51
|
A novel polyubiquitin chain linkage formed by viral Ubiquitin is resistant to host deubiquitinating enzymes. Biochem J 2020; 477:2193-2219. [PMID: 32478812 DOI: 10.1042/bcj20200289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 11/17/2022]
Abstract
The Baculoviridae family of viruses encode a viral Ubiquitin (vUb) gene. Though the vUb is homologous to the host eukaryotic Ubiquitin (Ub), its preservation in the viral genome indicates unique functions that are not compensated by the host Ub. We report the structural, biophysical, and biochemical properties of the vUb from Autographa californica multiple nucleo-polyhedrosis virus (AcMNPV). The packing of central helix α1 to the beta-sheet β1-β5 is different between vUb and Ub. Consequently, its stability is lower compared with Ub. However, the surface properties, ubiquitination activity, and the interaction with Ubiquitin-binding domains are similar between vUb and Ub. Interestingly, vUb forms atypical polyubiquitin chain linked by lysine at the 54th position (K54), and the deubiquitinating enzymes are ineffective against the K54-linked polyubiquitin chains. We propose that the modification of host/viral proteins with the K54-linked chains is an effective way selected by the virus to protect the vUb signal from host DeUbiquitinases.
Collapse
|
52
|
The RING Domain of RING Finger 12 Efficiently Builds Degradative Ubiquitin Chains. J Mol Biol 2020; 432:3790-3801. [PMID: 32416094 DOI: 10.1016/j.jmb.2020.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/18/2022]
Abstract
RNF12 is a widely expressed ubiquitin E3 ligase that is required for X-chromosome inactivation, regulation of LIM-domain containing transcription factors, and TGF-β signaling. A RING domain at the C terminus of RNF12 is important for its E3 ligase activity, and mutations in the RING domain are associated with X-linked intellectual disability. Here we have characterized ubiquitin transfer by RNF12, and show that the RING domain can bind to, and is active with, ubiquitin conjugating enzymes (E2s) that produce degradative ubiquitin chains. We report the crystal structures of RNF12 in complex with two of these E2 enzymes, as well as with an E2~Ub conjugate in a closed conformation. These structures form a basis for understanding the deleterious effect of a number of disease causing mutations. Comparison of the RNF12 structure with other monomeric RINGs suggests that a loop prior to the core RING domain has a conserved and essential role in stabilization of the active conformation of the bound E2~Ub conjugate. Together these findings provide a framework for better understanding substrate ubiquitylation by RNF12 and the impact of disease causing mutations.
Collapse
|
53
|
Magnussen HM, Ahmed SF, Sibbet GJ, Hristova VA, Nomura K, Hock AK, Archibald LJ, Jamieson AG, Fushman D, Vousden KH, Weissman AM, Huang DT. Structural basis for DNA damage-induced phosphoregulation of MDM2 RING domain. Nat Commun 2020; 11:2094. [PMID: 32350255 PMCID: PMC7190642 DOI: 10.1038/s41467-020-15783-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/27/2020] [Indexed: 01/30/2023] Open
Abstract
Phosphorylation of MDM2 by ATM upon DNA damage is an important mechanism for deregulating MDM2, thereby leading to p53 activation. ATM phosphorylates multiple residues near the RING domain of MDM2, but the underlying molecular basis for deregulation remains elusive. Here we show that Ser429 phosphorylation selectively enhances the ubiquitin ligase activity of MDM2 homodimer but not MDM2-MDMX heterodimer. A crystal structure of phospho-Ser429 (pS429)-MDM2 bound to E2-ubiquitin reveals a unique 310-helical feature present in MDM2 homodimer that allows pS429 to stabilize the closed E2-ubiquitin conformation and thereby enhancing ubiquitin transfer. In cells Ser429 phosphorylation increases MDM2 autoubiquitination and degradation upon DNA damage, whereas S429A substitution protects MDM2 from auto-degradation. Our results demonstrate that Ser429 phosphorylation serves as a switch to boost the activity of MDM2 homodimer and promote its self-destruction to enable rapid p53 stabilization and resolve a long-standing controversy surrounding MDM2 auto-degradation in response to DNA damage.
Collapse
Affiliation(s)
- Helge M Magnussen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Syed F Ahmed
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Gary J Sibbet
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Ventzislava A Hristova
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Koji Nomura
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Andreas K Hock
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- AstraZeneca, AstraZeneca R&D, Innovative Medicines, Discovery Sciences, Darwin (Building 310), Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Lewis J Archibald
- School of Chemistry, University of Glasgow, Joseph Black Building, G12 8QQ, Glasgow, UK
| | - Andrew G Jamieson
- School of Chemistry, University of Glasgow, Joseph Black Building, G12 8QQ, Glasgow, UK
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | | | - Allan M Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Danny T Huang
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
54
|
Baek K, Krist DT, Prabu JR, Hill S, Klügel M, Neumaier LM, von Gronau S, Kleiger G, Schulman BA. NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly. Nature 2020; 578:461-466. [PMID: 32051583 PMCID: PMC7050210 DOI: 10.1038/s41586-020-2000-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/09/2020] [Indexed: 01/23/2023]
Abstract
Eukaryotic cell biology depends on cullin-RING E3 ligase (CRL)-catalysed protein ubiquitylation1, which is tightly controlled by the modification of cullin with the ubiquitin-like protein NEDD82-6. However, how CRLs catalyse ubiquitylation, and the basis of NEDD8 activation, remain unknown. Here we report the cryo-electron microscopy structure of a chemically trapped complex that represents the ubiquitylation intermediate, in which the neddylated CRL1β-TRCP promotes the transfer of ubiquitin from the E2 ubiquitin-conjugating enzyme UBE2D to its recruited substrate, phosphorylated IκBα. NEDD8 acts as a nexus that binds disparate cullin elements and the RING-activated ubiquitin-linked UBE2D. Local structural remodelling of NEDD8 and large-scale movements of CRL domains converge to juxtapose the substrate and the ubiquitylation active site. These findings explain how a distinctive ubiquitin-like protein alters the functions of its targets, and show how numerous NEDD8-dependent interprotein interactions and conformational changes synergistically configure a catalytic CRL architecture that is both robust, to enable rapid ubiquitylation of the substrate, and fragile, to enable the subsequent functions of cullin-RING proteins.
Collapse
Affiliation(s)
- Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David T Krist
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Spencer Hill
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Maren Klügel
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lisa-Marie Neumaier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gary Kleiger
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
55
|
Mohanty P, Agrata R, Habibullah BI, G S A, Das R. Deamidation disrupts native and transient contacts to weaken the interaction between UBC13 and RING-finger E3 ligases. eLife 2019; 8:49223. [PMID: 31638574 PMCID: PMC6874479 DOI: 10.7554/elife.49223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
The deamidase OspI from enteric bacteria Shigella flexneri deamidates a glutamine residue in the host ubiquitin-conjugating enzyme UBC13 and converts it to glutamate (Q100E). Consequently, its polyubiquitination activity in complex with the RING-finger ubiquitin ligase TRAF6 and the downstream NF-κB inflammatory response is silenced. The precise role of deamidation in silencing the UBC13/TRAF6 complex is unknown. We report that deamidation inhibits the interaction between UBC13 and TRAF6 RING-domain (TRAF6RING) by perturbing both the native and transient interactions. Deamidation creates a new intramolecular salt-bridge in UBC13 that competes with a critical intermolecular salt-bridge at the native UBC13/TRAF6RING interface. Moreover, the salt-bridge competition prevents transient interactions necessary to form a typical UBC13/RING complex. Repulsion between E100 and the negatively charged surface of RING also prevents transient interactions in the UBC13/RING complex. Our findings highlight a mechanism wherein a post-translational modification perturbs the conformation and stability of transient complexes to inhibit protein-protein association. Shigella is a highly infectious group of bacteria that attack the human digestive tract, causing severe and often deadly diarrhoea, especially in children. There is currently no vaccine to protect against the disease, and some strains are also now resistant to antibiotics. People get infected by eating or drinking contaminated foods and water. After passing through the stomach, Shigella invades and then multiplies in the lining of the intestine, eventually causing tissue damage and irritation. During this process, Shigella ‘hides’ from its host’s immune system by blocking how intestinal cells respond to infection. Normally, infected cells send out chemical signals that act like a call for help, attracting specialised immune cells to clear the infection. In intestinal cells, two proteins called UBC13 and TRAF6 work together to switch on this response. Specifically, TRAF6 needs to bind to UBC13 for the switch to turn on. Like many proteins, UBC13 is formed of thousands of atoms; some of these are organized in ‘functional groups’, a collection of atoms joined in a specific manner and with special chemical properties. During Shigella infection, the bacteria produce an enzyme that changes a single functional group (an amino group) at a specific location within UBC13 for a different one (an hydroxyl group). Previous research showed that this could stop the immune response in intestinal cells, but the mechanism remained unknown. Mohanty et al. therefore set out to determine exactly how a change of so few atoms could have such a dramatic effect. Biochemical studies using purified proteins revealed that Shigella’s alteration to UBC13 did not change its overall structure. However, the altered protein could no longer bind to its partner TRAF6. Theoretical analysis and computer simulations revealed that the normal binding process relies on a positively charged amino acid (one of the protein’s building blocks) in UBC13 and a negatively charged one in TRAF6 being attracted to each other. Shigella’s substitution, however, introduces a second negatively charged amino acid in UBC13. This ‘steals’ the positively charged amino acid that would normally interact with TRAF6: the electrical attraction between the two proteins is disrupted, and this stops them from binding. The work by Mohanty et al. reveals the exact mechanism Shigella uses to dampen its host’s immune response during infection. In the future, this knowledge could be used to develop more effective drugs that would help control outbreaks of diarrhoea.
Collapse
Affiliation(s)
- Priyesh Mohanty
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Rashmi Agrata
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Batul Ismail Habibullah
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Arun G S
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Ranabir Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
56
|
Structural and Functional Analysis of Ubiquitin-based Inhibitors That Target the Backsides of E2 Enzymes. J Mol Biol 2019; 432:952-966. [PMID: 31634471 DOI: 10.1016/j.jmb.2019.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/12/2018] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
Abstract
Ubiquitin-conjugating E2 enzymes are central to the ubiquitination cascade and have been implicated in cancer and other diseases. Despite strong interest in developing specific E2 inhibitors, the shallow and exposed active site has proven recalcitrant to targeting with reversible small-molecule inhibitors. Here, we used phage display to generate highly potent and selective ubiquitin variants (UbVs) that target the E2 backside, which is located opposite to the active site. A UbV targeting Ube2D1 did not affect charging but greatly attenuated chain elongation. Likewise, a UbV targeting the E2 variant Ube2V1 did not interfere with the charging of its partner E2 enzyme but inhibited formation of diubiquitin. In contrast, a UbV that bound to the backside of Ube2G1 impeded the generation of thioester-linked ubiquitin to the active site cysteine of Ube2G1 by the E1 enzyme. Crystal structures of UbVs in complex with three E2 proteins revealed distinctive molecular interactions in each case, but they also highlighted a common backside pocket that the UbVs used for enhanced affinity and specificity. These findings validate the E2 backside as a target for inhibition and provide structural insights to aid inhibitor design and screening efforts.
Collapse
|
57
|
Kiss L, Zeng J, Dickson CF, Mallery DL, Yang JC, McLaughlin SH, Boland A, Neuhaus D, James LC. A tri-ionic anchor mechanism drives Ube2N-specific recruitment and K63-chain ubiquitination in TRIM ligases. Nat Commun 2019; 10:4502. [PMID: 31582740 PMCID: PMC6776665 DOI: 10.1038/s41467-019-12388-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022] Open
Abstract
The cytosolic antibody receptor TRIM21 possesses unique ubiquitination activity that drives broad-spectrum anti-pathogen targeting and underpins the protein depletion technology Trim-Away. This activity is dependent on formation of self-anchored, K63-linked ubiquitin chains by the heterodimeric E2 enzyme Ube2N/Ube2V2. Here we reveal how TRIM21 facilitates ubiquitin transfer and differentiates this E2 from other closely related enzymes. A tri-ionic motif provides optimally distributed anchor points that allow TRIM21 to wrap an Ube2N~Ub complex around its RING domain, locking the closed conformation and promoting ubiquitin discharge. Mutation of these anchor points inhibits ubiquitination with Ube2N/Ube2V2, viral neutralization and immune signalling. We show that the same mechanism is employed by the anti-HIV restriction factor TRIM5 and identify spatially conserved ionic anchor points in other Ube2N-recruiting RING E3s. The tri-ionic motif is exclusively required for Ube2N but not Ube2D1 activity and provides a generic E2-specific catalysis mechanism for RING E3s.
Collapse
Affiliation(s)
- Leo Kiss
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jingwei Zeng
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Claire F Dickson
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- University of New South Wales, Sydney, NSW, Australia
| | - Donna L Mallery
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Ji-Chun Yang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Andreas Boland
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Department of Molecular Biology, Science III, University of Geneva, Geneva, Switzerland
| | - David Neuhaus
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Leo C James
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
58
|
Ling J, Cheloha RW, McCaul N, Sun ZYJ, Wagner G, Ploegh HL. A nanobody that recognizes a 14-residue peptide epitope in the E2 ubiquitin-conjugating enzyme UBC6e modulates its activity. Mol Immunol 2019; 114:513-523. [PMID: 31518855 DOI: 10.1016/j.molimm.2019.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022]
Abstract
A substantial fraction of eukaryotic proteins is folded and modified in the endoplasmic reticulum (ER) prior to export and secretion. Proteins that enter the ER but fail to fold correctly must be degraded, mostly in a process termed ER-associated degradation (ERAD). Both protein folding in the ER and ERAD are essential for proper immune function. Several E2 and E3 enzymes localize to the ER and are essential for various aspects of ERAD, but their functions and regulation are incompletely understood. Here we identify and characterize single domain antibody fragments derived from the variable domain of alpaca heavy chain-only antibodies (VHHs or nanobodies) that bind to the ER-localized E2 UBC6e, an enzyme implicated in ERAD. One such VHH, VHH05 recognizes a 14 residue stretch and enhances the rate of E1-catalyzed ubiquitin E2 loading in vitroand interferes with phosphorylation of UBC6e in response to cell stress. Identification of the peptide epitope recognized by VHH05 places it outside the E2 catalytic core, close to the position of activation-induced phosphorylation on Ser184. Our data thus suggests a site involved in allosteric regulation of UBC6e's activity. This VHH should be useful not only to dissect the participation of UBC6e in ERAD and in response to cell stress, but also as a high affinity epitope tag-specific reagent of more general utility.
Collapse
Affiliation(s)
- Jingjing Ling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Nicholas McCaul
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Zhen-Yu J Sun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
59
|
Gundogdu M, Walden H. Structural basis of generic versus specific E2-RING E3 interactions in protein ubiquitination. Protein Sci 2019; 28:1758-1770. [PMID: 31340062 DOI: 10.1002/pro.3690] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022]
Abstract
Protein ubiquitination is a fundamental regulatory component in eukaryotic cell biology, where a cascade of ubiquitin activating (E1), conjugating (E2), and ligating (E3) enzymes assemble distinct ubiquitin signals on target proteins. E2s specify the type of ubiquitin signal generated, while E3s associate with the E2~Ub conjugate and select the substrate for ubiquitination. Thus, producing the right ubiquitin signal on the right target requires the right E2-E3 pair. The question of how over 600 E3s evolved to discriminate between 38 structurally related E2s has therefore been an area of intensive research, and with over 50 E2-E3 complex structures generated to date, the answer is beginning to emerge. The following review discusses the structural basis of generic E2-RING E3 interactions, contrasted with emerging themes that reveal how specificity can be achieved.
Collapse
Affiliation(s)
- Mehmet Gundogdu
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Helen Walden
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
60
|
Protein engineering of a ubiquitin-variant inhibitor of APC/C identifies a cryptic K48 ubiquitin chain binding site. Proc Natl Acad Sci U S A 2019; 116:17280-17289. [PMID: 31350353 DOI: 10.1073/pnas.1902889116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ubiquitin (Ub)-mediated proteolysis is a fundamental mechanism used by eukaryotic cells to maintain homeostasis and protein quality, and to control timing in biological processes. Two essential aspects of Ub regulation are conjugation through E1-E2-E3 enzymatic cascades and recognition by Ub-binding domains. An emerging theme in the Ub field is that these 2 properties are often amalgamated in conjugation enzymes. In addition to covalent thioester linkage to Ub's C terminus for Ub transfer reactions, conjugation enzymes often bind noncovalently and weakly to Ub at "exosites." However, identification of such sites is typically empirical and particularly challenging in large molecular machines. Here, studying the 1.2-MDa E3 ligase anaphase-promoting complex/cyclosome (APC/C), which controls cell division and many aspects of neurobiology, we discover a method for identifying unexpected Ub-binding sites. Using a panel of Ub variants (UbVs), we identify a protein-based inhibitor that blocks Ub ligation to APC/C substrates in vitro and ex vivo. Biochemistry, NMR, and cryo-electron microscopy (cryo-EM) structurally define the UbV interaction, explain its inhibitory activity through binding the surface on the APC2 subunit that recruits the E2 enzyme UBE2C, and ultimately reveal that this APC2 surface is also a Ub-binding exosite with preference for K48-linked chains. The results provide a tool for probing APC/C activity, have implications for the coordination of K48-linked Ub chain binding by APC/C with the multistep process of substrate polyubiquitylation, and demonstrate the power of UbV technology for identifying cryptic Ub-binding sites within large multiprotein complexes.
Collapse
|
61
|
Deol KK, Lorenz S, Strieter ER. Enzymatic Logic of Ubiquitin Chain Assembly. Front Physiol 2019; 10:835. [PMID: 31333493 PMCID: PMC6624479 DOI: 10.3389/fphys.2019.00835] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination impacts virtually every biochemical pathway in eukaryotic cells. The fate of a ubiquitinated protein is largely dictated by the type of ubiquitin modification with which it is decorated, including a large variety of polymeric chains. As a result, there have been intense efforts over the last two decades to dissect the molecular details underlying the synthesis of ubiquitin chains by ubiquitin-conjugating (E2) enzymes and ubiquitin ligases (E3s). In this review, we highlight these advances. We discuss the evidence in support of the alternative models of transferring one ubiquitin at a time to a growing substrate-linked chain (sequential addition model) versus transferring a pre-assembled ubiquitin chain (en bloc model) to a substrate. Against this backdrop, we outline emerging principles of chain assembly: multisite interactions, distinct mechanisms of chain initiation and elongation, optimal positioning of ubiquitin molecules that are ultimately conjugated to each other, and substrate-assisted catalysis. Understanding the enzymatic logic of ubiquitin chain assembly has important biomedical implications, as the misregulation of many E2s and E3s and associated perturbations in ubiquitin chain formation contribute to human disease. The resurgent interest in bifunctional small molecules targeting pathogenic proteins to specific E3s for polyubiquitination and subsequent degradation provides an additional incentive to define the mechanisms responsible for efficient and specific chain synthesis and harness them for therapeutic benefit.
Collapse
Affiliation(s)
- Kirandeep K Deol
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
62
|
Liess AKL, Kucerova A, Schweimer K, Yu L, Roumeliotis TI, Diebold M, Dybkov O, Sotriffer C, Urlaub H, Choudhary JS, Mansfeld J, Lorenz S. Autoinhibition Mechanism of the Ubiquitin-Conjugating Enzyme UBE2S by Autoubiquitination. Structure 2019; 27:1195-1210.e7. [PMID: 31230944 DOI: 10.1016/j.str.2019.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/01/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
Ubiquitin-conjugating enzymes (E2s) govern key aspects of ubiquitin signaling. Emerging evidence suggests that the activities of E2s are modulated by posttranslational modifications; the structural underpinnings, however, are largely unclear. Here, we unravel the structural basis and mechanistic consequences of a conserved autoubiquitination event near the catalytic center of E2s, using the human anaphase-promoting complex/cyclosome-associated UBE2S as a model system. Crystal structures we determined of the catalytic ubiquitin carrier protein domain combined with MD simulations reveal that the active-site region is malleable, which permits an adjacent ubiquitin acceptor site, Lys+5, to be ubiquitinated intramolecularly. We demonstrate by NMR that the Lys+5-linked ubiquitin inhibits UBE2S by obstructing its reloading with ubiquitin. By immunoprecipitation, quantitative mass spectrometry, and siRNA-and-rescue experiments we show that Lys+5 ubiquitination of UBE2S decreases during mitotic exit but does not influence proteasomal turnover of this E2. These findings suggest that UBE2S activity underlies inherent regulation during the cell cycle.
Collapse
Affiliation(s)
- Anna K L Liess
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Alena Kucerova
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Lu Yu
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | | | - Mathias Diebold
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Olexandr Dybkov
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Henning Urlaub
- Group for Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany; Proteomics Service Facility, Georg-August-Universität, Göttingen, 37077 Göttingen, Germany
| | - Jyoti S Choudhary
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
63
|
Anandapadamanaban M, Kyriakidis NC, Csizmók V, Wallenhammar A, Espinosa AC, Ahlner A, Round AR, Trewhella J, Moche M, Wahren-Herlenius M, Sunnerhagen M. E3 ubiquitin-protein ligase TRIM21-mediated lysine capture by UBE2E1 reveals substrate-targeting mode of a ubiquitin-conjugating E2. J Biol Chem 2019; 294:11404-11419. [PMID: 31160341 DOI: 10.1074/jbc.ra119.008485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/28/2019] [Indexed: 12/23/2022] Open
Abstract
The E3 ubiquitin-protein ligase TRIM21, of the RING-containing tripartite motif (TRIM) protein family, is a major autoantigen in autoimmune diseases and a modulator of innate immune signaling. Together with ubiquitin-conjugating enzyme E2 E1 (UBE2E1), TRIM21 acts both as an E3 ligase and as a substrate in autoubiquitination. We here report a 2.82-Å crystal structure of the human TRIM21 RING domain in complex with the human E2-conjugating UBE2E1 enzyme, in which a ubiquitin-targeted TRIM21 substrate lysine was captured in the UBE2E1 active site. The structure revealed that the direction of lysine entry is similar to that described for human proliferating cell nuclear antigen (PCNA), a small ubiquitin-like modifier (SUMO)-targeted substrate, and thus differs from the canonical SUMO-targeted substrate entry. In agreement, we found that critical UBE2E1 residues involved in the capture of the TRIM21 substrate lysine are conserved in ubiquitin-conjugating E2s, whereas residues critical for SUMOylation are not conserved. We noted that coordination of the acceptor lysine leads to remodeling of amino acid side-chain interactions between the UBE2E1 active site and the E2-E3 direct interface, including the so-called "linchpin" residue conserved in RING E3s and required for ubiquitination. The findings of our work support the notion that substrate lysine activation of an E2-E3-connecting allosteric path may trigger catalytic activity and contribute to the understanding of specific lysine targeting by ubiquitin-conjugating E2s.
Collapse
Affiliation(s)
| | - Nikolaos C Kyriakidis
- Unit of Experimental Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden.,Escuela de Medicina, Facultad de Ciencias de la Salud, Grupo de Investigación en Biotecnología Aplicada a Biomedicina (BIOMED), Universidad de Las Américas (UDLA), Quito, EC170504 Ecuador
| | - Veronika Csizmók
- Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping, Sweden
| | - Amélie Wallenhammar
- Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping, Sweden
| | - Alexander C Espinosa
- Unit of Experimental Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Alexandra Ahlner
- Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping, Sweden
| | - Adam R Round
- European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Jill Trewhella
- Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping, Sweden.,School of Life and Environmental Sciences (SoLES), The University of Sydney, New South Wales 2006, Australia
| | - Martin Moche
- Department of Medical Biochemistry and Biophysics, Protein Science Facility, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Unit of Experimental Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Division of Chemistry, Linköping University, SE-58183 Linköping, Sweden
| |
Collapse
|
64
|
Using In Vitro Ubiquitylation Assays to Estimate the Affinities of Ubiquitin-Conjugating Enzymes for Their Ubiquitin Ligase Partners. Methods Mol Biol 2019. [PMID: 30242702 DOI: 10.1007/978-1-4939-8706-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Ubiquitin ligases (E3s) function by binding to both a protein substrate and to ubiquitin-conjugating enzymes (E2s) bound to ubiquitin. E3s facilitate the transfer of ubiquitin from the E2 active site to an E3-bound substrate. Thus, the affinity of the interaction of an E2 with its E3 partner is of considerable interest. The purpose of this work is to (1) provide protocols for the purification of the human E2 Cdc34, as well as for some additional protein components needed for the assays described here whose purification protocols haven't been described elsewhere in detail; (2) provide the researcher with critical information regarding the proper long-term storage of these enzymes to retain maximal activity; (3) provide a protocol to benchmark Cdc34 activity with previously described activity levels in the literature; and (4) provide a simple and rapid means of measuring E2 affinity for an E3.
Collapse
|
65
|
Patel A, Sibbet GJ, Huang DT. Structural insights into non-covalent ubiquitin activation of the cIAP1-UbcH5B∼ubiquitin complex. J Biol Chem 2019; 294:1240-1249. [PMID: 30523153 PMCID: PMC6349121 DOI: 10.1074/jbc.ra118.006045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/30/2018] [Indexed: 01/08/2023] Open
Abstract
Ubiquitin (Ub)-conjugating enzymes and Ub ligases control protein degradation and regulate many cellular processes in eukaryotes. Cellular inhibitor of apoptosis protein-1 (cIAP1) plays a central role in apoptosis and tumor necrosis factor signaling. It harbors a C-terminal RING domain that homodimerizes to recruit E2∼Ub (where ∼ denotes a thioester bond) complex to catalyze Ub transfer. Noncovalent Ub binding to the backside of the E2 Ub-conjugating enzyme UbcH5 has previously been shown to enhance RING domain activity, but the molecular basis for this enhancement is unclear. To investigate how dimeric cIAP1 RING activates E2∼Ub for Ub transfer and what role noncovalently bound Ub has in Ub transfer, here we determined the crystal structure of the cIAP1 RING dimer bound to both UbcH5B covalently linked to Ub (UbcH5B-Ub) and a noncovalent Ub to 1.7 Å resolution. The structure along with biochemical analyses revealed that the cIAP1 RING domain interacts with UbcH5B-Ub and thereby promotes the formation of a closed UbcH5B-Ub conformation that primes the thioester bond for Ub transfer. We observed that the noncovalent Ub binds to the backside of UbcH5B and abuts UbcH5B's α1β1-loop, which, in turn, stabilizes the closed UbcH5B-Ub conformation. Our results disclose the mechanism by which cIAP1 RING dimer activates UbcH5B∼Ub and indicate that noncovalent Ub binding further stabilizes the cIAP1-UbcH5B∼Ub complex in the active conformation to stimulate Ub transfer.
Collapse
Affiliation(s)
- Amrita Patel
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, Scotland, United Kingdom
| | - Gary J Sibbet
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, Scotland, United Kingdom
| | - Danny T Huang
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, Scotland, United Kingdom.
| |
Collapse
|
66
|
Cham KL, Soga T, Parhar IS. Expression of RING Finger Protein 38 in Serotonergic Neurons in the Brain of Nile Tilapia, Oreochromis niloticus. Front Neuroanat 2018; 12:109. [PMID: 30574074 PMCID: PMC6292424 DOI: 10.3389/fnana.2018.00109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/21/2018] [Indexed: 11/13/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is one of the major neurotransmitters, modulating diverse behaviours and physiological functions. Really interesting new gene (RING) finger protein 38 (RNF38) is an E3 ubiquitin ligase whose function remains unclear. A recent study has shown a possible regulatory relationship between RNF38 and the 5-HT system. Therefore, to gain insight into the role of RNF38 in the central 5-HT system, we identified the neuroanatomical location of 5-HT positive cells and investigated the relationship between RNF38 and the 5-HT system in the brain of the Nile tilapia, Oreochromis niloticus. Immunocytochemistry revealed three neuronal populations of 5-HT in the brain of tilapia; the paraventricular organ (PVO), the dorsal and ventral periventricular pretectal nuclei (PPd and PPv), and, the superior and inferior raphe (SR and IR). The 5-HT neuronal number was highest in the raphe (90.4 in SR, 284.6 in IR), followed by the pretectal area (22.3 in PPd, 209.8 in PPv). Double-label immunocytochemistry showed that the majority of 5-HT neurons express RNF38 nuclear proteins (66.5% in PPd; 77.9% in PPv; 35.7% in SR; 49.1% in IR). These findings suggest that RNF38 could be involved in E3 ubiquitination in the central 5-HT system.
Collapse
Affiliation(s)
- Kai Lin Cham
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
67
|
DaRosa PA, Harrison JS, Zelter A, Davis TN, Brzovic P, Kuhlman B, Klevit RE. A Bifunctional Role for the UHRF1 UBL Domain in the Control of Hemi-methylated DNA-Dependent Histone Ubiquitylation. Mol Cell 2018; 72:753-765.e6. [PMID: 30392931 DOI: 10.1016/j.molcel.2018.09.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/09/2018] [Accepted: 09/20/2018] [Indexed: 12/27/2022]
Abstract
DNA methylation patterns regulate gene expression programs and are maintained through a highly coordinated process orchestrated by the RING E3 ubiquitin ligase UHRF1. UHRF1 controls DNA methylation inheritance by reading epigenetic modifications to histones and DNA to activate histone H3 ubiquitylation. Here, we find that all five domains of UHRF1, including the previously uncharacterized ubiquitin-like domain (UBL), cooperate for hemi-methylated DNA-dependent H3 ubiquitin ligation. Our structural and biochemical studies, including mutations found in cancer genomes, reveal a bifunctional requirement for the UBL in histone modification: (1) the UBL makes an essential interaction with the backside of the E2 and (2) the UBL coordinates with other UHRF1 domains that recognize epigenetic marks on DNA and histone H3 to direct ubiquitin to H3. Finally, we show UBLs from other E3s also have a conserved interaction with the E2, Ube2D, highlighting a potential prevalence of interactions between UBLs and E2s.
Collapse
Affiliation(s)
- Paul A DaRosa
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Joseph S Harrison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27499, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Peter Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27499, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
68
|
Foster BM, Stolz P, Mulholland CB, Montoya A, Kramer H, Bultmann S, Bartke T. Critical Role of the UBL Domain in Stimulating the E3 Ubiquitin Ligase Activity of UHRF1 toward Chromatin. Mol Cell 2018; 72:739-752.e9. [PMID: 30392929 PMCID: PMC6242706 DOI: 10.1016/j.molcel.2018.09.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/09/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022]
Abstract
The RING E3 ubiquitin ligase UHRF1 controls DNA methylation through its ability to target the maintenance DNA methyltransferase DNMT1 to newly replicated chromatin. DNMT1 recruitment relies on ubiquitylation of histone H3 by UHRF1; however, how UHRF1 deposits ubiquitin onto the histone is unknown. Here, we demonstrate that the ubiquitin-like domain (UBL) of UHRF1 is essential for RING-mediated H3 ubiquitylation. Using chemical crosslinking and mass spectrometry, biochemical assays, and recombinant chromatin substrates, we show that the UBL participates in structural rearrangements of UHRF1 upon binding to chromatin and the E2 ubiquitin conjugating enzyme UbcH5a/UBE2D1. Similar to ubiquitin, the UBL exerts its effects through a hydrophobic patch that contacts a regulatory surface on the “backside” of the E2 to stabilize the E2-E3-chromatin complex. Our analysis of the enzymatic mechanism of UHRF1 uncovers an unexpected function of the UBL domain and defines a new role for this domain in DNMT1-dependent inheritance of DNA methylation. The UBL domain of UHRF1 is required for its E3 ubiquitin ligase activity A hydrophobic patch on the UBL is required to form a stable E2/E3/chromatin complex The UHRF1 N terminus and UBL hydrophobic patch control targeted H3 ubiquitylation DNMT1-mediated maintenance DNA methylation requires the UBL hydrophobic patch
Collapse
Affiliation(s)
- Benjamin M Foster
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Paul Stolz
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians University (LMU Munich), 82152 Planegg-Martinsried, Germany
| | - Christopher B Mulholland
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians University (LMU Munich), 82152 Planegg-Martinsried, Germany
| | - Alex Montoya
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
| | - Holger Kramer
- MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
| | - Sebastian Bultmann
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians University (LMU Munich), 82152 Planegg-Martinsried, Germany
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
69
|
Moududee SA, Jiang Y, Gilbert N, Xie G, Xu Z, Wu J, Gong Q, Tang Y, Shi Y. Structural and functional characterization of hMEX-3C Ring finger domain as an E3 ubiquitin ligase. Protein Sci 2018; 27:1661-1669. [PMID: 30095198 PMCID: PMC6194269 DOI: 10.1002/pro.3473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023]
Abstract
MEX-3C, a novel RNA binding E3 ubiquitin ligases, contains two N-terminal heterogeneous nuclear ribonucleoprotein K homology (KH) domains and C-terminal Ring finger domain. Recent evidence has suggested that human MEX-3C has a strong bondage with carcinogenesis and the MEX-3C-mediated ubiquitination of RIG-I is essential for the antiviral innate immune response. Moreover, the Ring finger domain of MEX-3C could regulate the degradation of HLA-A2 (an MHC-I allotype) mRNA with a novel mechanism. However, the structural basis for the ubiquitination catalyzed by hMEX-3C Ring finger domain remains evasive. In this study, we solved the crystal structure of dimeric Ring finger domain of hMEX-3C and compared it with the complex structure of MDM2/MDMX-UbcH5b-Ub. Our ubiquitination assay demonstrated that the Ring finger domain of hMEX-3C acts as a ubiquitin E3 ligase in vitro, cooperating with specific E2 to mediate ubiquitination. Then, we identified several key residues in Ring finger domain of hMEX-3C possibly involved in the interaction with E2-Ub conjugate and analyzed the E3 ligase activities of wild type and mutants at key sites. Additionally, zinc chelation experiments indicated that the intact structural stability is essential for the self-ubiquitination activity of the Ring finger domain of hMEX-3C. Taken together, our studies provided new insight into the mechanism of the Ring finger domain of hMEX-3C that may play an important role in eliciting antiviral immune responses and therapeutic interventions.
Collapse
Affiliation(s)
- Sayed Ala Moududee
- Hefei National Laboratory for Physical Science at Microscale and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230026People's Republic of China
| | - Yiyang Jiang
- Hefei National Laboratory for Physical Science at Microscale and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230026People's Republic of China
| | - Nshogoza Gilbert
- Hefei National Laboratory for Physical Science at Microscale and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230026People's Republic of China
| | - Guodong Xie
- Hefei National Laboratory for Physical Science at Microscale and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230026People's Republic of China
| | - Zheng Xu
- Hefei National Laboratory for Physical Science at Microscale and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230026People's Republic of China
| | - Jihui Wu
- Hefei National Laboratory for Physical Science at Microscale and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230026People's Republic of China
| | - Qingguo Gong
- Hefei National Laboratory for Physical Science at Microscale and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230026People's Republic of China
| | - Yajun Tang
- Hefei National Laboratory for Physical Science at Microscale and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230026People's Republic of China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Science at Microscale and School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230026People's Republic of China
- CAS Center for Excellence in Bio macromoleculesChinese Academy of SciencesBeijing100101People's Republic of China
| |
Collapse
|
70
|
Varejão N, Ibars E, Lascorz J, Colomina N, Torres-Rosell J, Reverter D. DNA activates the Nse2/Mms21 SUMO E3 ligase in the Smc5/6 complex. EMBO J 2018; 37:embj.201798306. [PMID: 29769404 DOI: 10.15252/embj.201798306] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/11/2018] [Accepted: 04/20/2018] [Indexed: 11/09/2022] Open
Abstract
Modification of chromosomal proteins by conjugation to SUMO is a key step to cope with DNA damage and to maintain the integrity of the genome. The recruitment of SUMO E3 ligases to chromatin may represent one layer of control on protein sumoylation. However, we currently do not understand how cells upregulate the activity of E3 ligases on chromatin. Here we show that the Nse2 SUMO E3 in the Smc5/6 complex, a critical player during recombinational DNA repair, is directly stimulated by binding to DNA Activation of sumoylation requires the electrostatic interaction between DNA and a positively charged patch in the ARM domain of Smc5, which acts as a DNA sensor that subsequently promotes a stimulatory activation of the E3 activity in Nse2. Specific disruption of the interaction between the ARM of Smc5 and DNA sensitizes cells to DNA damage, indicating that this mechanism contributes to DNA repair. These results reveal a mechanism to enhance a SUMO E3 ligase activity by direct DNA binding and to restrict sumoylation in the vicinity of those Smc5/6-Nse2 molecules engaged on DNA.
Collapse
Affiliation(s)
- Nathalia Varejão
- Institut de Biotecnologia i de Biomedicina (IBB), Department of de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eva Ibars
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Department of Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Jara Lascorz
- Institut de Biotecnologia i de Biomedicina (IBB), Department of de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Neus Colomina
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Department of Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Jordi Torres-Rosell
- Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Department of Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina (IBB), Department of de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
71
|
Budhidarmo R, Zhu J, Middleton AJ, Day CL. The RING domain of RING Finger 11 (RNF11) protein binds Ubc13 and inhibits formation of polyubiquitin chains. FEBS Lett 2018. [PMID: 29537486 DOI: 10.1002/1873-3468.13029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Really Interesting New Gene (RING) Finger protein 11 (RNF11) is a subunit of the A20 ubiquitin-editing complex that ensures the transient nature of inflammatory responses. Although the role of RNF11 as a negative regulator of NF-κB signalling is well-documented, the molecular mechanisms that underpin this function are poorly understood. Here, we show that RNF11 binds both Ubc13 and the Ubc13~ubiquitin conjugate tightly and with similar affinity, but has minimal E3 ligase activity. Remarkably, RNF11 appears to bind Ubc13 so tightly that it outcompetes the E1 and an active E3 ligase. As a consequence, RNF11 may regulate the activity of E3s that rely on Ubc13 for ubiquitin chain assembly by limiting the availability of Ubc13 and its conjugate.
Collapse
Affiliation(s)
- Rhesa Budhidarmo
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jingyi Zhu
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Adam J Middleton
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Catherine L Day
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
72
|
Abstract
Tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) plays a vital role in immune signal transduction pathways by acting as a ubiquitin ligase (E3) for Lys63-linked polyubiquitin chain synthesis. However, the detailed mechanism by which the TRAF6 RING dimer promotes ubiquitin transfer was unknown. Through structural modeling and biochemical analysis, we here show that the TRAF6 RING dimer employs a concerted allosteric mechanism using both subunits of the TRAF6 dimer to promote ubiquitin (Ub) transfer. In particular, we reveal the importance of the C-terminal extension of the TRAF6 RING domain that mediates trans-interactions with the donor-Ub. By analyzing structures and models of E3s in complex with Ub-loaded ubiquitin-conjugating enzymes (E2s), we further highlight the roles of N-terminal and C-terminal extensions beyond the bona fide RING domains in promoting Ub transfer through engagement with a donor-Ub in cis and in trans, respectively.
Collapse
|
73
|
Jiménez-López D, Aguilar-Henonin L, González-Prieto JM, Aguilar-Hernández V, Guzmán P. CTLs, a new class of RING-H2 ubiquitin ligases uncovered by YEELL, a motif close to the RING domain that is present across eukaryotes. PLoS One 2018; 13:e0190969. [PMID: 29324855 PMCID: PMC5764321 DOI: 10.1371/journal.pone.0190969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022] Open
Abstract
RING ubiquitin E3 ligases enclose a RING domain for ubiquitin ligase activity and associated domains and/or conserved motifs outside the RING domain that collectively facilitate their classification and usually reveal some of key information related to mechanism of action. Here we describe a new family of E3 ligases that encodes a RING-H2 domain related in sequence to the ATL and BTL RING-H2 domains. This family, named CTL, encodes a motif designed as YEELL that expands 21 amino acids next to the RING-H2 domain that is present across most eukaryotic lineages. E3 ubiquitin ligase BIG BROTHER is a plant CTL that regulates organ size, and SUMO-targeted ubiquitin E3 ligase RNF111/ARKADIA is a vertebrate CTL. Basal animal and vertebrate, as well as fungi species, encode a single CTL gene that constraints the number of paralogs observed in vertebrates. Conversely, as previously described in ATL and BTL families in plants, CTL genes range from a single copy in green algae and 3 to 5 copies in basal species to 9 to 35 copies in angiosperms. Our analysis describes key structural features of a novel family of E3 ubiquitin ligases as an integral component of the set of core eukaryotic genes.
Collapse
Affiliation(s)
- Domingo Jiménez-López
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, México
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Laura Aguilar-Henonin
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, México
| | - Juan Manuel González-Prieto
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Victor Aguilar-Hernández
- CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, México
| |
Collapse
|
74
|
Abstract
RING and U-box ubiquitin ligases promote ubiquitin (Ub) transfer by priming Ub-conjugated E2 in a closed conformation to optimize the thioester bond for nucleophilic attack by substrate lysine. Here, we describe a single-turnover lysine discharge assay for direct assessment of the activity of any RING/U-box E3-E2~Ub complex.
Collapse
Affiliation(s)
- Lori Buetow
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mads Gabrielsen
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Danny T Huang
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
75
|
Middleton AJ, Budhidarmo R, Das A, Zhu J, Foglizzo M, Mace PD, Day CL. The activity of TRAF RING homo- and heterodimers is regulated by zinc finger 1. Nat Commun 2017; 8:1788. [PMID: 29176576 PMCID: PMC5702613 DOI: 10.1038/s41467-017-01665-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/06/2017] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin chains linked through lysine63 (K63) play a critical role in inflammatory signalling. Following ligand engagement of immune receptors, the RING E3 ligase TRAF6 builds K63-linked chains together with the heterodimeric E2 enzyme Ubc13-Uev1A. Dimerisation of the TRAF6 RING domain is essential for the assembly of K63-linked ubiquitin chains. Here, we show that TRAF6 RING dimers form a catalytic complex where one RING interacts with a Ubc13~Ubiquitin conjugate, while the zinc finger 1 (ZF1) domain and linker-helix of the opposing monomer contact ubiquitin. The RING dimer interface is conserved across TRAFs and we also show that TRAF5–TRAF6 heterodimers form. Importantly, TRAF5 can provide ZF1, enabling ubiquitin transfer from a TRAF6-bound Ubc13 conjugate. Our study explains the dependence of activity on TRAF RING dimers, and suggests that both homo- and heterodimers mediated by TRAF RING domains have the capacity to synthesise ubiquitin chains. TRAF6 is a RING E3 ligase that builds Lys63-linked ubiquitin chains. Here, the authors present the crystal structure of TRAF6 bound to the Ubc13~Ub conjugate, which, together with biochemical assays, reveals the role of the zinc finger domains and why RING dimerisation is required for TRAF6 activity.
Collapse
Affiliation(s)
- Adam J Middleton
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Rhesa Budhidarmo
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Anubrita Das
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Jingyi Zhu
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Martina Foglizzo
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Peter D Mace
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Catherine L Day
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
76
|
Gabrielsen M, Buetow L, Nakasone MA, Ahmed SF, Sibbet GJ, Smith BO, Zhang W, Sidhu SS, Huang DT. A General Strategy for Discovery of Inhibitors and Activators of RING and U-box E3 Ligases with Ubiquitin Variants. Mol Cell 2017; 68:456-470.e10. [PMID: 29053960 PMCID: PMC5655547 DOI: 10.1016/j.molcel.2017.09.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 10/26/2022]
Abstract
RING and U-box E3 ubiquitin ligases regulate diverse eukaryotic processes and have been implicated in numerous diseases, but targeting these enzymes remains a major challenge. We report the development of three ubiquitin variants (UbVs), each binding selectively to the RING or U-box domain of a distinct E3 ligase: monomeric UBE4B, phosphorylated active CBL, or dimeric XIAP. Structural and biochemical analyses revealed that UbVs specifically inhibited the activity of UBE4B or phosphorylated CBL by blocking the E2∼Ub binding site. Surprisingly, the UbV selective for dimeric XIAP formed a dimer to stimulate E3 activity by stabilizing the closed E2∼Ub conformation. We further verified the inhibitory and stimulatory functions of UbVs in cells. Our work provides a general strategy to inhibit or activate RING/U-box E3 ligases and provides a resource for the research community to modulate these enzymes.
Collapse
Affiliation(s)
- Mads Gabrielsen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Lori Buetow
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Mark A Nakasone
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Syed Feroj Ahmed
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Gary J Sibbet
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Brian O Smith
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Wei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada.
| | - Sachdev S Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada.
| | - Danny T Huang
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK.
| |
Collapse
|
77
|
Cham KL, Soga T, Parhar IS. RING Finger Protein 38 Is a Neuronal Protein in the Brain of Nile Tilapia, Oreochromis niloticus. Front Neuroanat 2017; 11:72. [PMID: 28912690 PMCID: PMC5583157 DOI: 10.3389/fnana.2017.00072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/08/2017] [Indexed: 12/02/2022] Open
Abstract
Really interesting new gene (RING) finger protein is a type of zinc-binding motif found in a large family of functionally distinct proteins. RING finger proteins are involved in diverse cellular processes including apoptosis, DNA repair, cell cycle, signal transduction, tumour suppressor, vesicular transport, and peroxisomal biogenesis. RING finger protein 38 (RNF38) is a member of the family whose functions remain unknown. To gain insight into the putative effects of RNF38 in the central nervous system, we localised its expression. The aim of this study was to identify the neuroanatomical location(s) of rnf38 mRNA and its peptide, determine the type of RNF38-expressing cells, and measure rnf38 gene expression in the brain of male tilapia. The distributions of rnf38 mRNA and its peptide were visualised using in situ hybridisation with digoxigenin-labelled RNA antisense and immunocytochemistry, respectively. Both were identically distributed throughout the brain, including the telencephalon, preoptic area, optic tectum, hypothalamus, cerebellum, and the hindbrain. Double-labelling immunocytochemistry for RNF38 and the neuronal marker HuC/D showed that most but not all RNF38 protein was expressed in neuronal nuclei. Quantitative real-time polymerase chain reaction showed the highest level of rnf38 mRNA in the midbrain, followed by the preoptic area, cerebellum, optic tectum, telencephalon, hindbrain and hypothalamus. These findings reveal a differential spatial pattern of RNF38 in the tilapia brain, suggesting that it has potentially diverse functions related to neuronal activity.
Collapse
Affiliation(s)
- Kai Lin Cham
- Brain Research Institute, School of Medicine and Health Sciences, Monash UniversityBandar Sunway, Malaysia
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash UniversityBandar Sunway, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash UniversityBandar Sunway, Malaysia
| |
Collapse
|
78
|
Magala P, Bocik WE, Majumdar A, Tolman JR. Conformational Dynamics Modulate Activation of the Ubiquitin Conjugating Enzyme Ube2g2. ACS OMEGA 2017; 2:4581-4592. [PMID: 28884161 PMCID: PMC5579538 DOI: 10.1021/acsomega.7b00205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
The ubiquitin conjugating enzyme Ube2g2 together with its cognate E3 ligase gp78 catalyzes the synthesis of lysine-48 polyubiquitin chains constituting signals for the proteasomal degradation of misfolded proteins in the endoplasmic reticulum. Here, we employ NMR spectroscopy in combination with single-turnover diubiquitin formation assays to examine the role of the RING domain from gp78 in the catalytic activation of Ube2g2∼Ub conjugates. We find that approximately 60% of the Ube2g2∼Ub conjugates occupy a closed conformation in the absence of gp78-RING, with the population increasing to 82% upon gp78-RING binding. As expected, strong mutations in the hydrophobic patch residues of the ∼Ub moiety result in Ube2g2∼Ub populating only open states with corresponding loss of the ubiquitin conjugation activity. Less disruptive mutations introduced into the hydrophobic patch of the ∼Ub moiety also destabilize the closed conformational state, yet the corresponding effect on the ubiquitin conjugation activity ranges from complete loss to an enhancement of the catalytic activity. These results present a picture in which Ube2g2's active site is in a state of continual dynamic flux with the organization of the active site into a catalytically viable conformation constituting the rate-limiting step for a single ubiquitin ligation event. Ube2g2's function as a highly specific K48-polyubiquitin chain elongator leads us to speculate that this may be a strategy by which Ube2g2 reduces the probability of nonproductive catalytic outcomes in the absence of available substrate.
Collapse
|
79
|
Structural insights into the mechanism and E2 specificity of the RBR E3 ubiquitin ligase HHARI. Nat Commun 2017; 8:211. [PMID: 28790309 PMCID: PMC5548887 DOI: 10.1038/s41467-017-00272-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022] Open
Abstract
RING-in-between-RING (RBR) ubiquitin (Ub) E3 ligases function with Ub E2s through a RING/HECT hybrid mechanism to conjugate Ub to target proteins. Here, we report the crystal structure of the RBR E3, HHARI, in complex with a UbcH7 ~ Ub thioester mimetic which reveals the molecular basis for the specificity of this cognate E2/RBR E3 pair. The structure also reveals mechanistically important conformational changes in the RING1 and UBA-like domains of HHARI that accompany UbcH7 ~ Ub binding and provides a molecular basis by which HHARI recruits E2 ~ Ub in an ‘open’ conformation. In addition to optimally functioning with an E2 that solely performs transthiolation, our data suggests that HHARI prevents spurious discharge of Ub from E2 to lysine residues by: (1) harboring structural elements that block E2 ~ Ub from adopting a ‘closed’ conformation and (2) participating in contacts to ubiquitin that promote an open E2 ~ Ub conformation. HHARI is a RING-in-between-RING (RBR) ubiquitin (Ub) E3 ligase. Here the authors present the crystal structure of HHARI with the UbcH7 ~ Ub thioester intermediate mimetic, which reveals that HHARI binds this E2 ~ Ub in an open conformation and explains the specificity of this cognate RBR E3/E2 pair.
Collapse
|
80
|
Nomura K, Klejnot M, Kowalczyk D, Hock AK, Sibbet GJ, Vousden KH, Huang DT. Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity. Nat Struct Mol Biol 2017; 24:578-587. [PMID: 28553961 PMCID: PMC6205632 DOI: 10.1038/nsmb.3414] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/01/2017] [Indexed: 02/08/2023]
Abstract
MDM2-MDMX complexes bind the p53 tumor-suppressor protein, inhibiting p53's transcriptional activity and targeting p53 for proteasomal degradation. Inhibitors that disrupt binding between p53 and MDM2 efficiently activate a p53 response, but their use in the treatment of cancers that retain wild-type p53 may be limited by on-target toxicities due to p53 activation in normal tissue. Guided by a novel crystal structure of the MDM2-MDMX-E2(UbcH5B)-ubiquitin complex, we designed MDM2 mutants that prevent E2-ubiquitin binding without altering the RING-domain structure. These mutants lack MDM2's E3 activity but retain the ability to limit p53's transcriptional activity and allow cell proliferation. Cells expressing these mutants respond more quickly to cellular stress than cells expressing wild-type MDM2, but basal p53 control is maintained. Targeting the MDM2 E3-ligase activity could therefore widen the therapeutic window of p53 activation in tumors.
Collapse
Affiliation(s)
- Koji Nomura
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Marta Klejnot
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Dominika Kowalczyk
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Andreas K. Hock
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Gary J. Sibbet
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | | | - Danny T. Huang
- Cancer Research-UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| |
Collapse
|
81
|
Abstract
Ubiquitin E3 ligases control every aspect of eukaryotic biology by promoting protein ubiquitination and degradation. At the end of a three-enzyme cascade, ubiquitin ligases mediate the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to specific substrate proteins. Early investigations of E3s of the RING (really interesting new gene) and HECT (homologous to the E6AP carboxyl terminus) types shed light on their enzymatic activities, general architectures, and substrate degron-binding modes. Recent studies have provided deeper mechanistic insights into their catalysis, activation, and regulation. In this review, we summarize the current progress in structure-function studies of ubiquitin ligases as well as exciting new discoveries of novel classes of E3s and diverse substrate recognition mechanisms. Our increased understanding of ubiquitin ligase function and regulation has provided the rationale for developing E3-targeting therapeutics for the treatment of human diseases.
Collapse
Affiliation(s)
- Ning Zheng
- Howard Hughes Medical Institute and Department of Pharmacology, University of Washington, Seattle, Washington 98195; ,
| | - Nitzan Shabek
- Howard Hughes Medical Institute and Department of Pharmacology, University of Washington, Seattle, Washington 98195; ,
| |
Collapse
|
82
|
Abstract
Attachment of ubiquitin to proteins relies on a sophisticated enzyme cascade that is tightly regulated. The machinery of ubiquitylation responds to a range of signals, which remarkably includes ubiquitin itself. Thus, ubiquitin is not only the central player in the ubiquitylation cascade but also a key regulator. The ubiquitin E3 ligases provide specificity to the cascade and often bind the substrate, while the ubiquitin-conjugating enzymes (E2s) have a pivotal role in determining chain linkage and length. Interaction of ubiquitin with the E2 is important for activity, but the weak nature of these contacts has made them hard to identify and study. By reviewing available crystal structures, we identify putative ubiquitin binding sites on E2s, which may enhance E2 processivity and the assembly of chains of a defined linkage. The implications of these new sites are discussed in the context of known E2-ubiquitin interactions.
Collapse
|
83
|
Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3. Biochem J 2017; 473:3401-3419. [PMID: 27729585 PMCID: PMC5095918 DOI: 10.1042/bcj20160028] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023]
Abstract
Ubiquitin signalling is a fundamental eukaryotic regulatory system, controlling diverse cellular functions. A cascade of E1, E2, and E3 enzymes is required for assembly of distinct signals, whereas an array of deubiquitinases and ubiquitin-binding modules edit, remove, and translate the signals. In the centre of this cascade sits the E2-conjugating enzyme, relaying activated ubiquitin from the E1 activating enzyme to the substrate, usually via an E3 ubiquitin ligase. Many disease states are associated with dysfunction of ubiquitin signalling, with the E3s being a particular focus. However, recent evidence demonstrates that mutations or impairment of the E2s can lead to severe disease states, including chromosome instability syndromes, cancer predisposition, and immunological disorders. Given their relevance to diseases, E2s may represent an important class of therapeutic targets. In the present study, we review the current understanding of the mechanism of this important family of enzymes, and the role of selected E2s in disease.
Collapse
|
84
|
Christoforidis A, Skordis N, Fanis P, Dimitriadou M, Sevastidou M, Phelan MM, Neocleous V, Phylactou LA. A novel MKRN3 nonsense mutation causing familial central precocious puberty. Endocrine 2017; 56:446-449. [PMID: 28132164 DOI: 10.1007/s12020-017-1232-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Affiliation(s)
| | - Nicos Skordis
- Division of Pediatric Endocrinology, Paedi Center for specialized Pediatrics, Nicosia, Cyprus
- St George's University of London Medical School at the University of Nicosia, Egkomi, Cyprus
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Meropi Dimitriadou
- 1st Pediatric Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Sevastidou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Marie M Phelan
- NMR Center for Structural Biology, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Vassos Neocleous
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| |
Collapse
|
85
|
Conformational Dynamics and Allostery in E2:E3 Interactions Drive Ubiquitination: gp78 and Ube2g2. Structure 2017; 25:794-805.e5. [PMID: 28434917 DOI: 10.1016/j.str.2017.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/23/2017] [Accepted: 03/24/2017] [Indexed: 12/30/2022]
Abstract
Conformational dynamics plays a fundamental role in molecular recognition and activity in enzymes. The ubiquitin-conjugating enzyme (E2) Ube2g2 functions with the ubiquitin ligase (E3) gp78 to assemble poly-ubiquitin chains on target substrates. Two domains in gp78, RING and G2BR, bind to two distant regions of Ube2g2, and activate it for ubiquitin (Ub) transfer. G2BR increases the affinity between the RING and Ube2g2 by 50-fold, while the RING catalyzes the transfer of Ub from the Ube2g2∼Ub conjugate. How G2BR and RING activate Ube2g2 is unclear. In this work, conformational dynamics in Ube2g2 revealed a clear correlation of binding G2BR and RING with the sequential progression toward Ub transfer. The interrelationship of the existence and exchange between ground and excited states leads to a dynamic energy landscape model, in which redistribution of populations contributes to allostery and activation. These findings provide insight into gp78's modulation of conformational exchange in Ube2g2 to stimulate ubiquitination.
Collapse
|
86
|
Abstract
Ubiquitin-like proteins (Ubl's) are conjugated to target proteins or lipids to regulate their activity, stability, subcellular localization, or macromolecular interactions. Similar to ubiquitin, conjugation is achieved through a cascade of activities that are catalyzed by E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. In this review, we will summarize structural and mechanistic details of enzymes and protein cofactors that participate in Ubl conjugation cascades. Precisely, we will focus on conjugation machinery in the SUMO, NEDD8, ATG8, ATG12, URM1, UFM1, FAT10, and ISG15 pathways while referring to the ubiquitin pathway to highlight common or contrasting themes. We will also review various strategies used to trap intermediates during Ubl activation and conjugation.
Collapse
Affiliation(s)
- Laurent Cappadocia
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States.,Howard Hughes Medical Institute, Sloan Kettering Institute , New York, New York 10021, United States
| |
Collapse
|
87
|
Sander B, Xu W, Eilers M, Popov N, Lorenz S. A conformational switch regulates the ubiquitin ligase HUWE1. eLife 2017; 6:e21036. [PMID: 28193319 PMCID: PMC5308896 DOI: 10.7554/elife.21036] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/27/2017] [Indexed: 12/27/2022] Open
Abstract
The human ubiquitin ligase HUWE1 has key roles in tumorigenesis, yet it is unkown how its activity is regulated. We present the crystal structure of a C-terminal part of HUWE1, including the catalytic domain, and reveal an asymmetric auto-inhibited dimer. We show that HUWE1 dimerizes in solution and self-associates in cells, and that both occurs through the crystallographic dimer interface. We demonstrate that HUWE1 is inhibited in cells and that it can be activated by disruption of the dimer interface. We identify a conserved segment in HUWE1 that counteracts dimer formation by associating with the dimerization region intramolecularly. Our studies reveal, intriguingly, that the tumor suppressor p14ARF binds to this segment and may thus shift the conformational equilibrium of HUWE1 toward the inactive state. We propose a model, in which the activity of HUWE1 underlies conformational control in response to physiological cues-a mechanism that may be exploited for cancer therapy.
Collapse
Affiliation(s)
- Bodo Sander
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Wenshan Xu
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Martin Eilers
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
- Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nikita Popov
- Comprehensive Cancer Center Mainfranken, Würzburg, Germany
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
88
|
Mechanism of catalysis, E2 recognition, and autoinhibition for the IpaH family of bacterial E3 ubiquitin ligases. Proc Natl Acad Sci U S A 2017; 114:1311-1316. [PMID: 28115697 DOI: 10.1073/pnas.1611595114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
IpaH enzymes are secreted bacterial effectors that function within host cells as E3 ubiquitin (Ub) ligases. Catalytic activity is imparted by a conserved novel E3 ligase (NEL) domain that is unique to Gram-negative pathogens and whose activity is repressed by a flanking substrate-binding leucine-rich repeat (LRR) domain when substrate is absent. How the NEL domain catalyzes the conjugation of Ub onto substrates, recognizes host E2s, and maintains its autoinhibited state remain poorly understood. Here we used mutagenesis and enzyme kinetic analyses to address these gaps in knowledge. Mutagenesis of conserved residues on two remote surfaces of the NEL domain identified functional clusters proximal to and distal to the active site cysteine. By analyzing the kinetics of Ub charging and discharging, we identified proximal active site residues that function as either the catalytic acid or catalytic base for aminolysis. Further analysis revealed that distal site residues mediate the direct binding of E2. In studying the full-length protein, we also have uncovered that IpaH family autoinhibition is achieved by a short-circuiting mechanism wherein the LRR domain selectively blocks productive aminolysis, but not the nonproductive discharge of Ub from the E3 to solvent. This mode of autoinhibition, which is not shared by the HECT domain ligase Smurf2, leads to the unanticipated depletion of E2∼Ub and thus a concomitant dominant-negative effect on other E3s in vitro, raising the possibility that short circuiting also may serve to restrict the function of host E3s in cells.
Collapse
|
89
|
Gorelik M, Sidhu SS. Specific targeting of the deubiquitinase and E3 ligase families with engineered ubiquitin variants. Bioeng Transl Med 2016; 2:31-42. [PMID: 28580429 PMCID: PMC5434665 DOI: 10.1002/btm2.10044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin proteasome system (UPS) has garnered much attention due to its potential for the development of therapeutics. Following a successful clinical application of general proteasome inhibitors much effort has been devoted to targeting individual UPS components including E3 enzymes and deubiquitinases that control specificity of ubiquitination. Our group has developed a novel approach for targeting the UPS proteins using engineered ubiquitin variants (Ubvs). These drug‐like proteins can serve as valuable tools to study biological function of UPS components and assist in the development of small molecules for clinical use. In this review, we summarize studies of Ubvs targeting members of three major families, including deubiquitinases, HECT E3 ligases, and CRL E3 ligases. In particular, we focus on Ubv binding mechanisms, structural studies, and effects on enzyme function. Furthermore, new insights gained from the Ubvs are discussed in the context of small molecule studies.
Collapse
Affiliation(s)
- Maryna Gorelik
- Banting and Best Dept. of Medical Research and the Dept. of Molecular Genetics Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto 160 College Street Toronto ON Canada M5S 3E1
| | - Sachdev S Sidhu
- Banting and Best Dept. of Medical Research and the Dept. of Molecular Genetics Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto 160 College Street Toronto ON Canada M5S 3E1
| |
Collapse
|
90
|
Abstract
Post-translational modification (PTM) of proteins by ubiquitination is an essential cellular regulatory process. Such regulation drives the cell cycle and cell division, signalling and secretory pathways, DNA replication and repair processes and protein quality control and degradation pathways. A huge range of ubiquitin signals can be generated depending on the specificity and catalytic activity of the enzymes required for attachment of ubiquitin to a given target. As a consequence of its importance to eukaryotic life, dysfunction in the ubiquitin system leads to many disease states, including cancers and neurodegeneration. This review takes a retrospective look at our progress in understanding the molecular mechanisms that govern the specificity of ubiquitin conjugation.
Collapse
|
91
|
Buetow L, Huang DT. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat Rev Mol Cell Biol 2016; 17:626-42. [PMID: 27485899 PMCID: PMC6211636 DOI: 10.1038/nrm.2016.91] [Citation(s) in RCA: 459] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covalent attachment (conjugation) of one or more ubiquitin molecules to protein substrates governs numerous eukaryotic cellular processes, including apoptosis, cell division and immune responses. Ubiquitylation was originally associated with protein degradation, but it is now clear that ubiquitylation also mediates processes such as protein-protein interactions and cell signalling depending on the type of ubiquitin conjugation. Ubiquitin ligases (E3s) catalyse the final step of ubiquitin conjugation by transferring ubiquitin from ubiquitin-conjugating enzymes (E2s) to substrates. In humans, more than 600 E3s contribute to determining the fates of thousands of substrates; hence, E3s need to be tightly regulated to ensure accurate substrate ubiquitylation. Recent findings illustrate how E3s function on a structural level and how they coordinate with E2s and substrates to meticulously conjugate ubiquitin. Insights regarding the mechanisms of E3 regulation, including structural aspects of their autoinhibition and activation are also emerging.
Collapse
Affiliation(s)
- Lori Buetow
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| | - Danny T. Huang
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, United Kingdom
| |
Collapse
|
92
|
DiBello A, Datta AB, Zhang X, Wolberger C. Role of E2-RING Interactions in Governing RNF4-Mediated Substrate Ubiquitination. J Mol Biol 2016; 428:4639-4650. [PMID: 27678051 DOI: 10.1016/j.jmb.2016.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023]
Abstract
Members of the really interesting new gene (RING) E3 ubiquitin ligase family bind to both substrate and ubiquitin-charged E2 enzyme, promoting the transfer of ubiquitin from the E2 to substrate. Either a single ubiquitin or one of the several types of polyubiquitin chains can be conjugated to substrate proteins, with different types of ubiquitin modifications signaling the distinct outcomes. E2 enzymes play a central role in governing the nature of the ubiquitin modification, although the essential features of the E2 that differentiate mono- versus polyubiquitinating E2 enzymes remain unclear. RNF4 is a compact RING E3 ligase that directs the ubiquitination of polySUMO chains in concert with several different E2 enzymes. RNF4 monoubiquitinates polySUMO substrates in concert with RAD6B and polyubiquitinates substrates together with UBCH5B, a promiscuous E2 that can function with a broad range of E3 ligases. We find that the divergent ubiquitination activities of RAD6B and UBCH5B are governed by differences at the RING-binding surface of the E2. By mutating the RAD6B RING-binding surface to resemble that of UBCH5B, RAD6B can be transformed into a highly active UBCH5B-like E2 that polyubiquitinates SUMO chains in concert with RNF4. The switch in RAD6B activity correlates with increased affinity of the E2 for RNF4. These results point to an important role of the affinity between an E3 and its cognate E2 in governing the multiplicity of substrate ubiquitination.
Collapse
Affiliation(s)
- Anthony DiBello
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Ajit B Datta
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Xiangbin Zhang
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
93
|
Wright JD, Mace PD, Day CL. Noncovalent Ubiquitin Interactions Regulate the Catalytic Activity of Ubiquitin Writers. Trends Biochem Sci 2016; 41:924-937. [PMID: 27614784 DOI: 10.1016/j.tibs.2016.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 11/27/2022]
Abstract
Covalent modification of substrate proteins with ubiquitin is the end result of an intricate network of protein-protein interactions. The inherent ability of the E1, E2, and E3 proteins of the ubiquitylation cascade (the ubiquitin writers) to interact with ubiquitin facilitates this process. Importantly, contact between ubiquitin and the E2/E3 writers is required for catalysis and the assembly of chains of a given linkage. However, ubiquitin is also an activator of ubiquitin-writing enzymes, with many recent studies highlighting the ability of ubiquitin to regulate activity and substrate modification. Here, we review the interactions between ubiquitin-writing enzymes and regulatory ubiquitin molecules that promote activity, and highlight the potential of these interactions to promote processive ubiquitin transfer.
Collapse
Affiliation(s)
- Joshua D Wright
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand; The Francis Crick Institute, London NW1 1AT, UK
| | - Peter D Mace
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Catherine L Day
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
94
|
Streich FC, Lima CD. Capturing a substrate in an activated RING E3/E2-SUMO complex. Nature 2016; 536:304-8. [PMID: 27509863 PMCID: PMC5019495 DOI: 10.1038/nature19071] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/30/2016] [Indexed: 01/01/2023]
Abstract
Post-translational protein modification by ubiquitin (Ub) and ubiquitin-like (Ubl) proteins such as small ubiquitin-like modifier (SUMO) regulates processes including protein homeostasis, the DNA damage response, and the cell cycle. Proliferating cell nuclear antigen (PCNA) is modified by Ub or poly-Ub at lysine (Lys)164 after DNA damage to recruit repair factors. Yeast PCNA is modified by SUMO on Lys164 and Lys127 during S-phase to recruit the anti-recombinogenic helicase Srs2. Lys164 modification requires specialized E2/E3 enzyme pairs for SUMO or Ub conjugation. For SUMO, Lys164 modification is strictly dependent on the E3 ligase Siz1, suggesting the E3 alters E2 specificity to promote Lys164 modification. The structural basis for substrate interactions in activated E3/E2–Ub/Ubl complexes remains unclear. Here we report an engineered E2 protein and cross-linking strategies that trap an E3/E2–Ubl/substrate complex for structure determination, illustrating how an E3 can bypass E2 specificity to force-feed a substrate lysine into the E2 active site.
Collapse
|
95
|
A C2HC zinc finger is essential for the RING-E2 interaction of the ubiquitin ligase RNF125. Sci Rep 2016; 6:29232. [PMID: 27411375 PMCID: PMC4944129 DOI: 10.1038/srep29232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 06/14/2016] [Indexed: 12/02/2022] Open
Abstract
The activity of RING ubiquitin ligases (E3s) depends on an interaction between the RING domain and ubiquitin conjugating enzymes (E2), but posttranslational events or additional structural elements, yet largely undefined, are frequently required to enhance or regulate activity. Here, we show for the ubiquitin ligase RNF125 that, in addition to the RING domain, a C2HC Zn finger (ZnF) is crucial for activity, and a short linker sequence (Li2120-128) enhances activity. The contribution of these regions was first shown with truncated proteins, and the essential role of the ZnF was confirmed with mutations at the Zn chelating Cys residues. Using NMR, we established that the C2HC ZnF/Li2120-128 region is crucial for binding of the RING domain to the E2 UbcH5a. The partial X-ray structure of RNF125 revealed the presence of extensive intramolecular interactions between the RING and C2HC ZnF. A mutation at one of the contact residues in the C2HC ZnF, a highly conserved M112, resulted in the loss of ubiquitin ligase activity. Thus, we identified the structural basis for an essential role of the C2HC ZnF and conclude that this domain stabilizes the RING domain, and is therefore required for binding of RNF125 to an E2.
Collapse
|
96
|
von Delbrück M, Kniss A, Rogov VV, Pluska L, Bagola K, Löhr F, Güntert P, Sommer T, Dötsch V. The CUE Domain of Cue1 Aligns Growing Ubiquitin Chains with Ubc7 for Rapid Elongation. Mol Cell 2016; 62:918-928. [PMID: 27264873 DOI: 10.1016/j.molcel.2016.04.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/21/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
Abstract
Ubiquitin conjugation is an essential process modulating protein function in eukaryotic cells. Surprisingly, little is known about how the progressive assembly of ubiquitin chains is managed by the responsible enzymes. Only recently has ubiquitin binding activity emerged as an important factor in chain formation. The Ubc7 activator Cue1 carries a ubiquitin binding CUE domain that substantially stimulates K48-linked polyubiquitination mediated by Ubc7. Our results from NMR-based analysis and in vitro ubiquitination reactions point out that two parameters accelerate ubiquitin chain assembly: the increasing number of CUE binding sites and the position of CUE binding within a growing chain. In particular, interactions with a ubiquitin moiety adjacent to the acceptor ubiquitin facilitate chain elongation. These data indicate a mechanism for ubiquitin binding in which Cue1 positions Ubc7 and the distal acceptor ubiquitin for rapid polyubiquitination. Disrupting this mechanism results in dysfunction of the ERAD pathway by a delayed turnover of substrates.
Collapse
Affiliation(s)
- Maximilian von Delbrück
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany
| | - Andreas Kniss
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Strasse 9, 60439 Frankfurt am Main, Germany
| | - Vladimir V Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Strasse 9, 60439 Frankfurt am Main, Germany
| | - Lukas Pluska
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany
| | - Katrin Bagola
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Strasse 9, 60439 Frankfurt am Main, Germany
| | - Peter Güntert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Strasse 9, 60439 Frankfurt am Main, Germany
| | - Thomas Sommer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany; Institute for Biology, Humboldt Universität zu Berlin, Invalidenstrasse 43, 10115 Berlin, Germany.
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Strasse 9, 60439 Frankfurt am Main, Germany.
| |
Collapse
|
97
|
Abstract
Ubiquitin-conjugating enzymes (E2s) are the central players in the trio of enzymes responsible for the attachment of ubiquitin (Ub) to cellular proteins. Humans have ∼40 E2s that are involved in the transfer of Ub or Ub-like (Ubl) proteins (e.g., SUMO and NEDD8). Although the majority of E2s are only twice the size of Ub, this remarkable family of enzymes performs a variety of functional roles. In this review, we summarize common functional and structural features that define unifying themes among E2s and highlight emerging concepts in the mechanism and regulation of E2s.
Collapse
|
98
|
Lorenz S, Bhattacharyya M, Feiler C, Rape M, Kuriyan J. Crystal Structure of a Ube2S-Ubiquitin Conjugate. PLoS One 2016; 11:e0147550. [PMID: 26828794 PMCID: PMC4734694 DOI: 10.1371/journal.pone.0147550] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022] Open
Abstract
Protein ubiquitination occurs through the sequential formation and reorganization of specific protein-protein interfaces. Ubiquitin-conjugating (E2) enzymes, such as Ube2S, catalyze the formation of an isopeptide linkage between the C-terminus of a "donor" ubiquitin and a primary amino group of an "acceptor" ubiquitin molecule. This reaction involves an intermediate, in which the C-terminus of the donor ubiquitin is thioester-bound to the active site cysteine of the E2 and a functionally important interface is formed between the two proteins. A docked model of a Ube2S-donor ubiquitin complex was generated previously, based on chemical shift mapping by NMR, and predicted contacts were validated in functional studies. We now present the crystal structure of a covalent Ube2S-ubiquitin complex. The structure contains an interface between Ube2S and ubiquitin in trans that resembles the earlier model in general terms, but differs in detail. The crystallographic interface is more hydrophobic than the earlier model and is stable in molecular dynamics (MD) simulations. Remarkably, the docked Ube2S-donor complex converges readily to the configuration seen in the crystal structure in 3 out of 8 MD trajectories. Since the crystallographic interface is fully consistent with mutational effects, this indicates that the structure provides an energetically favorable representation of the functionally critical Ube2S-donor interface.
Collapse
Affiliation(s)
- Sonja Lorenz
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Moitrayee Bhattacharyya
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Christian Feiler
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Michael Rape
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - John Kuriyan
- California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Department of Chemistry, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
99
|
Secondary ubiquitin-RING docking enhances Arkadia and Ark2C E3 ligase activity. Nat Struct Mol Biol 2015; 23:45-52. [PMID: 26656854 DOI: 10.1038/nsmb.3142] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/13/2015] [Indexed: 11/09/2022]
Abstract
RING-domain E3 ligases enhance transfer of ubiquitin to substrate proteins by stabilizing the RING-bound thioester-linked E2∼ubiquitin conjugate in a defined conformation that primes the active site for nucleophilic attack. Here we report that the monomeric RING domains from the human E3 ligases Arkadia and Ark2C bind directly to free ubiquitin with an affinity comparable to that of other dedicated ubiquitin-binding domains. Further work showed that the Ark-like RING domain and the noncovalently bound ubiquitin molecule coordinately stabilize the E2-conjugated ubiquitin (donor ubiquitin) in the 'closed' conformation. Our studies identify the RING domain of Arkadia as a ubiquitin-binding domain and provide insight into a new ubiquitin-dependent mechanism used by monomeric RING domains to activate ubiquitin transfer. This study also suggests how substrates that have been monoubiquitinated could be favored for further ubiquitination.
Collapse
|
100
|
Middleton AJ, Day CL. The molecular basis of lysine 48 ubiquitin chain synthesis by Ube2K. Sci Rep 2015; 5:16793. [PMID: 26592444 PMCID: PMC4655369 DOI: 10.1038/srep16793] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022] Open
Abstract
The post-translational modification of proteins by ubiquitin is central to the regulation of eukaryotic cells. Substrate-bound ubiquitin chains linked by lysine 11 and 48 target proteins to the proteasome for degradation and determine protein abundance in cells, while other ubiquitin chain linkages regulate protein interactions. The specificity of chain-linkage type is usually determined by ubiquitin-conjugating enzymes (E2s). The degradative E2, Ube2K, preferentially catalyses formation of Lys48-linked chains, but like most E2s, the molecular basis for chain formation is not well understood. Here we report the crystal structure of a Ube2K~ubiquitin conjugate and demonstrate that even though it is monomeric, Ube2K can synthesize Lys48-linked ubiquitin chains. Using site-directed mutagenesis and modelling, our studies reveal a molecular understanding of the catalytic complex and identify key features required for synthesis of degradative Lys48-linked chains. The position of the acceptor ubiquitin described here is likely conserved in other E2s that catalyse Lys48-linked ubiquitin chain synthesis.
Collapse
Affiliation(s)
- Adam J Middleton
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Catherine L Day
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|