmermann
- Bioinformatics and Systems Biology, University of Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Marek Bartkuhn
- Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Peggy Schwarz
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Franz Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas and Universidad Miguel Hernández, Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| |
Collapse
|
57
|
Diminished interaction between mutant NOTCH1 and the NuRD corepressor complex upregulates CCL17 in chronic lymphocytic leukemia. Leukemia 2019; 33:2951-2956. [DOI: 10.1038/s41375-019-0526-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/12/2019] [Accepted: 05/31/2019] [Indexed: 12/26/2022]
|
58
|
Hou G, Zhao Q, Zhang M, Wang P, Ye H, Wang Y, Ren Y, Zhang J, Lu Z. LSD1 regulates Notch and PI3K/Akt/mTOR pathways through binding the promoter regions of Notch target genes in esophageal squamous cell carcinoma. Onco Targets Ther 2019; 12:5215-5225. [PMID: 31308693 PMCID: PMC6613024 DOI: 10.2147/ott.s207238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022] Open
Abstract
Background: The aberrant activation of Lysine-specific demethylase 1(LSD1), Notch and PI3K/Akt/mTOR signaling pathways were frequently happened in many cancers, including esophageal squamous cell carcinoma (ESCC). However, the regulatory relationship between LSD1 and Notch as well as PI3K/Akt/mTOR pathways is still unclear. Purpose: This study aimed to explore the regulatory effects and mechanisms of LSD1 on Notch and PI3K/Akt/mTOR pathway in ESCC. Results: Firstly, we demonstrated that LSD1 and proteins in Notch and PI3K/Akt/mTOR pathway were expressed in ESCC cells. Secondly, inhibition of LSD1 by tranylcypromine (TCP) or shRNA could decrease the expressions of related proteins in Notch and PI3K/Akt/mTOR signaling pathways in ESCC cells. Finally, we found that LSD1 could bind to the promoter regions of Notch3, Hes1 and CR2, and the combinations between them were reduced by TCP in ESCC. Conclusion: Summarily, this study indicated that LSD1 might positively regulate Notch and PI3K/Akt/mTOR pathways through binding the promoter regions of related genes in Notch pathway in ESCC.
Collapse
Affiliation(s)
- Guiqin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qi Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Mengying Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yang Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yandan Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jianying Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhaoming Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
59
|
Thirupathi A, Chang YZ. Role of AMPK and its molecular intermediates in subjugating cancer survival mechanism. Life Sci 2019; 227:30-38. [DOI: 10.1016/j.lfs.2019.04.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
|
60
|
Marinkovic M, Fuoco C, Sacco F, Cerquone Perpetuini A, Giuliani G, Micarelli E, Pavlidou T, Petrilli LL, Reggio A, Riccio F, Spada F, Vumbaca S, Zuccotti A, Castagnoli L, Mann M, Gargioli C, Cesareni G. Fibro-adipogenic progenitors of dystrophic mice are insensitive to NOTCH regulation of adipogenesis. Life Sci Alliance 2019; 2:e201900437. [PMID: 31239312 PMCID: PMC6599969 DOI: 10.26508/lsa.201900437] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
Fibro-adipogenic progenitors (FAPs) promote satellite cell differentiation in adult skeletal muscle regeneration. However, in pathological conditions, FAPs are responsible for fibrosis and fatty infiltrations. Here we show that the NOTCH pathway negatively modulates FAP differentiation both in vitro and in vivo. However, FAPs isolated from young dystrophin-deficient mdx mice are insensitive to this control mechanism. An unbiased mass spectrometry-based proteomic analysis of FAPs from muscles of wild-type and mdx mice suggested that the synergistic cooperation between NOTCH and inflammatory signals controls FAP differentiation. Remarkably, we demonstrated that factors released by hematopoietic cells restore the sensitivity to NOTCH adipogenic inhibition in mdx FAPs. These results offer a basis for rationalizing pathological ectopic fat infiltrations in skeletal muscle and may suggest new therapeutic strategies to mitigate the detrimental effects of fat depositions in muscles of dystrophic patients.
Collapse
Affiliation(s)
| | - Claudia Fuoco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Sacco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Giulio Giuliani
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Elisa Micarelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Alessio Reggio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Federica Riccio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Filomena Spada
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Simone Vumbaca
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Luisa Castagnoli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Cesare Gargioli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
61
|
Lim R, Sugino T, Nolte H, Andrade J, Zimmermann B, Shi C, Doddaballapur A, Ong YT, Wilhelm K, Fasse JWD, Ernst A, Kaulich M, Husnjak K, Boettger T, Guenther S, Braun T, Krüger M, Benedito R, Dikic I, Potente M. Deubiquitinase USP10 regulates Notch signaling in the endothelium. SCIENCE (NEW YORK, N.Y.) 2019; 364:188-193. [PMID: 30975888 DOI: 10.1126/science.aat0778] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/14/2019] [Indexed: 12/15/2022]
Abstract
Notch signaling is a core patterning module for vascular morphogenesis that codetermines the sprouting behavior of endothelial cells (ECs). Tight quantitative and temporal control of Notch activity is essential for vascular development, yet the details of Notch regulation in ECs are incompletely understood. We found that ubiquitin-specific peptidase 10 (USP10) interacted with the NOTCH1 intracellular domain (NICD1) to slow the ubiquitin-dependent turnover of this short-lived form of the activated NOTCH1 receptor. Accordingly, inactivation of USP10 reduced NICD1 abundance and stability and diminished Notch-induced target gene expression in ECs. In mice, the loss of endothelial Usp10 increased vessel sprouting and partially restored the patterning defects caused by ectopic expression of NICD1. Thus, USP10 functions as an NICD1 deubiquitinase that fine-tunes endothelial Notch responses during angiogenic sprouting.
Collapse
Affiliation(s)
- R Lim
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | - T Sugino
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | - H Nolte
- Institute for Genetics and Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany
| | - J Andrade
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | - B Zimmermann
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | - C Shi
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | - A Doddaballapur
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | - Y T Ong
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | - K Wilhelm
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | - J W D Fasse
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | - A Ernst
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, D-60590 Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, D-60590 Frankfurt am Main, Germany
| | - M Kaulich
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, D-60590 Frankfurt am Main, Germany
| | - K Husnjak
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, D-60590 Frankfurt am Main, Germany
| | - T Boettger
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | - S Guenther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | - T Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| | - M Krüger
- Institute for Genetics and Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany
| | - R Benedito
- Molecular Genetics of Angiogenesis Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - I Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, D-60590 Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University, D-60438 Frankfurt am Main, Germany
| | - M Potente
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Frankfurt Rhine-Main, D-13347 Berlin, Germany.,International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| |
Collapse
|
62
|
Tottone L, Zhdanovskaya N, Carmona Pestaña Á, Zampieri M, Simeoni F, Lazzari S, Ruocco V, Pelullo M, Caiafa P, Felli MP, Checquolo S, Bellavia D, Talora C, Screpanti I, Palermo R. Histone Modifications Drive Aberrant Notch3 Expression/Activity and Growth in T-ALL. Front Oncol 2019; 9:198. [PMID: 31001470 PMCID: PMC6456714 DOI: 10.3389/fonc.2019.00198] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/08/2019] [Indexed: 01/11/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive blood cancer caused by the deregulation of key T-cell developmental pathways, including Notch signaling. Aberrant Notch signaling in T-ALL occurs by NOTCH1 gain-of-function mutations and by NOTCH3 overexpression. Although NOTCH3 is assumed as a Notch1 target, machinery driving its transcription in T-ALL is undefined in leukemia subsets lacking Notch1 activation. Here, we found that the binding of the intracellular Notch3 domain, as well as of the activated Notch1 fragment, to the NOTCH3 gene locus led to the recruitment of the H3K27 modifiers JMJD3 and p300, and it was required to preserve transcriptional permissive/active H3K27 marks and to sustain NOTCH3 gene expression levels. Consistently, pharmacological inhibition of JMJD3 by GSKJ4 treatment or of p300 by A-485 decreased the levels of expression of NOTCH3, NOTCH1 and of the Notch target genes DELTEX1 and c-Myc and abrogated cell viability in both Notch1- and Notch3-dependent T-cell contexts. Notably, re-introduction of exogenous Notch1, Notch3 as well as c-Myc partially rescued cells from anti-growth effects induced by either treatment. Overall our findings indicate JMJD3 and p300 as general Notch1 and Notch3 signaling co-activators in T-ALL and suggest further investigation on the potential therapeutic anti-leukemic efficacy of their enzymatic inhibition in Notch/c-Myc axis-related cancers and diseases.
Collapse
Affiliation(s)
- Luca Tottone
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | - Michele Zampieri
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Simeoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Ruocco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Pelullo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Latina, Italy
| | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
63
|
Leisegang MS, Gu L, Preussner J, Günther S, Hitzel J, Ratiu C, Weigert A, Chen W, Schwarz EC, Looso M, Fork C, Brandes RP. The histone demethylase
PHF
8 facilitates alternative splicing of the histocompatibility antigen
HLA
‐G. FEBS Lett 2019; 593:487-498. [DOI: 10.1002/1873-3468.13337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Matthias S. Leisegang
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
| | - Lunda Gu
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
| | - Jens Preussner
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
- ECCPS Bioinformatics and Sequencing Facility Max‐Planck‐Institute for Heart and Lung Research Bad Nauheim Germany
| | - Stefan Günther
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
- ECCPS Bioinformatics and Sequencing Facility Max‐Planck‐Institute for Heart and Lung Research Bad Nauheim Germany
| | - Juliane Hitzel
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
| | - Corina Ratiu
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
- Department of Functional Sciences – Pathophysiology “Victor Babes” University of Medicine and Pharmacy Timisoara Romania
| | - Andreas Weigert
- Faculty of Medicine Institute of Biochemistry I Goethe University Frankfurt Germany
| | - Wei Chen
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
- Laboratory for Novel Sequencing Technology, Functional and Medical Genomics Max‐Delbrück‐Center for Molecular Medicine Berlin Germany
- Department of Biology Southern University of Science and Technology Shenzhen China
| | - Eva C. Schwarz
- Biophysics Center for Integrative Physiology and Molecular Medicine School of Medicine Saarland University Homburg Germany
| | - Mario Looso
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
- ECCPS Bioinformatics and Sequencing Facility Max‐Planck‐Institute for Heart and Lung Research Bad Nauheim Germany
| | - Christian Fork
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
| |
Collapse
|
64
|
McCann TS, Sobral LM, Self C, Hsieh J, Sechler M, Jedlicka P. Biology and targeting of the Jumonji-domain histone demethylase family in childhood neoplasia: a preclinical overview. Expert Opin Ther Targets 2019; 23:267-280. [PMID: 30759030 DOI: 10.1080/14728222.2019.1580692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Epigenetic mechanisms of gene regulatory control play fundamental roles in developmental morphogenesis, and, as more recently appreciated, are heavily implicated in the onset and progression of neoplastic disease, including cancer. Many epigenetic mechanisms are therapeutically targetable, providing additional incentive for understanding of their contribution to cancer and other types of neoplasia. Areas covered: The Jumonji-domain histone demethylase (JHDM) family exemplifies many of the above traits. This review summarizes the current state of knowledge of the functions and pharmacologic targeting of JHDMs in cancer and other neoplastic processes, with an emphasis on diseases affecting the pediatric population. Expert opinion: To date, the JHDM family has largely been studied in the context of normal development and adult cancers. In contrast, comparatively few studies have addressed JHDM biology in cancer and other neoplastic diseases of childhood, especially solid (non-hematopoietic) neoplasms. Encouragingly, the few available examples support important roles for JHDMs in pediatric neoplasia, as well as potential roles for JHDM pharmacologic inhibition in disease management. Further investigations of JHDMs in cancer and other types of neoplasia of childhood can be expected to both enlighten disease biology and inform new approaches to improve disease outcomes.
Collapse
Affiliation(s)
- Tyler S McCann
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Lays M Sobral
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Chelsea Self
- b Department of Pediatrics , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Joseph Hsieh
- c Medical Scientist Training Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Marybeth Sechler
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,d Cancer Biology Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Paul Jedlicka
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,c Medical Scientist Training Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,d Cancer Biology Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
65
|
Augert A, Eastwood E, Ibrahim AH, Wu N, Grunblatt E, Basom R, Liggitt D, Eaton KD, Martins R, Poirier JT, Rudin CM, Milletti F, Cheng WY, Mack F, MacPherson D. Targeting NOTCH activation in small cell lung cancer through LSD1 inhibition. Sci Signal 2019; 12:12/567/eaau2922. [PMID: 30723171 DOI: 10.1126/scisignal.aau2922] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Small cell lung cancer (SCLC) is a recalcitrant, aggressive neuroendocrine-type cancer for which little change to first-line standard-of-care treatment has occurred within the last few decades. Unlike nonsmall cell lung cancer (NSCLC), SCLC harbors few actionable mutations for therapeutic intervention. Lysine-specific histone demethylase 1A (LSD1 also known as KDM1A) inhibitors were previously shown to have selective activity in SCLC models, but the underlying mechanism was elusive. Here, we found that exposure to the selective LSD1 inhibitor ORY-1001 activated the NOTCH pathway, resulting in the suppression of the transcription factor ASCL1 and the repression of SCLC tumorigenesis. Our analyses revealed that LSD1 bound to the NOTCH1 locus, thereby suppressing NOTCH1 expression and downstream signaling. Reactivation of NOTCH signaling with the LSD1 inhibitor reduced the expression of ASCL1 and neuroendocrine cell lineage genes. Knockdown studies confirmed the pharmacological inhibitor-based results. In vivo, sensitivity to LSD1 inhibition in SCLC patient-derived xenograft (PDX) models correlated with the extent of consequential NOTCH pathway activation and repression of a neuroendocrine phenotype. Complete and durable tumor regression occurred with ORY-1001-induced NOTCH activation in a chemoresistant PDX model. Our findings reveal how LSD1 inhibitors function in this tumor and support their potential as a new and targeted therapy for SCLC.
Collapse
Affiliation(s)
- Arnaud Augert
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Emily Eastwood
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Ali H Ibrahim
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Nan Wu
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Eli Grunblatt
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Keith D Eaton
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Renato Martins
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - John T Poirier
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Francesca Milletti
- Pharmaceutical Research and Early Development, Roche Innovation Center, New York, NY 10016, USA
| | - Wei-Yi Cheng
- Pharmaceutical Research and Early Development, Roche Innovation Center, New York, NY 10016, USA
| | - Fiona Mack
- Pharmaceutical Research and Early Development, Roche Innovation Center, New York, NY 10016, USA
| | - David MacPherson
- Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA. .,Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
66
|
Rippe C, Albinsson S, Guron G, Nilsson H, Swärd K. Targeting transcriptional control of soluble guanylyl cyclase via NOTCH for prevention of cardiovascular disease. Acta Physiol (Oxf) 2019; 225:e13094. [PMID: 29754438 DOI: 10.1111/apha.13094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022]
Abstract
Soluble guanylyl cyclase (sGC) is an effector enzyme of nitric oxide (NO). Recent work has unravelled how levels of this enzyme are controlled, and highlighted a role in vascular disease. We provide a timely summary of available knowledge on transcriptional regulation of sGC, including influences from the NOTCH signalling pathway and genetic variants. It is speculated that hypertension-induced repression of sGC starts a vicious circle that can be initiated by periods of stress, diet or genetic factors, and a key tenet is that reduction in sGC further raises blood pressure. The idea that dysregulation of sGC contributes to syndromes caused by defective NOTCH signalling is advanced, and we discuss drug repositioning for vascular disease prevention. The advantage of targeting sGC expression rather than activity is also considered. It is argued that transcriptional inputs on sGC arise from interactions with other cells, the extracellular matrix and microRNAs (miRNAs), and concluded that the promise of sGC as a target for prevention of cardiovascular disease has increased in recent time.
Collapse
Affiliation(s)
- C. Rippe
- Department of Experimental Medical Science; Lund University; Lund Sweden
| | - S. Albinsson
- Department of Experimental Medical Science; Lund University; Lund Sweden
| | - G. Guron
- Department of Physiology; University of Gothenburg; Gothenburg Sweden
| | - H. Nilsson
- Department of Physiology; University of Gothenburg; Gothenburg Sweden
| | - K. Swärd
- Department of Experimental Medical Science; Lund University; Lund Sweden
| |
Collapse
|
67
|
Jin Q, Martinez CA, Arcipowski KM, Zhu Y, Gutierrez-Diaz BT, Wang KK, Johnson MR, Volk AG, Wang F, Wu J, Grove C, Wang H, Sokirniy I, Thomas PM, Goo YA, Abshiru NA, Hijiya N, Peirs S, Vandamme N, Berx G, Goosens S, Marshall SA, Rendleman EJ, Takahashi YH, Wang L, Rawat R, Bartom ET, Collings CK, Van Vlierberghe P, Strikoudis A, Kelly S, Ueberheide B, Mantis C, Kandela I, Bourquin JP, Bornhauser B, Serafin V, Bresolin S, Paganin M, Accordi B, Basso G, Kelleher NL, Weinstock J, Kumar S, Crispino JD, Shilatifard A, Ntziachristos P. USP7 Cooperates with NOTCH1 to Drive the Oncogenic Transcriptional Program in T-Cell Leukemia. Clin Cancer Res 2019; 25:222-239. [PMID: 30224337 PMCID: PMC6320313 DOI: 10.1158/1078-0432.ccr-18-1740] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/18/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease, affecting children and adults. Chemotherapy treatments show high response rates but have debilitating effects and carry risk of relapse. Previous work implicated NOTCH1 and other oncogenes. However, direct inhibition of these pathways affects healthy tissues and cancer alike. Our goal in this work has been to identify enzymes active in T-ALL whose activity could be targeted for therapeutic purposes. EXPERIMENTAL DESIGN To identify and characterize new NOTCH1 druggable partners in T-ALL, we coupled studies of the NOTCH1 interactome to expression analysis and a series of functional analyses in cell lines, patient samples, and xenograft models. RESULTS We demonstrate that ubiquitin-specific protease 7 (USP7) interacts with NOTCH1 and controls leukemia growth by stabilizing the levels of NOTCH1 and JMJD3 histone demethylase. USP7 is highly expressed in T-ALL and is transcriptionally regulated by NOTCH1. In turn, USP7 controls NOTCH1 levels through deubiquitination. USP7 binds oncogenic targets and controls gene expression through stabilization of NOTCH1 and JMJD3 and ultimately H3K27me3 changes. We also show that USP7 and NOTCH1 bind T-ALL superenhancers, and inhibition of USP7 leads to a decrease of the transcriptional levels of NOTCH1 targets and significantly blocks T-ALL cell growth in vitro and in vivo. CONCLUSIONS These results provide a new model for USP7 deubiquitinase activity through recruitment to oncogenic chromatin loci and regulation of both oncogenic transcription factors and chromatin marks to promote leukemia. Our studies also show that targeting USP7 inhibition could be a therapeutic strategy in aggressive leukemia.
Collapse
Affiliation(s)
- Qi Jin
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Carlos A Martinez
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Kelly M Arcipowski
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Yixing Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Blanca T Gutierrez-Diaz
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Kenneth K Wang
- Master of Science in Biotechnology Graduate Program, Northwestern University, Evanston, Illinois
| | - Megan R Johnson
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Andrew G Volk
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Feng Wang
- Progenra Inc., Malvern, Pennsylvania
| | - Jian Wu
- Progenra Inc., Malvern, Pennsylvania
| | | | - Hui Wang
- Progenra Inc., Malvern, Pennsylvania
| | | | - Paul M Thomas
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois
| | - Young Ah Goo
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois
| | - Nebiyu A Abshiru
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois
| | - Nobuko Hijiya
- Ann & Robert H. Lurie Children's Hospital, Northwestern University, Chicago, Illinois
| | - Sofie Peirs
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Niels Vandamme
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Molecular Cellular Oncology Lab, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Geert Berx
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Molecular Cellular Oncology Lab, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Goosens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Molecular Cellular Oncology Lab, Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stacy A Marshall
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Emily J Rendleman
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Yoh-Hei Takahashi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Radhika Rawat
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Clayton K Collings
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Pieter Van Vlierberghe
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Stephen Kelly
- Department of Pathology, New York University, New York, New York
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University, New York, New York
| | - Christine Mantis
- Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois
| | - Irawati Kandela
- Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois
| | - Jean-Pierre Bourquin
- University Children's Hospital, Division of Pediatric Oncology, University of Zurich, Switzerland
| | - Beat Bornhauser
- University Children's Hospital, Division of Pediatric Oncology, University of Zurich, Switzerland
| | - Valentina Serafin
- Oncohematology Laboratory, Department of Woman's and Child's Health, University of Padova, Padova, Italy
| | - Silvia Bresolin
- Oncohematology Laboratory, Department of Woman's and Child's Health, University of Padova, Padova, Italy
| | - Maddalena Paganin
- Oncohematology Laboratory, Department of Woman's and Child's Health, University of Padova, Padova, Italy
| | - Benedetta Accordi
- Oncohematology Laboratory, Department of Woman's and Child's Health, University of Padova, Padova, Italy
| | - Giuseppe Basso
- Oncohematology Laboratory, Department of Woman's and Child's Health, University of Padova, Padova, Italy
| | - Neil L Kelleher
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois
- Department of Chemistry, Northwestern University, Chicago, Illinois
| | | | | | - John D Crispino
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois.
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| |
Collapse
|
68
|
Arruga F, Vaisitti T, Deaglio S. The NOTCH Pathway and Its Mutations in Mature B Cell Malignancies. Front Oncol 2018; 8:550. [PMID: 30534535 PMCID: PMC6275466 DOI: 10.3389/fonc.2018.00550] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
The systematic application of next-generation sequencing to large cohorts of oncologic samples has opened a Pandora's box full of known and novel genetic lesions implicated in different steps of cancer development and progression. Narrowing down to B cell malignancies, many previously unrecognized genes emerged as recurrently mutated. The challenge now is to determine how the mutation in a given gene affects the biology of the disease, paving the way to functional genomics studies. Mutations in NOTCH family members are shared by several disorders of the B series, even if with variable frequencies and mutational patterns. In silico predictions, revealed that mutations occurring in NOTCH receptors, despite being qualitatively different, may have similar effects on protein processing, ultimately leading to enhanced pathway activation. The discovery of mutations occurring also in downstream players, either potentiating positive signals or compromising negative regulators, indicates that multiple mechanisms in neoplastic B cells concur to activate NOTCH pathway. These findings are supported by results obtained in chronic lymphocytic leukemia and splenic marginal zone B cell lymphoma where deregulation of NOTCH signaling has been functionally characterized. The emerging picture confirms that NOTCH signaling is finely tuned in cell- and microenvironment-dependent ways. In B cell malignancies, it contributes to the regulation of proliferation, survival and migration. However, deeper biological studies are needed to pinpoint the contribution of NOTCH in the hierarchy of events driving B cells transformation, keeping in mind its role in normal B cells development. Because of its relevance in leukemia and lymphoma biology, the NOTCH pathway might represent an appealing therapeutic target: the next few years will tell whether this potential will be fulfilled.
Collapse
Affiliation(s)
- Francesca Arruga
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| | - Tiziana Vaisitti
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| | - Silvia Deaglio
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| |
Collapse
|
69
|
Espiritu EB, Crunk AE, Bais A, Hochbaum D, Cervino AS, Phua YL, Butterworth MB, Goto T, Ho J, Hukriede NA, Cirio MC. The Lhx1-Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development. Sci Rep 2018; 8:16029. [PMID: 30375416 PMCID: PMC6207768 DOI: 10.1038/s41598-018-34038-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022] Open
Abstract
The molecular events driving specification of the kidney have been well characterized. However, how the initial kidney field size is established, patterned, and proportioned is not well characterized. Lhx1 is a transcription factor expressed in pronephric progenitors and is required for specification of the kidney, but few Lhx1 interacting proteins or downstream targets have been identified. By tandem-affinity purification, we isolated FRY like transcriptional coactivator (Fryl), one of two paralogous genes, fryl and furry (fry), have been described in vertebrates. Both proteins were found to interact with the Ldb1-Lhx1 complex, but our studies focused on Lhx1/Fry functional roles, as they are expressed in overlapping domains. We found that Xenopus embryos depleted of fry exhibit loss of pronephric mesoderm, phenocopying the Lhx1-depleted animals. In addition, we demonstrated a synergism between Fry and Lhx1, identified candidate microRNAs regulated by the pair, and confirmed these microRNA clusters influence specification of the kidney. Therefore, our data shows that a constitutively-active Ldb1-Lhx1 complex interacts with a broadly expressed microRNA repressor, Fry, to establish the kidney field.
Collapse
Affiliation(s)
- Eugenel B Espiritu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda E Crunk
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abha Bais
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Hochbaum
- Universidad de Buenos Aires, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
| | - Ailen S Cervino
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,CONICET- Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Yu Leng Phua
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Toshiyasu Goto
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jacqueline Ho
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Cecilia Cirio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina. .,CONICET- Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.
| |
Collapse
|
70
|
Chen XL, Wang SF, Xu ZS. [The relationship between NOTCH1 mutation and the Richter transformation in chronic lymphocytic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:787-789. [PMID: 30369195 PMCID: PMC7342246 DOI: 10.3760/cma.j.issn.0253-2727.2018.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 11/25/2022]
|
71
|
Kourtis N, Lazaris C, Hockemeyer K, Balandrán JC, Jimenez AR, Mullenders J, Gong Y, Trimarchi T, Bhatt K, Hu H, Shrestha L, Ambesi-Impiombato A, Kelliher M, Paietta E, Chiosis G, Guzman ML, Ferrando AA, Tsirigos A, Aifantis I. Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia. Nat Med 2018; 24:1157-1166. [PMID: 30038221 PMCID: PMC6082694 DOI: 10.1038/s41591-018-0105-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/12/2018] [Indexed: 12/13/2022]
Abstract
Cellular transformation is accompanied by extensive rewiring of many biological processes leading to augmented levels of distinct types of cellular stress, including proteotoxic stress. Cancer cells critically depend on stress-relief pathways for their survival. However, the mechanisms underlying the transcriptional initiation and maintenance of the oncogenic stress response remain elusive. Here, we show that the expression of heat shock transcription factor 1 (HSF1) and the downstream mediators of the heat shock response is transcriptionally upregulated in T cell acute lymphoblastic leukemia (T-ALL). Hsf1 ablation suppresses the growth of human T-ALL and eradicates leukemia in mouse models of T-ALL, while sparing normal hematopoiesis. HSF1 drives a compact transcriptional program and among the direct HSF1 targets, specific chaperones and co-chaperones mediate its critical role in T-ALL. Notably, we demonstrate that the central T-ALL oncogene NOTCH1 hijacks the cellular stress response machinery by inducing the expression of HSF1 and its downstream effectors. The NOTCH1 signaling status controls the levels of chaperone/co-chaperone complexes and predicts the response of T-ALL patient samples to HSP90 inhibition. Our data demonstrate an integral crosstalk between mediators of oncogene and non-oncogene addiction and reveal critical nodes of the heat shock response pathway that can be targeted therapeutically.
Collapse
Affiliation(s)
- Nikos Kourtis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.
| | - Charalampos Lazaris
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Kathryn Hockemeyer
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Juan Carlos Balandrán
- Molecular Biomedicine Program, CINVESTAV IPN, Mexico City, Mexico
- CONACYT-Centro de Investigacion Biomedica de Oriente, IMSS Delegacion Puebla, Atlixco, Mexico
- Haematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Alejandra R Jimenez
- Haematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jasper Mullenders
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC), Utrecht, the Netherlands
| | - Yixiao Gong
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Thomas Trimarchi
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Kamala Bhatt
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Hai Hu
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Liza Shrestha
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
| | - Alberto Ambesi-Impiombato
- Institute for Cancer Genetics, Department of Pathology and Department of Pediatrics, Columbia University, New York, NY, USA
- PsychoGenics Inc., Tarrytown, New York, NY, USA
| | - Michelle Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Gabriela Chiosis
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
| | - Monica L Guzman
- Haematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Department of Pathology and Department of Pediatrics, Columbia University, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
72
|
Giaimo BD, Borggrefe T. Introduction to Molecular Mechanisms in Notch Signal Transduction and Disease Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:3-30. [DOI: 10.1007/978-3-319-89512-3_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
73
|
Ismail T, Lee HK, Kim C, Kwon T, Park TJ, Lee HS. KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenetics Chromatin 2018; 11:33. [PMID: 29921310 PMCID: PMC6006565 DOI: 10.1186/s13072-018-0203-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The lysine-specific histone demethylase 1A (KDM1A) was the first demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a flavin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, oncoproteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenvironment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifier that regulates the growth and differentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more effective anticancer drugs.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyun-Kyung Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Chowon Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
74
|
Bray SJ, Gomez-Lamarca M. Notch after cleavage. Curr Opin Cell Biol 2018; 51:103-109. [DOI: 10.1016/j.ceb.2017.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/13/2017] [Indexed: 01/13/2023]
|
75
|
Bellavia D, Palermo R, Felli MP, Screpanti I, Checquolo S. Notch signaling as a therapeutic target for acute lymphoblastic leukemia. Expert Opin Ther Targets 2018. [PMID: 29527929 DOI: 10.1080/14728222.2018.1451840] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Although the therapy of ALL has significantly improved, the heterogeneous genetic landscape of the disease often causes relapse, which is difficult to treat. Achieving a positive outcome for patients with relapsed or refractory ALL remains a challenging issue. The high prevalence of NOTCH-activating mutations in T-cell acute lymphoblastic leukemia (T-ALL) and the central role of NOTCH signaling in regulating cell survival and growth of ALL provide a rationale for the development of Notch signaling-targeted strategies in this disease. Therapeutic alternatives with effective anti-leukemic potential and low toxicity are needed. Areas covered: This review provides an overview of the currently available drugs directly or indirectly targeting Notch signaling in ALL. Besides considering the known Notch targeting approaches, such as γ-secretase inhibitors (GSIs) and Notch inhibiting antibodies (mAbs), currently in clinical trials, we focus on the recent insights into the molecular mechanisms underlying the Notch signaling regulation in ALL. Expert opinion: Novel drugs targeting specific steps of Notch signaling or intersecting pathways could improve the efficiency of the conventional hematological cancers therapies. Further studies are required to translate the new findings into future clinical applications.
Collapse
Affiliation(s)
- Diana Bellavia
- a Department of Molecular Medicine , Sapienza University , Rome , Italy
| | - Rocco Palermo
- b Center for Life Nano Science@Sapienza , Istituto Italiano di Tecnologia , Rome , Italy
| | - Maria Pia Felli
- c Department of Experimental Medicine , Sapienza University , Rome , Italy
| | - Isabella Screpanti
- a Department of Molecular Medicine , Sapienza University , Rome , Italy.,b Center for Life Nano Science@Sapienza , Istituto Italiano di Tecnologia , Rome , Italy.,d Institute Pasteur-Foundation Cenci Bolognetti , Sapienza University , Rome , Italy
| | - Saula Checquolo
- e Department of Medico-Surgical Sciences and Biotechnology , Sapienza University , Latina , Italy
| |
Collapse
|
76
|
Maes T, Mascaró C, Tirapu I, Estiarte A, Ciceri F, Lunardi S, Guibourt N, Perdones A, Lufino MMP, Somervaille TCP, Wiseman DH, Duy C, Melnick A, Willekens C, Ortega A, Martinell M, Valls N, Kurz G, Fyfe M, Castro-Palomino JC, Buesa C. ORY-1001, a Potent and Selective Covalent KDM1A Inhibitor, for the Treatment of Acute Leukemia. Cancer Cell 2018; 33:495-511.e12. [PMID: 29502954 DOI: 10.1016/j.ccell.2018.02.002] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/17/2017] [Accepted: 02/01/2018] [Indexed: 01/02/2023]
Abstract
The lysine-specific demethylase KDM1A is a key regulator of stem cell potential in acute myeloid leukemia (AML). ORY-1001 is a highly potent and selective KDM1A inhibitor that induces H3K4me2 accumulation on KDM1A target genes, blast differentiation, and reduction of leukemic stem cell capacity in AML. ORY-1001 exhibits potent synergy with standard-of-care drugs and selective epigenetic inhibitors, reduces growth of an AML xenograft model, and extends survival in a mouse PDX (patient-derived xenograft) model of T cell acute leukemia. Surrogate pharmacodynamic biomarkers developed based on expression changes in leukemia cell lines were translated to samples from patients treated with ORY-1001. ORY-1001 is a selective KDM1A inhibitor in clinical trials and is currently being evaluated in patients with leukemia and solid tumors.
Collapse
Affiliation(s)
- Tamara Maes
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain.
| | - Cristina Mascaró
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Iñigo Tirapu
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Angels Estiarte
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Filippo Ciceri
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Serena Lunardi
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Nathalie Guibourt
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Alvaro Perdones
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Michele M P Lufino
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Dan H Wiseman
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Cihangir Duy
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, 10065 NY, USA
| | - Ari Melnick
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, 10065 NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, 10065 NY, USA
| | - Christophe Willekens
- Drug Development Department (DITEP) and Hematology Department, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Alberto Ortega
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Marc Martinell
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Nuria Valls
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Guido Kurz
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | - Matthew Fyfe
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| | | | - Carlos Buesa
- Oryzon Genomics, S.A. Carrer Sant Ferran 74, 08940 Cornellà de Llobregat, Spain
| |
Collapse
|
77
|
Adamowicz M, d'Adda di Fagagna F, Vermezovic J. NOTCH1 modulates activity of DNA-PKcs. Mutat Res 2018; 808:20-27. [PMID: 29482073 DOI: 10.1016/j.mrfmmm.2018.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/13/2018] [Indexed: 11/18/2022]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) controls one of the most frequently used DNA repair pathways in a cell, the non-homologous end joining (NHEJ) pathway. However, the exact role of DNA-PKcs in NHEJ remains poorly defined. Here we show that NOTCH1 attenuates DNA-PKcs-mediated autophosphorylation, as well as the phosphorylation of its specific substrate XRCC4. Surprisingly, NOTCH1-expressing cells do not display any significant impairment in the DNA damage repair, nor cellular survival, and remain sensitive to small molecule DNA-PKcs inhibitor. Additionally, in vitro DNA-PKcs kinase assay shows that NOTCH1 does not inhibit DNA-PKcs kinase activity, implying that NOTCH1 acts on DNA-PKcs through a different mechanism. Together, our set of results suggests that NOTCH1 is a physiological modulator of DNA-PKcs, and that it can be a useful tool to clarify the mechanisms by which DNA-PKcs governs NHEJ DNA repair.
Collapse
Affiliation(s)
- Marek Adamowicz
- IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy; Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK.
| | - Fabrizio d'Adda di Fagagna
- IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Jelena Vermezovic
- IFOM Foundation - FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy.
| |
Collapse
|
78
|
Byun YS, Kim EK, Araki K, Yamamura KI, Lee K, Yoon WK, Won YS, Kim HC, Choi KC, Nam KH. Fryl deficiency is associated with defective kidney development and function in mice. Exp Biol Med (Maywood) 2018; 243:408-417. [PMID: 29409347 DOI: 10.1177/1535370218758249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
FRY like transcription coactivator ( Fryl) gene located on chromosome 5 is a paralog of FRY microtubule binding protein ( Fry) in vertebrates. It encodes a protein with unknown functions. Fryl gene is conserved in various species ranging from eukaryotes to human. Although there are several reports on functions of Fry gene, functions of Fryl gene remain unclear. A mouse line containing null mutation in Fryl gene by gene trapping was produced in this study for the first time. The survival and growth of Fryl-/- mice were observed. Fryl gene expression levels in mouse tissues were determined and histopathologic analyses were conducted. Most Fryl-/- mice died soon after birth. Rare Fryl-/- survivors showed growth retardation with significantly lower body weight compared to their littermate controls. Although they could breed, more than half of Fryl-/- survivors died of hydronephrosis before age 1. No abnormal histopathologic lesion was apparent in full-term embryo or adult tissues except the kidney. Abnormal lining cell layer detachments from walls of collecting and convoluted tubules in kidneys were apparent in Fryl-/- neonates and full-term embryos. Fryl gene was expressed in renal tubular tissues including the glomeruli and convoluted and collecting tubules. This indicates that defects in tubular systems are associated with Fryl functions and death of Fryl-/- neonates. Fryl protein is required for normal development and functional maintenance of kidney in mice. This is the first report of in vivo Fryl gene functions. Impact statement FRY like transcription coactivator ( Fryl) gene is conserved in various species ranging from eukaryotes to human. It expresses a protein with unknown function. We generated a Fryl gene mutant mouse line and found that most homozygous mice died soon after their birth. Rare Fryl-/- survivors showed growth retardation with significantly lower body weight compared to their littermate controls. Although they could breed, more than half of Fryl-/- survivors died of hydronephrosis before age 1. Full-term mutant embryos showed abnormal collecting and convoluted tubules in kidneys where Fryl gene was expressed. Collectively, these results indicate that Fryl protein is required for normal development and functional maintenance of kidney in mice. To the best of our knowledge, this is the first report on in vivo Fryl gene functions.
Collapse
Affiliation(s)
- Yong-Sub Byun
- 1 Laboratory Animal Resource Center, 204180 Korea Research Institute of Bioscience and Biotechnology , Chungbuk 28116, Korea
- 2 Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Chungbuk 28644, Korea
| | - Eun-Kyoung Kim
- 1 Laboratory Animal Resource Center, 204180 Korea Research Institute of Bioscience and Biotechnology , Chungbuk 28116, Korea
| | - Kimi Araki
- 3 Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ken-Ichi Yamamura
- 3 Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kihoon Lee
- 1 Laboratory Animal Resource Center, 204180 Korea Research Institute of Bioscience and Biotechnology , Chungbuk 28116, Korea
| | - Won-Kee Yoon
- 1 Laboratory Animal Resource Center, 204180 Korea Research Institute of Bioscience and Biotechnology , Chungbuk 28116, Korea
| | - Young-Suk Won
- 1 Laboratory Animal Resource Center, 204180 Korea Research Institute of Bioscience and Biotechnology , Chungbuk 28116, Korea
| | - Hyoung-Chin Kim
- 1 Laboratory Animal Resource Center, 204180 Korea Research Institute of Bioscience and Biotechnology , Chungbuk 28116, Korea
| | - Kyung-Chul Choi
- 2 Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Chungbuk 28644, Korea
| | - Ki-Hoan Nam
- 1 Laboratory Animal Resource Center, 204180 Korea Research Institute of Bioscience and Biotechnology , Chungbuk 28116, Korea
| |
Collapse
|
79
|
The histone demethylase PHF8 promotes adult acute lymphoblastic leukemia through interaction with the MEK/ERK signaling pathway. Biochem Biophys Res Commun 2018; 496:981-987. [PMID: 29330049 DOI: 10.1016/j.bbrc.2018.01.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/08/2018] [Indexed: 01/21/2023]
Abstract
Adult acute lymphoblastic leukemia (ALL) is a malignant disorder of lymphoid progenitor cells that is associated with a high risk of relapse and poor prognosis. Thus, novel pathogenic mechanisms and therapeutic targets need to be explored. Histone methylation is one of the most significant chromatin post-translational modifications. Here, we show that the histone demethylase PHF8 is highly expressed in a large number of ALL clinical specimens and that PHF8 expression is associated with ALL progression. PHF8 knockdown inhibits proliferation and promotes the apoptosis of ALL cells in vitro as well as attenuates tumor growth in vivo. PHF8 transcriptionally upregulates MEK1, a key molecule in the MEK/ERK pathway, at least partially by directly binding to its promoter, thereby activating the MEK/ERK pathway. In addition, we found that an inhibitor of the MEK/ERK pathway, PD184352, subsequently suppresses PHF8 expression. Thus, PHF8 forms a positive feedback loop with the MEK/ERK pathway, and PHF8 knockdown enhances the lethality of PD184352 in ALL cells. In conclusion, this study identifies oncogenic functions of PHF8 in adult ALL and suggests a novel epigenetic strategy for disease intervention.
Collapse
|
80
|
Abstract
Cellular senescence, previously thought of as an autonomous tumour suppressor mechanism, is emerging as a phenotype and effector present throughout the life of an organism from embryogenesis to senile decline. Senescent cells have powerful non-autonomous effects upon multiple players within their microenvironment mainly through their secretory phenotype. How senescent cells co-ordinate numerous, sometimes functionally contrasting outputs through their secretome had previously been unclear. The Notch pathway, originally identified for its involvement in Drosophila wing development, has more recently been found to underpin diverse effects in human cancer. Here we discuss recent findings that suggest that Notch is intimately involved in the development of senescence and how it acts to co-ordinate the composition and functional effects of the senescence secretome. We also highlight the complex physical and functional interplay between Notch and p53, critical to both senescence and cancer. Understanding the interplay between Notch, p53 and senescence could allow us develop the therapeutics of the future for cancer and ageing.
Collapse
Affiliation(s)
- Matthew Hoare
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
81
|
The Notch Interactome: Complexity in Signaling Circuitry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:125-140. [PMID: 30030825 DOI: 10.1007/978-3-319-89512-3_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Notch pathway controls a very broad spectrum of cell fates in metazoans during development, influencing proliferation, differentiation and cell death. Given its central role in normal development and homeostasis, misregulation of Notch signals can lead to various disorders including cancer. How the Notch pathway mediates such pleiotropic and differential effects is of fundamental importance. It is becoming increasingly clear through a number of large-scale genetic and proteomic studies that Notch interacts with a staggeringly large number of other genes and pathways in a context-dependent, complex, and highly regulated network, which determines the ultimate biological outcome. How best to interpret and analyze the continuously increasing wealth of data on Notch interactors remains a challenge. Here we review the current state of genetic and proteomic data related to the Notch interactome.
Collapse
|
82
|
Adamowicz M. Breaking up with ATM. JOURNAL OF IMMUNOLOGICAL SCIENCES 2018; 2:26-31. [PMID: 29652413 PMCID: PMC5892715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
ATM kinase is a master regulator of the DNA damage response (DDR). A recently published report from the d'Adda di Fagagna laboratory1 sheds a light onto our understanding of ATM activation. In this short-commentary we will expand on this and other work to perceive better some of the aspects of ATM regulation.
Collapse
Affiliation(s)
- Marek Adamowicz
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK,Correspondence: Dr. Marek Adamowicz, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK;
| |
Collapse
|
83
|
Bellavia D, Checquolo S, Palermo R, Screpanti I. The Notch3 Receptor and Its Intracellular Signaling-Dependent Oncogenic Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:205-222. [PMID: 30030828 DOI: 10.1007/978-3-319-89512-3_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During evolution, gene duplication of the Notch receptor suggests a progressive functional diversification. The Notch3 receptor displays a number of structural differences with respect to Notch1 and Notch2, most of which have been reported in the transmembrane and in the intracellular regions, mainly localized in the negative regulatory region (NRR) and trans-activation domain (TAD). Targeted deletion of Notch3 does not result in embryonic lethality, which is in line with its highly restricted tissue expression pattern. Importantly, deregulated Notch3 expression and/or activation, often results in disrupted cell differentiation and/or pathological development, most notably in oncogenesis in different cell contexts. Mechanistically this is due to Notch3-related genetic alterations or epigenetic or posttranslational control mechanisms. In this chapter we discuss the possible relationships between the structural differences and the pathological role of Notch3 in the control of mouse and human cancers. In future, targeting the unique features of Notch3-oncogenic mechanisms could be exploited to develop anticancer therapeutics.
Collapse
Affiliation(s)
- Diana Bellavia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocco Palermo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
84
|
Bais MV. Targeting oral cancer epigenome via LSD1. Aging (Albany NY) 2017; 9:2455-2456. [PMID: 29232656 PMCID: PMC5764378 DOI: 10.18632/aging.101343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 12/10/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Manish V Bais
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| |
Collapse
|
85
|
Abstract
PURPOSE OF REVIEW This article highlights recent discoveries about Notch activation and its oncogenic functions in lymphoid malignancies, and discusses the therapeutic potential of Notch inhibition. RECENT FINDINGS NOTCH mutations arise in a broad spectrum of lymphoid malignancies and are increasingly scrutinized as putative therapeutic targets. In T-cell acute lymphoblastic leukemia (T-ALL), NOTCH1 mutations affect the extracellular negative regulatory region and lead to constitutive Notch activation, although mutated receptors remain sensitive to Notch ligands. Other NOTCH1 mutations in T-ALL and NOTCH1/2 mutations in multiple B-cell malignancies truncate the C-terminal proline (P), glutamic acid (E), serine (S), threonine (T)-rich (PEST) domain, leading to decreased Notch degradation after ligand-mediated activation. Thus, targeting Notch ligand-receptor interactions could provide therapeutic benefits. In addition, we discuss recent reports on clinical testing of Notch inhibitors in T-ALL that influenced contemporary thinking on the challenges of targeting Notch in cancer. We review advances in the laboratory to address these challenges in regards to drug targets, the Notch-driven metabolome, and the sophisticated protein-protein interactions at Notch-dependent superenhancers that underlie oncogenic Notch functions. SUMMARY Notch signaling is a recurrent oncogenic pathway in multiple T- and B-cell lymphoproliferative disorders. Understanding the complexity and consequences of Notch activation is critical to define optimal therapeutic strategies targeting the Notch pathway.
Collapse
|
86
|
Liang Y, Ahmed M, Guo H, Soares F, Hua JT, Gao S, Lu C, Poon C, Han W, Langstein J, Ekram MB, Li B, Davicioni E, Takhar M, Erho N, Karnes RJ, Chadwick D, van der Kwast T, Boutros PC, Arrowsmith CH, Feng FY, Joshua AM, Zoubeidi A, Cai C, He HH. LSD1-Mediated Epigenetic Reprogramming Drives CENPE Expression and Prostate Cancer Progression. Cancer Res 2017; 77:5479-5490. [PMID: 28916652 DOI: 10.1158/0008-5472.can-17-0496] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/28/2017] [Accepted: 08/17/2017] [Indexed: 12/31/2022]
Abstract
Androgen receptor (AR) signaling is a key driver of prostate cancer, and androgen-deprivation therapy (ADT) is a standard treatment for patients with advanced and metastatic disease. However, patients receiving ADT eventually develop incurable castration-resistant prostate cancer (CRPC). Here, we report that the chromatin modifier LSD1, an important regulator of AR transcriptional activity, undergoes epigenetic reprogramming in CRPC. LSD1 reprogramming in this setting activated a subset of cell-cycle genes, including CENPE, a centromere binding protein and mitotic kinesin. CENPE was regulated by the co-binding of LSD1 and AR to its promoter, which was associated with loss of RB1 in CRPC. Notably, genetic deletion or pharmacological inhibition of CENPE significantly decreases tumor growth. Our findings show how LSD1-mediated epigenetic reprogramming drives CRPC, and they offer a mechanistic rationale for its therapeutic targeting in this disease. Cancer Res; 77(20); 5479-90. ©2017 AACR.
Collapse
Affiliation(s)
- Yi Liang
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| | - Haiyang Guo
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| | - Fraser Soares
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| | - Junjie T Hua
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shuai Gao
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Catherine Lu
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| | - Christine Poon
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| | - Wanting Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Jens Langstein
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
- German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Muhammad B Ekram
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Brian Li
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| | - Elai Davicioni
- Research & Development, GenomeDx Biosciences Inc., Vancouver BC, Canada
| | - Mandeep Takhar
- Research & Development, GenomeDx Biosciences Inc., Vancouver BC, Canada
| | - Nicholas Erho
- Research & Development, GenomeDx Biosciences Inc., Vancouver BC, Canada
| | | | - Dianne Chadwick
- UHN Program in BioSpecimen Sciences, Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Theodorus van der Kwast
- Department of Pathology and Laboratory Medicine, Toronto General Hospital/University Health Network, Toronto, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Informatics and Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Felix Y Feng
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, California
- Department of Urology, University of California at San Francisco, San Francisco, California
- Department of Medicine, University of California at San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Anthony M Joshua
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
- Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, Australia
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Housheng H He
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
87
|
Xu T, Park SS, Giaimo BD, Hall D, Ferrante F, Ho DM, Hori K, Anhezini L, Ertl I, Bartkuhn M, Zhang H, Milon E, Ha K, Conlon KP, Kuick R, Govindarajoo B, Zhang Y, Sun Y, Dou Y, Basrur V, Elenitoba-Johnson KS, Nesvizhskii AI, Ceron J, Lee CY, Borggrefe T, Kovall RA, Rual JF. RBPJ/CBF1 interacts with L3MBTL3/MBT1 to promote repression of Notch signaling via histone demethylase KDM1A/LSD1. EMBO J 2017; 36:3232-3249. [PMID: 29030483 PMCID: PMC5666606 DOI: 10.15252/embj.201796525] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 08/31/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
Notch signaling is an evolutionarily conserved signal transduction pathway that is essential for metazoan development. Upon ligand binding, the Notch intracellular domain (NOTCH ICD) translocates into the nucleus and forms a complex with the transcription factor RBPJ (also known as CBF1 or CSL) to activate expression of Notch target genes. In the absence of a Notch signal, RBPJ acts as a transcriptional repressor. Using a proteomic approach, we identified L3MBTL3 (also known as MBT1) as a novel RBPJ interactor. L3MBTL3 competes with NOTCH ICD for binding to RBPJ. In the absence of NOTCH ICD, RBPJ recruits L3MBTL3 and the histone demethylase KDM1A (also known as LSD1) to the enhancers of Notch target genes, leading to H3K4me2 demethylation and to transcriptional repression. Importantly, in vivo analyses of the homologs of RBPJ and L3MBTL3 in Drosophila melanogaster and Caenorhabditis elegans demonstrate that the functional link between RBPJ and L3MBTL3 is evolutionarily conserved, thus identifying L3MBTL3 as a universal modulator of Notch signaling in metazoans.
Collapse
Affiliation(s)
- Tao Xu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sung-Soo Park
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Daniel Hall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Diana M Ho
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Kazuya Hori
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Lucas Anhezini
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Iris Ertl
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marek Bartkuhn
- Institute for Genetics, University of Giessen, Giessen, Germany
| | - Honglai Zhang
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eléna Milon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kimberly Ha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kevin P Conlon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rork Kuick
- Center for Cancer Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Brandon Govindarajoo
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zhang
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yuqing Sun
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yali Dou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Julian Ceron
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jean-François Rual
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
88
|
Asensio-Juan E, Fueyo R, Pappa S, Iacobucci S, Badosa C, Lois S, Balada M, Bosch-Presegué L, Vaquero A, Gutiérrez S, Caelles C, Gallego C, de la Cruz X, Martínez-Balbás MA. The histone demethylase PHF8 is a molecular safeguard of the IFNγ response. Nucleic Acids Res 2017; 45:3800-3811. [PMID: 28100697 PMCID: PMC5397186 DOI: 10.1093/nar/gkw1346] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 01/12/2017] [Indexed: 11/14/2022] Open
Abstract
A precise immune response is essential for cellular homeostasis and animal survival. The paramount importance of its control is reflected by the fact that its non-specific activation leads to inflammatory events that ultimately contribute to the appearance of many chronic diseases. However, the molecular mechanisms preventing non-specific activation and allowing a quick response upon signal activation are not yet fully understood. In this paper we uncover a new function of PHF8 blocking signal independent activation of immune gene promoters. Affinity purifications coupled with mass spectrometry analysis identified SIN3A and HDAC1 corepressors as new PHF8 interacting partners. Further molecular analysis demonstrated that prior to interferon gamma (IFNγ) stimulation, PHF8 is bound to a subset of IFNγ-responsive promoters. Through the association with HDAC1 and SIN3A, PHF8 keeps the promoters in a silent state, maintaining low levels of H4K20me1. Upon IFNγ treatment, PHF8 is phosphorylated by ERK2 and evicted from the promoters, correlating with an increase in H4K20me1 and transcriptional activation. Our data strongly indicate that in addition to its well-characterized function as a coactivator, PHF8 safeguards transcription to allow an accurate immune response.
Collapse
Affiliation(s)
- Elena Asensio-Juan
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Raquel Fueyo
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Stella Pappa
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Simona Iacobucci
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Carmen Badosa
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Sergi Lois
- Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119, E-08035 Barcelona, Spain
| | - Miriam Balada
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Laia Bosch-Presegué
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Institut d?Investigació Biomèdica de Bellvitge (IDIBELL), 08907- L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alex Vaquero
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Institut d?Investigació Biomèdica de Bellvitge (IDIBELL), 08907- L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Gutiérrez
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Carme Caelles
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona 08028, Spain
| | - Carme Gallego
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Xavier de la Cruz
- Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119, E-08035 Barcelona, Spain.,Institut Català per la Recerca i Estudis Avançats (ICREA), Barcelona 08018, Spain
| | - Marian A Martínez-Balbás
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| |
Collapse
|
89
|
Shao P, Liu Q, Maina PK, Cui J, Bair TB, Li T, Umesalma S, Zhang W, Qi HH. Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis. Nucleic Acids Res 2017; 45:1687-1702. [PMID: 27899639 PMCID: PMC5389682 DOI: 10.1093/nar/gkw1093] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Histone demethylase PHF8 is upregulated and plays oncogenic roles in various cancers; however, the mechanisms underlying its dysregulation and functions in carcinogenesis remain obscure. Here, we report the novel functions of PHF8 in EMT (epithelial to mesenchymal transition) and breast cancer development. Genome-wide gene expression analysis revealed that PHF8 overexpression induces an EMT-like process, including the upregulation of SNAI1 and ZEB1. PHF8 demethylates H3K9me1, H3K9me2 and sustains H3K4me3 to prime the transcriptional activation of SNAI1 by TGF-β signaling. We show that PHF8 is upregulated and positively correlated with MYC at protein levels in breast cancer. MYC post-transcriptionally regulates the expression of PHF8 via the repression of microRNAs. Specifically, miR-22 directly targets and inhibits PHF8 expression, and mediates the regulation of PHF8 by MYC and TGF-β signaling. This novel MYC/microRNAs/PHF8 regulatory axis thus places PHF8 as an important downstream effector of MYC. Indeed, PHF8 contributes to MYC-induced cell proliferation and the expression of EMT-related genes. We also report that PHF8 plays important roles in breast cancer cell migration and tumor growth. These oncogenic functions of PHF8 in breast cancer confer its candidacy as a promising therapeutic target for this disease.
Collapse
Affiliation(s)
- Peng Shao
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, IA 52242, USA
| | - Qi Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, IA 52242, USA
| | - Peterson Kariuki Maina
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, IA 52242, USA
| | - Jiayue Cui
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Thomas B Bair
- Iowa Institute of Human Genetics, Carver College of Medicine, The University of Iowa, IA 52242, USA
| | - Tiandao Li
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA
| | - Shaikamjad Umesalma
- Department of Pathology, Carver College of Medicine, The University of Iowa, IA 52242, USA
| | - Weizhou Zhang
- Department of Pathology, Carver College of Medicine, The University of Iowa, IA 52242, USA
| | - Hank Heng Qi
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, IA 52242, USA
| |
Collapse
|
90
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 674] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
91
|
The Canonical Notch Signaling Pathway: Structural and Biochemical Insights into Shape, Sugar, and Force. Dev Cell 2017; 41:228-241. [PMID: 28486129 DOI: 10.1016/j.devcel.2017.04.001] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/04/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023]
Abstract
The Notch signaling pathway relies on a proteolytic cascade to release its transcriptionally active intracellular domain, on force to unfold a protective domain and permit proteolysis, on extracellular domain glycosylation to tune the forces exerted by endocytosed ligands, and on a motley crew of nuclear proteins, chromatin modifiers, ubiquitin ligases, and a few kinases to regulate activity and half-life. Herein we provide a review of recent molecular insights into how Notch signals are triggered and how cell shape affects these events, and we use the new insights to illuminate a few perplexing observations.
Collapse
|
92
|
Battaglia S, Karasik E, Gillard B, Williams J, Winchester T, Moser MT, Smiraglia DJ, Foster BA. LSD1 dual function in mediating epigenetic corruption of the vitamin D signaling in prostate cancer. Clin Epigenetics 2017; 9:82. [PMID: 28811844 PMCID: PMC5553900 DOI: 10.1186/s13148-017-0382-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lysine-specific demethylase 1A (LSD1) is a key regulator of the androgen (AR) and estrogen receptors (ER), and LSD1 levels correlate with tumor aggressiveness. Here, we demonstrate that LSD1 regulates vitamin D receptor (VDR) activity and is a mediator of 1,25(OH)2-D3 (vitamin D) action in prostate cancer (PCa). METHODS Athymic nude mice were xenografted with CWR22 cells and monitored weekly after testosterone pellet removal. Expression of LSD1 and VDR (IHC) were correlated with tumor growth using log-rank test. TRAMP tumors and prostates from wild-type (WT) mice were used to evaluate VDR and LSD1 expression via IHC and western blotting. The presence of VDR and LSD1 in the same transcriptional complex was evaluated via immunoprecipitation (IP) using nuclear cell lysate. The effect of LSD1 and 1,25(OH)2-D3 on cell viability was evaluated in C4-2 and BC1A cells via trypan blue exclusion. The role of LSD1 in VDR-mediated gene transcription was evaluated for Cdkn1a, E2f1, Cyp24a1, and S100g via qRT-PCR-TaqMan and via chromatin immunoprecipitation assay. Methylation of Cdkn1a TSS was measured via bisulfite sequencing, and methylation of a panel of cancer-related genes was quantified using methyl arrays. The Cancer Genome Atlas data were retrieved to identify genes whose status correlates with LSD1 and DNA methyltransferase 1 (DNMT1). Results were correlated with patients' survival data from two separate cohorts of primary and metastatic PCa. RESULTS LSD1 and VDR protein levels are elevated in PCa tumors and correlate with faster tumor growth in xenograft mouse models. Knockdown of LSD1 reduces PCa cell viability, and gene expression data suggest a dual coregulatory role of LSD1 for VDR, acting as a coactivator and corepressor in a locus-specific manner. LSD1 modulates VDR-dependent transcription by mediating the recruitment of VDR and DNMT1 at the TSS of VDR-targeted genes and modulates the epigenetic status of transcribed genes by altering H3K4me2 and H3K9Ac and DNA methylation. Lastly, LSD1 and DNMT1 belong to a genome-wide signature whose expression correlates with shorter progression-free survival and overall survival in primary and metastatic patients' samples, respectively. CONCLUSIONS Results demonstrate that LSD1 has a dual coregulatory role as corepressor and coactivator for VDR and defines a genomic signature whose targeting might have clinical relevance for PCa patients.
Collapse
Affiliation(s)
- Sebastiano Battaglia
- Center for Immunotherapy, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Bryan Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Jennifer Williams
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Trisha Winchester
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Michael T Moser
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Dominic J Smiraglia
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY 14263 USA
| |
Collapse
|
93
|
RUNX1 is required for oncogenic Myb and Myc enhancer activity in T-cell acute lymphoblastic leukemia. Blood 2017; 130:1722-1733. [PMID: 28790107 DOI: 10.1182/blood-2017-03-775536] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
The gene encoding the RUNX1 transcription factor is mutated in a subset of T-cell acute lymphoblastic leukemia (T-ALL) patients, and RUNX1 mutations are associated with a poor prognosis. These mutations cluster in the DNA-binding Runt domain and are thought to represent loss-of-function mutations, indicating that RUNX1 suppresses T-cell transformation. RUNX1 has been proposed to have tumor suppressor roles in T-cell leukemia homeobox 1/3-transformed human T-ALL cell lines and NOTCH1 T-ALL mouse models. Yet, retroviral insertional mutagenesis screens identify RUNX genes as collaborating oncogenes in MYC-driven leukemia mouse models. To elucidate RUNX1 function(s) in leukemogenesis, we generated Tal1/Lmo2/Rosa26-CreERT2Runx1f/f mice and examined leukemia progression in the presence of vehicle or tamoxifen. We found that Runx1 deletion inhibits mouse leukemic growth in vivo and that RUNX silencing in human T-ALL cells triggers apoptosis. We demonstrate that a small molecule inhibitor, designed to interfere with CBFβ binding to RUNX proteins, impairs the growth of human T-ALL cell lines and primary patient samples. We demonstrate that a RUNX1 deficiency alters the expression of a crucial subset of TAL1- and NOTCH1-regulated genes, including the MYB and MYC oncogenes, respectively. These studies provide genetic and pharmacologic evidence that RUNX1 has oncogenic roles and reveal RUNX1 as a novel therapeutic target in T-ALL.
Collapse
|
94
|
Alsaqer SF, Tashkandi MM, Kartha VK, Yang YT, Alkheriji Y, Salama A, Varelas X, Kukuruzinska M, Monti S, Bais MV. Inhibition of LSD1 epigenetically attenuates oral cancer growth and metastasis. Oncotarget 2017; 8:73372-73386. [PMID: 29088714 PMCID: PMC5650269 DOI: 10.18632/oncotarget.19637] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/14/2017] [Indexed: 01/26/2023] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is a nuclear histone demethylase and a member of the amine oxidase (AO) family. LSD1 is a flavin-containing AO that specifically catalyzes the demethylation of mono- and di-methylated histone H3 lysine 4 through an FAD-dependent oxidative reaction. LSD1 is inappropriately upregulated in lung, liver, brain and esophageal cancers, where it promotes cancer initiation, progression, and metastasis. However, unlike other lysine-specific demethylases, the role and specific targets of LSD1 in oral squamous cell carcinoma (OSCC) pathogenesis remain unknown. We show that LSD1 protein expression was increased in malignant OSCC tissues in a clinical tissue microarray, and its expression correlated with progressive tumor stages. In an orthotopic oral cancer mouse model, LSD1 overexpression in aggressive HSC-3 cells promoted metastasis whereas knockdown of LSD1 inhibited tumor spread, suggesting that LSD1 is a key regulator of OSCC metastasis. Pharmacological inhibition of LSD1 using a specific small molecule inhibitor, GSK-LSD1, down-regulated EGF signaling pathway. Further, GSK-LSD1 attenuates CTGF/CCN2, MMP13, LOXL4 and vimentin expression but increased E-cadherin expression in pre-existing, patient-derived tonsillar OSCC xenografts. Similarly, GSK-LSD1 inhibited proliferation and CTGF expression in mesenchymal cells, including myoepithelial cells and osteosarcoma cells. In addition, gene set enrichment analysis revealed that GSK-LSD1 increased p53 expression and apoptosis while inhibiting c-myc, β-catenin and YAP-induced oncogenic transcriptional networks. These data reveal that aberrant LSD1 activation regulates key OSCC microenvironment and EMT promoting factors, including CTGF, LOXL4 and MMP13.
Collapse
Affiliation(s)
- Saqer F Alsaqer
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Mustafa M Tashkandi
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Vinay K Kartha
- Bioinformatics Program, Boston University, Boston, MA, USA.,Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Ya-Ting Yang
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Yazeed Alkheriji
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Andrew Salama
- Department of Oral and Maxillofacial Surgery, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Maria Kukuruzinska
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Stefano Monti
- Bioinformatics Program, Boston University, Boston, MA, USA.,Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Manish V Bais
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
95
|
Maina PK, Shao P, Jia X, Liu Q, Umesalma S, Marin M, Long D, Concepción-Román S, Qi HH. Histone demethylase PHF8 regulates hypoxia signaling through HIF1α and H3K4me3. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1002-1012. [PMID: 28734980 PMCID: PMC5776039 DOI: 10.1016/j.bbagrm.2017.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 11/12/2022]
Abstract
Hypoxia through transcription factor HIF1α plays a critical role in cancer development. In prostate cancer, HIF1α interplays with androgen receptor (AR) to contribute to the progression of this disease to its lethal form—castration-resistant prostate cancer (CRPC). Hypoxia upregulates several epigenetic factors including histone demethylase KDM3A which is a critical co-factor of HIF1α. However, how histone demethylases regulate hypoxia signaling is not fully understood. Here, we report that histone demethylase PHF8 plays an essential role in hypoxia signaling. Knockdown or knockout of PHF8 by RNAi or CRISPR-Cas9 system reduced the activation of HIF1α and the induction of HIF1α target genes including KDM3A. Mechanistically, PHF8 regulates hypoxia inducible genes mainly through sustaining the level of trimethylated histone 3 lysine 4 (H3K4me3), an active mark in transcriptional regulation. The positive role of PHF8 in hypoxia signaling extended to hypoxia-induced neuroendocrine differentiation (NED), wherein PHF8 cooperates with KDM3A to regulate the expression of NED genes. Moreover, we discovered that the role of PHF8 in hypoxia signaling is associated with the presence of full-length AR in CRPC cells. Collectively, our study identified PHF8 as a novel epigenetic factor in hypoxia signaling, and the underlying regulatory mechanisms likely apply to general cancer development involving HIF1α. Therefore, targeting PHF8 can potentially be a novel therapeutic strategy in cancer therapy.
Collapse
Affiliation(s)
- Peterson Kariuki Maina
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Peng Shao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Xiongfei Jia
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Qi Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Shaikamjad Umesalma
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Maximo Marin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Donald Long
- Department of Biology, Southern Utah University, Cedar City, UT 84720, USA
| | | | - Hank Heng Qi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA.
| |
Collapse
|
96
|
Hosseini A, Minucci S. A comprehensive review of lysine-specific demethylase 1 and its roles in cancer. Epigenomics 2017; 9:1123-1142. [PMID: 28699367 DOI: 10.2217/epi-2017-0022] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Histone methylation plays a key role in the regulation of chromatin structure, and its dynamics regulates important cellular processes. The investigation of the role of alterations in histone methylation in cancer has led to the identification of histone methyltransferases and demethylases as promising novel targets for therapy. Lysine-specific demethylase 1(LSD1, also known as KDM1A) is the first discovered histone lysine demethylase, with the ability to demethylase H3K4me1/2 and H3K9me1/2 at target loci in a context-dependent manner. LSD1 regulates the balance between self-renewal and differentiation of stem cells, and is highly expressed in various cancers, playing an important role in differentiation and self-renewal of tumor cells. In this review, we summarize recent studies about the LSD1, its role in normal and tumor cells, and the potential use of small molecule LSD1 inhibitors in therapy.
Collapse
Affiliation(s)
- Amir Hosseini
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
97
|
C-terminal deletion of NOTCH1 intracellular domain (N1 ICD) increases its stability but does not amplify and recapitulate N1 ICD-dependent signalling. Sci Rep 2017; 7:5034. [PMID: 28698562 PMCID: PMC5506007 DOI: 10.1038/s41598-017-05119-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/24/2017] [Indexed: 12/16/2022] Open
Abstract
Since the generation of a mouse strain conditionally expressing the active intracellular domain of Notch1 (N1ICD), many laboratories have exploited this model (RosaN1-ICD) to assess the impact of constitutive Notch1 signalling activation in normal and pathological processes. It should be underscored that Cre-recombination leads to the expression of a C-terminally truncated form of N1ICD (N1ICDdC) in the RosaN1-ICD mutant mice. Given that no studies were undertaken to delineate whether deletion of this region leaves intact N1ICD function, stable cell lines with single targeted integration of inducible N1ICD and N1ICDdC were generated. We found that C-terminal deletion of N1ICD stabilized the protein but did not promote the activity of Notch responsive promoters. Furthermore, despite higher expression levels, N1ICDdC failed to phenocopy N1ICD in the promotion of anchorage-independent growth. Our results thus suggest that the C-terminal region of N1ICD plays a role in shaping the Notch response. Therefore, it should be taken into consideration that N1ICD is truncated when interpreting phenotypes of RosaN1-ICD mutant mice.
Collapse
|
98
|
Jin K, Zhou W, Han X, Wang Z, Li B, Jeffries S, Tao W, Robbins DJ, Capobianco AJ. Acetylation of Mastermind-like 1 by p300 Drives the Recruitment of NACK to Initiate Notch-Dependent Transcription. Cancer Res 2017. [DOI: 10.1158/0008-5472.can-16-3156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
99
|
Han X, Ranganathan P, Tzimas C, Weaver KL, Jin K, Astudillo L, Zhou W, Zhu X, Li B, Robbins DJ, Capobianco AJ. Notch Represses Transcription by PRC2 Recruitment to the Ternary Complex. Mol Cancer Res 2017; 15:1173-1183. [PMID: 28584023 DOI: 10.1158/1541-7786.mcr-17-0241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 11/16/2022]
Abstract
It is well established that Notch functions as a transcriptional activator through the formation of a ternary complex that comprises Notch, Maml, and CSL. This ternary complex then serves to recruit additional transcriptional cofactors that link to higher order transcriptional complexes. The mechanistic details of these events remain unclear. This report reveals that the Notch ternary complex can direct the formation of a repressor complex to terminate gene expression of select target genes. Herein, it is demonstrated that p19Arf and Klf4 are transcriptionally repressed in a Notch-dependent manner. Furthermore, results indicate that Notch recruits Polycomb Repressor Complex 2 (PRC2) and Lysine Demethylase 1 (KDM1A/LSD1) to these promoters, which leads to changes in the epigenetic landscape and repression of transcription. The demethylase activity of LSD1 is a prerequisite for Notch-mediated transcriptional repression. In addition, a stable Notch transcriptional repressor complex was identified containing LSD1, PRC2, and the Notch ternary complex. These findings demonstrate a novel function of Notch and provide further insight into the mechanisms of Notch-mediated tumorigenesis.Implications: This study provides rationale for the targeting of epigenetic enzymes to inhibit Notch activity or use in combinatorial therapy to provide a more profound therapeutic response. Mol Cancer Res; 15(9); 1173-83. ©2017 AACR.
Collapse
Affiliation(s)
- Xiaoqing Han
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.,The Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Prathibha Ranganathan
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.,Centre for Human Genetics, Electronic City, Bengaluru, Karnataka, India
| | - Christos Tzimas
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Kelly L Weaver
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Ke Jin
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.,The Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Luisana Astudillo
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Wen Zhou
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Xiaoxia Zhu
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Bin Li
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - David J Robbins
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Anthony J Capobianco
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.
| |
Collapse
|
100
|
Rippe C, Zhu B, Krawczyk KK, Bavel EV, Albinsson S, Sjölund J, Bakker ENTP, Swärd K. Hypertension reduces soluble guanylyl cyclase expression in the mouse aorta via the Notch signaling pathway. Sci Rep 2017; 7:1334. [PMID: 28465505 PMCID: PMC5430981 DOI: 10.1038/s41598-017-01392-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/28/2017] [Indexed: 02/06/2023] Open
Abstract
Hypertension is a dominating risk factor for cardiovascular disease. To characterize the genomic response to hypertension, we administered vehicle or angiotensin II to mice and performed gene expression analyses. AngII treatment resulted in a robust increase in blood pressure and altered expression of 235 genes in the aorta, including Gucy1a3 and Gucy1b3 which encode subunits of soluble guanylyl cyclase (sGC). Western blotting and immunohistochemistry confirmed repression of sGC associated with curtailed relaxation via sGC activation. Analysis of transcription factor binding motifs in promoters of differentially expressed genes identified enrichment of motifs for RBPJ, a component of the Notch signaling pathway, and the Notch coactivators FRYL and MAML2 were reduced. Gain and loss of function experiments demonstrated that JAG/NOTCH signaling controls sGC expression together with MAML2 and FRYL. Reduced expression of sGC, correlating with differential expression of MAML2, in stroke prone and spontaneously hypertensive rats was also seen, and RNA-Seq data demonstrated correlations between JAG1, NOTCH3, MAML2 and FRYL and the sGC subunits GUCY1A3 and GUCY1B3 in human coronary artery. Notch signaling thus provides a constitutive drive on expression of the major nitric oxide receptor (GUCY1A3/GUCY1B3) in arteries from mice, rats, and humans, and this control mechanism is disturbed in hypertension.
Collapse
Affiliation(s)
- Catarina Rippe
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Baoyi Zhu
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Ed Van Bavel
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Jonas Sjölund
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Erik N T P Bakker
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|