51
|
Chen Q, Young L, Barsotti R. Mitochondria in cell senescence: A Friend or Foe? ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:35-91. [PMID: 37437984 DOI: 10.1016/bs.apcsb.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Cell senescence denotes cell growth arrest in response to continuous replication or stresses damaging DNA or mitochondria. Mounting research suggests that cell senescence attributes to aging-associated failing organ function and diseases. Conversely, it participates in embryonic tissue maturation, wound healing, tissue regeneration, and tumor suppression. The acute or chronic properties and microenvironment may explain the double faces of senescence. Senescent cells display unique characteristics. In particular, its mitochondria become elongated with altered metabolomes and dynamics. Accordingly, mitochondria reform their function to produce more reactive oxygen species at the cost of low ATP production. Meanwhile, destructed mitochondrial unfolded protein responses further break the delicate proteostasis fostering mitochondrial dysfunction. Additionally, the release of mitochondrial damage-associated molecular patterns, mitochondrial Ca2+ overload, and altered NAD+ level intertwine other cellular organelle strengthening senescence. These findings further intrigue researchers to develop anti-senescence interventions. Applying mitochondrial-targeted antioxidants reduces cell senescence and mitigates aging by restoring mitochondrial function and attenuating oxidative stress. Metformin and caloric restriction also manifest senescent rescuing effects by increasing mitochondria efficiency and alleviating oxidative damage. On the other hand, Bcl2 family protein inhibitors eradicate senescent cells by inducing apoptosis to facilitate cancer chemotherapy. This review describes the different aspects of mitochondrial changes in senescence and highlights the recent progress of some anti-senescence strategies.
Collapse
Affiliation(s)
- Qian Chen
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States.
| | - Lindon Young
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Robert Barsotti
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| |
Collapse
|
52
|
Irifune H, Kochi Y, Miyamoto T, Sakoda T, Kato K, Kunisaki Y, Akashi K, Kikushige Y. GPAM mediated lysophosphatidic acid synthesis regulates mitochondrial dynamics in acute myeloid leukemia. Cancer Sci 2023. [PMID: 37197765 PMCID: PMC10394129 DOI: 10.1111/cas.15835] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Metabolic alterations, especially in the mitochondria, play important roles in several kinds of cancers, including acute myeloid leukemia (AML). However, AML-specific molecular mechanisms that regulate mitochondrial dynamics remain elusive. Through the metabolite screening comparing CD34+ AML cells and healthy hematopoietic stem/progenitor cells, we identified enhanced lysophosphatidic acid (LPA) synthesis activity in AML. LPA is synthesized from glycerol-3-phosphate by glycerol-3-phosphate acyltransferases (GPATs), rate-limiting enzymes of the LPA synthesis pathway. Among the four isozymes of GPATs, glycerol-3-phosphate acyltransferases, mitochondrial (GPAM) was highly expressed in AML cells, and the inhibition of LPA synthesis by silencing GPAM or FSG67 (a GPAM-inhibitor) significantly impaired AML propagation through the induction of mitochondrial fission, resulting in the suppression of oxidative phosphorylation and the elevation of reactive oxygen species. Notably, inhibition of this metabolic synthesis pathway by FSG67 administration did not affect normal human hematopoiesis in vivo. Therefore, the GPAM-mediated LPA synthesis pathway from G3P represents a critical metabolic mechanism that specifically regulates mitochondrial dynamics in human AML, and GPAM is a promising potential therapeutic target.
Collapse
Affiliation(s)
- Hidetoshi Irifune
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Yu Kochi
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Toshihiro Miyamoto
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Teppei Sakoda
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Koji Kato
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Yuya Kunisaki
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
53
|
Chang EM, Chao CC, Wang MT, Hsu CL, Chen PC. PM 2.5 promotes pulmonary fibrosis by mitochondrial dysfunction. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37126650 DOI: 10.1002/tox.23817] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/23/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Pulmonary fibrosis is known as an incurable lung disorder with irreversible progression of chronic injury, myofibroblast proliferation, extracellular matrix (ECM) accumulation, and tissue scarring. Atmospheric particulate matter 2.5 (PM2.5 ) is implicated as a risk factor of several diseases, especially lung diseases such as pulmonary fibrosis. The molecular mechanism which participates PM2.5 -induced pulmonary fibrosis in type II alveolar cells (AEII) has yet to be determined. Our results proved that short- and long-term exposure to PM2.5 significantly stimulated epithelial-mesenchymal transition (EMT) activity in AEII cells, according to, changes in gene signature analyzed by RNA-seq and cell morphology. Furthermore, Gene Ontology (GO) enrichment analysis also suggested that mitochondrial dysfunction was related to progression of pulmonary fibrosis in AEII after PM2.5 exposure. We observed a marked decline in mitochondria membrane potential (MMP), as well as fragmented mitochondria, in AEII cells exposed to PM2.5 , which suggests that energy metabolism is suppressed after PM2.5 exposure. We also confirmed that PM2.5 exposure could influence the expression levels of Mfn1, Mfn2, and Drp1 in AEII. Pretreatment of mitochondrial fusion promoter M1 was able to reverse mitochondrial dysfunction as well as EMT in AEII. These data suggested the key role of mitochondrial fragmentation in AEII, which was induced by PM2.5 exposure, and participated pathogenesis of pulmonary fibrosis. Finally, we investigated the response of lung tissue exposed to PM2.5 in vivo. The data indicated that the lung tissue exposed to PM2.5 obviously induced collagen accumulation. Moreover, IHC results revealed that PM2.5 enhanced Drp1 expression but suppressed Mfn1 and Mfn2 expression in lung tissue. The current study provides novel insight of pulmonary fibrosis caused by PM2.5 exposure.
Collapse
Affiliation(s)
- En-Ming Chang
- Department of Respiratory Care, Shin Kong Wu Ho Su Memorial Hospital, Taipei City, Taiwan
| | - Chia-Chia Chao
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Mei-Ting Wang
- Division of Physical Medicine and Rehabilitation, Fu Jen Catholic University Hospital, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei City, Taiwan
| | - Po-Chun Chen
- School of Life Science, National Taiwan Normal University, Taipei City, Taiwan
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei City, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
54
|
Wang D, Ji DC, Yu CY, Wu DN, Qi L. Research progress on the mitochondrial mechanism of age-related non-alcoholic fatty liver. World J Gastroenterol 2023; 29:1982-1993. [PMID: 37155524 PMCID: PMC10122792 DOI: 10.3748/wjg.v29.i13.1982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. Reduced activity and slower metabolism in the elderly affect the balance of lipid metabolism in the liver leading to the accumulation of lipids. This affects the mitochondrial respiratory chain and the efficiency of β-oxidation and induces the overproduction of reactive oxygen species. In addition, the dynamic balance of the mitochondria is disrupted during the ageing process, which inhibits its phagocytic function and further aggravates liver injury, leading to a higher incidence of NAFLD in the elderly population. The present study reviewed the manifestations, role and mechanism of mitochondrial dysfunction in the progression of NAFLD in the elderly. Based on the understanding of mitochondrial dysfunction and abnormal lipid metabolism, this study discusses the treatment strategies and the potential therapeutic targets for NAFLD, including lipid accumulation, antioxidation, mitophagy and liver-protecting drugs. The purpose is to provide new ideas for the development of innovative drugs for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Dan Wang
- College of Basic Medicine, Beihua University, Jilin 132013, Jilin Province, China
| | - Duo-Chun Ji
- College of Basic Medicine, Beihua University, Jilin 132013, Jilin Province, China
| | - Chun-Yan Yu
- College of Basic Medicine, Beihua University, Jilin 132013, Jilin Province, China
| | - Dan-Ni Wu
- College of Basic Medicine, Beihua University, Jilin 132013, Jilin Province, China
| | - Ling Qi
- Central Laboratory, Qingyuan People's Hospital, Qingyuan 511518, Guangdong Province, China
| |
Collapse
|
55
|
Burtscher J, Pepe G, Maharjan N, Riguet N, Di Pardo A, Maglione V, Millet GP. Sphingolipids and impaired hypoxic stress responses in Huntington disease. Prog Lipid Res 2023; 90:101224. [PMID: 36898481 DOI: 10.1016/j.plipres.2023.101224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Huntington disease (HD) is a debilitating, currently incurable disease. Protein aggregation and metabolic deficits are pathological hallmarks but their link to neurodegeneration and symptoms remains debated. Here, we summarize alterations in the levels of different sphingolipids in an attempt to characterize sphingolipid patterns specific to HD, an additional molecular hallmark of the disease. Based on the crucial role of sphingolipids in maintaining cellular homeostasis, the dynamic regulation of sphingolipids upon insults and their involvement in cellular stress responses, we hypothesize that maladaptations or blunted adaptations, especially following cellular stress due to reduced oxygen supply (hypoxia) contribute to the development of pathology in HD. We review how sphingolipids shape cellular energy metabolism and control proteostasis and suggest how these functions may fail in HD and in combination with additional insults. Finally, we evaluate the potential of improving cellular resilience in HD by conditioning approaches (improving the efficiency of cellular stress responses) and the role of sphingolipids therein. Sphingolipid metabolism is crucial for cellular homeostasis and for adaptations following cellular stress, including hypoxia. Inadequate cellular management of hypoxic stress likely contributes to HD progression, and sphingolipids are potential mediators. Targeting sphingolipids and the hypoxic stress response are novel treatment strategies for HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Giuseppe Pepe
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | - Niran Maharjan
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
| | | | - Alba Di Pardo
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
56
|
Han L, Zhang C, Wang D, Zhang J, Tang Q, Li MJ, Sack MN, Wang L, Zhu L. Retrograde regulation of mitochondrial fission and epithelial to mesenchymal transition in hepatocellular carcinoma by GCN5L1. Oncogene 2023; 42:1024-1037. [PMID: 36759571 DOI: 10.1038/s41388-023-02621-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Metabolic reprogram is crucial to support cancer cell growth and movement as well as determine cell fate. Mitochondrial protein acetylation regulates mitochondrial metabolism, which is relevant to cancer cell migration and invasion. The functional role of mitochondrial protein acetylation on cancer cell migration remains unclear. General control of amino acid synthesis 5 like-1(GCN5L1), as the regulator of mitochondrial protein acetylation, functions on metabolic reprogramming in mouse livers. In this study, we find that GCN5L1 expression is significantly decreased in metastatic HCC tissues. Loss of GCN5L1 promotes reactive oxygen species (ROS) generation through enhanced fatty acid oxidation (FAO), followed by activation of cellular ERK and DRP1 to promote mitochondrial fission and epithelia to mesenchymal transition (EMT) to boost cell migration. Moreover, palmitate and carnitine-stimulated FAO promotes mitochondrial fission and EMT gene expression to activate HCC cell migration. On the other hand, increased cellular acetyl-CoA level, the product of FAO, enhances HCC cell migration. Taken together, our finding uncovers the metastasis suppressor role as well as the underlying mechanism of GCN5L1 in HCC and also provides evidence of FAO retrograde control of HCC metastasis.
Collapse
Affiliation(s)
- Linmeng Han
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chunyu Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Danni Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiaqi Zhang
- Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiqi Tang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mulin Jun Li
- Department of Bioinformatics, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin, China
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - Lingdi Wang
- Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Lu Zhu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
57
|
Lamanilao GG, Dogan M, Patel PS, Azim S, Patel DS, Bhattacharya SK, Eason JD, Kuscu C, Kuscu C, Bajwa A. Key hepatoprotective roles of mitochondria in liver regeneration. Am J Physiol Gastrointest Liver Physiol 2023; 324:G207-G218. [PMID: 36648139 PMCID: PMC9988520 DOI: 10.1152/ajpgi.00220.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Treatment of advanced liver disease using surgical modalities is possible due to the liver's innate ability to regenerate following resection. Several key cellular events in the regenerative process converge at the mitochondria, implicating their crucial roles in liver regeneration. Mitochondria enable the regenerating liver to meet massive metabolic demands by coordinating energy production to drive cellular proliferative processes and vital homeostatic functions. Mitochondria are also involved in terminating the regenerative process by mediating apoptosis. Studies have shown that attenuation of mitochondrial activity results in delayed liver regeneration, and liver failure following resection is associated with mitochondrial dysfunction. Emerging mitochondria therapy (i.e., mitotherapy) strategies involve isolating healthy donor mitochondria for transplantation into diseased organs to promote regeneration. This review highlights mitochondria's inherent role in liver regeneration.
Collapse
Affiliation(s)
- Gene G Lamanilao
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Murat Dogan
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Prisha S Patel
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Shafquat Azim
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Disha S Patel
- Department of Legal Studies, Belmont University, Nashville, Tennessee, United States
| | - Syamal K Bhattacharya
- Division of Cardiovascular Diseases, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - James D Eason
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Canan Kuscu
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Cem Kuscu
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Amandeep Bajwa
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Department of Genetics, Genomics, and Informatics, The University of Tennessee Health Science Center, College of Medicine, Memphis, Tennessee, United States
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
58
|
Targeted Deletion of Mitofusin 1 and Mitofusin 2 Causes Female Infertility and Loss of Follicular Reserve. Reprod Sci 2023; 30:560-568. [PMID: 35739352 DOI: 10.1007/s43032-022-01014-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
Mitochondria are dynamic organelles that regulate their size, shape, and morphology through mechanisms called fusion and fission, to continually adapt themselves to their bioenergetic environment. These mechanisms play a critical role to maintain the mitochondrial function under metabolic and environmental stress. Mitofusin 1 (MFN1) and mitofusin 2 (MFN2) are transmembrane GTPases that regulate mitochondrial fusion mechanism and are required for the maintenance of cellular homeostasis. In this study, we aimed to determine the role of mitofusins in female reproductive competence and senescence using a mouse model with oocyte-specific double deletion of Mfn1 and Mfn2, eliminating the potential functional redundancy of these two proteins. Oocyte-specific targeted double deletion of Mfn1 and Mfn2 in mice resulted in female infertility associated with impaired follicular development and oocyte maturation. It also resulted in altered mitochondrial dynamics and mitochondrial dysfunction. Lack of Mfn1 and Mfn2 in oocytes resulted in accelerated follicular depletion and impaired oocyte quality which are consistent with phenotype of reproductive aging.
Collapse
|
59
|
Bile acids target mitofusin 2 to differentially regulate innate immunity in physiological versus cholestatic conditions. Cell Rep 2023; 42:112011. [PMID: 36656708 DOI: 10.1016/j.celrep.2023.112011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 11/02/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Systemic metabolites serving as danger-associated molecular patterns play crucial roles in modulating the development, differentiation, and activity of innate immune cells. Yet, it is unclear how innate immune cells detect systemic metabolites for signal transmission. Here, we show that bile acids function as endogenous mitofusin 2 (MFN2) ligands and differentially modulate innate immune response to bacterial infection under cholestatic and physiological conditions. Bile acids at high concentrations promote mitochondrial tethering to the endoplasmic reticulum (ER), leading to calcium overload in the mitochondrion, which activates NLRP3 inflammasome and pyroptosis. By contrast, at physiologically relevant low concentrations, bile acids promote mitochondrial fusion, leading to enhanced oxidative phosphorylation and thereby strengthening infiltrated macrophages mediated phagocytotic clearance of bacteria. These findings support that bile acids, as endogenous activators of MFN2, are vital for tuning innate immune responses against infections, representing a causal link that connects systemic metabolism with mitochondrial dynamics in shaping innate immunity.
Collapse
|
60
|
Mani S, Dubey R, Lai IC, Babu MA, Tyagi S, Swargiary G, Mody D, Singh M, Agarwal S, Iqbal D, Kumar S, Hamed M, Sachdeva P, Almutary AG, Albadrani HM, Ojha S, Singh SK, Jha NK. Oxidative Stress and Natural Antioxidants: Back and Forth in the Neurological Mechanisms of Alzheimer's Disease. J Alzheimers Dis 2023; 96:877-912. [PMID: 37927255 DOI: 10.3233/jad-220700] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by the progressive degeneration of neuronal cells. With the increase in aged population, there is a prevalence of irreversible neurodegenerative changes, causing a significant mental, social, and economic burden globally. The factors contributing to AD are multidimensional, highly complex, and not completely understood. However, it is widely known that aging, neuroinflammation, and excessive production of reactive oxygen species (ROS), along with other free radicals, substantially contribute to oxidative stress and cell death, which are inextricably linked. While oxidative stress is undeniably important in AD, limiting free radicals and ROS levels is an intriguing and potential strategy for deferring the process of neurodegeneration and alleviating associated symptoms. Therapeutic compounds from natural sources have recently become increasingly accepted and have been effectively studied for AD treatment. These phytocompounds are widely available and a multitude of holistic therapeutic efficiencies for treating AD owing to their antioxidant, anti-inflammatory, and biological activities. Some of these compounds also function by stimulating cholinergic neurotransmission, facilitating the suppression of beta-site amyloid precursor protein-cleaving enzyme 1, α-synuclein, and monoamine oxidase proteins, and deterring the occurrence of AD. Additionally, various phenolic, flavonoid, and terpenoid phytocompounds have been extensively described as potential palliative agents for AD progression. Preclinical studies have shown their involvement in modulating the cellular redox balance and minimizing ROS formation, displaying them as antioxidant agents with neuroprotective abilities. This review emphasizes the mechanistic role of natural products in the treatment of AD and discusses the various pathological hypotheses proposed for AD.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - I-Chun Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Sakshi Tyagi
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Deepansh Mody
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Manisha Singh
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Shriya Agarwal
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Kingdom of Saudi Arabia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| |
Collapse
|
61
|
Punter KB, Chu C, Chan EYW. Mitochondrial dynamics and oxidative phosphorylation as critical targets in cancer. Endocr Relat Cancer 2023; 30:ERC-22-0229. [PMID: 36356297 DOI: 10.1530/erc-22-0229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
It has long been recognised that cancer cells critically depend on reprogrammed patterns of metabolism that can enable robust and abnormally high levels of cell proliferation. As mitochondria form hubs of cellular metabolic activity, it is reasonable to propose that pathways within these organelles can form targets that can be manipulated to compromise the ability of cancer cells to cause disease. However, mitochondria are highly multi-functional, and the full range of mechanistic inter-connections are still being unravelled to enable the full potential of targeting mitochondria in cancer therapeutics. Here, we aim to highlight the potential of modulating mitochondrial dynamics to target key metabolic or apoptotic pathways in cancer cells. Distinct roles have been demonstrated for mitochondrial fission and fusion in different cancer contexts. Targeting of factors mediating mitochondrial dynamics may be directly related to impairment of oxidative phosphorylation, which is essential to sustain cancer cell growth and can also alter sensitivity to chemotherapeutic compounds. This area is still lacking a unified model, although further investigation will more comprehensively map the underlying molecular mechanisms to enable better rational therapeutic strategies based on these pathways.
Collapse
Affiliation(s)
- Kaylee B Punter
- Department of Biomedical and Medical Sciences, Queen's University, Kingston, Canada
| | - Charles Chu
- Department of Biomedical and Medical Sciences, Queen's University, Kingston, Canada
| | - Edmond Y W Chan
- Department of Biomedical and Medical Sciences, Queen's University, Kingston, Canada
| |
Collapse
|
62
|
Agarawal K, Anant Kulkarni Y, Wairkar S. Nanoformulations of flavonoids for diabetes and microvascular diabetic complications. Drug Deliv Transl Res 2023; 13:18-36. [PMID: 35637334 DOI: 10.1007/s13346-022-01174-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Diabetes is a chronic metabolic disease characterized by an excess of glucose in the blood. If the constant sugar level is not managed correctly in diabetic patients, it may lead to microvascular complications such as diabetic retinopathy, neuropathy, and nephropathy. There are several synthetic drugs for the management of diabetes; however, these drugs produce immense adverse effects in long-term use. Flavonoids are naturally occurring substances categorized in various classes. They are known for their diverse pharmacological actions, and one of them is prominent antihyperglycemic action and their activities in diabetic complications. In the last few decades, many research studies emphasized the potential of flavonoids in diabetes management. Nevertheless, most flavonoids are insoluble in water and cannot produce desired therapeutic action when administered in conventional dosage forms. To overcome this issue, flavonoids were formulated into different nanoformulations to enhance solubility, absorption, and therapeutic efficacy. This review article focuses on flavonoid nanoformulations and in vitro and in vivo studies reported to overcome diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Kopal Agarawal
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Yogesh Anant Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
63
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 336] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
64
|
Structural functionality of skeletal muscle mitochondria and its correlation with metabolic diseases. Clin Sci (Lond) 2022; 136:1851-1871. [PMID: 36545931 DOI: 10.1042/cs20220636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
The skeletal muscle is one of the largest organs in the mammalian body. Its remarkable ability to swiftly shift its substrate selection allows other organs like the brain to choose their preferred substrate first. Healthy skeletal muscle has a high level of metabolic flexibility, which is reduced in several metabolic diseases, including obesity and Type 2 diabetes (T2D). Skeletal muscle health is highly dependent on optimally functioning mitochondria that exist in a highly integrated network with the sarcoplasmic reticulum and sarcolemma. The three major mitochondrial processes: biogenesis, dynamics, and mitophagy, taken together, determine the quality of the mitochondrial network in the muscle. Since muscle health is primarily dependent on mitochondrial status, the mitochondrial processes are very tightly regulated in the skeletal muscle via transcription factors like peroxisome proliferator-activated receptor-γ coactivator-1α, peroxisome proliferator-activated receptors, estrogen-related receptors, nuclear respiratory factor, and Transcription factor A, mitochondrial. Physiological stimuli that enhance muscle energy expenditure, like cold and exercise, also promote a healthy mitochondrial phenotype and muscle health. In contrast, conditions like metabolic disorders, muscle dystrophies, and aging impair the mitochondrial phenotype, which is associated with poor muscle health. Further, exercise training is known to improve muscle health in aged individuals or during the early stages of metabolic disorders. This might suggest that conditions enhancing mitochondrial health can promote muscle health. Therefore, in this review, we take a critical overview of current knowledge about skeletal muscle mitochondria and the regulation of their quality. Also, we have discussed the molecular derailments that happen during various pathophysiological conditions and whether it is an effect or a cause.
Collapse
|
65
|
Kataoka T. Biological properties of the BCL-2 family protein BCL-RAMBO, which regulates apoptosis, mitochondrial fragmentation, and mitophagy. Front Cell Dev Biol 2022; 10:1065702. [PMID: 36589739 PMCID: PMC9800997 DOI: 10.3389/fcell.2022.1065702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria play an essential role in the regulation of cellular stress responses, including cell death. Damaged mitochondria are removed by fission and fusion cycles and mitophagy, which counteract cell death. BCL-2 family proteins possess one to four BCL-2 homology domains and regulate apoptosis signaling at mitochondria. BCL-RAMBO, also known as BCL2-like 13 (BCL2L13), was initially identified as one of the BCL-2 family proteins inducing apoptosis. Mitophagy receptors recruit the ATG8 family proteins MAP1LC3/GABARAP via the MAP1LC3-interacting region (LIR) motif to initiate mitophagy. In addition to apoptosis, BCL-RAMBO has recently been identified as a mitophagy receptor that possesses the LIR motif and regulates mitochondrial fragmentation and mitophagy. In the 20 years since its discovery, many important findings on BCL-RAMBO have been increasingly reported. The biological properties of BCL-RAMBO are reviewed herein.
Collapse
Affiliation(s)
- Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan,Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan,*Correspondence: Takao Kataoka,
| |
Collapse
|
66
|
Baker MJ, Crameri JJ, Thorburn DR, Frazier AE, Stojanovski D. Mitochondrial biology and dysfunction in secondary mitochondrial disease. Open Biol 2022; 12:220274. [PMID: 36475414 PMCID: PMC9727669 DOI: 10.1098/rsob.220274] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases are a broad, genetically heterogeneous class of metabolic disorders characterized by deficits in oxidative phosphorylation (OXPHOS). Primary mitochondrial disease (PMD) defines pathologies resulting from mutation of mitochondrial DNA (mtDNA) or nuclear genes affecting either mtDNA expression or the biogenesis and function of the respiratory chain. Secondary mitochondrial disease (SMD) arises due to mutation of nuclear-encoded genes independent of, or indirectly influencing OXPHOS assembly and operation. Despite instances of novel SMD increasing year-on-year, PMD is much more widely discussed in the literature. Indeed, since the implementation of next generation sequencing (NGS) techniques in 2010, many novel mitochondrial disease genes have been identified, approximately half of which are linked to SMD. This review will consolidate existing knowledge of SMDs and outline discrete categories within which to better understand the diversity of SMD phenotypes. By providing context to the biochemical and molecular pathways perturbed in SMD, we hope to further demonstrate the intricacies of SMD pathologies outside of their indirect contribution to mitochondrial energy generation.
Collapse
Affiliation(s)
- Megan J. Baker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jordan J. Crameri
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David R. Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia,Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Ann E. Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
67
|
Nguyen G, Park SY, Do DV, Choi DH, Cho EH. Gemigliptin Alleviates Succinate-Induced Hepatic Stellate Cell Activation by Ameliorating Mitochondrial Dysfunction. Endocrinol Metab (Seoul) 2022; 37:918-928. [PMID: 36377343 PMCID: PMC9816499 DOI: 10.3803/enm.2022.1530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGRUOUND Dipeptidyl peptidase-4 inhibitors (DPP-4Is) are used clinically as oral antidiabetic agents. Although DPP-4Is are known to ameliorate liver fibrosis, the protective mechanism of DPP-4Is in liver fibrosis remains obscure. In this study, gemigliptin was used to investigate the potential of DPP-4Is to alleviate the progression of liver fibrosis. METHODS To clarify the effects and mechanisms of gemigliptin, we conducted various experiments in LX-2 cells (immortalized human hepatic stellate cells [HSCs], the principal effectors of hepatic fibrogenesis), which were activated by succinate and exhibited elevated expression of α-smooth muscle actin, collagen type 1, and pro-inflammatory cytokines and increased cell proliferation. In vivo, we examined the effects and mechanisms of gemigliptin on a high-fat, high-cholesterol-induced mouse model of nonalcoholic steatohepatitis (NASH). RESULTS Gemigliptin decreased the expression of fibrogenesis markers and reduced the abnormal proliferation of HSCs. In addition, gemigliptin reduced the succinate-induced production of mitochondrial reactive oxygen species (ROS), intracellular ROS, and mitochondrial fission in HSCs. Furthermore, in the mouse model of NASH-induced liver fibrosis, gemigliptin alleviated both liver fibrosis and mitochondrial dysfunction. CONCLUSION Gemigliptin protected against HSC activation and liver fibrosis by alleviating mitochondrial dysfunction and ROS production, indicating its potential as a strategy for preventing the development of liver disease.
Collapse
Affiliation(s)
- Giang Nguyen
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - So Young Park
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Dinh Vinh Do
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Dae-Hee Choi
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
- Corresponding author: Eun-Hee Cho. Department of Internal Medicine, Kangwon National University School of Medicine, 1 Gangwondaehak-gil, Chuncheon 24341, Korea Tel: +82-33-258-9167, Fax: +82-33-258-2455, E-mail:
| |
Collapse
|
68
|
Lee MY, Ojeda-Britez S, Ehrbar D, Samwer A, Begley TJ, Melendez JA. Selenoproteins and the senescence-associated epitranscriptome. Exp Biol Med (Maywood) 2022; 247:2090-2102. [PMID: 36036467 PMCID: PMC9837304 DOI: 10.1177/15353702221116592] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Selenium is a naturally found trace element, which provides multiple benefits including antioxidant, anticancer, and antiaging, as well as boosting immunity. One unique feature of selenium is its incorporation as selenocysteine, a rare 21st amino acid, into selenoproteins. Twenty-five human selenoproteins have been discovered, and a majority of these serve as crucial antioxidant enzymes for redox homeostasis. Unlike other amino acids, incorporation of selenocysteine requires a distinctive UGA stop codon recoding mechanism. Although many studies correlating selenium, selenoproteins, aging, and senescence have been performed, it has not yet been explored if the upstream events regulating selenoprotein synthesis play a role in senescence-associated pathologies. The epitranscriptomic writer alkylation repair homolog 8 (ALKBH8) is critical for selenoprotein production, and its deficiency can significantly decrease levels of selenoproteins that are essential for reactive oxygen species (ROS) detoxification, and increase oxidative stress, one of the major drivers of cellular senescence. Here, we review the potential role of epitranscriptomic marks that govern selenocysteine utilization in regulating the senescence program.
Collapse
Affiliation(s)
- May Y Lee
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
- The RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Stephen Ojeda-Britez
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Dylan Ehrbar
- The RNA Institute, University at Albany, Albany, NY 12222, USA
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
| | | | - Thomas J Begley
- The RNA Institute, University at Albany, Albany, NY 12222, USA
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
| | - J Andres Melendez
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
- The RNA Institute, University at Albany, Albany, NY 12222, USA
| |
Collapse
|
69
|
Luo HM, Xu J, Huang DX, Chen YQ, Liu YZ, Li YJ, Chen H. Mitochondrial dysfunction of induced pluripotent stem cells-based neurodegenerative disease modeling and therapeutic strategy. Front Cell Dev Biol 2022; 10:1030390. [DOI: 10.3389/fcell.2022.1030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are disorders in which neurons are lost owing to various factors, resulting in a series of dysfunctions. Their rising prevalence and irreversibility have brought physical pain to patients and economic pressure to both individuals and society. However, the pathogenesis of NDDs has not yet been fully elucidated, hampering the use of precise medication. Induced pluripotent stem cell (IPSC) modeling provides a new method for drug discovery, and exploring the early pathological mechanisms including mitochondrial dysfunction, which is not only an early but a prominent pathological feature of NDDs. In this review, we summarize the iPSC modeling approach of Alzheimer’s disease, Parkinson’s disease, and Amyotrophic lateral sclerosis, as well as outline typical mitochondrial dysfunction and recapitulate corresponding therapeutic strategies.
Collapse
|
70
|
Bajia D, Bottani E, Derwich K. Effects of Noonan Syndrome-Germline Mutations on Mitochondria and Energy Metabolism. Cells 2022; 11:cells11193099. [PMID: 36231062 PMCID: PMC9563972 DOI: 10.3390/cells11193099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Noonan syndrome (NS) and related Noonan syndrome with multiple lentigines (NSML) contribute to the pathogenesis of human diseases in the RASopathy family. This family of genetic disorders constitute one of the largest groups of developmental disorders with variable penetrance and severity, associated with distinctive congenital disabilities, including facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was first clinically described decades ago, and several genes have since been identified, providing a molecular foundation to understand their physiopathology and identify targets for therapeutic strategies. These genes encode proteins that participate in, or regulate, RAS/MAPK signalling. The RAS pathway regulates cellular metabolism by controlling mitochondrial homeostasis, dynamics, and energy production; however, little is known about the role of mitochondrial metabolism in NS and NSML. This manuscript comprehensively reviews the most frequently mutated genes responsible for NS and NSML, covering their role in the current knowledge of cellular signalling pathways, and focuses on the pathophysiological outcomes on mitochondria and energy metabolism.
Collapse
Affiliation(s)
- Donald Bajia
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
| | - Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, Piazzale L. A. Scuro 10, 37134 Verona, Italy
- Correspondence: (E.B.); (K.D.); Tel.: +39-3337149584 (E.B.); +48-504199285 (K.D.)
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
- Correspondence: (E.B.); (K.D.); Tel.: +39-3337149584 (E.B.); +48-504199285 (K.D.)
| |
Collapse
|
71
|
Secondary brain injury after polystyrene microplastic-induced intracerebral hemorrhage is associated with inflammation and pyroptosis. Chem Biol Interact 2022; 367:110180. [PMID: 36113630 DOI: 10.1016/j.cbi.2022.110180] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/21/2022]
Abstract
Unlike regular environmental pollutants, microplastics cannot dissolve in liquids. Physical contact of microplastic (MPs) with tissue can damage tissue structure, and it is unclear how this physical secondary injury affects brain tissue. Through CTD database analysis, it was determined that cerebral ischemia may be one of the main ways of brain tissue damage caused by MPs, and inflammatory response may play a key role in it. In the present study, PS-MPs (L-PS group:1 mg/L, M - PS group:10 mg/L, H-PS group: 100 mg/L in water) were assessed to brain tissue damage in chicken after six weeks of continuous exposure. Exposure to PS-MPs caused cerebral hemorrhage as well as generation of microthrombi and loss of Purkinje cells. Intracerebral hemorrhage caused a strong infiltration of inflammatory cells and activated the ASC-NLRP3-GSDMD signaling pathway to induce pyroptosis. Disruption of mitochondrial dynamics by PS-MPs exposure disrupts mitochondrial function and activates AMPK signaling. In conclusion, this study explored the mechanism regulation of subsequent brain injury from the perspective of physical injury (cerebral hemorrhage) of PS-MPs. To provide a reference for elucidating the neurotoxicity induced by microplastic exposure.
Collapse
|
72
|
Low Expression of Mitofusin 1 Gene Leads to Mitochondrial Dysfunction and Embryonic Genome Activation Failure in Ovine-Bovine Inter-Species Cloned Embryos. Int J Mol Sci 2022; 23:ijms231710145. [PMID: 36077543 PMCID: PMC9456037 DOI: 10.3390/ijms231710145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Inter-species somatic cell nuclear transfer (iSCNT) is significant in the study of biological problems such as embryonic genome activation and the mitochondrial function of embryos. Here, we used iSCNT as a model to determine whether abnormal embryo genome activation was caused by mitochondrial dysfunction. First, we found the ovine-bovine iSCNT embryos were developmentally blocked at the 8-cell stage. The reactive oxygen species level, mitochondrial membrane potential, and ATP level in ovine-bovine cloned embryos were significantly different from both bovine-bovine and IVF 8-cell stage embryos. RNA sequencing and q-PCR analysis revealed that mitochondrial transport, mitochondrial translational initiation, mitochondrial large ribosomal subunit, and mitochondrial outer membrane genes were abnormally expressed in the ovine-bovine embryos, and the mitochondrial outer membrane and mitochondrial ribosome large subunit genes, mitochondrial fusion gene 1, and ATPase Na+/K+ transporting subunit beta 3 gene were expressed at lower levels in the ovine-bovine cloned embryos. Furthermore, we found that overexpression and knockdown of Mfn1 significantly affected mitochondrial fusion and subsequent biological functions such as production of ATP, mitochondrial membrane potential, reactive oxygen species and gene expressions in cloned embryos. These findings enhance our understanding of the mechanism by which the Mfn1 gene regulates embryonic development and embryonic genome activation events.
Collapse
|
73
|
Legaki AI, Moustakas II, Sikorska M, Papadopoulos G, Velliou RI, Chatzigeorgiou A. Hepatocyte Mitochondrial Dynamics and Bioenergetics in Obesity-Related Non-Alcoholic Fatty Liver Disease. Curr Obes Rep 2022; 11:126-143. [PMID: 35501558 PMCID: PMC9399061 DOI: 10.1007/s13679-022-00473-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE OF THE REVIEW Mitochondrial dysfunction has long been proposed to play a crucial role in the pathogenesis of a considerable number of disorders, such as neurodegeneration, cancer, cardiovascular, and metabolic disorders, including obesity-related insulin resistance and non-alcoholic fatty liver disease (NAFLD). Mitochondria are highly dynamic organelles that undergo functional and structural adaptations to meet the metabolic requirements of the cell. Alterations in nutrient availability or cellular energy needs can modify their formation through biogenesis and the opposite processes of fission and fusion, the fragmentation, and connection of mitochondrial network areas respectively. Herein, we review and discuss the current literature on the significance of mitochondrial adaptations in obesity and metabolic dysregulation, emphasizing on the role of hepatocyte mitochondrial flexibility in obesity and NAFLD. RECENT FINDINGS Accumulating evidence suggests the involvement of mitochondrial morphology and bioenergetics dysregulations to the emergence of NAFLD and its progress to non-alcoholic steatohepatitis (NASH). Most relevant data suggests that changes in liver mitochondrial dynamics and bioenergetics hold a key role in the pathogenesis of NAFLD. During obesity and NAFLD, oxidative stress occurs due to the excessive production of ROS, leading to mitochondrial dysfunction. As a result, mitochondria become incompetent and uncoupled from respiratory chain activities, further promoting hepatic fat accumulation, while leading to liver inflammation, insulin resistance, and disease's deterioration. Elucidation of the mechanisms leading to dysfunctional mitochondrial activity of the hepatocytes during NAFLD is of predominant importance for the development of novel therapeutic approaches towards the treatment of this metabolic disorder.
Collapse
Affiliation(s)
- Aigli-Ioanna Legaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
| | - Ioannis I. Moustakas
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
| | - Michalina Sikorska
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
| | - Grigorios Papadopoulos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
| | - Rallia-Iliana Velliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
74
|
Larson KF, Malik A, Brozovich FV. Aging and Heart Failure with Preserved Ejection Fraction. Compr Physiol 2022; 12:3813-3822. [PMID: 35950652 DOI: 10.1002/cphy.c210035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heart failure is a clinical syndrome characterized by the inability of the cardiovascular system to provide adequate cardiac output at normal filling pressures. This results in a clinical syndrome characterized by dyspnea, edema, and decreased exertional tolerance. Heart failure with preserved ejection fraction (HFpEF) is an increasingly common disease, and the incidence of HFpEF increases with age. There are a variety of factors which contribute to the development of HFpEF, including the presence of hypertension, diabetes, obesity, and other pro-inflammatory states. These comorbid conditions result in changes at the biochemical and cell signaling level which ultimately lead to a disease with a great deal of phenotypic heterogeneity. In general, the physiologic dysfunction of HFpEF is characterized by vascular stiffness, increased cardiac filling pressures, pulmonary hypertension, and impaired volume management. The normal and abnormal processes associated with aging serve as an accelerant in this process, resulting in the hypothesis that HFpEF represents a form of presbycardia. In this article, we aim to review the processes importance of aging in the development of HFpEF by examining the disease and its causes from the biochemical to physiologic level. © 2022 American Physiological Society. Compr Physiol 12: 1-10, 2022.
Collapse
Affiliation(s)
- Kathryn F Larson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Awais Malik
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Frank V Brozovich
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
75
|
Fan X, Yan T, Hou T, Xiong X, Feng L, Li S, Wang Z. Mitochondrial changes in fish cells in vitro in response to serum deprivation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:869-881. [PMID: 35652993 DOI: 10.1007/s10695-022-01088-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are critical to cellular activity that implicated in expansive networks to maintain organismal homeostasis under external stimuli of nutrient variability, a common and severe stress to fish performance during the intensive culture conditions. In the present study, zebrafish embryonic fibroblast cells were used to investigate the fish mitochondrial changes upon serum deprivation. Results showed that mitochondrial content and membrane potential were significantly reduced with increased intracellular ROS level in the serum deprivation treated fish cells. And the impaired mitochondria were characterized by rough and fracted outer membrane, and more fused mitochondria were frequently observed with the upregulated mRNA expressions of mitochondrial fusion genes (mfn1b, mfn2, and opa1). Besides, the mitochondrial DNA (mtDNA) copy numbers of mtatp6, mtcox1, mtcytb, mtnd4, and mtnd6 were overall showing the highly significant reduction, together with the mRNA expressions of these genes significantly increased, exhibiting the compensatory effects in mitochondria. Furthermore, the methyl-cytosine of whole mtDNA was compared and the methyl-reads numbers were distinctly increased in the treatment group, reflecting the instability of fish mtDNA with mitochondrial dysfunction under nutrient fluctuations. Collectively, current findings could facilitate the integrated research between fish mitochondrial response and external variables that indicates the potentially profound and durative deficits in fish health during the aquaculture processes.
Collapse
Affiliation(s)
- Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Tao Yan
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Tingting Hou
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xiaofan Xiong
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Leilei Feng
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Shiyi Li
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
76
|
Laparoscopic Sleeve Gastrectomy in Patients with Severe Obesity Restores Adaptive Responses Leading to Nonalcoholic Steatohepatitis. Int J Mol Sci 2022; 23:ijms23147830. [PMID: 35887177 PMCID: PMC9320342 DOI: 10.3390/ijms23147830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
The surgically induced remission of liver disease represents a model to investigate the signalling processes that trigger the development of nonalcoholic steatohepatitis with the aim of identifying novel therapeutic targets. We recruited patients with severe obesity with or without nonalcoholic steatohepatitis and obtained liver and plasma samples before and after laparoscopic sleeve gastrectomy for immunoblotting, immunocytochemical, metabolomic, transcriptomic and epigenetic analyses. Functional studies were performed in HepG2 cells and primary hepatocytes. Surgery was associated with a decrease in the inflammatory response and revealed the role of mitogen-activated protein kinases. Nonalcoholic steatohepatitis was associated with an increased glutaminolysis-induced production of α-ketoglutarate and the hyperactivation of mammalian target of rapamycin complex 1. These changes were crucial for adenosine monophosphate-activated protein kinase/mammalian target of rapamycin-driven pathways that modulated hepatocyte survival by coordinating apoptosis and autophagy and affected methylation-related epigenomic remodelling enzymes. Hepatic transcriptome signatures and differentially methylated genomic regions distinguished patients with and without steatohepatitis. Our results suggest that the increased glutaminolysis-induced α-ketoglutarate production and the mammalian target of rapamycin complex 1 dysregulation play a crucial role in the inefficient adaptive responses leading to steatohepatitis in obesity.
Collapse
|
77
|
Li Y, Adeniji NT, Fan W, Kunimoto K, Török NJ. Non-alcoholic Fatty Liver Disease and Liver Fibrosis during Aging. Aging Dis 2022; 13:1239-1251. [PMID: 35855331 PMCID: PMC9286912 DOI: 10.14336/ad.2022.0318] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its progressive form non-alcoholic steatohepatitis (NASH) have emerged as the leading causes of chronic liver disease-related mortality. The prevalence of NAFLD/NASH is expected to increase given the epidemics of obesity and type 2 diabetes mellitus. Older patients are disproportionally affected by NASH and related complications such as progressive fibrosis, cirrhosis and hepatocellular carcinoma; however, they are often ineligible for liver transplantation due to their frailty and comorbidities, and effective medical treatments are still lacking. In this review we focused on pathways that are key to the aging process in the liver and perpetuate NAFLD/NASH, leading to fibrosis. In addition, we highlighted recent findings and cross-talks of normal and/or senescent liver cells, dysregulated nutrient sensing, proteostasis and mitochondrial dysfunction in the framework of changing metabolic milieu. Better understanding these pathways during preclinical and clinical studies will be essential to design novel and specific therapeutic strategies to treat NASH in the elderly.
Collapse
Affiliation(s)
- Yuan Li
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Nia T. Adeniji
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Weiguo Fan
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Koshi Kunimoto
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| | - Natalie J. Török
- Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA
| |
Collapse
|
78
|
Zacharioudakis E, Agianian B, Kumar Mv V, Biris N, Garner TP, Rabinovich-Nikitin I, Ouchida AT, Margulets V, Nordstrøm LU, Riley JS, Dolgalev I, Chen Y, Wittig AJH, Pekson R, Mathew C, Wei P, Tsirigos A, Tait SWG, Kirshenbaum LA, Kitsis RN, Gavathiotis E. Modulating mitofusins to control mitochondrial function and signaling. Nat Commun 2022; 13:3775. [PMID: 35798717 PMCID: PMC9262907 DOI: 10.1038/s41467-022-31324-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/10/2022] [Indexed: 02/01/2023] Open
Abstract
Mitofusins reside on the outer mitochondrial membrane and regulate mitochondrial fusion, a physiological process that impacts diverse cellular processes. Mitofusins are activated by conformational changes and subsequently oligomerize to enable mitochondrial fusion. Here, we identify small molecules that directly increase or inhibit mitofusins activity by modulating mitofusin conformations and oligomerization. We use these small molecules to better understand the role of mitofusins activity in mitochondrial fusion, function, and signaling. We find that mitofusin activation increases, whereas mitofusin inhibition decreases mitochondrial fusion and functionality. Remarkably, mitofusin inhibition also induces minority mitochondrial outer membrane permeabilization followed by sub-lethal caspase-3/7 activation, which in turn induces DNA damage and upregulates DNA damage response genes. In this context, apoptotic death induced by a second mitochondria-derived activator of caspases (SMAC) mimetic is potentiated by mitofusin inhibition. These data provide mechanistic insights into the function and regulation of mitofusins as well as small molecules to pharmacologically target mitofusins.
Collapse
Affiliation(s)
- Emmanouil Zacharioudakis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bogos Agianian
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vasantha Kumar Mv
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos Biris
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thomas P Garner
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Research Centre, Winnipeg, MB, Canada
| | - Amanda T Ouchida
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Victoria Margulets
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Research Centre, Winnipeg, MB, Canada
| | | | - Joel S Riley
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Igor Dolgalev
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Yun Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andre J H Wittig
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ryan Pekson
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chris Mathew
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter Wei
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lorrie A Kirshenbaum
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Research Centre, Winnipeg, MB, Canada
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
79
|
Vezza T, Díaz-Pozo P, Canet F, de Marañón AM, Abad-Jiménez Z, García-Gargallo C, Roldan I, Solá E, Bañuls C, López-Domènech S, Rocha M, Víctor VM. The Role of Mitochondrial Dynamic Dysfunction in Age-Associated Type 2 Diabetes. World J Mens Health 2022; 40:399-411. [PMID: 35021300 PMCID: PMC9253806 DOI: 10.5534/wjmh.210146] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/15/2022] Open
Abstract
Mitochondrial dynamics, such as fusion and fission, play a critical role in maintaining cellular metabolic homeostasis. The molecular mechanisms underlying these processes include fusion proteins (Mitofusin 1 [MFN1], Mitofusin 2 [MFN2], and optic atrophy 1 [OPA1]) and fission mediators (mitochondrial fission 1 [FIS1] and dynamin-related protein 1 [DRP1]), which interact with each other to ensure mitochondrial quality control. Interestingly, defects in these proteins can lead to the loss of mitochondrial DNA (mtDNA) integrity, impairment of mitochondrial function, a severe alteration of mitochondrial morphology, and eventually cell death. Emerging evidence has revealed a causal relationship between dysregulation of mitochondria dynamics and age-associated type 2 diabetes, a metabolic disease whose rates have reached an alarming epidemic-like level with the majority of cases (59%) recorded in men aged 65 and over. In this sense, fragmentation of mitochondrial networks is often associated with defects in cellular energy production and increased apoptosis, leading, in turn, to excessive reactive oxygen species release, mitochondrial dysfunction, and metabolic alterations, which can ultimately contribute to β-cell dysfunction and insulin resistance. The present review discusses the processes of mitochondrial fusion and fission and their dysfunction in type 2 diabetes, with special attention given to the therapeutic potential of targeting mitochondrial dynamics in this complex metabolic disorder.
Collapse
Affiliation(s)
- Teresa Vezza
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Pedro Díaz-Pozo
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Francisco Canet
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Aranzazu M de Marañón
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Zaida Abad-Jiménez
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Celia García-Gargallo
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Ildefonso Roldan
- Service of Cardiology, University Hospital Doctor Peset, FISABIO, Valencia, Spain
| | - Eva Solá
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Celia Bañuls
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain.
| | - Sandra López-Domènech
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain.
| | - Víctor M Víctor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain
- Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
80
|
Souza-Neto FV, Islas F, Jiménez-González S, Luaces M, Ramchandani B, Romero-Miranda A, Delgado-Valero B, Roldan-Molina E, Saiz-Pardo M, Cerón-Nieto MÁ, Ortega-Medina L, Martínez-Martínez E, Cachofeiro V. Mitochondrial Oxidative Stress Promotes Cardiac Remodeling in Myocardial Infarction through the Activation of Endoplasmic Reticulum Stress. Antioxidants (Basel) 2022; 11:antiox11071232. [PMID: 35883722 PMCID: PMC9311874 DOI: 10.3390/antiox11071232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
We have evaluated cardiac function and fibrosis in infarcted male Wistar rats treated with MitoQ (50 mg/kg/day) or vehicle for 4 weeks. A cohort of patients admitted with a first episode of acute MI were also analyzed with cardiac magnetic resonance and T1 mapping during admission and at a 12-month follow-up. Infarcted animals presented cardiac hypertrophy and a reduction in the left ventricular ejection fraction (LVEF) and E- and A-waves (E/A) ratio when compared to controls. Myocardial infarction (MI) rats also showed cardiac fibrosis and endoplasmic reticulum (ER) stress activation. Binding immunoglobulin protein (BiP) levels, a marker of ER stress, were correlated with collagen I levels. MitoQ reduced oxidative stress and prevented all these changes without affecting the infarct size. The LVEF and E/A ratio in patients with MI were 57.6 ± 7.9% and 0.96 ± 0.34, respectively. No major changes in cardiac function, extracellular volume fraction (ECV), or LV mass were observed at follow-up. Interestingly, the myeloperoxidase (MPO) levels were associated with the ECV in basal conditions. BiP staining and collagen content were also higher in cardiac samples from autopsies of patients who had suffered an MI than in those who had died from other causes. These results show the interactions between mitochondrial oxidative stress and ER stress, which can result in the development of diffuse fibrosis in the context of MI.
Collapse
Affiliation(s)
- Francisco V. Souza-Neto
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
| | - Fabian Islas
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, 28040 Madrid, Spain; (F.I.); (M.L.)
| | - Sara Jiménez-González
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
| | - María Luaces
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, 28040 Madrid, Spain; (F.I.); (M.L.)
| | - Bunty Ramchandani
- Servicio de Cirugía Cardiaca Infantil, Hospital La Paz, 28046 Madrid, Spain;
| | - Ana Romero-Miranda
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
| | - Beatriz Delgado-Valero
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
| | - Elena Roldan-Molina
- Biobanco del Hospital Clínico San Carlos, Instituto de Investigación de Salud del Hospital Clínico San Carlos, 28040 Madrid, Spain; (E.R.-M.); (L.O.-M.)
| | - Melchor Saiz-Pardo
- Departamento de Patología, Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.S.-P.); (M.Á.C.-N.)
- Departamento de Medicina Legal, Psiquiatría y Patología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mª Ángeles Cerón-Nieto
- Departamento de Patología, Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.S.-P.); (M.Á.C.-N.)
| | - Luis Ortega-Medina
- Biobanco del Hospital Clínico San Carlos, Instituto de Investigación de Salud del Hospital Clínico San Carlos, 28040 Madrid, Spain; (E.R.-M.); (L.O.-M.)
- Departamento de Patología, Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.S.-P.); (M.Á.C.-N.)
- Departamento de Medicina Legal, Psiquiatría y Patología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28222 Majadahonda, Spain
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-91-3941483 (E.M.-M.); +34-91-3941489 (V.C.)
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (A.R.-M.); (B.D.-V.)
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28222 Majadahonda, Spain
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-91-3941483 (E.M.-M.); +34-91-3941489 (V.C.)
| |
Collapse
|
81
|
Abstract
Mitochondria are central to cellular metabolism. They provide intermediate metabolites that are used in biosynthetic pathways and they process diet-derived nutrients into the energy-rich compound ATP. Mitochondrial ATP biosynthesis is a marvel of thermodynamic efficiency. Via the tricarboxylic acid cycle (TCA) and fatty acid β-oxidation, mitochondria extract electrons from dietary carbon compounds and pass them to nucleotides that ultimately deliver them to the respiratory chain complexes located in invaginations in the inner mitochondrial membrane (IMM) known as cristae. The respiratory chain complexes donate electrons in stepwise redox reactions to molecular oxygen and, with the exception of complex II, use the liberated energy to pump protons across the proton-impermeable IMM, generating a proton electrochemical gradient. This gradient is then utilized by the ATP synthase, which, in a rotary mechanism, catalyzes the formation of the high-energy γ-phosphate chemical bond between ADP and inorganic phosphate. The conversion of the chemical energy of carbon compounds into a physical, vectorial form of energy (the electrochemical gradient) maximizes the yield of the ATP biosynthetic process and is perhaps one of the foundations of life as we know it.
Collapse
Affiliation(s)
- Lukas Alan
- Department of Biology, University of Padua, Padua, Italy; Veneto Institute of Molecular Medicine, Padua, Italy
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy; Veneto Institute of Molecular Medicine, Padua, Italy.
| |
Collapse
|
82
|
Ding M, Shi R, Cheng S, Li M, De D, Liu C, Gu X, Li J, Zhang S, Jia M, Fan R, Pei J, Fu F. Mfn2-mediated mitochondrial fusion alleviates doxorubicin-induced cardiotoxicity with enhancing its anticancer activity through metabolic switch. Redox Biol 2022; 52:102311. [PMID: 35413642 PMCID: PMC9006862 DOI: 10.1016/j.redox.2022.102311] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/09/2023] Open
Abstract
Imbalanced mitochondrial dynamics including inhibited mitochondrial fusion is associated with cardiac dysfunction as well as tumorigenesis. This study sought to explore the effects of promoting mitochondrial fusion on doxorubicin(Dox)-induced cardiotoxicity and its antitumor efficacy, with a focus on the underlying metabolic mechanisms. Herein, the inhibition of Mfn2-mediated mitochondrial fusion was identified as a key phenotype in Dox-induced cardiotoxicity. Restoration of Mfn2-mediated mitochondrial fusion enhanced mitochondrial oxidative metabolism, reduced cellular injury/apoptosis and inhibited mitochondria-derived oxidative stress in the Dox-treated cardiomyocytes. Application of lentivirus expressing Drp1 (mitochondrial fusion inhibitor) or Rote/Anti A (mitochondrial complex I/III inhibitors) blunted the above protective effects of Mfn2. Cardiac-specific Mfn2 transgenic mice showed preserved mitochondrial fusion and attenuated myocardial injury upon Dox exposure in vivo. The suppression of Mfn2-mediated mitochondrial fusion was induced by Dox-elicited upregulation of FoxO1, which inhibited the transcription of Mfn2 by binding to its promoter sites. In the B16 melanoma, Mfn2 upregulation not only attenuated tumor growth alone but also further delayed tumor growth in the presence of Dox. Mechanistically, Mfn2 synergized with the inhibitory action of Dox on glycolysis metabolism in the tumor cells. One common feature in both cardiomyocytes and tumor cells was that Mfn2 increased the ratio of oxygen consumption rate to extracellular acidification rate, suggesting Mfn2 triggered a shift from aerobic glycolysis to mitochondrial oxidative metabolism. In conclusion, targeting Mfn2-mediated mitochondrial fusion may provide a dual therapeutic advantage in Dox-based chemotherapy by simultaneously defending against Dox-induced cardiotoxicity and boosting its antitumor potency via metabolic shift. Dox exposure inhibits Mfn2-mediated mitochondrial fusion in the hearts. The reduction of Mfn2 is mediated by FoxO1 in a transcriptional manner. Mfn2 overexpression reduces Dox-induced injury and enhances its anticancer action. Mfn2 induces a shift from aerobic glycolysis to mitochondrial oxidative metabolism.
Collapse
|
83
|
Triplication of HSA21 on alterations in structure and function of mitochondria. Mitochondrion 2022; 65:88-101. [PMID: 35623559 DOI: 10.1016/j.mito.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 01/22/2023]
Abstract
Triplication of genes encoded in human chromosome 21 (HSA21) is responsible for the phenotypes of Down syndrome (DS). The dosage-imbalance of the nuclear genes and the extra-nuclear mitochondrial DNA (mtDNA) jointly contributes to patho-mechanisms in DS. The mitochondrial organelles are the power house of cells for generation of ATP and maintaining cellular calcium and redox homeostasis, and cellular energy-metabolism processes. Each cell contains hundreds to thousands of mitochondria depending on their energy consumption. The dynamic structure of mitochondria is maintained with continuous fission and fusion events, and thus, content of mtDNA and its genetic composition are widely variable among cells. Cells of brain and heart tissues of DS patients and DS-mouse models have demonstrated elevated number but reduced amount of mtDNA due to higher fission process. This mechanism perturbs the oxidative phosphorylation (OXPHOS) and generates more free radicals such as reactive oxygen species (ROS), suggesting contribution of mtDNA in proliferation and protection of cells from endogenous toxic environment and external stressors. Gene-dosage in DS population collectively contributes to mitochondrial dysfunction by lowering energy production and respiratory capacity via the impaired OXPHOS, and damaged redox homeostasis and mitochondrial dynamics in all types of cells in DS. The context is highly complex and affects the functioning of all organs. The effect in brain and heart tissues promotes myriads of neurodegenerative diseases and cardiac complexities in individuals with DS. Crosstalk between trisomic nuclear and mitochondrial genome has been crucial for identification of potential therapeutic targets.
Collapse
|
84
|
Wang X, He R, Nian S, Xiao B, Wang Y, Zhang L, Wang X, Guo R, Lu Y. Treatment of Pelvic Organ Prolapse by the Downregulation of the Expression of Mitofusin 2 in Uterosacral Ligament Tissue via Mesenchymal Stem Cells. Genes (Basel) 2022; 13:genes13050829. [PMID: 35627214 PMCID: PMC9141332 DOI: 10.3390/genes13050829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The relationship between pelvic organ prolapse (POP), an aging-related disease, and the senescence-related protein mitofusin 2 (Mfn2) has rarely been studied. The aim of the present study was to explore the therapeutic effects of the downregulation of Mfn2 expression by stem cells on POP through animal experiments. Methods: First, a rat POP model was constructed by ovariectomy and traction. The rats in the non-pelvic organ prolapse (NPOP) and POP groups were divided into four groups for negative controls (N1−N4, N1: NPOP-normal saline; N2: NPOP-untransfected stem cells; N3: NPOP-short hairpin negative control (NPOP-sh-NC); N4: NPOP-short hairpin-Mfn2 (NPOP-sh-Mfn2)), and four groups for prolapse (P1−P4, P1: POP-normal saline; P2: POP-untransfected stem cells; P3: POP-sh-NC; P4: POP-sh-Mfn2), respectively. Stem cells were then cultured and isolated. The expression of Mfn2 was inhibited by lentivirus transfection, and the stem cells were injected into the uterosacral ligament of the rats in each group. The expression levels of Mfn2 and procollagen 1A1/1A2/3A1 in the uterosacral ligaments of the rats were observed at 0, 7, 14, and 21 days after injection. Results: Compared to the rats in the NPOP group, the POP rats had significant prolapse. The Mfn2 expression in the uterosacral ligaments of the POP rats was significantly increased (p < 0.05, all), and the expression of procollagen 1A1/1A2/3A1 was significantly decreased (p < 0.001, all). The POP rat model maintained the same trend after 21 days (without stem cell injection). At day 14, compared to the rats in the N1 group, the Mfn2 expression in the uterosacral ligament of the rats in the N4 group was significantly decreased (p < 0.05, all), and the expression of procollagens was significantly increased (p < 0.05, all). Similarly, compared to the rats in the P1 group, the Mfn2 expression in the uterosacral ligament of the rats in the P4 group was significantly decreased (p < 0.05, all), and the expression of procollagens was significantly increased (p < 0.05, all). Similarly, on day 21, the Mfn2 mRNA and protein expression in the uterosacral ligament of the POP and NPOP rats was significantly decreased (p < 0.05, all), and the expression of procollagens was significantly increased (p < 0.05, all) in the rats in the sh-Mfn2 group (N4, P4) compared to the rats in the saline group (N1, P1). Conclusions: The downregulation of Mfn2 expression by stem cells decreased the expression of Mfn2 and increased the expression of procollagen1A1/1A2/3A1 in the uterosacral ligament of the POP rats; this effect was significant 14−21 days after the injection. Thus, Mfn2 may be a new target for POP control.
Collapse
|
85
|
The MFN1 and MFN2 mitofusins promote clustering between mitochondria and peroxisomes. Commun Biol 2022; 5:423. [PMID: 35523862 PMCID: PMC9076876 DOI: 10.1038/s42003-022-03377-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
Mitochondria and peroxisomes are two types of functionally close-related organelles, and both play essential roles in lipid and ROS metabolism. However, how they physically interact with each other is not well understood. In this study, we apply the proximity labeling method with peroxisomal proteins and report that mitochondrial protein mitofusins (MFNs) are in proximity to peroxisomes. Overexpression of MFNs induces not only the mitochondria clustering but also the co-clustering of peroxisomes. We also report the enrichment of MFNs at the mitochondria-peroxisome interface. Induced mitofusin expression gives rise to more mitochondria-peroxisome contacting sites. Furthermore, the tethering of peroxisomes to mitochondria can be inhibited by the expression of a truncated MFN2, which lacks the transmembrane region. Collectively, our study suggests MFNs as regulators for mitochondria-peroxisome contacts. Our findings are essential for future studies of inter-organelle metabolism regulation and signaling, and may help understand the pathogenesis of mitofusin dysfunction-related disease.
Collapse
|
86
|
Scheffer DDL, Garcia AA, Lee L, Mochly-Rosen D, Ferreira JCB. Mitochondrial Fusion, Fission, and Mitophagy in Cardiac Diseases: Challenges and Therapeutic Opportunities. Antioxid Redox Signal 2022; 36:844-863. [PMID: 35044229 PMCID: PMC9125524 DOI: 10.1089/ars.2021.0145] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022]
Abstract
Significance: Mitochondria play a critical role in the physiology of the heart by controlling cardiac metabolism, function, and remodeling. Accumulation of fragmented and damaged mitochondria is a hallmark of cardiac diseases. Recent Advances: Disruption of quality control systems that maintain mitochondrial number, size, and shape through fission/fusion balance and mitophagy results in dysfunctional mitochondria, defective mitochondrial segregation, impaired cardiac bioenergetics, and excessive oxidative stress. Critical Issues: Pharmacological tools that improve the cardiac pool of healthy mitochondria through inhibition of excessive mitochondrial fission, boosting mitochondrial fusion, or increasing the clearance of damaged mitochondria have emerged as promising approaches to improve the prognosis of heart diseases. Future Directions: There is a reasonable amount of preclinical evidence supporting the effectiveness of molecules targeting mitochondrial fission and fusion to treat cardiac diseases. The current and future challenges are turning these lead molecules into treatments. Clinical studies focusing on acute (i.e., myocardial infarction) and chronic (i.e., heart failure) cardiac diseases are needed to validate the effectiveness of such strategies in improving mitochondrial morphology, metabolism, and cardiac function. Antioxid. Redox Signal. 36, 844-863.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriana Ann Garcia
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Lucia Lee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Julio Cesar Batista Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
87
|
Li X, Tian Z, Chai Y, Yang H, Zhang M, Yang C, Xu R, Zhu F, Zeng Y, Deng X, Wang P, Cheng Y. Cytological and proteomic evidence reveals the involvement of mitochondria in hypoxia-induced quality degradation in postharvest citrus fruit. Food Chem 2022; 375:131833. [PMID: 34974349 DOI: 10.1016/j.foodchem.2021.131833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022]
Abstract
Hypoxia frequently occurs in postharvest logistics, which greatly influences fruit storability. Here, we for the first time studied the dynamic variations of mitochondrial morphology in living citrus fruit cells, and revealed that waxing treatment-induced hypoxia strongly triggered mitochondrial fission and fragmentation. Correspondingly, hypoxia caused a decline in mitochondrial membrane potential and mobility. Besides, impairment of energetic and redox status was also found in waxed fruit. The proteomic changes of mitochondria after waxing treatment were also characterized. Using weighted gene co-expression network analysis (WGCNA), we identified 167 key hypoxia-responsive proteins, which were mainly involved in fatty acid, amino acid and organic acid metabolism. Metabolite analysis verified that waxing treatment promoted the accumulation of several hypoxic metabolites, such as ethanol, acetaldehyde, succinic acid and γ-aminobutyric acid (GABA). Taken together, our findings provide new insights into the cytological and proteomic responses of mitochondria to hypoxia during fruit storage.
Collapse
Affiliation(s)
- Xin Li
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhen Tian
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yingfang Chai
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hongbin Yang
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mingfei Zhang
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ce Yang
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Rangwei Xu
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Feng Zhu
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunliu Zeng
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiuxin Deng
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Pengwei Wang
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yunjiang Cheng
- National R&D Center for Citrus Postharvest Technology, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
88
|
Sidarala V, Zhu J, Levi-D'Ancona E, Pearson GL, Reck EC, Walker EM, Kaufman BA, Soleimanpour SA. Mitofusin 1 and 2 regulation of mitochondrial DNA content is a critical determinant of glucose homeostasis. Nat Commun 2022; 13:2340. [PMID: 35487893 PMCID: PMC9055072 DOI: 10.1038/s41467-022-29945-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
The dynamin-like GTPases Mitofusin 1 and 2 (Mfn1 and Mfn2) are essential for mitochondrial function, which has been principally attributed to their regulation of fission/fusion dynamics. Here, we report that Mfn1 and 2 are critical for glucose-stimulated insulin secretion (GSIS) primarily through control of mitochondrial DNA (mtDNA) content. Whereas Mfn1 and Mfn2 individually were dispensable for glucose homeostasis, combined Mfn1/2 deletion in β-cells reduced mtDNA content, impaired mitochondrial morphology and networking, and decreased respiratory function, ultimately resulting in severe glucose intolerance. Importantly, gene dosage studies unexpectedly revealed that Mfn1/2 control of glucose homeostasis was dependent on maintenance of mtDNA content, rather than mitochondrial structure. Mfn1/2 maintain mtDNA content by regulating the expression of the crucial mitochondrial transcription factor Tfam, as Tfam overexpression ameliorated the reduction in mtDNA content and GSIS in Mfn1/2-deficient β-cells. Thus, the primary physiologic role of Mfn1 and 2 in β-cells is coupled to the preservation of mtDNA content rather than mitochondrial architecture, and Mfn1 and 2 may be promising targets to overcome mitochondrial dysfunction and restore glucose control in diabetes.
Collapse
Affiliation(s)
- Vaibhav Sidarala
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Jie Zhu
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Elena Levi-D'Ancona
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Gemma L Pearson
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Emma C Reck
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Emily M Walker
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States
| | - Brett A Kaufman
- Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, United States
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, United States.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48105, United States.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, United States.
| |
Collapse
|
89
|
Huang YL, Chen YJ, Juan YH, Wu SG, Chung KP. Prognostic significance of dynamin-related protein 1 expression in advanced lung adenocarcinoma. Pathol Res Pract 2022; 234:153931. [PMID: 35523103 DOI: 10.1016/j.prp.2022.153931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Dynamin-related protein 1 (DRP1) is a key regulator of mitochondrial fission and is activated by phosphorylation at serine 616. We previously demonstrated that DRP1 activation is regulated by epidermal growth factor receptor (EGFR) signaling and multiple kinases in lung adenocarcinoma, and is significantly associated with an increased risk of postoperative recurrence in early stage lung adenocarcinoma. However, it is unclear whether DRP1 activation is associated with worse prognosis in patients with advanced lung adenocarcinoma. This study is aimed to examine whether P(S616)-DRP1 expression is significantly related to the survival of patients with advanced lung adenocarcinoma. MATERIALS AND METHODS Biopsy samples were obtained from patients with stage IV lung adenocarcinoma. The activation status of DRP1 in cancer cells was quantified based on the immunohistochemical stain of phosphorylated DRP1 at serine 616 [P(S616)-DRP1]. Results of EGFR, ALK, ROS1, and KRAS mutations were retrieved from the medical records. The staining intensity and the histological scores (H-scores) of P(S616)-DRP1 were analyzed for association with progression-free survival (PFS) under first-line tyrosine-kinase inhibitors (TKIs) and with overall survival (OS). RESULTS Overall, 123 patients with stage IV lung adenocarcinoma constituted the study population, and 90 (73.2%) patients received TKIs as the first-line treatments. The median P(S616)-DRP1H-score was used to dichotomize the study population into the high (n = 61) and low (n = 62) DRP1 activation groups. DRP1 was significantly less phosphorylated in lung adenocarcinoma with EGFR, ALK, ROS1, and KRAS mutations. Importantly, in patients who received first-line TKIs, DRP1 phosphorylation was not significantly correlated with PFS and OS. Multivariate Cox proportional hazard models showed that high DRP1 activation in cancer cells was not significantly associated with worse OS in the study population (adjusted hazard ratio: 1.402, 95% confidence interval: 0.865-2.271, p = 0.170). Similar results were obtained in the analysis based on the intensities of P(S616)-DRP1 in cancer cells. CONCLUSIONS Our data demonstrate that DRP1 phosphorylation is not related to the prognosis of patients with advanced lung adenocarcinoma.
Collapse
Affiliation(s)
- Yen-Lin Huang
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan; Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Jung Chen
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsiu Juan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shang-Gin Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Kuei-Pin Chung
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
90
|
Carmona-Carmona CA, Dalla Pozza E, Ambrosini G, Errico A, Dando I. Divergent Roles of Mitochondria Dynamics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14092155. [PMID: 35565283 PMCID: PMC9105422 DOI: 10.3390/cancers14092155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma is one of the most lethal neoplasia due to the lack of early diagnostic markers and effective therapies. The study of metabolic alterations of PDAC is of crucial importance since it would open the way to the discovery of new potential therapies. Mitochondria represent key organelles that regulate energy metabolism, and they remodel their structure by undergoing modifications by fusing with other mitochondria or dividing to generate smaller ones. The alterations of mitochondria arrangement may influence the metabolism of PDAC cells, thus supporting the proliferative needs of cancer. Shedding light on this topic regarding cancer and, more specifically, PDAC may help identify new potential strategies that hit cancer cells at their “core,” i.e., mitochondria. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors; it is often diagnosed at an advanced stage and is hardly treatable. These issues are strictly linked to the absence of early diagnostic markers and the low efficacy of treatment approaches. Recently, the study of the metabolic alterations in cancer cells has opened the way to important findings that can be exploited to generate new potential therapies. Within this scenario, mitochondria represent important organelles within which many essential functions are necessary for cell survival, including some key reactions involved in energy metabolism. These organelles remodel their shape by dividing or fusing themselves in response to cellular needs or stimuli. Interestingly, many authors have shown that mitochondrial dynamic equilibrium is altered in many different tumor types. However, up to now, it is not clear whether PDAC cells preferentially take advantage of fusion or fission processes since some studies reported a wide range of different results. This review described the role of both mitochondria arrangement processes, i.e., fusion and fission events, in PDAC, showing that a preference for mitochondria fragmentation could sustain tumor needs. In addition, we also highlight the importance of considering the metabolic arrangement and mitochondria assessment of cancer stem cells, which represent the most aggressive tumor cell type that has been shown to have distinctive metabolic features to that of differentiated tumor cells.
Collapse
Affiliation(s)
| | | | | | | | - Ilaria Dando
- Correspondence: (C.A.C.-C.); (I.D.); Tel.: +39-045-802-7174 (C.A.C.-C.); +39-045-802-7169 (I.D.)
| |
Collapse
|
91
|
Deng L, Yi S, Yin X, Li Y, Luan Q. MFN2 knockdown promotes osteogenic differentiation of iPSC-MSCs through aerobic glycolysis mediated by the Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2022; 13:162. [PMID: 35413941 PMCID: PMC9006575 DOI: 10.1186/s13287-022-02836-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background Mitofusin-2 (MFN2) is a kind of GTPase that participates in the regulation of mitochondrial fusion, which is related to a variety of physiological and pathological processes, including energy metabolism, cell differentiation, and embryonic development. However, it remains unclear whether MFN2 is involved in the metabolism and osteogenic differentiation of mesenchymal stem cells (MSCs). Methods MFN2 knockdown (MFN2-KD) and MFN2-overexpressing (MFN2-OE) induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) were constructed by lentivirus. The commercial kits were utilized to detect the glycolysis and oxidative phosphorylation (OXPHOS) rate. Flow cytometry, Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), RNA-seq, immunofluorescence, and immunoprecipitation were employed for phenotype and molecular mechanism assessment. Results We demonstrated that MFN2 and Wnt/β-catenin signaling pathway regulated glycolysis of iPSC-MSCs. The lack of MFN2 promoted the osteogenic differentiation of iPSC-MSCs, and aerobic glycolysis in the presence of sufficient oxygen, which increased glucose consumption and lactic acid production, as well as the glycolytic enzyme activity and gene expression. Inhibiting the Wnt/β-catenin signaling pathway normalized the enhanced glycolytic rate and osteogenic differentiation of MFN2-KD iPSC-MSCs. MFN2-OE iPSC-MSCs displayed the opposite phenotype. Conclusions Downregulating MFN2 promotes osteogenic differentiation of iPSC-MSCs through aerobic glycolysis mediated by the Wnt/β-catenin signaling pathway. Our research reveals the new function of MFN2 in regulating the osteogenic differentiation and energy metabolism of MSCs, which will provide a new therapeutic target and theoretical basis for alveolar bone repair and periodontal regenerative treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02836-w.
Collapse
Affiliation(s)
- Lidi Deng
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Siqi Yi
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Xiaohui Yin
- Department of First Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yang Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, 100191, People's Republic of China.
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
92
|
Sun L, Ji D, Zhi F, Fang Y, Zhu Z, Ni T, Zhu Q, Bao J. MiR-494-3p Upregulation Exacerbates Cerebral Ischemia Injury by Targeting Bhlhe40. Yonsei Med J 2022; 63:389-398. [PMID: 35352891 PMCID: PMC8965425 DOI: 10.3349/ymj.2022.63.4.389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Cerebral ischemia is related to insufficient blood supply and is characterized by abnormal reactive oxygen species (ROS) production and cell apoptosis. Previous studies have revealed a key role for basic helix-loop-helix family member e40 (Bhlhe40) in oxidative stress and cell apoptosis. This study aimed to investigate the roles of miR-494-3p in cerebral ischemia/reperfusion (I/R) injury. MATERIALS AND METHODS A mouse middle cerebral artery occlusion (MCAO/R) model was established to mimic cerebral ischemia in vivo. Brain infarct area was assessed using triphenyl tetrazolium chloride staining. Oxygen-glucose deprivation/reoxygenation (OGD/R) operation was adopted to mimic neuronal injury in vitro. Cell apoptosis was analyzed by flow cytometry. The relationship between miR-494-3p and Bhlhe40 was validated by luciferase reporter and RNA immunoprecipitation assays. RESULTS Bhlhe40 expression was downregulated both in MCAO/R animal models and OGD/R-induced SH-SY5Y cells. Bhlhe40 overexpression inhibited cell apoptosis and reduced ROS production in SH-SY5Y cells after OGD/R treatment. MiR-494-3p was verified to bind to Bhlhe40 and negatively regulate Bhlhe40 expression. Additionally, cell apoptosis and ROS production in OGD/R-treated SH-SY5Y cells were accelerated by miR-494-3p overexpression. Rescue experiments suggested that Bhlhe40 could reverse the effects of miR-494-3p overexpression on ROS production and cell apoptosis. CONCLUSION MiR-494-3p exacerbates brain injury and neuronal injury by regulating Bhlhe40 after I/R.
Collapse
Affiliation(s)
- Lingjiang Sun
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Dandan Ji
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Feng Zhi
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Yu Fang
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Zigang Zhu
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Tong Ni
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Qin Zhu
- Department of Stomatology, Taixing Third People's Hospital, Taizhou, Jiangsu, China.
| | - Jie Bao
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China.
| |
Collapse
|
93
|
Xia W, Qiu J, Peng Y, Snyder MM, Gu L, Huang K, Luo N, Yue F, Kuang S. Chchd10 is dispensable for myogenesis but critical for adipose browning. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:14. [PMID: 35362877 PMCID: PMC8975916 DOI: 10.1186/s13619-022-00111-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022]
Abstract
The Chchd10 gene encodes a coiled-coil-helix-coiled-coil-helix-domain containing protein predicted to function in the mitochondrion and nucleus. Mutations of Chchd10 are associated with ALS, dementia and myopathy in humans and animal models, but how knockout of Chchd10 (Chchd10KO) affects various tissues especially skeletal muscle and adipose tissues remains unclear. Here we show that Chchd10 expression increases as myoblasts and preadipocytes differentiate. During myogenesis, CHCHD10 interacts with TAR DNA binding protein 43 (TDP-43) in regenerating myofibers in vivo and in newly differentiated myotubes ex vivo. Surprisingly, Chchd10KO mice had normal skeletal muscle development, growth and regeneration, with moderate defects in grip strength and motor performance. Chchd10KO similarly had no effects on development of brown and white adipose tissues (WAT). However, Chchd10KO mice had blunted response to acute cold and attenuated cold-induced browning of WAT, with markedly reduced UCP1 levels. Together, these results demonstrate that Chchd10 is dispensable for normal myogenesis and adipogenesis but is required for normal motility and cold-induced, mitochondrion-dependent browning of adipocytes. The data also suggest that human CHCHD10 mutations cause myopathy through a gain-of-function mechanism.
Collapse
Affiliation(s)
- Wei Xia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China. .,Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA. .,College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, 610041, China.
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Ying Peng
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Madigan M Snyder
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Lijie Gu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.,College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kuilong Huang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Nanjian Luo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
94
|
Yokoi K, Yamaguchi K, Umezawa M, Tsuchiya K, Aoki S. Induction of Paraptosis by Cyclometalated Iridium Complex-Peptide Hybrids and CGP37157 via a Mitochondrial Ca 2+ Overload Triggered by Membrane Fusion between Mitochondria and the Endoplasmic Reticulum. Biochemistry 2022; 61:639-655. [PMID: 35363482 PMCID: PMC9022229 DOI: 10.1021/acs.biochem.2c00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We previously reported that a cyclometalated iridium (Ir) complex-peptide hybrid (IPH) 4 functionalized with a cationic KKKGG peptide unit on the 2-phenylpyridine ligand induces paraptosis, a relatively newly found programmed cell death, in cancer cells (Jurkat cells) via the direct transport of calcium (Ca2+) from the endoplasmic reticulum (ER) to mitochondria. Here, we describe that CGP37157, an inhibitor of a mitochondrial sodium (Na+)/Ca2+ exchanger, induces paraptosis in Jurkat cells via intracellular pathways similar to those induced by 4. The findings allow us to suggest that the induction of paraptosis by 4 and CGP37157 is associated with membrane fusion between mitochondria and the ER, subsequent Ca2+ influx from the ER to mitochondria, and a decrease in the mitochondrial membrane potential (ΔΨm). On the contrary, celastrol, a naturally occurring triterpenoid that had been reported as a paraptosis inducer in cancer cells, negligibly induces mitochondria-ER membrane fusion. Consequently, we conclude that the paraptosis induced by 4 and CGP37157 (termed paraptosis II herein) proceeds via a signaling pathway different from that of the previously known paraptosis induced by celastrol, a process that negligibly involves membrane fusion between mitochondria and the ER (termed paraptosis I herein).
Collapse
Affiliation(s)
- Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kohei Yamaguchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masakazu Umezawa
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Biomedical Science (RIBS), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
95
|
Wang M, Wang L, Zhou Y, Feng X, Ye C, Wang C. Shen Shuai Ⅱ Recipe attenuates renal fibrosis in chronic kidney disease by improving hypoxia-induced the imbalance of mitochondrial dynamics via PGC-1α activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153947. [PMID: 35104767 DOI: 10.1016/j.phymed.2022.153947] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/09/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Shen Shuai Ⅱ Recipe (SSR) is an effective Chinese herbal formula for the treatment of patients with chronic kidney disease (CKD) in the clinic and significantly improves 5/6 ablation and infarction (A/I) surgery-induced renal interstitial fibrosis (RIF) and intrarenal hypoxia in rats. However, the underlying molecular mechanisms need further elucidation. PURPOSE This study aims to investigate the renoprotective mechanisms of SSR in vivo and in vitro. METHODS CKD model was induced in rats with 5/6 (A/I) surgery. 4 weeks later, rats were treated with vehicle or SSR or Fenofibrate by daily gavage. In vitro, HK2 cells exposed to hypoxia (1% O2) were treated with SSR in the presence or absence of 100 μM MitoTEMPO or 10 μM Mitochondrial Fusion Promoter M1. The effects of SSR on RIF, mitochondrial dynamics, oxidative metabolism, and mitochondrial ROS (mtROS) were determined by immunoblotting, colorimetric, and fluorometric assays according to the experimental protocols. Furthermore, to explore the mechanisms of SSR against RIF, HK2 cells of PGC-1α or MFN2 knockdown under hypoxic stimulation were treated with 400 μg/ml of SSR and (or) 1 μM of ZLN005. RESULTS The results showed that treatment with SSR significantly improved mitochondrial morphology and function, up-regulated the expression of PGC-1α protein, and inhibited the production of mtROS in 5/6 (A/I) kidneys and hypoxia-treated HK2 cells, which may be closely correlated with its anti-RIF effect. In addition, compared to wild-type HK2 cells, the roles of SSR in improving mitochondrial dynamics and energy metabolism were greatly diminished in HK2 cells of PGC-1α knockdown under hypoxic exposure. More importantly, compared to ZLN005 or SSR combined with ZLN005 treatment, MFN2-deficient HK2 cells exhibited the increased protein levels of FN, α-SMA, TGF-β1 and cleaved IL-1β in response to hypoxic stimulation. CONCLUSION SSR exerted the renoprotective effects by improving mitochondrial dynamics under hypoxic condition via PGC-1α activation.
Collapse
Affiliation(s)
- Meng Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Lingchen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yuan Zhou
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Xiaoxuan Feng
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
96
|
Shimura D, Shaw RM. GJA1-20k and Mitochondrial Dynamics. Front Physiol 2022; 13:867358. [PMID: 35399255 PMCID: PMC8983841 DOI: 10.3389/fphys.2022.867358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 01/07/2023] Open
Abstract
Connexin 43 (Cx43) is the primary gap junction protein of mammalian heart ventricles and is encoded by the gene Gja1 which has a single coding exon and therefore cannot be spliced. We previously identified that Gja1 mRNA undergoes endogenous internal translation initiated at one of several internal AUG (M) start codons, generating N-terminal truncated protein isoforms that retain the C-terminus distal to the start site. GJA1-20k, whose translation initiates at mRNA M213, is usually the most abundant isoform in cells and greatly increases after ischemic and metabolic stress. GJA1-20k consists of a small segment of the last transmembrane domain and the complete C-terminus tail of Cx43, with a total size of about 20 kDa. The original role identified for GJA1-20k is as an essential subunit that facilitates the trafficking of full-length Cx43 hexameric hemichannels to cell-cell contacts, generating traditional gap junctions between adjacent cells facilitating, in cardiac muscle, efficient spread of electrical excitation. GJA1-20k deficient mice (generated by a M213L substitution in Gja1) suffer poor electrical coupling between cardiomycytes and arrhythmogenic sudden death two to 4 weeks after their birth. We recently identified that exogenous GJA1-20k expression also mimics the effect of ischemic preconditioning in mouse heart. Furthermore, GJA1-20k localizes to the mitochondrial outer membrane and induces a protective and DRP1 independent form of mitochondrial fission, preserving ATP production and generating less reactive oxygen species (ROS) under metabolic stress, providing powerful protection of myocardium to ischemic insult. In this manuscript, we focus on the detailed roles of GJA1-20k in mitochondria, and its interaction with the actin cytoskeleton.
Collapse
|
97
|
Huang Y, Chu X, Zhang Y, Yang S, Shi Y, Chen Q. Transformation of Mitochondrial Architecture and Dynamics in the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis) During Hibernation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-11. [PMID: 35317875 DOI: 10.1017/s1431927622000484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hibernation is a biological status during which hibernating animals acclimatize themselves to reduced energy consumption through extreme but governed decline in self-metabolism. The role of mitochondria (Mt) in metabolic suppression during hibernation has already been elaborated in different organs and species. Nonetheless, the concretely changing process of mitochondrial architecture and the mechanism underlying this transformation during hibernation remains unclear. Herein, the present study was aimed at clarifying the detailed alteration of mitochondrial morphology and its potential role in the Chinese soft-shelled turtle (Pelodiscus sinensis) during different stages of hibernation. Compared with the nonhibernation period, the mitochondrial architecture was changing from round to crescent, and lipid droplet (LD)/Mt interaction was enhanced during hibernation, as observed by transmission electron microscopy (TEM). Further ultrastructural analysis uncovered that mitochondrial fusion was promptly accelerated in the early stage of hibernation, followed by mitochondrial fission in the middle stage, and mitophagy was boosted in the late stage. Moreover, gene and protein expression related to mitochondrial fusion, fission, and mitophagy accorded closely with the mitochondrial ultrastructural changes in different stages of hibernation. Taken together, our results clarified that the transformation of mitochondrial architecture and mitochondrial dynamics are of vital importance in maintaining internal environment homeostasis of Pelodiscus sinensis.
Collapse
Affiliation(s)
- Yufei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, P.R. China
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province225009, P.R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province 225009, P.R. China
| | - Xiaoya Chu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, P.R. China
| | - Yafei Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, P.R. China
| | - Sheng Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, P.R. China
| | - Yonghong Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, P.R. China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai200241, P.R. China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province210095, P.R. China
| |
Collapse
|
98
|
Assis LHDP, Dorighello GDG, Rentz T, de Souza JC, Vercesi AE, de Oliveira HCF. In Vivo Pravastatin Treatment Reverses Hypercholesterolemia Induced Mitochondria-Associated Membranes Contact Sites, Foam Cell Formation, and Phagocytosis in Macrophages. Front Mol Biosci 2022; 9:839428. [PMID: 35372506 PMCID: PMC8965079 DOI: 10.3389/fmolb.2022.839428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Statins are successful drugs used to treat hypercholesterolemia, a primary cause of atherosclerosis. In this work, we investigated how hypercholesterolemia and pravastatin treatment impact macrophage and mitochondria functions, the key cell involved in atherogenesis. By comparing bone marrow-derived macrophages (BMDM) of wild-type (WT) and LDL receptor knockout (LDLr−/−) mice, we observed hypercholesterolemia increased the number of contact sites at mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), enhanced mitochondrial hydrogen peroxide release, altered the gene expression of inflammatory markers, and increased oxidized LDL (ox-LDL) uptake and phagocytic activity. Three months of in vivo pravastatin treatment of LDLr−/− mice reversed the number of contact sites at the MAM, ox-LDL uptake, and phagocytosis in LDLr−/− BMDM. Additionally, pravastatin increased BMDM mitochondrial network branching. In peritoneal macrophages (PMs), hypercholesterolemia did not change MAM stability, but stimulated hydrogen peroxide production and modulated gene expression of pro- and anti-inflammatory markers. It also increased mitochondrial branching degree and had no effects on ox-LDL uptake and phagocytosis in PM. Pravastatin treatment increased superoxide anion production and changed inflammation-related gene expression in LDLr−/− PM. In addition, pravastatin increased markedly the expression of the mitochondrial dynamics-related genes Mfn2 and Fis1 in both macrophages. In summary, our results show that hypercholesterolemia and pravastatin treatment affect macrophage mitochondria network structure as well as their interaction with the endoplasmic reticulum (ER). These effects impact on macrophage conversion rates to foam cell and macrophage phagocytic capacity. These findings associate MAM stability changes with known mechanisms involved in atherosclerosis progression and resolution.
Collapse
Affiliation(s)
| | | | - Thiago Rentz
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Jane Cristina de Souza
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Aníbal Eugênio Vercesi
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Helena Coutinho Franco de Oliveira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
- *Correspondence: Helena Coutinho Franco de Oliveira,
| |
Collapse
|
99
|
Zervopoulos SD, Boukouris AE, Saleme B, Haromy A, Tejay S, Sutendra G, Michelakis ED. MFN2-driven mitochondria-to-nucleus tethering allows a non-canonical nuclear entry pathway of the mitochondrial pyruvate dehydrogenase complex. Mol Cell 2022; 82:1066-1077.e7. [PMID: 35245450 DOI: 10.1016/j.molcel.2022.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/15/2021] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
The mitochondrial pyruvate dehydrogenase complex (PDC) translocates into the nucleus, facilitating histone acetylation by producing acetyl-CoA. We describe a noncanonical pathway for nuclear PDC (nPDC) import that does not involve nuclear pore complexes (NPCs). Mitochondria cluster around the nucleus in response to proliferative stimuli and tether onto the nuclear envelope (NE) via mitofusin-2 (MFN2)-enriched contact points. A decrease in nuclear MFN2 levels decreases mitochondria tethering and nPDC levels. Mitochondrial PDC crosses the NE and interacts with lamin A, forming a ring below the NE before crossing through the lamin layer into the nucleoplasm, in areas away from NPCs. Effective blockage of NPC trafficking does not decrease nPDC levels. The PDC-lamin interaction is maintained during cell division, when lamin depolymerizes and disassembles before reforming daughter nuclear envelopes, providing another pathway for nPDC entry during mitosis. Our work provides a different angle to understanding mitochondria-to-nucleus communication and nuclear metabolism.
Collapse
Affiliation(s)
| | | | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Alois Haromy
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Saymon Tejay
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gopinath Sutendra
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | | |
Collapse
|
100
|
Zhao Y, Lang Y, Zhang M, Liang S, Zhu X, Liu Z. miR-125b Disrupts Mitochondrial Dynamics via Targeting Mitofusin 1 in Cisplatin-Induced Acute Kidney Injury. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:137-147. [PMID: 35527986 DOI: 10.1159/000520140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/10/2021] [Indexed: 12/12/2022]
Abstract
Background Mitochondria are dynamic organelles whose structure are maintained by continuous fusion and fission. During acute kidney injury (AKI) progression, mitochondrial fission in renal tubular cells was elevated, characterized by mitochondrial fragmentation. It is tightly associated with mitochondrial dysfunction, which has been proven as a critical mechanism responsible for AKI. However, the initiating factor for the disruption of mitochondrial dynamics in AKI was not well understood. Objectives To explore the molecular mechanisms of mitochondrial disorders and kidney damage. Methods We established cisplatin-induced AKI model in C57BL/6 mice and proximal tubular cells, and detected the expression of miR-125b by qPCR. Then we delivered miR-125b antagomir after cisplatin treatment in mice via hydrodynamic-based gene transfer technique. Subsequently, we performed luciferase reporter and immunoblotting -assays to prove miR-125b could directly modulate mitofusin1 (MFN1) expression. We also tested the role of miR-125b in mitochondrial and renal injury through immunofluorescent staining, qPCR, and immunoblotting assays. Results miR-125b levels were induced in cisplatin-challenged mice and cultured tubular cells. Anti-miR-125b could effectively alleviate cisplatin-induced mitochondrial fragmentation and kidney injury both in vitro and in vivo. Furthermore, miR-125b could directly regulate MFN1, which is a key regulator of mitochondrial fusion. Our study indicated that miR-125b is upregulated during cisplatin-induced AKI. Inhibition of miR-125b may suppress mitochondrial and renal damage through upregulating MFN1. This study suggests that miR-125b could be a potential therapeutic target in AKI.
Collapse
Affiliation(s)
- Yue Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yue Lang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shaoshan Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|