51
|
Frankovsky J, Vozáriková V, Nosek J, Tomáška Ľ. Mitochondrial protein phosphorylation in yeast revisited. Mitochondrion 2021; 57:148-162. [PMID: 33412333 DOI: 10.1016/j.mito.2020.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Protein phosphorylation is one of the best-known post-translational modifications occurring in all domains of life. In eukaryotes, protein phosphorylation affects all cellular compartments including mitochondria. High-throughput techniques of mass spectrometry combined with cell fractionation and biochemical methods yielded thousands of phospho-sites on hundreds of mitochondrial proteins. We have compiled the information on mitochondrial protein kinases and phosphatases and their substrates in Saccharomyces cerevisiae and provide the current state-of-the-art overview of mitochondrial protein phosphorylation in this model eukaryote. Using several examples, we describe emerging features of the yeast mitochondrial phosphoproteome and present challenges lying ahead in this exciting field.
Collapse
Affiliation(s)
- Jan Frankovsky
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| |
Collapse
|
52
|
Proteins moonlighting in tumor metabolism and epigenetics. Front Med 2021; 15:383-403. [PMID: 33387254 DOI: 10.1007/s11684-020-0818-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Cancer development is a complicated process controlled by the interplay of multiple signaling pathways and restrained by oxygen and nutrient accessibility in the tumor microenvironment. High plasticity in using diverse nutrients to adapt to metabolic stress is one of the hallmarks of cancer cells. To respond to nutrient stress and to meet the requirements for rapid cell proliferation, cancer cells reprogram metabolic pathways to take up more glucose and coordinate the production of energy and intermediates for biosynthesis. Such actions involve gene expression and activity regulation by the moonlighting function of oncoproteins and metabolic enzymes. The signal - moonlighting protein - metabolism axis facilitates the adaptation of tumor cells under varying environment conditions and can be therapeutically targeted for cancer treatment.
Collapse
|
53
|
Abstract
The mechanisms of epigenetic gene regulation-histone modifications, chromatin remodeling, DNA methylation, and noncoding RNA-use metabolites as enzymatic cofactors and substrates in reactions that allow chromatin formation, nucleotide biogenesis, transcription, RNA processing, and translation. Gene expression responds to demands from cellular processes that use specific metabolites and alters or maintains cellular metabolic status. However, the roles of metabolites-particularly nucleotides-as regulatory molecules in epigenetic regulation and biological processes remain largely unknown. Here we review the crosstalk between gene expression, nucleotide metabolism, and cellular processes, and explore the role of metabolism in epigenetics as a critical regulator of biological events.
Collapse
|
54
|
Oh S, Lee J, Swanson SK, Florens L, Washburn MP, Workman JL. Yeast Nuak1 phosphorylates histone H3 threonine 11 in low glucose stress by the cooperation of AMPK and CK2 signaling. eLife 2020; 9:e64588. [PMID: 33372657 PMCID: PMC7781599 DOI: 10.7554/elife.64588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/26/2020] [Indexed: 12/26/2022] Open
Abstract
Changes in available nutrients are inevitable events for most living organisms. Upon nutritional stress, several signaling pathways cooperate to change the transcription program through chromatin regulation to rewire cellular metabolism. In budding yeast, histone H3 threonine 11 phosphorylation (H3pT11) acts as a marker of low glucose stress and regulates the transcription of nutritional stress-responsive genes. Understanding how this histone modification 'senses' external glucose changes remains elusive. Here, we show that Tda1, the yeast ortholog of human Nuak1, is a direct kinase for H3pT11 upon low glucose stress. Yeast AMP-activated protein kinase (AMPK) directly phosphorylates Tda1 to govern Tda1 activity, while CK2 regulates Tda1 nuclear localization. Collectively, AMPK and CK2 signaling converge on histone kinase Tda1 to link external low glucose stress to chromatin regulation.
Collapse
Affiliation(s)
- Seunghee Oh
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Jaehyoun Lee
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | | | - Michael P Washburn
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical CenterKansas CityUnited States
| | - Jerry L Workman
- Stowers Institute for Medical ResearchKansas CityUnited States
| |
Collapse
|
55
|
|
56
|
Maniyadath B, Sandra US, Kolthur-Seetharam U. Metabolic choreography of gene expression: nutrient transactions with the epigenome. J Biosci 2020. [DOI: 10.1007/s12038-019-9987-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
57
|
Boon R, Silveira GG, Mostoslavsky R. Nuclear metabolism and the regulation of the epigenome. Nat Metab 2020; 2:1190-1203. [PMID: 33046909 DOI: 10.1038/s42255-020-00285-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
Abstract
Cellular metabolism has emerged as a major biological node governing cellular behaviour. Metabolic pathways fuel cellular energy needs, providing basic chemical molecules to sustain cellular homeostasis, proliferation and function. Changes in nutrient consumption or availability therefore can result in complete reprogramming of cellular metabolism towards stabilizing core metabolite pools, such as ATP, S-adenosyl methionine, acetyl-CoA, NAD/NADP and α-ketoglutarate. Because these metabolites underlie a variety of essential metabolic reactions, metabolism has evolved to operate in separate subcellular compartments through diversification of metabolic enzyme complexes, oscillating metabolic activity and physical separation of metabolite pools. Given that these same core metabolites are also consumed by chromatin modifiers in the establishment of epigenetic signatures, metabolite consumption on and release from chromatin directly influence cellular metabolism and gene expression. In this Review, we highlight recent studies describing the mechanisms determining nuclear metabolism and governing the redistribution of metabolites between the nuclear and non-nuclear compartments.
Collapse
Affiliation(s)
- Ruben Boon
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Giorgia G Silveira
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Raul Mostoslavsky
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
58
|
Chen X, Chen S, Yu D. Protein kinase function of pyruvate kinase M2 and cancer. Cancer Cell Int 2020; 20:523. [PMID: 33292198 PMCID: PMC7597019 DOI: 10.1186/s12935-020-01612-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Pyruvate kinase is a terminal enzyme in the glycolytic pathway, where it catalyzes the conversion of phosphoenolpyruvate to pyruvate and production of ATP via substrate level phosphorylation. PKM2 is one of four isoforms of pyruvate kinase and is widely expressed in many types of tumors and associated with tumorigenesis. In addition to pyruvate kinase activity involving the metabolic pathway, increasing evidence demonstrates that PKM2 exerts a non-metabolic function in cancers. PKM2 has been shown to be translocated into nucleus, where it serves as a protein kinase to phosphorylate various protein targets and contribute to multiple physiopathological processes. We discuss the nuclear localization of PKM2, its protein kinase function and association with cancers, and regulation of PKM2 activity.
Collapse
Affiliation(s)
- Xun Chen
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, 510055, People's Republic of China
| | - Shangwu Chen
- Department of Biochemistry, Guangdong Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Dongsheng Yu
- Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
59
|
Gong X, Yu Q, Duan K, Tong Y, Zhang X, Mei Q, Lu L, Yu X, Li S. Histone acetyltransferase Gcn5 regulates gene expression by promoting the transcription of histone methyltransferase SET1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194603. [PMID: 32663628 DOI: 10.1016/j.bbagrm.2020.194603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/20/2020] [Accepted: 07/08/2020] [Indexed: 01/26/2023]
Abstract
Many chromatin modifying factors regulate gene expression in an as-yet-unknown indirect manner. Revealing the molecular basis for this indirect gene regulation will help understand their precise roles in gene regulation and associated biological processes. Here, we studied histone modifying enzymes that indirectly regulate gene expression by modulating the expression of histone methyltransferase, Set1. Through unbiased screening of the histone H3/H4 mutant library, we identified 13 histone substitution mutations with reduced levels of Set1 and H3K4 trimethylation (H3K4me3) and 2 mutations with increased levels of Set1 and H3K4me3, which concentrate at 3 structure clusters. Among these substitutions, the H3K14A mutant substantially reduces SET1 transcription and H3K4me3. H3K14 is acetylated by histone acetyltransferase Gcn5 at SET1 promoter, which then promotes SET1 transcription to maintain normal H3K4me3 levels. In contrast, the histone deacetylase Rpd3 deacetylates H3K14 to repress SET1 transcription and hence reduce H3K4me3 levels, establishing a dynamic crosstalk between H3K14ac and H3K4me3. By promoting the transcription of SET1 and maintaining H3K4me3 levels, Gcn5 regulates the transcription of a subset gene in an indirect manner. Collectively, we propose a model wherein Gcn5 promotes the expression of chromatin modifiers to regulate histone crosstalk and gene transcription.
Collapse
Affiliation(s)
- Xuanyunjing Gong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Kai Duan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yue Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xinyu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qianyun Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Li Lu
- Institute of TCM and Natural Products, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
60
|
Diehl KL, Muir TW. Chromatin as a key consumer in the metabolite economy. Nat Chem Biol 2020; 16:620-629. [PMID: 32444835 DOI: 10.1038/s41589-020-0517-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/05/2020] [Indexed: 12/31/2022]
Abstract
In eukaryotes, chromatin remodeling and post-translational modifications (PTMs) shape the local chromatin landscape to establish permissive and repressive regions within the genome, orchestrating transcription, replication, and DNA repair in concert with other epigenetic mechanisms. Though cellular nutrient signaling encompasses a huge number of pathways, recent attention has turned to the hypothesis that the metabolic state of the cell is communicated to the genome through the type and concentration of metabolites in the nucleus that are cofactors for chromatin-modifying enzymes. Importantly, both epigenetic and metabolic dysregulation are hallmarks of a range of diseases, and this metabolism-chromatin axis may yield a well of new therapeutic targets. In this Perspective, we highlight emerging themes in the inter-regulation of the genome and metabolism via chromatin, including nonenzymatic histone modifications arising from chemically reactive metabolites, the expansion of PTM diversity from cofactor-promiscuous chromatin-modifying enzymes, and evidence for the existence and importance of subnucleocytoplasmic metabolite pools.
Collapse
Affiliation(s)
- Katharine L Diehl
- Department of Chemistry, Princeton University, Princeton, NJ, USA. .,Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA.
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
61
|
Ravindran Menon D, Hammerlindl H, Torrano J, Schaider H, Fujita M. Epigenetics and metabolism at the crossroads of stress-induced plasticity, stemness and therapeutic resistance in cancer. Theranostics 2020; 10:6261-6277. [PMID: 32483452 PMCID: PMC7255038 DOI: 10.7150/thno.42523] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in the treatment of cancers, acquired drug resistance remains a major challenge in cancer management. While earlier studies suggest Darwinian factors driving acquired drug resistance, recent studies point to a more dynamic process involving phenotypic plasticity and tumor heterogeneity in the evolution of acquired drug resistance. Chronic stress after drug treatment induces intrinsic cellular reprogramming and cancer stemness through a slow-cycling persister state, which subsequently drives cancer progression. Both epigenetic and metabolic mechanisms play an important role in this dynamic process. In this review, we discuss how epigenetic and metabolic reprogramming leads to stress-induced phenotypic plasticity and acquired drug resistance, and how the two reprogramming mechanisms crosstalk with each other.
Collapse
|
62
|
Jing YY, Cai FF, Zhang L, Han J, Yang L, Tang F, Li YB, Chang JF, Sun F, Yang XM, Sun FL, Chen S. Epigenetic regulation of the Warburg effect by H2B monoubiquitination. Cell Death Differ 2020; 27:1660-1676. [PMID: 31685978 PMCID: PMC7206070 DOI: 10.1038/s41418-019-0450-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer cells reprogram their energy metabolic system from the mitochondrial oxidative phosphorylation (OXPHOS) pathway to a glucose-dependent aerobic glycolysis pathway. This metabolic reprogramming phenomenon is known as the Warburg effect, a significant hallmark of cancer. However, the detailed mechanisms underlying this event or triggering this reprogramming remain largely unclear. Here, we found that histone H2B monoubiquitination (H2Bub1) negatively regulates the Warburg effect and tumorigenesis in human lung cancer cells (H1299 and A549 cell lines) likely through controlling the expression of multiple mitochondrial respiratory genes, which are essential for OXPHOS. Moreover, our work also suggested that pyruvate kinase M2 (PKM2), the rate-limiting enzyme of glycolysis, can directly interact with H2B in vivo and in vitro and negatively regulate the level of H2Bub1. The inhibition of cell proliferation and nude mice xenograft of human lung cancer cells induced by PKM2 knockdown can be partially rescued through lowering H2Bub1 levels, which indicates that the oncogenic function of PKM2 is achieved, at least partially, through the control of H2Bub1. Furthermore, PKM2 and H2Bub1 levels are negatively correlated in cancer specimens. Therefore, these findings not only provide a novel mechanism triggering the Warburg effect that is mediated through an epigenetic pathway (H2Bub1) but also reveal a novel metabolic regulator (PKM2) for the epigenetic mark H2Bub1. Thus, the PKM2-H2Bub1 axis may become a promising cancer therapeutic target.
Collapse
Grants
- the National Natural Science Foundation of China (Grant No.: 81773009,81972650), the Fundamental Research Funds for the Central Universities (Xi’an Jiao Tong University, Grant No.: 2017qngz13), and the China Postdoctoral Science Foundation (Grant No.: 2017M613149 and 2018T111038).
- the National Key Research and Development Program of China (Grant No.: 2017YFA0103301, 2016YFA0100403), the 973 program of the Ministry of Science and Technology of China (Grant No.: 2015CB856204, 2015CB964802), the National Natural Science Foundation of China (Grant No.: 91419304, 31330043, and 31271534)
Collapse
Affiliation(s)
- Yuan-Ya Jing
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, PR China
| | - Feng-Feng Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Lei Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, PR China
| | - Jing Han
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, School of Basic Medicine, Center for Translational Medicine at The First Affiliated Hospital, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, Shaanxi, PR China
| | - Lu Yang
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, School of Basic Medicine, Center for Translational Medicine at The First Affiliated Hospital, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, Shaanxi, PR China
| | - Fan Tang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, PR China
| | - Ya-Bin Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, PR China
| | - Jian-Feng Chang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, PR China
| | - Feng Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, PR China
| | - Xiao-Mei Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, PR China.
| | - Fang-Lin Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, PR China.
| | - Su Chen
- Laboratory of Molecular and Cellular Biology, School of Forensic Sciences, School of Basic Medicine, Center for Translational Medicine at The First Affiliated Hospital, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, Shaanxi, PR China.
- School of Forensics and Laboratory Medicine, Jining Medical University, Jining, 272067, Shandong, PR China.
| |
Collapse
|
63
|
Chen J, Huang XY, Salt DE, Zhao FJ. Mutation in OsCADT1 enhances cadmium tolerance and enriches selenium in rice grain. THE NEW PHYTOLOGIST 2020; 226:838-850. [PMID: 31879959 DOI: 10.1111/nph.16404] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/18/2019] [Indexed: 05/27/2023]
Abstract
How cadmium (Cd) tolerance in rice is regulated remains poorly understood. We used a forward genetic approach to investigate Cd tolerance in rice. Using a root elongation assay, we isolated a rice mutant with enhanced Cd tolerance, cadt1, from an ethyl methanesulphonate (EMS)-mutagenized population of a widely grown Indica cultivar. The mutant accumulated more Cd in roots but not in shoots and grains. Using genomic resequencing and complementation, we identified OsCADT1 as the causal gene for the mutant phenotype, which encodes a putative serine hydroxymethyltransferase. OsCADT1 protein was localized to the nucleus and the OsCADT1 gene was expressed in both roots and shoots. OsCADT1 mutation resulted in higher sulphur and selenium accumulation in the shoots and grains. Selenate influx in cadt1 was 2.4 times that of the wild-type. The mutant showed higher expression of the sulphate/selenate transporter gene OsSULTR1;1 and the sulphur-deficiency-inducible gene OsSDI1. Thiol compounds including cysteine, glutathione and phytochelatins were significantly increased in the mutant, underlying its increased Cd tolerance. Growth and grain biomass were little affected. The results suggest that OsCADT1 acts as a negative regulator of sulphate/selenate uptake and assimilation. OsCADT1 mutation increases Cd tolerance and enriches selenium in rice grains, providing a novel solution for selenium biofortification.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - David E Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
64
|
Haws SA, Yu D, Ye C, Wille CK, Nguyen LC, Krautkramer KA, Tomasiewicz JL, Yang SE, Miller BR, Liu WH, Igarashi K, Sridharan R, Tu BP, Cryns VL, Lamming DW, Denu JM. Methyl-Metabolite Depletion Elicits Adaptive Responses to Support Heterochromatin Stability and Epigenetic Persistence. Mol Cell 2020; 78:210-223.e8. [PMID: 32208170 PMCID: PMC7191556 DOI: 10.1016/j.molcel.2020.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/05/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
S-adenosylmethionine (SAM) is the methyl-donor substrate for DNA and histone methyltransferases that regulate epigenetic states and subsequent gene expression. This metabolism-epigenome link sensitizes chromatin methylation to altered SAM abundance, yet the mechanisms that allow organisms to adapt and protect epigenetic information during life-experienced fluctuations in SAM availability are unknown. We identified a robust response to SAM depletion that is highlighted by preferential cytoplasmic and nuclear mono-methylation of H3 Lys 9 (H3K9) at the expense of broad losses in histone di- and tri-methylation. Under SAM-depleted conditions, H3K9 mono-methylation preserves heterochromatin stability and supports global epigenetic persistence upon metabolic recovery. This unique chromatin response was robust across the mouse lifespan and correlated with improved metabolic health, supporting a significant role for epigenetic adaptation to SAM depletion in vivo. Together, these studies provide evidence for an adaptive response that enables epigenetic persistence to metabolic stress.
Collapse
Affiliation(s)
- Spencer A Haws
- Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Deyang Yu
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular & Environmental Toxicology Center, SMPH, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cunqi Ye
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Coral K Wille
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Long C Nguyen
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kimberly A Krautkramer
- Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Jay L Tomasiewicz
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Shany E Yang
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Blake R Miller
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wallace H Liu
- Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vincent L Cryns
- Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular & Environmental Toxicology Center, SMPH, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular & Environmental Toxicology Center, SMPH, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA
| | - John M Denu
- Department of Biomolecular Chemistry, SMPH, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
65
|
Liu JY, Wellen KE. Advances into understanding metabolites as signaling molecules in cancer progression. Curr Opin Cell Biol 2020; 63:144-153. [PMID: 32097832 DOI: 10.1016/j.ceb.2020.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Recent years have seen a great expansion in our knowledge of the roles that metabolites play in cellular signaling. Structural data have provided crucial insights into mechanisms through which amino acids are sensed. New nutrient-coupled protein and RNA modifications have been identified and characterized. A growing list of functions has been ascribed to metabolic regulation of modifications such as acetylation, methylation, and glycosylation. A current challenge lies in developing an integrated understanding of the roles that metabolic signaling mechanisms play in physiology and disease, which will inform the design of strategies to target such mechanisms. In this brief article, we review recent advances in metabolic signaling through post-translational modification during cancer progression, to provide a framework for understanding signaling roles of metabolites in the context of cancer biology and illuminate areas for future investigation.
Collapse
Affiliation(s)
- Joyce Y Liu
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104 PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104 PA, USA; Biochemistry & Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104 PA, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104 PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104 PA, USA.
| |
Collapse
|
66
|
Wu Y, Zhang S, Gong X, Yu Q, Zhang Y, Luo M, Zhang X, Workman JL, Yu X, Li S. Glycolysis regulates gene expression by promoting the crosstalk between H3K4 trimethylation and H3K14 acetylation in Saccharomyces cerevisiae. J Genet Genomics 2019; 46:561-574. [PMID: 32014433 DOI: 10.1016/j.jgg.2019.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Cells need to coordinate gene expression with their metabolic states to maintain cell homeostasis and growth. However, how cells transduce nutrient availability to appropriate gene expression response via histone modifications remains largely unknown. Here, we report that glucose specifically induces histone H3K4 trimethylation (H3K4me3), an evolutionarily conserved histone covalent modification associated with active gene transcription, and that glycolytic enzymes and metabolites are required for this induction. Although glycolysis supplies S-adenosylmethionine for histone methyltransferase Set1 to catalyze H3K4me3, glucose induces H3K4me3 primarily by inhibiting histone demethylase Jhd2-catalyzed H3K4 demethylation. Glycolysis provides acetyl-CoA to stimulate histone acetyltransferase Gcn5 to acetylate H3K14, which then inhibits the binding of Jhd2 to chromatin to increase H3K4me3. By repressing Jhd2-mediated H3K4 demethylation, glycolytic enzymes regulate gene expression and cell survival during chronological aging. Thus, our results elucidate how cells reprogram their gene expression programs in response to glucose availability via histone modifications.
Collapse
Affiliation(s)
- Yinsheng Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Shihao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xuanyunjing Gong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Yuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Mingdan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xianhua Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
67
|
Ma R, Wu Y, Zhai Y, Hu B, Ma W, Yang W, Yu Q, Chen Z, Workman JL, Yu X, Li S. Exogenous pyruvate represses histone gene expression and inhibits cancer cell proliferation via the NAMPT-NAD+-SIRT1 pathway. Nucleic Acids Res 2019; 47:11132-11150. [PMID: 31598701 PMCID: PMC6868375 DOI: 10.1093/nar/gkz864] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
Pyruvate is a glycolytic metabolite used for energy production and macromolecule biosynthesis. However, little is known about its functions in tumorigenesis. Here, we report that exogenous pyruvate inhibits the proliferation of different types of cancer cells. This inhibitory effect of pyruvate on cell growth is primarily attributed to its function as a signal molecule to repress histone gene expression, which leads to less compact chromatin and misregulation of genome-wide gene expression. Pyruvate represses histone gene expression by inducing the expression of NAD+ biosynthesis enzyme, nicotinamide phosphoribosyltransferase (NAMPT) via myocyte enhancer factor 2C (MEF2C), which then increases NAD+ levels and activates the histone deacetylase activity of SIRT1. Chromatin immunoprecipitation analysis indicates that pyruvate enhances SIRT1 binding at histone gene promoters where it reduces histone acetylation. Although pyruvate delays cell entry into S phase, pyruvate represses histone gene expression independent of cell cycle progression. Moreover, we find that administration of pyruvate reduces histone expression and retards tumor growth in xenograft mice without significant side effects. Using tissues from cervical and lung cancer patients, we find intracellular pyruvate concentrations inversely correlate with histone protein levels. Together, we uncover a previously unknown function of pyruvate in regulating histone gene expression and cancer cell proliferation.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yinsheng Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yansheng Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Bicheng Hu
- The Central Laboratory, Wuhan No.1 Hospital, Wuhan, Hubei 430022, China
| | - Wei Ma
- The Central Laboratory, Wuhan No.1 Hospital, Wuhan, Hubei 430022, China
| | - Wenqiang Yang
- The Central Laboratory, Wuhan No.1 Hospital, Wuhan, Hubei 430022, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Zhen Chen
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
68
|
Liu M, Saha N, Gajan A, Saadat N, Gupta SV, Pile LA. A complex interplay between SAM synthetase and the epigenetic regulator SIN3 controls metabolism and transcription. J Biol Chem 2019; 295:375-389. [PMID: 31776190 DOI: 10.1074/jbc.ra119.010032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
The SIN3 histone-modifying complex regulates the expression of multiple methionine catabolic genes, including SAM synthetase (Sam-S), as well as SAM levels. To further dissect the relationship between methionine catabolism and epigenetic regulation by SIN3, we sought to identify genes and metabolic pathways controlled by SIN3 and SAM synthetase (SAM-S) in Drosophila melanogaster Using several approaches, including RNAi-mediated gene silencing, RNA-Seq- and quantitative RT-PCR-based transcriptomics, and ultra-high-performance LC-MS/MS- and GC/MS-based metabolomics, we found that, as a global transcriptional regulator, SIN3 impacted a wide range of genes and pathways. In contrast, SAM-S affected only a narrow range of genes and pathways. The expression and levels of additional genes and metabolites, however, were altered in Sin3A+Sam-S dual knockdown cells. This analysis revealed that SIN3 and SAM-S regulate overlapping pathways, many of which involve one-carbon and central carbon metabolisms. In some cases, the factors acted independently; in some others, redundantly; and for a third set, in opposition. Together, these results, obtained from experiments with the chromatin regulator SIN3 and the metabolic enzyme SAM-S, uncover a complex relationship between metabolism and epigenetic regulation.
Collapse
Affiliation(s)
- Mengying Liu
- Department of Nutrition and Food Science, Wayne State University, Detroit, Michigan 48202; Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Nirmalya Saha
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Ambikai Gajan
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202; Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan 48201; Karmanos Cancer Institute, Detroit, Michigan 48201
| | - Nadia Saadat
- Department of Nutrition and Food Science, Wayne State University, Detroit, Michigan 48202; College of Engineering and Science, University of Detroit Mercy, Detroit, Michigan 48221
| | - Smiti V Gupta
- Department of Nutrition and Food Science, Wayne State University, Detroit, Michigan 48202
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202.
| |
Collapse
|
69
|
Mei Q, Xu C, Gogol M, Tang J, Chen W, Yu X, Workman JL, Li S. Set1-catalyzed H3K4 trimethylation antagonizes the HIR/Asf1/Rtt106 repressor complex to promote histone gene expression and chronological life span. Nucleic Acids Res 2019; 47:3434-3449. [PMID: 30759223 PMCID: PMC6468302 DOI: 10.1093/nar/gkz101] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 01/07/2023] Open
Abstract
Aging is the main risk factor for many prevalent diseases. However, the molecular mechanisms regulating aging at the cellular level are largely unknown. Using single cell yeast as a model organism, we found that reducing yeast histone proteins accelerates chronological aging and increasing histone supply extends chronological life span. We sought to identify pathways that regulate chronological life span by controlling intracellular histone levels. Thus, we screened the histone H3/H4 mutant library to uncover histone residues and posttranslational modifications that regulate histone gene expression. We discovered 15 substitution mutations with reduced histone proteins and 5 mutations with increased histone proteins. Among these mutations, we found Set1 complex-catalyzed H3K4me3 promotes histone gene transcription and maintains normal chronological life span. Unlike the canonical functions of H3K4me3 in gene expression, H3K4me3 facilitates histone gene transcription by acting as a boundary to restrict the spread of the repressive HIR/Asf1/Rtt106 complex from histone gene promoters. Collectively, our study identified a novel mechanism by which H3K4me3 antagonizes the HIR/Asf1/Rtt106 repressor complex to promote histone gene expression and extend chronological life span.
Collapse
Affiliation(s)
- Qianyun Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Chen Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Jie Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
70
|
Hoffert KM, Higginbotham KSP, Gibson JT, Oehrle S, Strome ED. Mutations in the S-Adenosylmethionine Synthetase Genes SAM1 and SAM2 Differentially Affect Genome Stability in Saccharomyces cerevisiae. Genetics 2019; 213:97-112. [PMID: 31320408 PMCID: PMC6727793 DOI: 10.1534/genetics.119.302435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
Maintenance of genome integrity is a crucial cellular focus that involves a wide variety of proteins functioning in multiple processes. Defects in many different pathways can result in genome instability, a hallmark of cancer. Utilizing a diploid Saccharomyces cerevisiae model, we previously reported a collection of gene mutations that affect genome stability in a haploinsufficient state. In this work we explore the effect of gene dosage on genome instability for one of these genes and its paralog; SAM1 and SAM2 These genes encode S-Adenosylmethionine (AdoMet) synthetases, responsible for the creation of AdoMet from methionine and ATP. AdoMet is the universal methyl donor for methylation reactions and is essential for cell viability. It is the second most used cellular enzyme substrate and is exceptionally well-conserved through evolution. Mammalian cells express three genes, MAT1A, MAT2A, and MAT2B, with distinct expression profiles and functions. Alterations to these AdoMet synthetase genes, and AdoMet levels, are found in many cancers, making them a popular target for therapeutic intervention. However, significant variance in these alterations are found in different tumor types, with the cellular consequences of the variation still unknown. By studying this pathway in the yeast system, we demonstrate that losses of SAM1 and SAM2 have different effects on genome stability through distinctive effects on gene expression and AdoMet levels, and ultimately separate effects on the methyl cycle. Thus, this study provides insight into the mechanisms by which differential expression of the SAM genes have cellular consequences that affect genome instability.
Collapse
Affiliation(s)
- Kellyn M Hoffert
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky 41099
| | - Kathryn S P Higginbotham
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky 41099
| | - Justin T Gibson
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky 41099
| | - Stuart Oehrle
- Waters Field Laboratory, Chemistry Department, Northern Kentucky University, Highland Heights, Kentucky 41099
| | - Erin D Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky 41099
| |
Collapse
|
71
|
Serefidou M, Venkatasubramani AV, Imhof A. The Impact of One Carbon Metabolism on Histone Methylation. Front Genet 2019; 10:764. [PMID: 31555321 PMCID: PMC6722216 DOI: 10.3389/fgene.2019.00764] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
The effect of one carbon metabolism on DNA methylation has been well described, bridging nutrition, metabolism, and epigenetics. This modification is mediated by the metabolite S-adenosyl methionine (SAM), which is also the methyl-donating substrate of histone methyltransferases. Therefore, SAM levels that are influenced by several nutrients, enzymes, and metabolic cofactors also have a potential impact on histone methylation. Although this modification plays a major role in chromatin accessibility and subsequently in gene expression in healthy or diseased states, its role in translating nutritional changes in chromatin structure has not been extensively studied. Here, we aim to review the literature of known mechanistic links between histone methylation and the central one carbon metabolism.
Collapse
Affiliation(s)
- Magdalini Serefidou
- Biomedical Center Munich, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Axel Imhof
- Biomedical Center Munich, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
72
|
Jung SJ, Choi Y, Lee D, Roe JH. Nuclear aconitase antagonizes heterochromatic silencing by interfering with Chp1 binding to DNA. Biochem Biophys Res Commun 2019; 516:806-811. [PMID: 31255284 DOI: 10.1016/j.bbrc.2019.06.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 11/17/2022]
Abstract
In Schizosaccharomyces pombe, there are two aconitases, Aco1 and Aco2, involved in the Krebs cycle in mitochondria. Interestingly, Aco2 is localized to nucleus as well. Here, we investigated the nuclear role of Aco2 by deleting its nuclear localization signal. The aco2ΔNLS mutation suppressed the gene-silencing defects of RNAi mutants at the centromere, where heterochromatin formation depends on RNAi pathway. In Δago1, the aco2ΔNLS mutation restored heterochromatin through elevating Chp1 binding. Aco2 physically interacted with Chp1 via the N-terminal chromodomain that binds to methylated histone H3K9. In the sub-telomeric region, where heterochromatin forms independent of RNAi pathway, the single aco2ΔNLS mutation caused extra gene silencing via elevating Chp1 binding, without increasing histone methylation. The anti-silencing effect did not require the catalytic function of aconitase. Taken together, Aco2 functions as an epigenetic regulator of gene expression, through associating with chromodomain of Chp1 to maintain heterochromatin.
Collapse
Affiliation(s)
- Soo-Jin Jung
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, 151-742, South Korea
| | - Yoonjung Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Jung-Hye Roe
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
73
|
Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat Rev Mol Cell Biol 2019; 19:563-578. [PMID: 29930302 DOI: 10.1038/s41580-018-0029-7] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Metabolism and gene expression, which are two fundamental biological processes that are essential to all living organisms, reciprocally regulate each other to maintain homeostasis and regulate cell growth, survival and differentiation. Metabolism feeds into the regulation of gene expression via metabolic enzymes and metabolites, which can modulate chromatin directly or indirectly - through regulation of the activity of chromatin trans-acting proteins, including histone-modifying enzymes, chromatin-remodelling complexes and transcription regulators. Deregulation of these metabolic activities has been implicated in human diseases, prominently including cancer.
Collapse
|
74
|
Crispo F, Condelli V, Lepore S, Notarangelo T, Sgambato A, Esposito F, Maddalena F, Landriscina M. Metabolic Dysregulations and Epigenetics: A Bidirectional Interplay that Drives Tumor Progression. Cells 2019; 8:E798. [PMID: 31366176 PMCID: PMC6721562 DOI: 10.3390/cells8080798] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer has been considered, for a long time, a genetic disease where mutations in keyregulatory genes drive tumor initiation, growth, metastasis, and drug resistance. Instead, theadvent of high-throughput technologies has revolutionized cancer research, allowing to investigatemolecular alterations at multiple levels, including genome, epigenome, transcriptome, proteome,and metabolome and showing the multifaceted aspects of this disease. The multi-omics approachesrevealed an intricate molecular landscape where different cellular functions are interconnected andcooperatively contribute to shaping the malignant phenotype. Recent evidence has brought to lighthow metabolism and epigenetics are highly intertwined, and their aberrant crosstalk can contributeto tumorigenesis. The oncogene-driven metabolic plasticity of tumor cells supports the energeticand anabolic demands of proliferative tumor programs and secondary can alter the epigeneticlandscape via modulating the production and/or the activity of epigenetic metabolites. Conversely,epigenetic mechanisms can regulate the expression of metabolic genes, thereby altering themetabolome, eliciting adaptive responses to rapidly changing environmental conditions, andsustaining malignant cell survival and progression in hostile niches. Thus, cancer cells takeadvantage of the epigenetics-metabolism crosstalk to acquire aggressive traits, promote cellproliferation, metastasis, and pluripotency, and shape tumor microenvironment. Understandingthis bidirectional relationship is crucial to identify potential novel molecular targets for theimplementation of robust anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Silvia Lepore
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Tiziana Notarangelo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Alessandro Sgambato
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II,80131 Naples, Italy.
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata,85028 Rionero in Vulture, PZ, Italy.
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia,71100 Foggia, Italy.
| |
Collapse
|
75
|
Dysregulation of Epigenetic Mechanisms of Gene Expression in the Pathologies of Hyperhomocysteinemia. Int J Mol Sci 2019; 20:ijms20133140. [PMID: 31252610 PMCID: PMC6651274 DOI: 10.3390/ijms20133140] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) exerts a wide range of biological effects and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Although mechanisms of HHcy toxicity are not fully uncovered, there has been a significant progress in their understanding. The picture emerging from the studies of homocysteine (Hcy) metabolism and pathophysiology is a complex one, as Hcy and its metabolites affect biomolecules and processes in a tissue- and sex-specific manner. Because of their connection to one carbon metabolism and editing mechanisms in protein biosynthesis, Hcy and its metabolites impair epigenetic control of gene expression mediated by DNA methylation, histone modifications, and non-coding RNA, which underlies the pathology of human disease. In this review we summarize the recent evidence showing that epigenetic dysregulation of gene expression, mediated by changes in DNA methylation and histone N-homocysteinylation, is a pathogenic consequence of HHcy in many human diseases. These findings provide new insights into the mechanisms of human disease induced by Hcy and its metabolites, and suggest therapeutic targets for the prevention and/or treatment.
Collapse
|
76
|
Sullivan MR, Mattaini KR, Dennstedt EA, Nguyen AA, Sivanand S, Reilly MF, Meeth K, Muir A, Darnell AM, Bosenberg MW, Lewis CA, Vander Heiden MG. Increased Serine Synthesis Provides an Advantage for Tumors Arising in Tissues Where Serine Levels Are Limiting. Cell Metab 2019; 29:1410-1421.e4. [PMID: 30905671 PMCID: PMC6551255 DOI: 10.1016/j.cmet.2019.02.015] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/28/2019] [Accepted: 02/25/2019] [Indexed: 02/03/2023]
Abstract
Tumors exhibit altered metabolism compared to normal tissues. Many cancers upregulate expression of serine synthesis pathway enzymes, and some tumors exhibit copy-number gain of the gene encoding the first enzyme in the pathway, phosphoglycerate dehydrogenase (PHGDH). However, whether increased serine synthesis promotes tumor growth and how serine synthesis benefits tumors is controversial. Here, we demonstrate that increased PHGDH expression promotes tumor progression in mouse models of melanoma and breast cancer, human tumor types that exhibit PHGDH copy-number gain. We measure circulating serine levels and find that PHGDH expression is necessary to support cell proliferation at lower physiological serine concentrations. Increased dietary serine or high PHGDH expression is sufficient to increase intracellular serine levels and support faster tumor growth. Together, these data suggest that physiological serine availability restrains tumor growth and argue that tumors arising in serine-limited environments acquire a fitness advantage by upregulating serine synthesis pathway enzymes.
Collapse
Affiliation(s)
- Mark R Sullivan
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Katherine R Mattaini
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emily A Dennstedt
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna A Nguyen
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sharanya Sivanand
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Montana F Reilly
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Katrina Meeth
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Alexander Muir
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcus W Bosenberg
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
77
|
Condelli V, Crispo F, Pietrafesa M, Lettini G, Matassa DS, Esposito F, Landriscina M, Maddalena F. HSP90 Molecular Chaperones, Metabolic Rewiring, and Epigenetics: Impact on Tumor Progression and Perspective for Anticancer Therapy. Cells 2019; 8:cells8060532. [PMID: 31163702 PMCID: PMC6627532 DOI: 10.3390/cells8060532] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/31/2022] Open
Abstract
Heat shock protein 90 (HSP90) molecular chaperones are a family of ubiquitous proteins participating in several cellular functions through the regulation of folding and/or assembly of large multiprotein complexes and client proteins. Thus, HSP90s chaperones are, directly or indirectly, master regulators of a variety of cellular processes, such as adaptation to stress, cell proliferation, motility, angiogenesis, and signal transduction. In recent years, it has been proposed that HSP90s play a crucial role in carcinogenesis as regulators of genotype-to-phenotype interplay. Indeed, HSP90 chaperones control metabolic rewiring, a hallmark of cancer cells, and influence the transcription of several of the key-genes responsible for tumorigenesis and cancer progression, through either direct binding to chromatin or through the quality control of transcription factors and epigenetic effectors. In this review, we will revise evidence suggesting how this interplay between epigenetics and metabolism may affect oncogenesis. We will examine the effect of metabolic rewiring on the accumulation of specific metabolites, and the changes in the availability of epigenetic co-factors and how this process can be controlled by HSP90 molecular chaperones. Understanding deeply the relationship between epigenetic and metabolism could disclose novel therapeutic scenarios that may lead to improvements in cancer treatment.
Collapse
Affiliation(s)
- Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy.
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| |
Collapse
|
78
|
Zeng Q, Mallilankaraman K, Schwarz H. Increased Akt-Driven Glycolysis Is the Basis for the Higher Potency of CD137L-DCs. Front Immunol 2019; 10:868. [PMID: 31068941 PMCID: PMC6491642 DOI: 10.3389/fimmu.2019.00868] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/04/2019] [Indexed: 12/21/2022] Open
Abstract
CD137 ligand-induced dendritic cells (CD137L-DCs) are a new type of dendritic cells (DCs) that induce strong cytotoxic T cell responses. Investigating the metabolic activity as a potential contributing factor for their potency, we find a significantly higher rate of glycolysis in CD137L-DCs than in granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin 4 induced monocyte-derived DCs (moDCs). Using unbiased screening, Akt-mTORC1 activity was found to be significantly higher throughout the differentiation and maturation of CD137L-DCs than that of moDCs. Furthermore, this higher activity of the Akt-mTORC1 pathway is responsible for the significantly higher glycolysis rate in CD137L-DCs than in moDCs. Inhibition of Akt during maturation or inhibition of glycolysis during and after maturation resulted in suppression of inflammatory DCs, with mature CD137L-DCs being the most affected ones. mTORC1, instead, was indispensable for the differentiation of both CD137L-DCs and moDCs. In contrast to its role in supporting lipid synthesis in murine bone marrow-derived DCs (BMDCs), the higher glycolysis rate in CD137L-DCs does not lead to a higher lipid content but rather to an accumulation of succinate and serine. These data demonstrate that the increased Akt-driven glycolysis underlies the higher activity of CD137L-DCs.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
79
|
Campbell SL, Wellen KE. Metabolic Signaling to the Nucleus in Cancer. Mol Cell 2019; 71:398-408. [PMID: 30075141 DOI: 10.1016/j.molcel.2018.07.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022]
Abstract
Nutrient-sensing mechanisms ensure that cellular activities are coordinated with nutrient availability. Recent work has established links between metabolite pools and protein post-translational modifications, as metabolites are substrates of enzymes that add or remove modifications such as acetylation, methylation, and glycosylation. Cancer cells undergo metabolic reprogramming and exhibit metabolic plasticity that allows them to survive and proliferate within the tumor microenvironment. In this article we review the evidence that, in cancer cells, nutrient availability and oncogenic metabolic reprogramming impact the abundance of key metabolites that regulate signaling and epigenetics. We propose models to explain how these metabolites may control locus-specific chromatin modification and gene expression. Finally, we discuss emerging roles of metabolites in regulating malignant phenotypes and tumorigenesis via transcriptional control. An improved understanding of how metabolic alterations in cancer affect nuclear gene regulation could uncover new vulnerabilities to target therapeutically.
Collapse
Affiliation(s)
- Sydney L Campbell
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
80
|
Papsdorf K, Brunet A. Linking Lipid Metabolism to Chromatin Regulation in Aging. Trends Cell Biol 2019; 29:97-116. [PMID: 30316636 PMCID: PMC6340780 DOI: 10.1016/j.tcb.2018.09.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022]
Abstract
The lifespan of an organism is strongly influenced by environmental factors (including diet) and by internal factors (notably reproductive status). Lipid metabolism is critical for adaptation to external conditions or reproduction. Interestingly, specific lipid profiles are associated with longevity, and increased uptake of certain lipids extends longevity in Caenorhabditis elegans and ameliorates disease phenotypes in humans. How lipids impact longevity, and how lipid metabolism is regulated during aging, is just beginning to be unraveled. This review describes recent advances in the regulation and role of lipids in longevity, focusing on the interaction between lipid metabolism and chromatin states in aging and age-related diseases.
Collapse
Affiliation(s)
- Katharina Papsdorf
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
81
|
A critical review of the role of M 2PYK in the Warburg effect. Biochim Biophys Acta Rev Cancer 2019; 1871:225-239. [PMID: 30708038 PMCID: PMC6525063 DOI: 10.1016/j.bbcan.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
It is becoming generally accepted in recent literature that the Warburg effect in cancer depends on inhibition of M2PYK, the pyruvate kinase isozyme most commonly expressed in tumors. We remain skeptical. There continues to be a general lack of solid experimental evidence for the underlying idea that a bottle neck in aerobic glycolysis at the level of M2PYK results in an expanded pool of glycolytic intermediates (which are thought to serve as building blocks necessary for proliferation and growth of cancer cells). If a bottle neck at M2PYK exists, then the remarkable increase in lactate production by cancer cells is a paradox, particularly since a high percentage of the carbons of lactate originate from glucose. The finding that pyruvate kinase activity is invariantly increased rather than decreased in cancer undermines the logic of the M2PYK bottle neck, but is consistent with high lactate production. The "inactive" state of M2PYK in cancer is often described as a dimer (with reduced substrate affinity) that has dissociated from an active tetramer of M2PYK. Although M2PYK clearly dissociates easier than other isozymes of pyruvate kinase, it is not clear that dissociation of the tetramer occurs in vivo when ligands are present that promote tetramer formation. Furthermore, it is also not clear whether the dissociated dimer retains any activity at all. A number of non-canonical functions for M2PYK have been proposed, all of which can be challenged by the finding that not all cancer cell types are dependent on M2PYK expression. Additional in-depth studies of the Warburg effect and specifically of the possible regulatory role of M2PYK in the Warburg effect are needed.
Collapse
|
82
|
Development of Robust Yeast Strains for Lignocellulosic Biorefineries Based on Genome-Wide Studies. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:61-83. [PMID: 30911889 DOI: 10.1007/978-3-030-13035-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lignocellulosic biomass has been widely studied as the renewable feedstock for the production of biofuels and biochemicals. Budding yeast Saccharomyces cerevisiae is commonly used as a cell factory for bioconversion of lignocellulosic biomass. However, economic bioproduction using fermentable sugars released from lignocellulosic feedstocks is still challenging. Due to impaired cell viability and fermentation performance by various inhibitors that are present in the cellulosic hydrolysates, robust yeast strains resistant to various stress environments are highly desired. Here, we summarize recent progress on yeast strain development for the production of biofuels and biochemical using lignocellulosic biomass. Genome-wide studies which have contributed to the elucidation of mechanisms of yeast stress tolerance are reviewed. Key gene targets recently identified based on multiomics analysis such as transcriptomic, proteomic, and metabolomics studies are summarized. Physiological genomic studies based on zinc sulfate supplementation are highlighted, and novel zinc-responsive genes involved in yeast stress tolerance are focused. The dependence of host genetic background of yeast stress tolerance and roles of histones and their modifications are emphasized. The development of robust yeast strains based on multiomics analysis benefits economic bioconversion of lignocellulosic biomass.
Collapse
|
83
|
Li Y, Bao M, Yang C, Chen J, Zhou S, Sun R, Wu C, Li X, Bao J. Computer-aided identification of a novel pyruvate kinase M2 activator compound. Cell Prolif 2018; 51:e12509. [PMID: 30133040 PMCID: PMC6528871 DOI: 10.1111/cpr.12509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The aim of this study was to obtain antitumour molecules targeting to activate PKM2 through adequate computational methods combined with biological activity experiments. METHODS The structure-based virtual screening was utilized to screen effective activator targeting PKM2 from ZINC database. Molecular dynamics simulations were performed to evaluate the stability of the small molecule-binding PKM2 complex systems. Then, cell survival experiments, glutaraldehyde crosslinking reaction, western blot, and qPCR experiments were used to detect the effects of top hits on various cancer cells and the targeting specificity of PKM2. RESULTS Two small molecules in 1,5-2H-pyrrole-dione were obtained after virtual screening. In vitro experiments demonstrated that ZINC08383544 specifically activated PKM2 and affected the expression of upstream and downstream genes of PKM2 during glycolysis, leading to the inhibition of tumour cell growth. These results indicate that ZINC08383544 conforms to the characteristics of PKM2 activator and is potential to be a novel PKM2 activator as antitumour drug. DISCUSSION This work proves that ZINC08383544 promotes the formation of PKM2 tetramer, effectively blocks PKM2 nuclear translocation, and inhibits the growth of tumour, and ZINC08383544 may be a novel activator of PKM2. This work may provide a good choice of drug or molecular fragments for the antitumour strategy targeting PKM2. Screening of targeted drugs by combination of virtual screening and bioactivity experiments is a rapid method for drug discovery.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Life Sciences and Key Laboratory of Bio‐resources and Eco‐environmentMinistry of Education, State Key Laboratory of Biotherapy, Sichuan UniversityChengduChina
| | - Minyue Bao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Chunlan Yang
- College of Life Sciences and Key Laboratory of Bio‐resources and Eco‐environmentMinistry of Education, State Key Laboratory of Biotherapy, Sichuan UniversityChengduChina
| | - Jiao Chen
- College of Life Sciences and Key Laboratory of Bio‐resources and Eco‐environmentMinistry of Education, State Key Laboratory of Biotherapy, Sichuan UniversityChengduChina
| | - Shu Zhou
- College of Life Sciences and Key Laboratory of Bio‐resources and Eco‐environmentMinistry of Education, State Key Laboratory of Biotherapy, Sichuan UniversityChengduChina
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre for BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Rong Sun
- College of Life Sciences and Key Laboratory of Bio‐resources and Eco‐environmentMinistry of Education, State Key Laboratory of Biotherapy, Sichuan UniversityChengduChina
| | - Chuanfang Wu
- College of Life Sciences and Key Laboratory of Bio‐resources and Eco‐environmentMinistry of Education, State Key Laboratory of Biotherapy, Sichuan UniversityChengduChina
| | - Xin Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Jinku Bao
- College of Life Sciences and Key Laboratory of Bio‐resources and Eco‐environmentMinistry of Education, State Key Laboratory of Biotherapy, Sichuan UniversityChengduChina
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengduChina
- State Key Laboratory of Biotherapy/Collaborative Innovation Centre for BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
84
|
Accumulation of intracellular S-adenosylmethionine increases the fermentation rate of bottom-fermenting brewer's yeast during high-gravity brewing. J Biosci Bioeng 2018; 126:736-741. [DOI: 10.1016/j.jbiosc.2018.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 01/05/2023]
|
85
|
Zhang W, Li Q, Li D, Li J, Aki D, Liu YC. The E3 ligase VHL controls alveolar macrophage function via metabolic-epigenetic regulation. J Exp Med 2018; 215:3180-3193. [PMID: 30463876 PMCID: PMC6279396 DOI: 10.1084/jem.20181211] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/01/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Zhang et al. report an essential role of the E3 ligase VHL in regulating the metabolic fitness and effector function of alveolar macrophages to prime ILC2 activation through osteopontin during pulmonary type 2 inflammation and fibrosis. Metabolic pathways such as glycolysis or oxidative phosphorylation play a key role in regulating macrophage function during inflammation and tissue repair. However, how exactly the VHL–HIF–glycolysis axis is involved in the function of tissue-resident macrophages remains unclear. Here we demonstrate that loss of VHL in myeloid cells resulted in attenuated pulmonary type 2 and fibrotic responses, accompanied by reduced eosinophil infiltration, decreased IL-5 and IL-13 concentrations, and ameliorated fiber deposition upon challenge. VHL deficiency uplifted glycolytic metabolism, decreased respiratory capacity, and reduced osteopontin expression in alveolar macrophages, which impaired the function of type 2 innate lymphoid cells but was significantly reversed by HIF1α inhibition or ablation. The up-regulated glycolysis altered the epigenetic modification of osteopontin gene, with the metabolic intermediate 3-phosphoglyceric acid as a key checkpoint controller. Thus, our results indicate that VHL acts as a crucial regulatory factor in lung inflammation and fibrosis by regulating alveolar macrophages.
Collapse
Affiliation(s)
- Wen Zhang
- Institute for Immunology, Peking-Tsinghua Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Qian Li
- Institute for Immunology, Peking-Tsinghua Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Dulei Li
- Institute for Immunology, Peking-Tsinghua Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jia Li
- Institute for Immunology, Peking-Tsinghua Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Daisuke Aki
- Institute for Immunology, Peking-Tsinghua Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China.,La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Yun-Cai Liu
- Institute for Immunology, Peking-Tsinghua Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China .,La Jolla Institute for Allergy and Immunology, La Jolla, CA
| |
Collapse
|
86
|
Lu S, Wang Y. Nonmetabolic functions of metabolic enzymes in cancer development. Cancer Commun (Lond) 2018; 38:63. [PMID: 30367676 PMCID: PMC6235390 DOI: 10.1186/s40880-018-0336-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/21/2018] [Indexed: 12/28/2022] Open
Abstract
Metabolism is a fundamental biological process composed of a series of reactions catalyzed by metabolic enzymes. Emerging evidence demonstrates that the aberrant signaling in cancer cells induces nonmetabolic functions of metabolic enzymes in many instrumental cellular activities, which involve metabolic enzyme-mediated protein post-translational modifications, such as phosphorylation, acetylation, and succinylation. In the most well-researched literatures, metabolic enzymes phosphorylate proteins rather than their metabolites as substrates. Some metabolic enzymes have altered subcellular localization, which allows their metabolic products to directly participate in nonmetabolic activities. This review discusses how these findings have deepened our understanding on enzymes originally classified as metabolic enzymes, by highlighting the nonmetabolic functions of several metabolic enzymes responsible for the development of cancer, and evaluates the potential for targeting these functions in cancer treatment.
Collapse
Affiliation(s)
- Sean Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yugang Wang
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
87
|
Stone OA, El-Brolosy M, Wilhelm K, Liu X, Romão AM, Grillo E, Lai JKH, Günther S, Jeratsch S, Kuenne C, Lee IC, Braun T, Santoro MM, Locasale JW, Potente M, Stainier DYR. Loss of pyruvate kinase M2 limits growth and triggers innate immune signaling in endothelial cells. Nat Commun 2018; 9:4077. [PMID: 30301887 PMCID: PMC6177464 DOI: 10.1038/s41467-018-06406-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/01/2018] [Indexed: 12/11/2022] Open
Abstract
Despite their inherent proximity to circulating oxygen and nutrients, endothelial cells (ECs) oxidize only a minor fraction of glucose in mitochondria, a metabolic specialization that is poorly understood. Here we show that the glycolytic enzyme pyruvate kinase M2 (PKM2) limits glucose oxidation, and maintains the growth and epigenetic state of ECs. We find that loss of PKM2 alters mitochondrial substrate utilization and impairs EC proliferation and migration in vivo. Mechanistically, we show that the NF-κB transcription factor RELB is responsive to PKM2 loss, limiting EC growth through the regulation of P53. Furthermore, S-adenosylmethionine synthesis is impaired in the absence of PKM2, resulting in DNA hypomethylation, de-repression of endogenous retroviral elements (ERVs) and activation of antiviral innate immune signalling. This work reveals the metabolic and functional consequences of glucose oxidation in the endothelium, highlights the importance of PKM2 for endothelial growth and links metabolic dysfunction with autoimmune activation in ECs.
Collapse
Affiliation(s)
- Oliver A Stone
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany.
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, OX1 3PT, UK.
| | - Mohamed El-Brolosy
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Kerstin Wilhelm
- Angiogenesis & Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ana M Romão
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | | | - Jason K H Lai
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Sylvia Jeratsch
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Carsten Kuenne
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - I-Ching Lee
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Massimo M Santoro
- Department of Biology, University of Padua, Viale Giuseppe Colombo 3, 10141, Padua, Italy
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael Potente
- Angiogenesis & Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| |
Collapse
|
88
|
Yu X, Ma R, Wu Y, Zhai Y, Li S. Reciprocal Regulation of Metabolic Reprogramming and Epigenetic Modifications in Cancer. Front Genet 2018; 9:394. [PMID: 30283496 PMCID: PMC6156463 DOI: 10.3389/fgene.2018.00394] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/29/2018] [Indexed: 11/13/2022] Open
Abstract
Cancer cells reprogram their metabolism to meet their demands for survival and proliferation. The metabolic plasticity of tumor cells help them adjust to changes in the availability and utilization of nutrients in the microenvironment. Recent studies revealed that many metabolites and metabolic enzymes have non-metabolic functions contributing to tumorigenesis. One major function is regulating epigenetic modifications to facilitate appropriate responses to environmental cues. Accumulating evidence showed that epigenetic modifications could in turn alter metabolism in tumors. Although a comprehensive understanding of the reciprocal connection between metabolic and epigenetic rewiring in cancer is lacking, some conceptual advances have been made. Understanding the link between metabolism and epigenetic modifications in cancer cells will shed lights on the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| | - Rui Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| | - Yinsheng Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| | - Yansheng Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
89
|
Abstract
Type 2 diabetes mellitus and cancer are correlated with changes in insulin signaling, a pathway that is frequently upregulated in neoplastic tissue but impaired in tissues that are classically targeted by insulin in type 2 diabetes mellitus. Many antidiabetes treatments, particularly metformin, enhance insulin signaling, but this pathway can be inhibited by specific cancer treatments. The modulation of cancer growth by metformin and of insulin sensitivity by anticancer drugs is so common that this phenomenon is being studied in hundreds of clinical trials on cancer. Many meta-analyses have consistently shown a moderate but direct effect of body mass index on the incidence of multiple myeloma and lymphoma and the elevated risk of leukemia in adults. Moreover, new epidemiological and preclinical studies indicate metformin as a therapeutic agent in patients with leukemia, lymphomas, and multiple myeloma. In this article, we review current findings on the anticancer activities of metformin and the underlying mechanisms from preclinical and ongoing studies in hematologic malignancies.
Collapse
|
90
|
Ye C, Tu BP. Sink into the Epigenome: Histones as Repositories That Influence Cellular Metabolism. Trends Endocrinol Metab 2018; 29:626-637. [PMID: 30001904 PMCID: PMC6109460 DOI: 10.1016/j.tem.2018.06.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/28/2023]
Abstract
Epigenetic modifications on chromatin are most commonly thought to be involved in the transcriptional regulation of gene expression. Due to their dependency on small-molecule metabolites, these modifications can relay information about cellular metabolic state to the genome for the activation or repression of particular sets of genes. In this review we discuss emerging evidence that these modifications might also have a metabolic purpose. Due to their abundance, the histones have the capacity to store substantial amounts of useful metabolites or to enable important metabolic transformations. Such metabolic functions for histones could help to explain the widespread occurrence of particular modifications that may not always be strongly correlated with transcriptional activity.
Collapse
Affiliation(s)
- Cunqi Ye
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| |
Collapse
|
91
|
Nieborak A, Schneider R. Metabolic intermediates - Cellular messengers talking to chromatin modifiers. Mol Metab 2018; 14:39-52. [PMID: 29397344 PMCID: PMC6034042 DOI: 10.1016/j.molmet.2018.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND To maintain homeostasis, cells need to coordinate the expression of their genes. Epigenetic mechanisms controlling transcription activation and repression include DNA methylation and post-translational modifications of histones, which can affect the architecture of chromatin and/or create 'docking platforms' for multiple binding proteins. These modifications can be dynamically set and removed by various enzymes that depend on the availability of key metabolites derived from different intracellular pathways. Therefore, small metabolites generated in anabolic and catabolic processes can integrate multiple external and internal stimuli and transfer information on the energetic state of a cell to the transcriptional machinery by regulating the activity of chromatin-modifying enzymes. SCOPE OF REVIEW This review provides an overview of the current literature and concepts on the connections and crosstalk between key cellular metabolites, enzymes responsible for their synthesis, recycling, and conversion and chromatin marks controlling gene expression. MAJOR CONCLUSIONS Whereas current evidence indicates that many chromatin-modifying enzymes respond to alterations in the levels of their cofactors, cosubstrates, and inhibitors, the detailed molecular mechanisms and functional consequences of such processes are largely unresolved. A deeper investigation of mechanisms responsible for altering the total cellular concentration of particular metabolites, as well as their nuclear abundance and accessibility for chromatin-modifying enzymes, will be necessary to better understand the crosstalk between metabolism, chromatin marks, and gene expression.
Collapse
Affiliation(s)
- Anna Nieborak
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Faculty of Biology, LMU, 82152 Martinsried, Germany.
| |
Collapse
|
92
|
Korthout T, Poramba-Liyanage DW, van Kruijsbergen I, Verzijlbergen KF, van Gemert FPA, van Welsem T, van Leeuwen F. Decoding the chromatin proteome of a single genomic locus by DNA sequencing. PLoS Biol 2018; 16:e2005542. [PMID: 30005073 PMCID: PMC6059479 DOI: 10.1371/journal.pbio.2005542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/25/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022] Open
Abstract
Transcription, replication, and repair involve interactions of specific genomic loci with many different proteins. How these interactions are orchestrated at any given location and under changing cellular conditions is largely unknown because systematically measuring protein-DNA interactions at a specific locus in the genome is challenging. To address this problem, we developed Epi-Decoder, a Tag-chromatin immunoprecipitation-Barcode-Sequencing (TAG-ChIP-Barcode-Seq) technology in budding yeast. Epi-Decoder is orthogonal to proteomics approaches because it does not rely on mass spectrometry (MS) but instead takes advantage of DNA sequencing. Analysis of the proteome of a transcribed locus proximal to an origin of replication revealed more than 400 interacting proteins. Moreover, replication stress induced changes in local chromatin proteome composition prior to local origin firing, affecting replication proteins as well as transcription proteins. Finally, we show that native genomic loci can be decoded by efficient construction of barcode libraries assisted by clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). Thus, Epi-Decoder is an effective strategy to identify and quantify in an unbiased and systematic manner the proteome of an individual genomic locus by DNA sequencing.
Collapse
Affiliation(s)
- Tessy Korthout
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Ila van Kruijsbergen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
93
|
Huangyang P, Simon MC. Hidden features: exploring the non-canonical functions of metabolic enzymes. Dis Model Mech 2018; 11:11/8/dmm033365. [PMID: 29991493 PMCID: PMC6124551 DOI: 10.1242/dmm.033365] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The study of cellular metabolism has been rigorously revisited over the past decade, especially in the field of cancer research, revealing new insights that expand our understanding of malignancy. Among these insights is the discovery that various metabolic enzymes have surprising activities outside of their established metabolic roles, including in the regulation of gene expression, DNA damage repair, cell cycle progression and apoptosis. Many of these newly identified functions are activated in response to growth factor signaling, nutrient and oxygen availability, and external stress. As such, multifaceted enzymes directly link metabolism to gene transcription and diverse physiological and pathological processes to maintain cell homeostasis. In this Review, we summarize the current understanding of non-canonical functions of multifaceted metabolic enzymes in disease settings, especially cancer, and discuss specific circumstances in which they are employed. We also highlight the important role of subcellular localization in activating these novel functions. Understanding their non-canonical properties should enhance the development of new therapeutic strategies for cancer treatment. Summary: This Review summarizes recent findings about multifaceted metabolic enzymes with non-canonical activities outside their core biochemical functions, and how they may provide new therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Peiwei Huangyang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Departments of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA .,Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
94
|
Oh S, Suganuma T, Gogol MM, Workman JL. Histone H3 threonine 11 phosphorylation by Sch9 and CK2 regulates chronological lifespan by controlling the nutritional stress response. eLife 2018; 7:36157. [PMID: 29938647 PMCID: PMC6042962 DOI: 10.7554/elife.36157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/23/2018] [Indexed: 12/15/2022] Open
Abstract
Upon nutritional stress, the metabolic status of cells is changed by nutrient signaling pathways to ensure survival. Altered metabolism by nutrient signaling pathways has been suggested to influence cellular lifespan. However, it remains unclear how chromatin regulation is involved in this process. Here, we found that histone H3 threonine 11 phosphorylation (H3pT11) functions as a marker for nutritional stress and aging. Sch9 and CK2 kinases cooperatively regulate H3pT11 under stress conditions. Importantly, H3pT11 defective mutants prolonged chronological lifespan (CLS) by altering nutritional stress responses. Thus, the phosphorylation of H3T11 by Sch9 and CK2 links a nutritional stress response to chromatin in the regulation of CLS.
Collapse
Affiliation(s)
- Seunghee Oh
- Stowers Institute for Medical Research, Kansas City, United States
| | - Tamaki Suganuma
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, United States
| |
Collapse
|
95
|
Abstract
Although cell metabolism has been established as a major regulator of eukaryotic gene expression, the mechanisms underlying this regulation are still being uncovered. Recent years have seen great advances in our understanding of biochemical mechanisms of metabolic regulation of transcription and chromatin. Prime examples include insights into how nutrients and cellular energy status regulate synthesis of ribosomal RNAs by RNA polymerases I and III during ribosome biogenesis and how a variety of enzymes that catalyze modifications of histones in chromatin are regulated by the levels of certain metabolites. This volume of the Annual Review of Biochemistry includes a set of reviews describing these and other advances in understanding aspects of the metabolic regulation of RNA polymerases I and III transcription and chromatin.
Collapse
Affiliation(s)
- Ronald C. Conaway
- Stowers Institute for Medical Research, Kansas City, Missouri, 64110 USA
- Department of Biochemistry and Molecular Biology, Kansas University School of Medicine, Kansas City, Kansas, 66160 USA
| |
Collapse
|
96
|
Abstract
Chromatin is a mighty consumer of cellular energy generated by metabolism. Metabolic status is efficiently coordinated with transcription and translation, which also feed back to regulate metabolism. Conversely, suppression of energy utilization by chromatin processes may serve to preserve energy resources for cell survival. Most of the reactions involved in chromatin modification require metabolites as their cofactors or coenzymes. Therefore, the metabolic status of the cell can influence the spectra of posttranslational histone modifications and the structure, density and location of nucleosomes, impacting epigenetic processes. Thus, transcription, translation, and DNA/RNA biogenesis adapt to cellular metabolism. In addition to dysfunctions of metabolic enzymes, imbalances between metabolism and chromatin activities trigger metabolic disease and life span alteration. Here, we review the synthesis of the metabolites and the relationships between metabolism and chromatin function. Furthermore, we discuss how the chromatin response feeds back to metabolic regulation in biological processes.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;,
| | - Jerry L. Workman
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;,
| |
Collapse
|
97
|
Schvartzman JM, Thompson CB, Finley LWS. Metabolic regulation of chromatin modifications and gene expression. J Cell Biol 2018; 217:2247-2259. [PMID: 29760106 PMCID: PMC6028552 DOI: 10.1083/jcb.201803061] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Schvartzman et al. review how alterations in the levels of specific metabolites in mammalian cells result in chromatin modifications that influence gene expression. Dynamic regulation of gene expression in response to changing local conditions is critical for the survival of all organisms. In metazoans, coherent regulation of gene expression programs underlies the development of functionally distinct cell lineages. The cooperation between transcription factors and the chromatin landscape enables precise control of gene expression in response to cell-intrinsic and cell-extrinsic signals. Many of the chemical modifications that decorate DNA and histones are adducts derived from intermediates of cellular metabolic pathways. In addition, several of the enzymes that can remove these marks use metabolites as part of their enzymatic reaction. These observations have led to the hypothesis that fluctuations in metabolite levels influence the deposition and removal of chromatin modifications. In this review, we consider the emerging evidence that cellular metabolic activity contributes to gene expression and cell fate decisions through metabolite-dependent effects on chromatin organization.
Collapse
Affiliation(s)
- Juan Manuel Schvartzman
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY .,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
98
|
Cellular substrate limitations of lysine acetylation turnover by sirtuins investigated with engineered futile cycle enzymes. Metab Eng 2018; 47:453-462. [PMID: 29729317 DOI: 10.1016/j.ymben.2018.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 01/12/2023]
Abstract
Metabolic activity and epigenetic regulation of gene expression are intimately coupled. The mechanisms linking the two are incompletely understood. Sirtuins catalyse the removal of acetyl groups from lysine side chains of proteins using NAD+ as a stoichiometric cofactor, thereby connecting the acetylation state of histones to energy supply of the cell. Here, we investigate the impact of lysine acetylation turnover by sirtuins on cell physiology by engineering Sirtase, an enzyme that self-acetylates and deacetylates in futile cycles. Expression of Sirtase in E. coli leads to the consumption of the majority of the cellular NAD+ supply, indicating that there is little negative feedback from reaction products, O-acetyl-ADP-ribose and nicotinamde, on sirtuin activity. Targeting Sirtase to a partially defective E silencer of the budding yeast mating type locus restores silencing, indicating that lysine acetylation turnover stabilizes heterochromatin in yeast. We speculate that this could be the consequence of local acetyl-CoA depletion because the effect is equally pronounced if the sirtuin moiety of Sirtase is exchanged with Hos3, a NAD+-independent deacetylase. Our findings support the concept that metabolism and epigenetic regulation are linked via modulation of heterochromatin stability by lysine acetylation turnover.
Collapse
|
99
|
Kim JA. Cooperative Instruction of Signaling and Metabolic Pathways on the Epigenetic Landscape. Mol Cells 2018; 41:264-270. [PMID: 29665673 PMCID: PMC5935095 DOI: 10.14348/molcells.2018.0076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/13/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023] Open
Abstract
Cells cope with diverse intrinsic and extrinsic stimuli in order to make adaptations for survival. The epigenetic landscape plays a crucial role in cellular adaptation, as it integrates the information generated from stimuli. Signaling pathways induced by stimuli communicate with chromatin to change the epigenetic landscape through regulation of epigenetic modifiers. Metabolic dynamics altered by these stimuli also affect the activity of epigenetic modifiers. Here, I review the current understanding of epigenetic regulation via signaling and metabolic pathways. In addition, I will discuss possible ways to achieve specificity of epigenetic modifications through the cooperation of stimuli-induced signal transduction and metabolic reprogramming.
Collapse
Affiliation(s)
- Jung-Ae Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
100
|
Wang F, Wang K, Xu W, Zhao S, Ye D, Wang Y, Xu Y, Zhou L, Chu Y, Zhang C, Qin X, Yang P, Yu H. SIRT5 Desuccinylates and Activates Pyruvate Kinase M2 to Block Macrophage IL-1β Production and to Prevent DSS-Induced Colitis in Mice. Cell Rep 2018; 19:2331-2344. [PMID: 28614718 DOI: 10.1016/j.celrep.2017.05.065] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/03/2017] [Accepted: 05/19/2017] [Indexed: 12/15/2022] Open
Abstract
LPS-activated macrophages undergo a metabolic shift from dependence on mitochondria-produced ATP to reliance on aerobic glycolysis, where PKM2 is a critical determinant. Here, we show that PKM2 is a physiological substrate of SIRT5 and that SIRT5-regulated hypersuccinylation inhibits the pyruvate kinase activity of PKM2 by promoting its tetramer-to-dimer transition. Moreover, a succinylation-mimetic PKM2 K311E mutation promotes nuclear accumulation and increases protein kinase activity. Furthermore, we show that SIRT5-dependent succinylation promotes PKM2 entry into nucleus, where a complex of PKM2-HIF1α is formed at the promoter of IL-1β gene in LPS-stimulated macrophages. Activation of PKM2 using TEPP-46 attenuates Sirt5-deficiency-mediated IL-1β upregulation in LPS-stimulated macrophages. Finally, we find that Sirt5-deficient mice are more susceptible to DSS-induced colitis, which is associated with Sirt5 deficiency prompted PKM2 hypersuccinylation and boosted IL-1β production. In conclusion, our findings reveal a mechanism by which SIRT5 suppresses the pro-inflammatory response in macrophages at least in part by regulating PKM2 succinylation, activity, and function.
Collapse
Affiliation(s)
- Fang Wang
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ke Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Xu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Shimin Zhao
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Dan Ye
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yi Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Xu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lisha Zhou
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yiwei Chu
- Department of Immunity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Cuiping Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xue Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Pengyuan Yang
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Hongxiu Yu
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|