51
|
Liao FX, Huang F, Ma WG, Qin KP, Xu PF, Wu YF, Wang H, Chang J, Yin ZS. The New Role of Sirtuin1 in Human Osteoarthritis Chondrocytes by Regulating Autophagy. Cartilage 2021; 13:1237S-1248S. [PMID: 31072129 PMCID: PMC8804807 DOI: 10.1177/1947603519847736] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The aim of this study is to investigate the role of Sirtuin1 (Sirt1) in the regulation of autophagy for human osteoarthritis (OA) chondrocytes. DESIGN All cartilage samples were collected from human donors, including young group, aged group, and OA group. Primary chondrocytes were isolated and cultured with Sirt1 activator or inhibitor. Sirt1 expression in cartilage tissue and chondrocytes was evaluated, and the deacetylation activity of Sirt1 was determined. The alteration of autophagy activity after upregulating or downregulating Sirt1 was detected. Chondrocytes were treated with autophagy activator and inhibitor, and then the protein level of Sirt1 was examined. The interactions between Sirt1 and autophagy-related proteins Atg7, microtubule associated protein 1 light chain 3 (LC3), and Beclin-1 were determined by using immunoprecipitation. RESULTS The assay of articular cartilage revealed that the expression of Sirt1 might be age-related: highly expressed in of younger people, and respectively decreased in the elderly people and OA patients. In vitro study was also validated this result. Further study confirmed that higher levels of Sirt1 significantly increased autophagy in aged chondrocytes, while the lower expression of Sirt1 reduced autophagy in young chondrocytes. Of note, the high levels of Sirt1 reduced autophagy in OA chondrocytes. When the chondrocytes were treated with autophagy activator or inhibitor, we found the expression of Sirt1 was not affected. In addition, we found that Sirt1 could interact with Atg7. CONCLUSION These results suggest that Sirt1 in human chondrocytes regulates autophagy by interacting with autophagy related Atg7, and Sirt1 may become a more important target in OA treatment.
Collapse
Affiliation(s)
- Fa-Xue Liao
- Department of Orthopaedics, The First
Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s
Republic of China,Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Fei Huang
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Wen-Guang Ma
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Kun-Peng Qin
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Peng-Fei Xu
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Yun-Feng Wu
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Hao Wang
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Jun Chang
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China
| | - Zong-Sheng Yin
- Department of Orthopaedics, The Fourth
Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of
China,Zong-Sheng Yin, Department of Orthopaedics,
The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road,
Hefei, Anhui Province 230022, China.
| |
Collapse
|
52
|
Impaired placental mitophagy and oxidative stress are associated with dysregulated BNIP3 in preeclampsia. Sci Rep 2021; 11:20469. [PMID: 34650122 PMCID: PMC8516954 DOI: 10.1038/s41598-021-99837-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
Preeclampsia (PE) is a severe multisystem pregnancy complication characterized by gestational hypertension and proteinuria. Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3) is a mediator of mitophagy and has been proven to be associated with PE, but the mechanism is not well understood. This study aimed to investigate the role of BNIP3 in PE. Placentae from preeclamptic and normal pregnancies were analyzed by western-blot and transmission electron microscopy to quantify the level of BNIP3 expression and observe the organelle morphologies. Trophoblast cells with knockdown BNIP3 were analyzed by western-blot, immunofluorescence, flow cytometry, migration and invasion assays. BNIP3 expression was suppressed in PE patients. Impaired autophagy and increased mitochondrial damage were observed in PE placentae when compared with normal placentae. Suppression of BNIP3 inhibited Beclin-1 expression and reduced the transformation of LC3-I to LC3-II. In the knockdown BNIP3 group, p62 was overexpressed, ROS accumulated and the apoptotic process was elevated under oxidative stress condition. The knockdown of BNIP3 reduced the colocalization of GFP-LC3 and mitochondria. The findings of this study suggest that dysregulated BNIP3 is associated with impaired mitophagy, oxidative stress, and apoptosis in PE. The study provides new insights into the role of BNIP3 in the pathophysiology of PE.
Collapse
|
53
|
Autophagy in Tumor Immunity and Viral-Based Immunotherapeutic Approaches in Cancer. Cells 2021; 10:cells10102672. [PMID: 34685652 PMCID: PMC8534833 DOI: 10.3390/cells10102672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a fundamental catabolic process essential for the maintenance of cellular and tissue homeostasis, as well as directly contributing to the control of invading pathogens. Unsurprisingly, this process becomes critical in supporting cellular dysregulation that occurs in cancer, particularly the tumor microenvironments and their immune cell infiltration, ultimately playing a role in responses to cancer therapies. Therefore, understanding "cancer autophagy" could help turn this cellular waste-management service into a powerful ally for specific therapeutics. For instance, numerous regulatory mechanisms of the autophagic machinery can contribute to the anti-tumor properties of oncolytic viruses (OVs), which comprise a diverse class of replication-competent viruses with potential as cancer immunotherapeutics. In that context, autophagy can either: promote OV anti-tumor effects by enhancing infectivity and replication, mediating oncolysis, and inducing autophagic and immunogenic cell death; or reduce OV cytotoxicity by providing survival cues to tumor cells. These properties make the catabolic process of autophagy an attractive target for therapeutic combinations looking to enhance the efficacy of OVs. In this article, we review the complicated role of autophagy in cancer initiation and development, its effect on modulating OVs and immunity, and we discuss recent progress and opportunities/challenges in targeting autophagy to enhance oncolytic viral immunotherapy.
Collapse
|
54
|
Wang Z, Chen J, Gao C, Xiao Q, Wang X, Tang S, Li Q, Zhong B, Song Z, Shu H, Li L, Wu M. Epigenetic Dysregulation Induces Translocation of Histone H3 into Cytoplasm. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100779. [PMID: 34363353 PMCID: PMC8498869 DOI: 10.1002/advs.202100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/10/2021] [Indexed: 06/13/2023]
Abstract
In eukaryote cells, core components of chromatin, such as histones and DNA, are packaged in nucleus. Leakage of nuclear materials into cytosol will induce pathological effects. However, the underlying mechanisms remain elusive. Here, cytoplasmic localization of nuclear materials induced by chromatin dysregulation (CLIC) in mammalian cells is reported. H3K9me3 inhibition by small chemicals, HP1α knockdown, or knockout of H3K9 methylase SETDB1, induces formation of cytoplasmic puncta containing histones H3.1, H4 and cytosolic DNA, which in turn activates inflammatory genes and autophagic degradation. Autophagy deficiency rescues H3 degradation, and enhances the activation of inflammatory genes. MRE11, a subunit of MRN complex, enters cytoplasm after heterochromatin dysregulation. Deficiency of MRE11 or NBS1, but not RAD50, inhibits CLIC puncta in cytosol. MRE11 depletion represses tumor growth enhanced by HP1α deficiency, suggesting a connection between CLIC and tumorigenesis. This study reveals a novel pathway that heterochromatin dysregulation induces translocation of nuclear materials into cytoplasm, which is important for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Zhen Wang
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Ji Chen
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Chuan Gao
- College of Life SciencesWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
- Department of ImmunologyMedical Research InstituteSchool of MedicineWuhan UniversityWuhan430071China
| | - Qiong Xiao
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Xi‐Wei Wang
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Shan‐Bo Tang
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Qing‐Lan Li
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Bo Zhong
- College of Life SciencesWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
- Department of ImmunologyMedical Research InstituteSchool of MedicineWuhan UniversityWuhan430071China
| | - Zhi‐Yin Song
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Hong‐Bing Shu
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
- Department of ImmunologyMedical Research InstituteSchool of MedicineWuhan UniversityWuhan430071China
| | - Lian‐Yun Li
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Min Wu
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| |
Collapse
|
55
|
Autophagy Modulators in Cancer: Focus on Cancer Treatment. Life (Basel) 2021; 11:life11080839. [PMID: 34440583 PMCID: PMC8401266 DOI: 10.3390/life11080839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Uncontrolled autophagy has been associated with the development and progression of various cancers that are resistant to cancer therapy. Therefore, many efforts to modulate uncontrolled autophagy as a cancer treatment have been attempted, from basic science to clinical trials. However, it remains difficult to equally apply autophagy modulators to cancer therapy because autophagy is a double-edged sword in cancer: it can be tumor-suppressive or tumor-protective. Therefore, the precise mechanisms of autophagy modulators and their varied responsiveness to each cancer type should be addressed in detail. This study will describe the precise mechanisms of developing various autophagy modulators, their current therapeutic applications and future perspectives.
Collapse
|
56
|
Sengupta S, Nayak B, Meuli M, Sander P, Mishra S, Sonawane A. Mycobacterium tuberculosis Phosphoribosyltransferase Promotes Bacterial Survival in Macrophages by Inducing Histone Hypermethylation in Autophagy-Related Genes. Front Cell Infect Microbiol 2021; 11:676456. [PMID: 34381738 PMCID: PMC8350138 DOI: 10.3389/fcimb.2021.676456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) inhibits autophagy to promote its survival in host cells. However, the molecular mechanisms by which Mtb inhibits autophagy are poorly understood. Here, we report a previously unknown mechanism in which Mtb phosphoribosyltransferase (MtbPRT) inhibits autophagy in an mTOR, negative regulator of autophagy, independent manner by inducing histone hypermethylation (H3K9me2/3) at the Atg5 and Atg7 promoters by activating p38-MAPK- and EHMT2 methyltransferase-dependent signaling pathways. Additionally, we find that MtbPRT induces EZH2 methyltransferase-dependent H3K27me3 hypermethylation and reduces histone acetylation modifications (H3K9ac and H3K27ac) by upregulating histone deacetylase 3 to inhibit autophagy. In summary, this is the first demonstration that Mtb inhibits autophagy by inducing histone hypermethylation in autophagy-related genes to promote intracellular bacterial survival.
Collapse
Affiliation(s)
- Srabasti Sengupta
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Barsa Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Michael Meuli
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zurich, Switzerland
| | - Peter Sander
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zurich, Switzerland
- Nationales Zentrum für Mykobakterien, Zürich, Switzerland
| | - Snehasish Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
57
|
Jeon M, Park J, Yang E, Baek HJ, Kim H. Regulation of autophagy by protein methylation and acetylation in cancer. J Cell Physiol 2021; 237:13-28. [PMID: 34237149 DOI: 10.1002/jcp.30502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/20/2021] [Accepted: 06/28/2021] [Indexed: 11/11/2022]
Abstract
Autophagy is a highly conserved mechanism responsible for cellular homeostasis and integrity in a variety of physiological conditions. Materials targeted for degradation are directed to autophagosomes and autolysosomes, where they are broken down into their base components. Aberrant regulation of autophagy is significantly associated with various cancers and neurodegenerative diseases. Recently, accumulating evidence has revealed that the coordinated regulation of histone and non-histone protein modification is associated with autophagy. In this review, we highlight the recent progress that has been made in elucidating the molecular basis of protein methylation and acetylation associated with autophagy at the transcriptional and posttranslational levels. Furthermore, we discuss the importance of describing causality between protein methylation/acetylation and autophagy regulation as compelling therapeutic opportunities in cancer pathogenesis and progression.
Collapse
Affiliation(s)
- Minsol Jeon
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jisu Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunbi Yang
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee-Ji Baek
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
58
|
Zhang Y, Li K, Kong A, Zhou Y, Chen D, Gu J, Shi H. Dysregulation of autophagy acts as a pathogenic mechanism of non-alcoholic fatty liver disease (NAFLD) induced by common environmental pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112256. [PMID: 33901779 DOI: 10.1016/j.ecoenv.2021.112256] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been the most common chronic liver disease in the world, including the developing countries. NAFLD is metabolic disease with significant lipid deposition in the hepatocytes of the liver, which is usually associated with oxidative stress, inflammation and fibrogenesis, and insulin resistance. Progressive NAFLD can develop into non-alcoholic steatohepatitis (NASH) or hepatocellular carcinoma. The current evidence proposes that environmental pollutants promote development and progression of NAFLD, and autophagy plays a vital role but is multifactorial affected in NAFLD. In this review, we analyzed on the regulations of common environmental pollutants on autophagy in NAFLD. To clarify the involved roles of autophagy, we discussed the dysregulation of autophagy by environmental pollutants in adipose tissue and gut, and their interactions with liver, as well as epigenetic regulation on autophagy by environmental pollutants. Furthermore, protective roles of potential therapeutic treatments on the multiple-hits of autophagy in NAFLD were descripted.
Collapse
Affiliation(s)
- Yao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Anqi Kong
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Dongfeng Chen
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, China.
| |
Collapse
|
59
|
Ruano D. Proteostasis Dysfunction in Aged Mammalian Cells. The Stressful Role of Inflammation. Front Mol Biosci 2021; 8:658742. [PMID: 34222330 PMCID: PMC8245766 DOI: 10.3389/fmolb.2021.658742] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is a biological and multifactorial process characterized by a progressive and irreversible deterioration of the physiological functions leading to a progressive increase in morbidity. In the next decades, the world population is expected to reach ten billion, and globally, elderly people over 80 are projected to triple in 2050. Consequently, it is also expected an increase in the incidence of age-related pathologies such as cancer, diabetes, or neurodegenerative disorders. Disturbance of cellular protein homeostasis (proteostasis) is a hallmark of normal aging that increases cell vulnerability and might be involved in the etiology of several age-related diseases. This review will focus on the molecular alterations occurring during normal aging in the most relevant protein quality control systems such as molecular chaperones, the UPS, and the ALS. Also, alterations in their functional cooperation will be analyzed. Finally, the role of inflammation, as a synergistic negative factor of the protein quality control systems during normal aging, will also be addressed. A better comprehension of the age-dependent modifications affecting the cellular proteostasis, as well as the knowledge of the mechanisms underlying these alterations, might be very helpful to identify relevant risk factors that could be responsible for or contribute to cell deterioration, a fundamental question still pending in biomedicine.
Collapse
Affiliation(s)
- Diego Ruano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
60
|
Shi Y, Shen HM, Gopalakrishnan V, Gordon N. Epigenetic Regulation of Autophagy Beyond the Cytoplasm: A Review. Front Cell Dev Biol 2021; 9:675599. [PMID: 34195194 PMCID: PMC8237754 DOI: 10.3389/fcell.2021.675599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a highly conserved catabolic process induced under various stress conditions to protect the cell from harm and allow survival in the face of nutrient- or energy-deficient states. Regulation of autophagy is complex, as cells need to adapt to a continuously changing microenvironment. It is well recognized that the AMPK and mTOR signaling pathways are the main regulators of autophagy. However, various other signaling pathways have also been described to regulate the autophagic process. A better understanding of these complex autophagy regulatory mechanisms will allow the discovery of new potential therapeutic targets. Here, we present a brief overview of autophagy and its regulatory pathways with emphasis on the epigenetic control mechanisms.
Collapse
Affiliation(s)
- Yin Shi
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Vidya Gopalakrishnan
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nancy Gordon
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
61
|
Theofani E, Xanthou G. Autophagy: A Friend or Foe in Allergic Asthma? Int J Mol Sci 2021; 22:ijms22126314. [PMID: 34204710 PMCID: PMC8231495 DOI: 10.3390/ijms22126314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a major self-degradative process through which cytoplasmic material, including damaged organelles and proteins, are delivered and degraded in the lysosome. Autophagy represents a dynamic recycling system that produces new building blocks and energy, essential for cellular renovation, physiology, and homeostasis. Principal autophagy triggers include starvation, pathogens, and stress. Autophagy plays also a pivotal role in immune response regulation, including immune cell differentiation, antigen presentation and the generation of T effector responses, the development of protective immunity against pathogens, and the coordination of immunometabolic signals. A plethora of studies propose that both impaired and overactive autophagic processes contribute to the pathogenesis of human disorders, including infections, cancer, atherosclerosis, autoimmune and neurodegenerative diseases. Autophagy has been also implicated in the development and progression of allergen-driven airway inflammation and remodeling. Here, we provide an overview of recent studies pertinent to the biology of autophagy and molecular pathways controlling its activation, we discuss autophagy-mediated beneficial and detrimental effects in animal models of allergic diseases and illuminate new advances on the role of autophagy in the pathogenesis of human asthma. We conclude contemplating the potential of targeting autophagy as a novel therapeutic approach for the management of allergic responses and linked asthmatic disease.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11547 Athens, Greece;
- 1st Department of Respiratory Medicine, “Sotiria” Regional Chest Diseases Hospital, Medical School, National Kapodistrian University of Athens, 11547 Athens, Greece
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11547 Athens, Greece;
- Correspondence: ; Tel.: +30-210-65-97-336
| |
Collapse
|
62
|
González-Rodríguez P, Cheray M, Füllgrabe J, Salli M, Engskog-Vlachos P, Keane L, Cunha V, Lupa A, Li W, Ma Q, Dreij K, Rosenfeld MG, Joseph B. The DNA methyltransferase DNMT3A contributes to autophagy long-term memory. Autophagy 2021; 17:1259-1277. [PMID: 32876528 PMCID: PMC8143216 DOI: 10.1080/15548627.2020.1816664] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 10/25/2022] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic pathway that targets cytoplasmic components for their degradation and recycling in an autophagosome-dependent lysosomal manner. Under physiological conditions, this process maintains cellular homeostasis. However, autophagy can be stimulated upon different forms of cellular stress, ranging from nutrient starvation to exposure to drugs. Thus, this pathway can be seen as a central component of the integrated and adaptive stress response. Here, we report that even brief induction of autophagy is coupled in vitro to a persistent downregulation of the expression of MAP1LC3 isoforms, which are key components of the autophagy core machinery. In fact, DNA-methylation mediated by de novo DNA methyltransferase DNMT3A of MAP1LC3 loci upon autophagy stimulation leads to the observed long-term decrease of MAP1LC3 isoforms at transcriptional level. Finally, we report that the downregulation of MAP1LC3 expression can be observed in vivo in zebrafish larvae and mice exposed to a transient autophagy stimulus. This epigenetic memory of autophagy provides some understanding of the long-term effect of autophagy induction and offers a possible mechanism for its decline upon aging, pathological conditions, or in response to treatment interventions.Abbreviations: ACTB: actin beta; ATG: autophagy-related; 5-Aza: 5-aza-2'-deoxycytidine; BafA1: bafilomycin A1; CBZ: carbamazepine; CDKN2A: cyclin dependent kinase inhibitor 2A; ChIP: chromatin immunoprecipitation; Clon.: clonidine; CpG: cytosine-guanine dinucleotide: DMSO: dimethyl sulfoxide; DNA: deoxyribonucleic acid; DNMT: DNA methyltransferase; DNMT1: DNA methyltransferase 1; DNMT3A: DNA methyltransferase alpha; DNMT3B: DNA methyltransferase beta; dpf: days post-fertilization; EBSS: Earle's balanced salt solution; EM: Zebrafish embryo medium; GABARAP: GABA type A receptor associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GRO-Seq: Global Run-On sequencing; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAP1LC3A: microtubule-associated protein 1 light chain 3 alpha; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MAP1LC3B2: microtubule-associated protein 1 light chain 3 beta 2; MEM: minimum essential medium; MEF: mouse embryonic fibroblasts; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; PBS: phosphate-buffered saline; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RT-qPCR: quantitative reverse transcription polymerase chain reaction; SQSTM1/p62: sequestosome 1; Starv.: starvation; Treh.: trehalose; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Patricia González-Rodríguez
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde Cheray
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Jens Füllgrabe
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Maria Salli
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | | | - Lily Keane
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Virginia Cunha
- Institute of Environmental Medicine, Biochemical Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Agata Lupa
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Wenbo Li
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, California, USA
| | - Qi Ma
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, California, USA
| | - Kristian Dreij
- Institute of Environmental Medicine, Biochemical Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Michael G. Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, California, USA
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
63
|
Zhang Y, Do DC, Hu X, Wang J, Zhao Y, Mishra S, Zhang X, Wan M, Gao P. CaMKII oxidation regulates cockroach allergen-induced mitophagy in asthma. J Allergy Clin Immunol 2021; 147:1464-1477.e11. [PMID: 32920093 PMCID: PMC8544000 DOI: 10.1016/j.jaci.2020.08.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/09/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Autophagy plays an important role in causing inflammatory responses initiated by environmental pollutants and respiratory tract infection. OBJECTIVE We sought to investigate the role of cockroach allergen-induced excessive activation of autophagy in allergic airway inflammation and its underlying molecular mechanisms. METHODS Environmental allergen-induced autophagy was investigated in the primary human bronchial epithelial cells (HBECs) and lung tissues of asthmatic mouse model and patients. The role of autophagy in asthma development was examined by using autophagy inhibitor 3-methyladenine in an asthma mouse model. Furthermore, the involvements of reactive oxygen species (ROS) and oxidized Ca2+/calmodulin-dependent protein kinase II (ox-CaMKII) signaling in regulating autophagy during asthma were examined in allergen-treated HBECs and mouse model. RESULTS Cockroach allergen activated autophagy in HBECs and in the lung tissues from asthmatic patients and mice. Autophagy inhibitor 3-methyladenine significantly attenuated airway hyperresponsiveness, TH2-associated lung inflammation, and ROS generation. Mechanistically, we demonstrated a pathological feedforward circuit between cockroach allergen-induced ROS and autophagy that is mediated through CaMKII oxidation. Furthermore, transgenic mice with ROS-resistant CaMKII MM-VVδ showed attenuation of TH2-associated lung inflammation and autophagy. Mitochondrial ox-CaMKII inhibition induced by adenovirus carrying mitochondrial-targeted inhibitor peptide CaMKIIN suppresses cockroach allergen-induced autophagy, mitochondrial dysfunction, mitophagy, and cytokine production in HBECs. Finally, mitochondrial CaMKII inhibition suppressed the expression of one of the key ubiquitin-binding autophagy receptors, optineurin, and its recruitment to fragmented mitochondria. Optineurin knockdown inhibited cockroach allergy-induced mitophagy. CONCLUSIONS Our data suggest a previously uncovered axis of allergen-ROS-ox-CaMKII-mitophagy in the development of allergic airway inflammation and asthma.
Collapse
Affiliation(s)
- Yan Zhang
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Danh C Do
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Xinyue Hu
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Wang
- Department of Integrated Traditional Chinese and Western Medicine, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yilin Zhao
- Department of Respiratory Medicine, The Fourth Military Medical University, Xi'an, China
| | - Sumita Mishra
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, China
| | - Xin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, West China School of Medicine, Sichuan University, Chengdu, China
| | - Mei Wan
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Peisong Gao
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
64
|
Zhang S, Zheng Y, Zhang G, Lin P, Wang W. Genomic DNA methylation analysis reveals that BLNK is a key potential gene in the regulation of autophagy-related thyroid cancer progression. Genome 2021; 64:801-812. [PMID: 33617368 DOI: 10.1139/gen-2020-0178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to explore the relationship between autophagy and DNA methylation, and to identify key genes for autophagy-regulated thyroid cancer progression. We divided patients with thyroid cancer into high-autophagy score (AS) group and low-AS group based on their AS values. The results found that AS was associated with the distant metastasis of thyroid cancer, and adversely affected prognosis. Then, we screened 359 differently expressed genes (DEGs) with DNA methylation status consistent with gene expression change. Functional classification analysis demonstrated that the 359 DEGs consistent with DNA methylation status were significantly involved in adhesion, migration, and differentiation of immune cells. To further screen the key genes in the autophagy-related thyroid cancer progression, we constructed a protein-protein interactions (PPI) network and performed prognostic analysis. B cell linker (BLNK) was identified as the key potential gene affecting autophagy-related thyroid cancer progression. Finally, we verified that BLNK promoted the proliferation of thyroid cancer cells, and BLNK expression was regulated by DNA methylation. Our research provides a new perspective for exploring the relationship between autophagy and DNA methylation during the progression of thyroid cancer and provides a new target for the treatment of metastatic thyroid cancer.
Collapse
Affiliation(s)
- Shengchi Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China.,Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Yongzhe Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China.,Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Guimin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China.,Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Peng Lin
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China.,Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China.,Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, 300192 Tianjin, China
| |
Collapse
|
65
|
New drug targets for hypertension: A literature review. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166037. [PMID: 33309796 DOI: 10.1016/j.bbadis.2020.166037] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Hypertension is one of the most prevalent cardiovascular diseases worldwide. However, in the population of resistant hypertension, blood pressure is difficult to control effectively. Moreover, antihypertensive drugs may have adverse effect currently. Hence, new therapeutic targets and treatments are needed to uncovered and exploited to control hypertension and its comorbidities. In the past, classical drug targets, such as the aldosterone receptor, aldosterone synthase, and ACE2/angiotensin 1-7/Mas receptor axis, have been investigated. Recently, vaccines and drugs targeting the gastrointestinal microbiome, which represent drug classes, have also been investigated for the management of blood pressure. In this review, we summarized current knowledge on classical and new drug targets and discussed the potential utility of new drugs in the treatment of hypertension.
Collapse
|
66
|
Pontin arginine methylation by CARM1 is crucial for epigenetic regulation of autophagy. Nat Commun 2020; 11:6297. [PMID: 33293536 PMCID: PMC7722926 DOI: 10.1038/s41467-020-20080-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a catabolic process through which cytoplasmic components are degraded and recycled in response to various stresses including starvation. Recently, transcriptional and epigenetic regulations of autophagy have emerged as essential mechanisms for maintaining homeostasis. Here, we identify that coactivator-associated arginine methyltransferase 1 (CARM1) methylates Pontin chromatin-remodeling factor under glucose starvation, and methylated Pontin binds Forkhead Box O 3a (FOXO3a). Genome-wide analyses and biochemical studies reveal that methylated Pontin functions as a platform for recruiting Tip60 histone acetyltransferase with increased H4 acetylation and subsequent activation of autophagy genes regulated by FOXO3a. Surprisingly, CARM1-Pontin-FOXO3a signaling axis can work in the distal regions and activate autophagy genes through enhancer activation. Together, our findings provide a signaling axis of CARM1-Pontin-FOXO3a and further expand the role of CARM1 in nuclear regulation of autophagy. Epigenetic regulations of autophagy have emerged as mechanisms for maintaining cellular homeostasis. Here the authors reveal that the CARM1-Pontin-FOXO3a signaling axis can activate autophagy related genes through enhancer activation.
Collapse
|
67
|
Farhan M, Silva M, Li S, Yan F, Fang J, Peng T, Hu J, Tsao M, Little P, Zheng W. The role of FOXOs and autophagy in cancer and metastasis-Implications in therapeutic development. Med Res Rev 2020; 40:2089-2113. [PMID: 32474970 PMCID: PMC7586888 DOI: 10.1002/med.21695] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 04/21/2020] [Accepted: 05/16/2020] [Indexed: 12/17/2022]
Abstract
Autophagy is a highly conserved intracellular degradation process that plays a crucial role in cell survival and stress reactions as well as in cancer development and metastasis. Autophagy process involves several steps including sequestration, fusion of autophagosomes with lysosomes and degradation. Forkhead box O (FOXO) transcription factors regulate the expression of genes involved in cellular metabolic activity and signaling pathways of cancer growth and metastasis. Recent evidence suggests that FOXO proteins are also involved in autophagy regulation. The relationship among FOXOs, autophagy, and cancer has been drawing attention of many who work in the field. This study summarizes the role of FOXO proteins and autophagy in cancer growth and metastasis and analyzes their potential roles in cancer disease management.
Collapse
Affiliation(s)
- Mohd Farhan
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Marta Silva
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Shuai Li
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Fengxia Yan
- Department of MedicineJinan UniversityGuangzhouChina
| | - Jiankang Fang
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Tangming Peng
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Jim Hu
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Ming‐Sound Tsao
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Peter Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of QueenslandWoolloongabbaQueenslandAustralia
| | - Wenhua Zheng
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| |
Collapse
|
68
|
Ouyang Y, Wu Q, Li J, Sun S, Sun S. S-adenosylmethionine: A metabolite critical to the regulation of autophagy. Cell Prolif 2020; 53:e12891. [PMID: 33030764 PMCID: PMC7653241 DOI: 10.1111/cpr.12891] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a mechanism that enables cells to maintain cellular homeostasis by removing damaged materials and mobilizing energy reserves in conditions of starvation. Although nutrient availability strongly impacts the process of autophagy, the specific metabolites that regulate autophagic responses have not yet been determined. Recent results indicate that S-adenosylmethionine (SAM) represents a critical inhibitor of methionine starvation-induced autophagy. SAM is primarily involved in four key metabolic pathways: transmethylation, transsulphuration, polyamine synthesis and 5'-deoxyadenosyl 5'-radical-mediated biochemical transformations. SAM is the sole methyl group donor involved in the methylation of DNA, RNA and histones, modulating the autophagic process by mediating epigenetic effects. Moreover, the metabolites of SAM, such as homocysteine, glutathione, decarboxylated SAM and spermidine, also exert important influences on the regulation of autophagy. From our perspective, nuclear-cytosolic SAM is a conserved metabolic inhibitor that connects cellular metabolic status and the regulation of autophagy. In the future, SAM might be a new target of autophagy regulators and be widely used in the treatment of various diseases.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qi Wu
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Juanjuan Li
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Si Sun
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shengrong Sun
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
69
|
Ranganayaki S, Govindaraj P, Gayathri N, Srinivas Bharath MM. Exposure to the neurotoxin 3-nitropropionic acid in neuronal cells induces unique histone acetylation pattern: Implications for neurodegeneration. Neurochem Int 2020; 140:104846. [PMID: 32927024 DOI: 10.1016/j.neuint.2020.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Mitochondrial dysfunction is critical for neurodegeneration in movement disorders. Neurotoxicological models recapitulating movement disorder involve mitochondrial damage including inhibition of mitochondrial complexes. Previously, we demonstrated that neurotoxic models of Parkinson's disease and Manganism showed distinct morphological, electrophysiological and molecular profile indicating disease-specific characteristics. In a recent study, we demonstrated that the transcriptomic changes triggered by the neurotoxic mitochondrial complex II inhibitor 3-nitropropionic acid (3-NPA), was significantly different from the profile induced by the neurotoxic mitochondrial complex I inhibitor 1-methyl-4- phenylpyridinium (MPP+) and mitochondrial toxin Manganese (Mn). Among the plausible pathways, we surmised that epigenetic mechanisms could contribute to 3-NPA specific transcriptomic profile. To address this, we assessed global and individual lys-specific acetylation profile of Histone H3 and H4 in the 3-NPA neuronal cell model. Our data revealed histone acetylation profile unique to the 3-NPA model that was not noted in the MPP+ and Mn models. Among the individual lys, Histone H3K56 showed robust dose and time-dependent hyperacetylation in the 3-NPA model. Chromatin Immunoprecipitation-sequencing (ChIP-seq) revealed that acetylated H3K56 was associated with 13072 chromatin sites, which showed increased occupancy in the transcription start site-promoter site. Acetylated histone H3K56 was associated with 1747 up-regulated and 263 down-regulated genes in the 3-NPA model, which included many up-regulated autophagy and mitophagy genes. Western analysis validated the involvement of PINK1-Parkin dependent mitophagy in the 3-NPA model. We propose that 3-NPA specific chromatin dynamics could contribute to the unique transcriptomic profile with implications for movement disorders.
Collapse
Affiliation(s)
- S Ranganayaki
- Department of Neurochemistry, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, Karnataka, India
| | - Periyasamy Govindaraj
- Department of Neuropathology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, Karnataka, India
| | - N Gayathri
- Department of Neuropathology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, Karnataka, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
70
|
Miao Y, Guo D, Li W, Zhong Y. Diabetes Promotes Development of Alzheimer's Disease Through Suppression of Autophagy. J Alzheimers Dis 2020; 69:289-296. [PMID: 30958383 DOI: 10.3233/jad-190156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent studies suggest that diabetes predisposes patients to develop neurodegenerative Alzheimer's disease (AD), although the underlying mechanisms have yet to be determined. Compromised autophagy of neuronal cells, which occurs in the early stages of AD, has been shown to enhance disease progression. However, autophagic regulation as a mechanism connecting diabetes and AD has not been shown before. Here, we found that streptozotocin (STZ)-induced diabetic rats exhibited poorer performance on the social recognition test, Morris water maze, and plus-maze discriminative avoidance task, compared to PBS-treated normoglycemic control rats, likely resulting from increased brain deposition of amyloid-β peptide aggregates (Aβ) and increased phosphorylation of tau protein, two pathological features of AD. Moreover, diabetes-induced AD-like behavioral and pathological changes were associated with a decrease in neuronal cell autophagy. Furthermore, compromised cell autophagy was recapitulated in vitro in neuronal cells cultured in high glucose conditions. Thus, our data suggest that hyperglycemia in diabetes may directly inhibit neuronal cell autophagy, which subsequently enhances AD-associated pathological progression.
Collapse
Affiliation(s)
- Ya Miao
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Donghao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Li
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuan Zhong
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
71
|
Zheng Z, Wang L, Cheng S, Wang Y, Zhao W. Autophagy and Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:601-613. [PMID: 32671778 DOI: 10.1007/978-981-15-4272-5_43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Leukemia is a malignant clonal disease that originates from hematopoietic stem cells. As in-depth research examines the molecular biology and immunology of the hematopoietic system, leukemia treatment has evolved from a single cytotoxic drug to treatments that inducing differentiation and apoptosis. Meanwhile, autophagy has become a growing concern as a new form of cell death. The immune response, hematopoietic stem cell differentiation, and drug resistance of tumor cells are all potentially affected by autophagy. Regulating autophagy may become one of the promising directions in the field of targeted therapy.
Collapse
Affiliation(s)
- Zhong Zheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weili Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
72
|
Shangguan L, Chen M, Fang X, Xie Z, Gong P, Huang Y, Wang Z, Fang J. Comparative transcriptome analysis provides insight into regulation pathways and temporal and spatial expression characteristics of grapevine (Vitis vinifera) dormant buds in different nodes. BMC PLANT BIOLOGY 2020; 20:390. [PMID: 32842963 PMCID: PMC7449092 DOI: 10.1186/s12870-020-02583-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/29/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Bud dormancy is a strategic mechanism plants developed as an adaptation to unfavorable environments. The grapevine (Vitis vinifera) is one of the most ancient fruit vine species and vines are planted all over the world due to their great economic benefits. To better understand the molecular mechanisms underlying bud dormancy between adjacent months, the transcriptomes of 'Rosario Bianco' grape buds of 6 months and three nodes were analyzed using RNA-sequencing technology and pair-wise comparison. From November to April of the following year, pairwise comparisons were conducted between adjacent months. RESULTS A total of 11,647 differentially expressed genes (DEGs) were obtained from five comparisons. According to the results of cluster analysis of the DEG profiles and the climatic status of the sampling period, the 6 months were divided into three key processes (November to January, January to March, and March to April). Pair-wise comparisons of DEG profiles of adjacent months and three main dormancy processes showed that the whole grapevine bud dormancy period was mainly regulated by the antioxidant system, secondary metabolism, cell cycle and division, cell wall metabolism, and carbohydrates metabolism. Additionally, several DEGs, such as VvGA2OX6 and VvSS3, showed temporally and spatially differential expression patterns, which normalized to a similar trend during or before April. CONCLUSION Considering these results, the molecular mechanisms underlying bud dormancy in the grapevine can be hypothesized, which lays the foundation for further research.
Collapse
Affiliation(s)
- Lingfei Shangguan
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China.
| | - Mengxia Chen
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Xiang Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Zhenqiang Xie
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
- Department of Agriculture and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212499, Jiangsu Province, China
| | - Peijie Gong
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Yuxiang Huang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Zicheng Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| |
Collapse
|
73
|
Jung H, Seo SB. Histone lysine demethylase 3B (KDM3B) regulates the propagation of autophagy via transcriptional activation of autophagy-related genes. PLoS One 2020; 15:e0236403. [PMID: 32716961 PMCID: PMC7384621 DOI: 10.1371/journal.pone.0236403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/05/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a self-degradative physiological process, is critical for homeostasis maintenance and energy source balancing in response to various stresses, including nutrient deprivation. It is a highly conserved catabolic process in eukaryotes and is indispensable for cell survival as it involves degradation of unessential or excessive components and their subsequent recycling as building blocks for the synthesis of necessary molecules. Although the dysregulation of autophagy has been reported to broadly contribute to various diseases, including cancers and neurodegenerative diseases, the molecular mechanisms underlying the epigenetic regulation of autophagy are poorly elucidated. Here, we report that the level of lysine demethylase 3B (KDM3B) increases in nutrient-deprived HCT116 cells, a colorectal carcinoma cell line, resulting in transcriptional activation of the autophagy-inducing genes. KDM3B was found to enhance the transcription by demethylating H3K9me2 on the promoter of these genes. Furthermore, we observed that the depletion of KDM3B inhibited the autophagic flux in HCT116 cells. Collectively, these data suggested the critical role of KDM3B in the regulation of autophagy-related genes via H3K9me2 demethylation and induction of autophagy in nutrient-starved HCT116 cells.
Collapse
Affiliation(s)
- Hyeonsoo Jung
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
74
|
Talebian S, Daghagh H, Yousefi B, Ȍzkul Y, Ilkhani K, Seif F, Alivand MR. The role of epigenetics and non-coding RNAs in autophagy: A new perspective for thorough understanding. Mech Ageing Dev 2020; 190:111309. [PMID: 32634442 DOI: 10.1016/j.mad.2020.111309] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/22/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Autophagy is a major self-degradative intracellular process required for the maintenance of homeostasis and promotion of survival in response to starvation. It plays critical roles in a large variety of physiological and pathological processes. On the other hand, aberrant regulation of autophagy can lead to various cancers and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Crohn's disease. Emerging evidence strongly supports that epigenetic signatures, related non-coding RNA profiles, and their cross-talking are significantly associated with the control of autophagic responses. Therefore, it may be helpful and promising to manage autophagic processes by finding valuable markers and therapeutic approaches. Although there is a great deal of information on the components of autophagy in the cytoplasm, the molecular basis of the epigenetic regulation of autophagy has not been completely elucidated. In this review, we highlight recent research on epigenetic changes through the expression of autophagy-related genes (ATGs), which regulate autophagy, DNA methylation, histone modifications as well as non-coding RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and their relationship with human diseases, that play key roles in causing autophagy-related diseases.
Collapse
Affiliation(s)
- Shahrzad Talebian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Daghagh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusuf Ȍzkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Khandan Ilkhani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Seif
- Department of Immunology & Allergy, Academic Center for Education, Culture, and Research, Tehran, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
75
|
Kim D, Hwang HY, Kwon HJ. Targeting Autophagy In Disease: Recent Advances In Drug Discovery. Expert Opin Drug Discov 2020; 15:1045-1064. [DOI: 10.1080/17460441.2020.1773429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dasol Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hui-Yun Hwang
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
76
|
Lejault P, Moruno-Manchon JF, Vemu SM, Honarpisheh P, Zhu L, Kim N, Urayama A, Monchaud D, McCullough LD, Tsvetkov AS. Regulation of autophagy by DNA G-quadruplexes. Autophagy 2020; 16:2252-2259. [PMID: 32420812 DOI: 10.1080/15548627.2020.1769991] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Guanine-rich DNA strands can form secondary structures known as G-quadruplexes (G4-DNA or G4s). G4-DNA is important for the regulation of replication and transcription. We recently showed that the expression of Atg7, a gene that is critical for macroautophagy/autophagy, is controlled by G4-DNA in neurons. We demonstrated that the transcription factor SUB1/PC4 and the G4-DNA-specific antibody HF2 bind to a putative G4-DNA motif located in the Atg7 gene. Stabilizing G4-DNA with the G4-ligand pyridostatin (PDS) downregulates Atg7 expression in neurons. Here, we further investigated how G4-DNA in the Atg7 gene is stabilized by PDS. We show that PDS can form 1:1 and 2:1 complexes with the Atg7's G4. We also demonstrate that PDS downregulates the ATG7 protein and the expression of Atg7 in astrocytes as well as in neurons. Together with our previous findings, these data establish a novel G4-DNA-associated mechanism of autophagy regulation at a transcriptional level in neurons and astrocytes.
Collapse
Affiliation(s)
- Pauline Lejault
- UBFC Dijon, Institut De Chimie Moléculaire (ICMUB) , Dijon, France
| | - Jose F Moruno-Manchon
- Department of Neurology, The University of Texas McGovern Medical School at Houston , Houston, TX, USA
| | - Sree M Vemu
- Summer Research Program, the University of Texas Medical School at Houston , TX, USA
| | - Pedram Honarpisheh
- Department of Neurology, The University of Texas McGovern Medical School at Houston , Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences , Houston, TX, USA
| | - Liang Zhu
- Biostatistics and Epidemiology Research Design Core Center for Clinical and Translational Sciences, The University of Texas McGovern Medical School at Houston , Houston, TX, USA.,Department of Internal Medicine, The University of Texas McGovern Medical School at Houston , Houston, TX, USA
| | - Nayun Kim
- The University of Texas Graduate School of Biomedical Sciences , Houston, TX, USA.,Department of Microbiology and Molecular Genetics, The University of Texas McGovern Medical School at Houston , TX
| | - Akihiko Urayama
- Department of Neurology, The University of Texas McGovern Medical School at Houston , Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences , Houston, TX, USA
| | - David Monchaud
- UBFC Dijon, Institut De Chimie Moléculaire (ICMUB) , Dijon, France
| | - Louise D McCullough
- Department of Neurology, The University of Texas McGovern Medical School at Houston , Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences , Houston, TX, USA
| | - Andrey S Tsvetkov
- Department of Neurology, The University of Texas McGovern Medical School at Houston , Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences , Houston, TX, USA.,UTHealth Consortium on Aging, The University of Texas McGovern Medical School , Houston, TX, USA
| |
Collapse
|
77
|
Harris M, El Hindy M, Usmari-Moraes M, Hudd F, Shafei M, Dong M, Hezwani M, Clark P, House M, Forshaw T, Kehoe P, Conway ME. BCAT-induced autophagy regulates Aβ load through an interdependence of redox state and PKC phosphorylation-implications in Alzheimer's disease. Free Radic Biol Med 2020; 152:755-766. [PMID: 31982508 DOI: 10.1016/j.freeradbiomed.2020.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 01/09/2023]
Abstract
Leucine, nutrient signal and substrate for the branched chain aminotransferase (BCAT) activates the mechanistic target of rapamycin (mTORC1) and regulates autophagic flux, mechanisms implicated in the pathogenesis of neurodegenerative conditions such as Alzheimer's disease (AD). BCAT is upregulated in AD, where a moonlighting role, imparted through its redox-active CXXC motif, has been suggested. Here we demonstrate that the redox state of BCAT signals differential phosphorylation by protein kinase C (PKC) regulating the trafficking of cellular pools of BCAT. We show inter-dependence of BCAT expression and proteins associated with the P13K/Akt/mTORC1 and autophagy signalling pathways. In response to insulin or an increase in ROS, BCATc is trafficked to the membrane and docks via palmitoylation, which is associated with BCATc-induced autophagy through PKC phosphorylation. In response to increased levels of BCATc, as observed in AD, amyloid β (Aβ) levels accumulate due to a shift in autophagic flux. This effect was diminished when incubated with leucine, indicating that dietary levels of amino acids show promise in regulating Aβ load. Together these findings show that increased BCATc expression, reported in human AD brain, will affect autophagy and Aβ load through the interdependence of its redox-regulated phosphorylation offering a novel target to address AD pathology.
Collapse
Affiliation(s)
- M Harris
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - M El Hindy
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - M Usmari-Moraes
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - F Hudd
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - M Shafei
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - M Dong
- Department of Chemistry, North Carolina Agricultural and Technical State University, Market Street, Greensboro, NC, 27411, USA
| | - M Hezwani
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - P Clark
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - M House
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - T Forshaw
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK
| | - P Kehoe
- Institute of Clinical Neurosciences, Learning and Research Building, Southmead Hospital, Bristol, United Kingdom
| | - M E Conway
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbor Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
78
|
Lysine-specific demethylase 3A is important for autophagic occurrence. Biochem Biophys Res Commun 2020; 526:176-183. [DOI: 10.1016/j.bbrc.2020.03.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 03/10/2020] [Indexed: 02/03/2023]
|
79
|
Perez-Montoyo H. Therapeutic Potential of Autophagy Modulation in Cholangiocarcinoma. Cells 2020; 9:E614. [PMID: 32143356 PMCID: PMC7140412 DOI: 10.3390/cells9030614] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a multistep catabolic process through which misfolded, aggregated or mutated proteins and damaged organelles are internalized in membrane vesicles called autophagosomes and ultimately fused to lysosomes for degradation of sequestered components. The multistep nature of the process offers multiple regulation points prone to be deregulated and cause different human diseases but also offers multiple targetable points for designing therapeutic strategies. Cancer cells have evolved to use autophagy as an adaptive mechanism to survive under extremely stressful conditions within the tumor microenvironment, but also to increase invasiveness and resistance to anticancer drugs such as chemotherapy. This review collects clinical evidence of autophagy deregulation during cholangiocarcinogenesis together with preclinical reports evaluating compounds that modulate autophagy to induce cholangiocarcinoma (CCA) cell death. Altogether, experimental data suggest an impairment of autophagy during initial steps of CCA development and increased expression of autophagy markers on established tumors and in invasive phenotypes. Preclinical efficacy of autophagy modulators promoting CCA cell death, reducing invasiveness capacity and resensitizing CCA cells to chemotherapy open novel therapeutic avenues to design more specific and efficient strategies to treat this aggressive cancer.
Collapse
|
80
|
Moruno-Manchon JF, Lejault P, Wang Y, McCauley B, Honarpisheh P, Morales Scheihing DA, Singh S, Dang W, Kim N, Urayama A, Zhu L, Monchaud D, McCullough LD, Tsvetkov AS. Small-molecule G-quadruplex stabilizers reveal a novel pathway of autophagy regulation in neurons. eLife 2020; 9:e52283. [PMID: 32043463 PMCID: PMC7012600 DOI: 10.7554/elife.52283] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
Guanine-rich DNA sequences can fold into four-stranded G-quadruplex (G4-DNA) structures. G4-DNA regulates replication and transcription, at least in cancer cells. Here, we demonstrate that, in neurons, pharmacologically stabilizing G4-DNA with G4 ligands strongly downregulates the Atg7 gene. Atg7 is a critical gene for the initiation of autophagy that exhibits decreased transcription with aging. Using an in vitro assay, we show that a putative G-quadruplex-forming sequence (PQFS) in the first intron of the Atg7 gene folds into a G4. An antibody specific to G4-DNA and the G4-DNA-binding protein PC4 bind to the Atg7 PQFS. Mice treated with a G4 stabilizer develop memory deficits. Brain samples from aged mice contain G4-DNA structures that are absent in brain samples from young mice. Overexpressing the G4-DNA helicase Pif1 in neurons exposed to the G4 stabilizer improves phenotypes associated with G4-DNA stabilization. Our findings indicate that G4-DNA is a novel pathway for regulating autophagy in neurons.
Collapse
Affiliation(s)
- Jose F Moruno-Manchon
- Department of Neurobiology and AnatomyThe University of Texas McGovern Medical School at HoustonHoustonUnited States
| | - Pauline Lejault
- Institut de Chimie Moléculaire (ICMUB), UBFC Dijon, CNRS UMR6302DijonFrance
| | - Yaoxuan Wang
- Department of Neurobiology and AnatomyThe University of Texas McGovern Medical School at HoustonHoustonUnited States
| | - Brenna McCauley
- Huffington Center on AgingBaylor College of MedicineHoustonUnited States
| | - Pedram Honarpisheh
- Department of NeurologyThe University of Texas McGovern Medical School at HoustonHoustonUnited States
- The University of Texas Graduate School of Biomedical SciencesHoustonUnited States
| | - Diego A Morales Scheihing
- Department of NeurologyThe University of Texas McGovern Medical School at HoustonHoustonUnited States
| | - Shivani Singh
- Department of Microbiology and Molecular GeneticsThe University of Texas McGovern Medical School at HoustonHoustonUnited States
| | - Weiwei Dang
- Huffington Center on AgingBaylor College of MedicineHoustonUnited States
| | - Nayun Kim
- Department of Microbiology and Molecular GeneticsThe University of Texas McGovern Medical School at HoustonHoustonUnited States
| | - Akihiko Urayama
- Department of NeurologyThe University of Texas McGovern Medical School at HoustonHoustonUnited States
- The University of Texas Graduate School of Biomedical SciencesHoustonUnited States
| | - Liang Zhu
- Biostatistics and Epidemiology Research Design Core Center for Clinical and Translational SciencesThe University of Texas McGovern Medical School at HoustonHoustonUnited States
- Department of Internal MedicineThe University of Texas McGovern Medical School at HoustonHoustonUnited States
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), UBFC Dijon, CNRS UMR6302DijonFrance
| | - Louise D McCullough
- Department of NeurologyThe University of Texas McGovern Medical School at HoustonHoustonUnited States
- The University of Texas Graduate School of Biomedical SciencesHoustonUnited States
| | - Andrey S Tsvetkov
- Department of Neurobiology and AnatomyThe University of Texas McGovern Medical School at HoustonHoustonUnited States
- The University of Texas Graduate School of Biomedical SciencesHoustonUnited States
- UTHealth Consortium on AgingThe University of Texas McGovern Medical School at HoustonHoustonUnited States
| |
Collapse
|
81
|
Chen TQ, Hu N, Huo B, Masau JF, Yi X, Zhong XX, Chen YJ, Guo X, Zhu XH, Wei X, Jiang DS. EHMT2/G9a Inhibits Aortic Smooth Muscle Cell Death by Suppressing Autophagy Activation. Int J Biol Sci 2020; 16:1252-1263. [PMID: 32174799 PMCID: PMC7053323 DOI: 10.7150/ijbs.38835] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Although EHMT2 (also known as G9a) plays a critical role in several kinds of cancers and cardiac remodeling, its function in vascular smooth muscle cells (VSMCs) remains unknown. In the present study, we revealed a novel function of EHMT2 in regulating autophagic cell death (ACD) of VSMC. Inhibition of EHMT2 by BIX01294 or knockdown of EHMT2 resulted in reduced VSMC numbers which were independent of proliferation and apoptosis. Interestingly, EHMT2 protein levels were significantly decreased in VSMCs treated with autophagic inducers. Moreover, more autophagic vacuoles and accumulated LC3II were detected in VSMCs treated with BIX01294 or lenti-shEHMT2 than their counterparts. Furthermore, we found that EHMT2 inhibited the ACD of VSMCs by suppressing autophagosome formation. Mechanistically, the pro-autophagic effect elicited by EHMT2 inhibition was associated with SQSTM1 and BECN1 overexpression. Moreover, these detrimental effects were largely nullified by SQSTM1 or BECN1 knockdown. More importantly, similar results were observed in primary human aortic VSMCs. Overall, these findings suggest that EHMT2 functions as a crucial negative regulator of ACD via decreasing SQSTM1 or BECN1 expression and that EHMT2 could be a potent therapeutic target for cardiovascular diseases (e.g., aortic dissection).
Collapse
Affiliation(s)
- Tai-Qiang Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Nan Hu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jackson Ferdinand Masau
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiao-Xuan Zhong
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong-Jie Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education
- NHC Key Laboratory of Organ Transplantation
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education
- NHC Key Laboratory of Organ Transplantation
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education
- NHC Key Laboratory of Organ Transplantation
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences
| |
Collapse
|
82
|
De Munck DG, De Meyer GR, Martinet W. Autophagy as an emerging therapeutic target for age-related vascular pathologies. Expert Opin Ther Targets 2020; 24:131-145. [PMID: 31985292 DOI: 10.1080/14728222.2020.1723079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: The incidence of age-related vascular diseases such as arterial stiffness, hypertension and atherosclerosis, is rising dramatically and is substantially impacting healthcare systems. Mounting evidence suggests that there is an important role for autophagy in maintaining (cardio)vascular health. Impaired vascular autophagy has been linked to arterial aging and the initiation of vascular disease.Areas covered: The function and implications of autophagy in vascular smooth muscle cells and endothelial cells are discussed in healthy blood vessels and arterial disease. Furthermore, we discuss current treatment options for vascular disease and their links with autophagy. A literature search was conducted in PubMed up to October 2019.Expert opinion: Although the therapeutic potential of inducing autophagy in age-related vascular pathologies is considerable, several issues should be addressed before autophagy induction can be clinically used to treat vascular disease. These issues include uncertainty regarding the most effective drug target as well as the lack of potency and selectivity of autophagy inducing drugs. Moreover, drug tolerance or autophagy mediated cell death have been reported as possible adverse effects. Special attention is required for determining the cause of autophagy deficiency to optimize the treatment strategy.
Collapse
Affiliation(s)
- Dorien G De Munck
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido Ry De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
83
|
SETD2 mutation in renal clear cell carcinoma suppress autophagy via regulation of ATG12. Cell Death Dis 2020; 11:69. [PMID: 31988284 PMCID: PMC6985262 DOI: 10.1038/s41419-020-2266-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/26/2022]
Abstract
Inactivating mutations in the SETD2 gene, encoding for a nonredundant histone H3 methyltransferase and regulator of transcription, is a frequent molecular feature in clear cell renal cell carcinomas (ccRCC). SETD2 deficiency is associated with recurrence of ccRCC and bears low prognostic values. Targeting autophagy, a conserved catabolic process with critical functions in maintenance of cellular homeostasis and cell conservation under stress condition, is emerging as a potential therapeutic strategy to combat ccRCC. Epigenetics-based pathways are now appreciated as key components in the regulation of autophagy. However, whether loss of function in the SETD2 histone modifying enzyme occurring in ccRCC cells may impact on their ability to undergo autophagy remained to be explored. Here, we report that SETD2 deficiency in RCC cells is associated with the aberrant accumulation of both free ATG12 and of an additional ATG12-containing complex, distinct from the ATG5–ATG12 complex. Rescue of SETD2 functions in the SETD2 deficiency in RCC cells, or reduction of SETD2 expression level in RCC cells wild type for this enzyme, demonstrates that SETD2 deficiency in RCC is directly involved in the acquisition of these alterations in the autophagic process. Furthermore, we revealed that deficiency in SETD2, known regulator of alternative splicing, is associated with increased expression of a short ATG12 spliced isoform at the depend of the canonical long ATG12 isoform in RCC cells. The defect in the ATG12-dependent conjugation system was found to be associated with a decrease autophagic flux, in accord with the role for this ubiquitin-like protein conjugation system in autophagosome formation and expansion. Finally, we report that SETD2 and ATG12 gene expression levels are associated with favorable respective unfavorable prognosis in ccRCC patients. Collectively, our findings bring further argument for considering the SETD2 gene status of ccRCC tumors, when therapeutic interventions, such as targeting the autophagic process, are considered to combat these kidney cancers.
Collapse
|
84
|
Abstract
Osteosarcoma (OS) remains a difficult disease to treat. The standard chemotherapy regimen has not improved survival for the past three decades. Resistance to chemotherapy remains a challenge and constitutes a major concern to clinical investigators. Autophagy has been recognized as a survival mechanism implicated in resistance to chemotherapy. We previously demonstrated chemotherapy to induce autophagy in OS. However, whether induction of autophagy will lead to survival or death has been the focus of many laboratories. Autophagy is a very context-dependent process, and no specific biomarker has been identified to define whether the process will lead to survival or death. In the present chapter, we present some of the mechanisms involved in the process of autophagy and summarize some of the most recent work related to autophagy in OS and the challenges encountered with the use of old and new autophagy inhibitors.
Collapse
|
85
|
Mei R, Lou P, You G, Jiang T, Yu X, Guo L. 17β-Estradiol Induces Mitophagy Upregulation to Protect Chondrocytes via the SIRT1-Mediated AMPK/mTOR Signaling Pathway. Front Endocrinol (Lausanne) 2020; 11:615250. [PMID: 33613450 PMCID: PMC7888342 DOI: 10.3389/fendo.2020.615250] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence reveals that estrogen, especially 17β-estradiol (17β-E2), is associated with articular cartilage metabolism disorder and postmenopausal osteoarthritis (OA). SIRT1, AMPK, and mTOR are regarded as critical mitophagy regulators. Recent studies have shown that mitophagy displays a protective effect against OA, but the molecular mechanism is not well known. This study aimed to investigate the effect of 17β-E2 on Sirtuin-1 (SIRT1) expression and the induction of mitophagy upregulation by 17β-E2 via the SIRT1-mediated AMP-activated protein kinase (AMPK)/mammalian target of the rapamycin (mTOR) signaling pathway to protect chondrocytes. ATDC5 chondrocytes were treated with different concentrations of 17β-E2 (0 M, 1 × 10-9 M, 1 × 10-8 M, and 1 × 10-7 M) for 24 h or pretreatment with or without NAM (SIRT1 inhibitor), Compound C (AMPK inhibitor) and S1842 (mTOR inhibitor) for 30 min prior to treatment with 17β-E2 (1 × 10-7 M) for 24 in each groups. Expression of SIRT1 was evaluated by real-time PCR, Western blotting and confocal immunofluorescence staining. Then, the mitophagosomes in cells were observed under a transmission electron microscopy (TEM), and the AMPK/mTOR signaling pathway was detected by Western blotting. The mitophagy-related proteins, p-AMPK, p-mTOR, p-JNK, and p-p38 were also identified by Western blot analysis. The chondrocytes viability and proliferation were determined by MTT and 5-Bromo-2'-deoxyuridine (BrdU) assay. These experiments were independently repeated 3 times The study found that 17β-E2 increased the expression level of SIRT1, p-AMPK, and mitophagy-related proteins but decreased p-mTOR expression, and then induced mitophagy upregulation in chondrocytes. More mitochondrial autophagosomes were observed in 17β-E2-treated chondrocytes under a transmission electron microscope. Also, 17β-E2 improved cell viability and proliferation with the higher expression of SIRT1 and activation of the AMPK/mTOR signaling pathway. However, SIRT1 inhibitor nicotinamide (NAM) and AMPK inhibitor Compound C blocked the beneficial effect of 17β-E2. In summary, this study was novel in demonstrating that 17β-E2 induced mitophagy upregulation to protect chondrocytes via the SIRT1-mediated AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Runhong Mei
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Peng Lou
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Guanchao You
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Tianlong Jiang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Xuefeng Yu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xuefeng Yu, ; Lei Guo,
| | - Lei Guo
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Xuefeng Yu, ; Lei Guo,
| |
Collapse
|
86
|
Sachdeva K, Do DC, Zhang Y, Hu X, Chen J, Gao P. Environmental Exposures and Asthma Development: Autophagy, Mitophagy, and Cellular Senescence. Front Immunol 2019; 10:2787. [PMID: 31849968 PMCID: PMC6896909 DOI: 10.3389/fimmu.2019.02787] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Environmental pollutants and allergens induce oxidative stress and mitochondrial dysfunction, leading to key features of allergic asthma. Dysregulations in autophagy, mitophagy, and cellular senescence have been associated with environmental pollutant and allergen-induced oxidative stress, mitochondrial dysfunction, secretion of multiple inflammatory proteins, and subsequently development of asthma. Particularly, particulate matter 2.5 (PM2.5) has been reported to induce autophagy in the bronchial epithelial cells through activation of AMP-activated protein kinase (AMPK), drive mitophagy through activating PTEN-induced kinase 1(PINK1)/Parkin pathway, and induce cell cycle arrest and senescence. Intriguingly, allergens, including ovalbumin (OVA), Alternaria alternata, and cockroach allergen, have also been shown to induce autophagy through activation of different signaling pathways. Additionally, mitochondrial dysfunction can induce cell senescence due to excessive ROS production, which affects airway diseases. Although autophagy and senescence share similar properties, recent studies suggest that autophagy can either accelerate the development of senescence or prevent senescence. Thus, in this review, we evaluated the literature regarding the basic cellular processes, including autophagy, mitophagy, and cellular senescence, explored their molecular mechanisms in the regulation of the initiation and downstream signaling. Especially, we highlighted their involvement in environmental pollutant/allergen-induced major phenotypic changes of asthma such as airway inflammation and remodeling and reviewed novel and critical research areas for future studies. Ultimately, understanding the regulatory mechanisms of autophagy, mitophagy, and cellular senescence may allow for the development of new therapeutic targets for asthma.
Collapse
Affiliation(s)
- Karan Sachdeva
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Danh C. Do
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yan Zhang
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Hu
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jingsi Chen
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Dermatology, Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Peisong Gao
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
87
|
Stead ER, Castillo-Quan JI, Miguel VEM, Lujan C, Ketteler R, Kinghorn KJ, Bjedov I. Agephagy - Adapting Autophagy for Health During Aging. Front Cell Dev Biol 2019; 7:308. [PMID: 31850344 PMCID: PMC6892982 DOI: 10.3389/fcell.2019.00308] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a major cellular recycling process that delivers cellular material and entire organelles to lysosomes for degradation, in a selective or non-selective manner. This process is essential for the maintenance of cellular energy levels, components, and metabolites, as well as the elimination of cellular molecular damage, thereby playing an important role in numerous cellular activities. An important function of autophagy is to enable survival under starvation conditions and other stresses. The majority of factors implicated in aging are modifiable through the process of autophagy, including the accumulation of oxidative damage and loss of proteostasis, genomic instability and epigenetic alteration. These primary causes of damage could lead to mitochondrial dysfunction, deregulation of nutrient sensing pathways and cellular senescence, finally causing a variety of aging phenotypes. Remarkably, advances in the biology of aging have revealed that aging is a malleable process: a mild decrease in signaling through nutrient-sensing pathways can improve health and extend lifespan in all model organisms tested. Consequently, autophagy is implicated in both aging and age-related disease. Enhancement of the autophagy process is a common characteristic of all principal, evolutionary conserved anti-aging interventions, including dietary restriction, as well as inhibition of target of rapamycin (TOR) and insulin/IGF-1 signaling (IIS). As an emerging and critical process in aging, this review will highlight how autophagy can be modulated for health improvement.
Collapse
Affiliation(s)
- Eleanor R Stead
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Jorge I Castillo-Quan
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Boston, MA, United States
| | | | - Celia Lujan
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Kerri J Kinghorn
- Institute of Healthy Ageing, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.,Institute of Neurology, University College London, London, United Kingdom
| | - Ivana Bjedov
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
88
|
Soria LR, Brunetti-Pierri N. Ammonia and autophagy: An emerging relationship with implications for disorders with hyperammonemia. J Inherit Metab Dis 2019; 42:1097-1104. [PMID: 30671986 DOI: 10.1002/jimd.12061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
(Macro)autophagy/autophagy is a highly regulated lysosomal degradative process by which cells recycle their own nutrients, such as amino acids and other metabolites, to be reused in different biosynthetic pathways. Ammonia is a diffusible compound generated daily from catabolism of nitrogen-containing molecules and from gastrointestinal microbiome. Ammonia homeostasis is tightly controlled in humans and ammonia is efficiently converted by the healthy liver into non-toxic urea (through ureagenesis) and glutamine (through glutamine synthetase). Impaired ammonia detoxification leads to systemic hyperammonemia, a life-threatening condition resulting in detrimental effects on central nervous system. Here, we review current understanding on the role of ammonia in modulation of autophagy and the potential implications in the pathogenesis and treatment of disorders with hyperammonemia.
Collapse
Affiliation(s)
- Leandro R Soria
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
| |
Collapse
|
89
|
Hwang JY, Yan J, Zukin RS. Autophagy and synaptic plasticity: epigenetic regulation. Curr Opin Neurobiol 2019; 59:207-212. [PMID: 31634675 DOI: 10.1016/j.conb.2019.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022]
Abstract
In neurons, autophagy is crucial to proper axon guidance, vesicular release, dendritic spine architecture, spine pruning and synaptic plasticity and, when dysregulated, is associated with brain disorders, including autism spectrum disorders, and neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Once thought to play a housekeeping function of removing misfolded proteins or compromised organelles, neuronal autophagy is now regarded as a finely tuned, real time surveillance and clearance system crucial to synaptic integrity and function. Here we review the role of autophagy in synaptic plasticity and its regulation by epigenetic mechanisms.
Collapse
Affiliation(s)
- Jee-Yeon Hwang
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Jingqi Yan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY, USA
| | - Ruth Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY, USA.
| |
Collapse
|
90
|
Li R, Wei X, Jiang DS. Protein methylation functions as the posttranslational modification switch to regulate autophagy. Cell Mol Life Sci 2019; 76:3711-3722. [PMID: 31222372 PMCID: PMC11105718 DOI: 10.1007/s00018-019-03161-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
Studies over the past decades have elucidated the critical role of autophagy in human health and diseases. Although the processes of autophagy in the cytoplasm have been well studied, the posttranscriptional and epigenetic regulation mechanisms of autophagy are still poorly understood. Protein methylation, including histone methylation and non-histone protein methylation, is the most important type of posttranscriptional and epigenetic modification. Recent studies have shown that protein methylation is associated with effects on autophagosome formation, autophagy-related protein expression, and signaling pathway activation, but the details are still unclear. Thus, it is important to summarize the current status and discuss the future directions of research on protein methylation in the context of autophagy.
Collapse
Affiliation(s)
- Rui Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.
- NHC Key Laboratory of Organ Transplantation, Ministry of Health, Wuhan, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
91
|
Trehalose promotes the survival of random-pattern skin flaps by TFEB mediated autophagy enhancement. Cell Death Dis 2019; 10:483. [PMID: 31522191 PMCID: PMC6745036 DOI: 10.1038/s41419-019-1704-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
Random-pattern skin flaps are commonly used and valuable tools in reconstructive surgery, however, post-operative random skin flap necrosis remains a major and common complication. Previous studies have suggested that activating autophagy, a major pathway for degradation of intracellular waste, may improve flap survival. In this study, we investigated whether trehalose, a novel and potent autophagy activator, improves random skin flap viability. Our results demonstrated that trehalose significantly improves viability, augments blood flow, and decreases tissue edema. Furthermore, we found that trehalose leads to increased angiogenesis, decreased apoptosis, and reduced oxidative stress. Using immunohistochestry and western blot, we demonstrated that trehalose augments autophagy, and that inhibition of autophagy augmentation using 3MA significantly blunted the aforementioned benefits of trehalose therapy. Mechanistically, we showed that trehalose’s autophagy augmentation is mediated by activation and nuclear translocation of TFEB, which may be due to inhibition of Akt and activation of the AMPK-SKP2-CARM1 signaling pathway. Altogether, our results established that trehalose is a potent agent capable for significantly increasing random-pattern skin flap survival by augmenting autophagy and subsequently promoting angiogenesis, reducing oxidative stress, and inhibiting cell death.
Collapse
|
92
|
Cheng Z. The FoxO-Autophagy Axis in Health and Disease. Trends Endocrinol Metab 2019; 30:658-671. [PMID: 31443842 DOI: 10.1016/j.tem.2019.07.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022]
Abstract
Autophagy controls cellular remodeling and quality control. Dysregulated autophagy has been implicated in several human diseases including obesity, diabetes, cardiovascular disease, neurodegenerative diseases, and cancer. Current evidence has revealed that FoxO (forkhead box class O) transcription factors have a multifaceted role in autophagy regulation and dysregulation. Nuclear FoxOs transactivate genes that control the formation of autophagosomes and their fusion with lysosomes. Independently of transactivation, cytosolic FoxO proteins induce autophagy by directly interacting with autophagy proteins. Autophagy is also controlled by FoxOs through epigenetic mechanisms. Moreover, FoxO proteins can be degraded directly or indirectly by autophagy. Cutting-edge evidence is reviewed that the FoxO-autophagy axis plays a crucial role in health and disease.
Collapse
Affiliation(s)
- Zhiyong Cheng
- Food Science and Human Nutrition Department, The University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
93
|
Bonam SR, Ruff M, Muller S. HSPA8/HSC70 in Immune Disorders: A Molecular Rheostat that Adjusts Chaperone-Mediated Autophagy Substrates. Cells 2019; 8:E849. [PMID: 31394830 PMCID: PMC6721745 DOI: 10.3390/cells8080849] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
HSPA8/HSC70 is a molecular chaperone involved in a wide variety of cellular processes. It plays a crucial role in protein quality control, ensuring the correct folding and re-folding of selected proteins, and controlling the elimination of abnormally-folded conformers and of proteins daily produced in excess in our cells. HSPA8 is a crucial molecular regulator of chaperone-mediated autophagy, as a detector of substrates that will be processed by this specialized autophagy pathway. In this review, we shortly summarize its structure and overall functions, dissect its implication in immune disorders, and list the known pharmacological tools that modulate its functions. We also exemplify the interest of targeting HSPA8 to regulate pathological immune dysfunctions.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Neuroimmunology & peptide therapy, Biotechnology and cell signaling, CNRS-University of Strasbourg, Illkirch 67412, France/Laboratory of excellence Medalis, 67000 Strasbourg, France
| | - Marc Ruff
- Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404 Strasbourg, France
| | - Sylviane Muller
- Neuroimmunology & peptide therapy, Biotechnology and cell signaling, CNRS-University of Strasbourg, Illkirch 67412, France/Laboratory of excellence Medalis, 67000 Strasbourg, France.
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France.
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, 67000 Strasbourg, France.
| |
Collapse
|
94
|
Wang Y, Yang L, Zhang X, Cui W, Liu Y, Sun Q, He Q, Zhao S, Zhang G, Wang Y, Chen S. Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep 2019; 20:e47563. [PMID: 31267712 PMCID: PMC6607012 DOI: 10.15252/embr.201847563] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/05/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Monoubiquitination of histone H2B on lysine 120 (H2Bub1) is an epigenetic mark generally associated with transcriptional activation, yet the global functions of H2Bub1 remain poorly understood. Ferroptosis is a form of non-apoptotic cell death characterized by the iron-dependent overproduction of lipid hydroperoxides, which can be inhibited by the antioxidant activity of the solute carrier family member 11 (SLC7A11/xCT), a component of the cystine/glutamate antiporter. Whether nuclear events participate in the regulation of ferroptosis is largely unknown. Here, we show that the levels of H2Bub1 are decreased during erastin-induced ferroptosis and that loss of H2Bub1 increases the cellular sensitivity to ferroptosis. H2Bub1 epigenetically activates the expression of SLC7A11. Additionally, we show that the tumor suppressor p53 negatively regulates H2Bub1 levels independently of p53's transcription factor activity by promoting the nuclear translocation of the deubiquitinase USP7. Moreover, our studies reveal that p53 decreases H2Bub1 occupancy on the SLC7A11 gene regulatory region and represses the expression of SLC7A11 during erastin treatment. These data not only suggest a noncanonical role of p53 in chromatin regulation but also link p53 to ferroptosis via an H2Bub1-mediated epigenetic pathway. Overall, our work uncovers a previously unappreciated epigenetic mechanism for the regulation of ferroptosis.
Collapse
Affiliation(s)
- Yufei Wang
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
| | - Lu Yang
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
| | - Xiaojun Zhang
- Department of Science and EducationPeople's Hospital of ZunhuaTangshanHebeiChina
| | - Wen Cui
- School of Forensic Sciences and Laboratory MedicineJining Medical UniversityJiningShandongChina
| | - Yanping Liu
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
| | - Qin‐Ru Sun
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
| | - Qing He
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
| | - Shiyan Zhao
- Community Health Service Center of YaoqiangJinanShandongChina
| | - Guo‐An Zhang
- School of Forensic Sciences and Laboratory MedicineJining Medical UniversityJiningShandongChina
| | - Yequan Wang
- School of Forensic Sciences and Laboratory MedicineJining Medical UniversityJiningShandongChina
| | - Su Chen
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
- Department of Science and EducationPeople's Hospital of ZunhuaTangshanHebeiChina
- School of Forensic Sciences and Laboratory MedicineJining Medical UniversityJiningShandongChina
| |
Collapse
|
95
|
D'Alesio C, Bellese G, Gagliani MC, Lechiara A, Dameri M, Grasselli E, Lanfrancone L, Cortese K, Castagnola P. The chromodomain helicase CHD4 regulates ERBB2 signaling pathway and autophagy in ERBB2 + breast cancer cells. Biol Open 2019; 8:bio.038323. [PMID: 30967373 PMCID: PMC6504000 DOI: 10.1242/bio.038323] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The chromodomain helicase DNA-binding 4 (CHD4), a member of the nucleosome remodeling and deacetylases (NuRD) complex, has been identified as an oncogene that modulates proliferation and migration of breast cancers (BC). ERBB2 is an oncogenic driver in 20–30% of BC in which its overexpression leads to increased chemoresistance. Here we investigated whether CHD4 depletion affects the ERBB2 cascade and autophagy, which represents a mechanism of resistance against Trastuzumab (Tz), a therapeutic anti-ERBB2 antibody. We show that CHD4 depletion in two ERBB2+ BC cell lines strongly inhibits cell proliferation, induces p27KIP1 upregulation, Tyr1248 ERBB2 phosphorylation, ERK1/2 and AKT dephosphorylation, and downregulation of both ERBB2 and PI3K levels. Moreover, CHD4 silencing impairs late stages of autophagy, resulting in increased levels of LC3 II and SQSTM1/p62, lysosomal enlargement and accumulation of autolysosomes (ALs). Importantly, we show that CHD4 depletion and concomitant treatment with Tz prevent cell proliferation in vitro. Our results suggest that CHD4 plays a critical role in modulating cell proliferation, ERBB2 signaling cascade and autophagy and provide new insights on CHD4 as a potential target for the treatment of ERBB2+ BC. Summary: Inhibition of CHD4 expression impairs cell proliferation and survival through downregulation of ERBB2 signaling and block of autophagy. Therefore, CHD4 should be considered a potential target in ERBB2+ breast cancers.
Collapse
Affiliation(s)
- Carolina D'Alesio
- DIMES, Department of Experimental Medicine, Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132, Genova, Italy.,DIMI, Department of Internal Medicine, Pharmacology, Università di Genova, Viale Benedetto XV, 16132, Genova, Italy
| | - Grazia Bellese
- DIMES, Department of Experimental Medicine, Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132, Genova, Italy
| | - Maria Cristina Gagliani
- DIMES, Department of Experimental Medicine, Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132, Genova, Italy
| | - Anastasia Lechiara
- DIMES, Department of Experimental Medicine, Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132, Genova, Italy
| | - Martina Dameri
- DIMES, Department of Experimental Medicine, Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132, Genova, Italy
| | - Elena Grasselli
- DISTAV, Department of Earth, Environment and Life science, Università di Genova, Corso Europa 26, 16132, Genova, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Katia Cortese
- DIMES, Department of Experimental Medicine, Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132, Genova, Italy
| | - Patrizio Castagnola
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| |
Collapse
|
96
|
Methylomic correlates of autophagy activity in cystic fibrosis. J Cyst Fibros 2019; 18:491-500. [PMID: 30737168 DOI: 10.1016/j.jcf.2019.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
Autophagy is a highly regulated, biological process that provides energy during periods of stress and starvation. This conserved process also acts as a defense mechanism and clears microbes from the host cell. Autophagy is impaired in Cystic Fibrosis (CF) patients and CF mice, as their cells exhibit low expression levels of essential autophagy molecules. The genetic disorder in CF is due to mutations in the cystic fibrosis transmembrane conductance regulator (cftr) gene that encodes for a chloride channel. CF patients are particularly prone to infection by pathogens that are otherwise cleared by autophagy in healthy immune cells including Burkholderia cenocepacia (B. cenocepacia). The objective of this study is to determine the mechanism underlying weak autophagic activity in CF macrophages and find therapeutic targets to correct it. Using reduced representation bisulfite sequencing (RRBS) to determine DNA methylation profile, we found that the promoter regions of Atg12 in CF macrophages are significantly more methylated than in the wild-type (WT) immune cells, accompanied by low protein expression. The natural product epigallocatechin-3-gallate (EGCG) significantly reduced the methylation of Atg12 promoter improving its expression. Accordingly, EGCG restricted B. cenocepacia replication within CF mice and their derived macrophages by improving autophagy and preventing dissemination. In addition, EGCG improved the function of CFTR protein. Altogether, utilizing RRBS for the first time in the CF field revealed a previously unrecognized mechanism for reduced autophagic activity in CF. Our data also offers a mechanism by which EGCG exerts its positive effects in CF.
Collapse
|
97
|
Nanduri R, Kalra R, Bhagyaraj E, Chacko AP, Ahuja N, Tiwari D, Kumar S, Jain M, Parkesh R, Gupta P. AutophagySMDB: a curated database of small molecules that modulate protein targets regulating autophagy. Autophagy 2019; 15:1280-1295. [PMID: 30669929 DOI: 10.1080/15548627.2019.1571717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Macroautophagy/autophagy is a complex self-degradative mechanism responsible for clearance of non functional organelles and proteins. A range of factors influences the autophagic process, and disruptions in autophagy-related mechanisms lead to disease states, and further exacerbation of disease. Despite in-depth research into autophagy and its role in pathophysiological processes, the resources available to use it for therapeutic purposes are currently lacking. Herein we report the Autophagy Small Molecule Database (AutophagySMDB; http://www.autophagysmdb.org/ ) of small molecules and their cognate protein targets that modulate autophagy. Presently, AutophagySMDB enlists ~10,000 small molecules which regulate 71 target proteins. All entries are comprised of information such as EC50 (half maximal effective concentration), IC50 (half maximal inhibitory concentration), Kd (dissociation constant) and Ki (inhibition constant), IUPAC name, canonical SMILE, structure, molecular weight, QSAR (quantitative structure activity relationship) properties such as hydrogen donor and acceptor count, aromatic rings and XlogP. AutophagySMDB is an exhaustive, cross-platform, manually curated database, where either the cognate targets for small molecule or small molecules for a target can be searched. This database is provided with different search options including text search, advanced search and structure search. Various computational tools such as tree tool, cataloging tools, and clustering tools have also been implemented for advanced analysis. Data and the tools provided in this database helps to identify common or unique scaffolds for designing novel drugs or to improve the existing ones for autophagy small molecule therapeutics. The approach to multitarget drug discovery by identifying common scaffolds has been illustrated with experimental validation. Abbreviations: AMPK: AMP-activated protein kinase; ATG: autophagy related; AutophagySMDB: autophagy small molecule database; BCL2: BCL2, apoptosis regulator; BECN1: beclin 1; CAPN: calpain; MTOR: mechanistic target of rapamycin kinase; PPARG: peroxisome proliferator activated receptor gamma; SMILES: simplified molecular input line entry system; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription.
Collapse
Affiliation(s)
- Ravikanth Nanduri
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Rashi Kalra
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Ella Bhagyaraj
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Anuja P Chacko
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Nancy Ahuja
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Drishti Tiwari
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Sumit Kumar
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Monika Jain
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Raman Parkesh
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Pawan Gupta
- a Department of Molecular Biology , CSIR-Institute of Microbial Technology , Chandigarh , India
| |
Collapse
|
98
|
Epigenetic Regulation of Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1206:221-236. [DOI: 10.1007/978-981-15-0602-4_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
99
|
Autophagy: An Essential Degradation Program for Cellular Homeostasis and Life. Cells 2018; 7:cells7120278. [PMID: 30572663 PMCID: PMC6315530 DOI: 10.3390/cells7120278] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a lysosome-dependent cellular degradation program that responds to a variety of environmental and cellular stresses. It is an evolutionarily well-conserved and essential pathway to maintain cellular homeostasis, therefore, dysfunction of autophagy is closely associated with a wide spectrum of human pathophysiological conditions including cancers and neurodegenerative diseases. The discovery and characterization of the kingdom of autophagy proteins have uncovered the molecular basis of the autophagy process. In addition, recent advances on the various post-translational modifications of autophagy proteins have shed light on the multiple layers of autophagy regulatory mechanisms, and provide novel therapeutic targets for the treatment of the diseases.
Collapse
|
100
|
Ahmadi B, Ahmadi M, Teixeira da Silva JA. Microspore embryogenesis in Brassica: calcium signaling, epigenetic modification, and programmed cell death. PLANTA 2018; 248:1339-1350. [PMID: 30171331 DOI: 10.1007/s00425-018-2996-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/28/2018] [Indexed: 05/08/2023]
Abstract
Stress induction followed by excessive calcium influx causes multiple changes in microspores resulting in chromatin remodeling, epigenetic modifications, and removal of unwanted gametophytic components via autophagy, switching microspores towards ME. In Brassica, isolated microspores that are placed under specific external stresses can switch their default developmental pathway towards an embryogenic state. Microspore embryogenesis is a unique system that speeds up breeding programs and, in the context of developmental biology, provides an excellent tool for embryogenesis to be investigated in greater detail. The last few years have provided ample evidence that has allowed Brassica researchers to markedly increase their understanding of the molecular and sub-cellular changes underlying this process. We review recent advances in this field, focusing mainly on the perception to inductive stresses, signal transduction, molecular and structural alterations, and the involvement of programmed cell death at the onset of embryogenic induction.
Collapse
Affiliation(s)
- Behzad Ahmadi
- Department of Maize and Forage Crops Research, Seed and Plant Improvement Institute (SPII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Medya Ahmadi
- Department of Plant Pathology, Ferdowsi Mashhad University, Mashhad, Iran
| | | |
Collapse
|