51
|
Tjader NP, Beer AJ, Ramroop J, Tai MC, Ping J, Gandhi T, Dauch C, Neuhausen SL, Ziv E, Sotelo N, Ghanekar S, Meadows O, Paredes M, Gillespie J, Aeilts A, Hampel H, Zheng W, Jia G, Hu Q, Wei L, Liu S, Ambrosone CB, Palmer JR, Carpten JD, Yao S, Stevens P, Ho WK, Pan JW, Fadda P, Huo D, Teo SH, McElroy JP, Toland AE. Association of ESR1 germline variants with TP53 somatic variants in breast tumors in a genome-wide study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.06.23299442. [PMID: 38106140 PMCID: PMC10723566 DOI: 10.1101/2023.12.06.23299442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background In breast tumors, somatic mutation frequencies in TP53 and PIK3CA vary by tumor subtype and ancestry. HER2 positive and triple negative breast cancers (TNBC) have a higher frequency of TP53 somatic mutations than other subtypes. PIK3CA mutations are more frequently observed in hormone receptor positive tumors. Emerging data suggest tumor mutation status is associated with germline variants and genetic ancestry. We aimed to identify germline variants that are associated with somatic TP53 or PIK3CA mutation status in breast tumors. Methods A genome-wide association study was conducted using breast cancer mutation status of TP53 and PIK3CA and functional mutation categories including TP53 gain of function (GOF) and loss of function mutations and PIK3CA activating/hotspot mutations. The discovery analysis consisted of 2850 European ancestry women from three datasets. Germline variants showing evidence of association with somatic mutations were selected for validation analyses based on predicted function, allele frequency, and proximity to known cancer genes or risk loci. Candidate variants were assessed for association with mutation status in a multi-ancestry validation study, a Malaysian study, and a study of African American/Black women with TNBC. Results The discovery Germline x Mutation (GxM) association study found five variants associated with one or more TP53 phenotypes with P values <1×10-6, 33 variants associated with one or more TP53 phenotypes with P values <1×10-5, and 44 variants associated with one or more PIK3CA phenotypes with P values <1×10-5. In the multi-ancestry and Malaysian validation studies, germline ESR1 locus variant, rs9383938, was associated with the presence of TP53 mutations overall (P values 6.8×10-5 and 9.8×10-8, respectively) and TP53 GOF mutations (P value 8.4×10-6). Multiple variants showed suggestive evidence of association with PIK3CA mutation status in the validation studies, but none were significant after correction for multiple comparisons. Conclusions We found evidence that germline variants were associated with TP53 and PIK3CA mutation status in breast cancers. Variants near the estrogen receptor alpha gene, ESR1, were significantly associated with overall TP53 mutations and GOF mutations. Larger multi-ancestry studies are needed to confirm these findings and determine if these variants contribute to ancestry-specific differences in mutation frequency.
Collapse
Affiliation(s)
- Nijole P. Tjader
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Abigail J. Beer
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Johnny Ramroop
- The City College of New York, City University of New York, New York, NY, USA
| | - Mei-Chee Tai
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Jie Ping
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Tanish Gandhi
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Medical School, Columbus, OH, 43210, USA
| | - Cara Dauch
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Wexner Medical Center, Clinical Trials Office, Columbus, OH 43210, USA
| | - Susan L. Neuhausen
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA, USA
| | - Elad Ziv
- University of California, Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA, USA
- University of California, Department of Medicine, San Francisco, San Francisco, CA, USA
- University of California San Francisco, Institute for Human Genetics, San Francisco, CA, USA
| | - Nereida Sotelo
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shreya Ghanekar
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Owen Meadows
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Monica Paredes
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jessica Gillespie
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Amber Aeilts
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Heather Hampel
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Guochong Jia
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B. Ambrosone
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - John D. Carpten
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Integrative Translational Sciences, City of Hope, Duarte, CA
| | - Song Yao
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Patrick Stevens
- The Ohio State University Comprehensive Cancer Center, Bioinformatics Shared Resource, Columbus, OH, USA
| | - Weang-Kee Ho
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Jia Wern Pan
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Paolo Fadda
- The Ohio State University Comprehensive Cancer Center, Genomics Shared Resource, Columbus, OH, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
- Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Joseph Paul McElroy
- The Ohio State University Center for Biostatistics, Department of Biomedical Informatics, Columbus, OH, USA
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
52
|
Pan Q, Portelli S, Nguyen TB, Ascher DB. Characterization on the oncogenic effect of the missense mutations of p53 via machine learning. Brief Bioinform 2023; 25:bbad428. [PMID: 38018912 PMCID: PMC10685404 DOI: 10.1093/bib/bbad428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023] Open
Abstract
Dysfunctions caused by missense mutations in the tumour suppressor p53 have been extensively shown to be a leading driver of many cancers. Unfortunately, it is time-consuming and labour-intensive to experimentally elucidate the effects of all possible missense variants. Recent works presented a comprehensive dataset and machine learning model to predict the functional outcome of mutations in p53. Despite the well-established dataset and precise predictions, this tool was trained on a complicated model with limited predictions on p53 mutations. In this work, we first used computational biophysical tools to investigate the functional consequences of missense mutations in p53, informing a bias of deleterious mutations with destabilizing effects. Combining these insights with experimental assays, we present two interpretable machine learning models leveraging both experimental assays and in silico biophysical measurements to accurately predict the functional consequences on p53 and validate their robustness on clinical data. Our final model based on nine features obtained comparable predictive performance with the state-of-the-art p53 specific method and outperformed other generalized, widely used predictors. Interpreting our models revealed that information on residue p53 activity, polar atom distances and changes in p53 stability were instrumental in the decisions, consistent with a bias of the properties of deleterious mutations. Our predictions have been computed for all possible missense mutations in p53, offering clinical diagnostic utility, which is crucial for patient monitoring and the development of personalized cancer treatment.
Collapse
Affiliation(s)
- Qisheng Pan
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| | - Stephanie Portelli
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| | - Thanh Binh Nguyen
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| | - David B Ascher
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| |
Collapse
|
53
|
Maes S, Deploey N, Peelman F, Eyckerman S. Deep mutational scanning of proteins in mammalian cells. CELL REPORTS METHODS 2023; 3:100641. [PMID: 37963462 PMCID: PMC10694495 DOI: 10.1016/j.crmeth.2023.100641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Protein mutagenesis is essential for unveiling the molecular mechanisms underlying protein function in health, disease, and evolution. In the past decade, deep mutational scanning methods have evolved to support the functional analysis of nearly all possible single-amino acid changes in a protein of interest. While historically these methods were developed in lower organisms such as E. coli and yeast, recent technological advancements have resulted in the increased use of mammalian cells, particularly for studying proteins involved in human disease. These advancements will aid significantly in the classification and interpretation of variants of unknown significance, which are being discovered at large scale due to the current surge in the use of whole-genome sequencing in clinical contexts. Here, we explore the experimental aspects of deep mutational scanning studies in mammalian cells and report the different methods used in each step of the workflow, ultimately providing a useful guide toward the design of such studies.
Collapse
Affiliation(s)
- Stefanie Maes
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nick Deploey
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Frank Peelman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| |
Collapse
|
54
|
Fischer NW, Ma YHV, Gariépy J. Emerging insights into ethnic-specific TP53 germline variants. J Natl Cancer Inst 2023; 115:1145-1156. [PMID: 37352403 PMCID: PMC10560603 DOI: 10.1093/jnci/djad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023] Open
Abstract
The recent expansion of human genomics repositories has facilitated the discovery of novel TP53 variants in populations of different ethnic origins. Interpreting TP53 variants is a major clinical challenge because they are functionally diverse, confer highly variable predisposition to cancer (including elusive low-penetrance alleles), and interact with genetic modifiers that alter tumor susceptibility. Here, we discuss how a cancer risk continuum may relate to germline TP53 mutations on the basis of our current review of genotype-phenotype studies and an integrative analysis combining functional and sequencing datasets. Our study reveals that each ancestry contains a distinct TP53 variant landscape defined by enriched ethnic-specific alleles. In particular, the discovery and characterization of suspected low-penetrance ethnic-specific variants with unique functional consequences, including P47S (African), G334R (Ashkenazi Jewish), and rs78378222 (Icelandic), may provide new insights in terms of managing cancer risk and the efficacy of therapy. Additionally, our analysis highlights infrequent variants linked to milder cancer phenotypes in various published reports that may be underdiagnosed and require further investigation, including D49H in East Asians and R181H in Europeans. Overall, the sequencing and projected functions of TP53 variants arising within ethnic populations and their interplay with modifiers, as well as the emergence of CRISPR screens and AI tools, are now rapidly improving our understanding of the cancer susceptibility spectrum, leading toward more accurate and personalized cancer risk assessments.
Collapse
Affiliation(s)
- Nicholas W Fischer
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yu-Heng Vivian Ma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jean Gariépy
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
55
|
Gitschlag BL, Cano AV, Payne JL, McCandlish DM, Stoltzfus A. Mutation and Selection Induce Correlations between Selection Coefficients and Mutation Rates. Am Nat 2023; 202:534-557. [PMID: 37792926 DOI: 10.1086/726014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractThe joint distribution of selection coefficients and mutation rates is a key determinant of the genetic architecture of molecular adaptation. Three different distributions are of immediate interest: (1) the "nominal" distribution of possible changes, prior to mutation or selection; (2) the "de novo" distribution of realized mutations; and (3) the "fixed" distribution of selectively established mutations. Here, we formally characterize the relationships between these joint distributions under the strong-selection/weak-mutation (SSWM) regime. The de novo distribution is enriched relative to the nominal distribution for the highest rate mutations, and the fixed distribution is further enriched for the most highly beneficial mutations. Whereas mutation rates and selection coefficients are often assumed to be uncorrelated, we show that even with no correlation in the nominal distribution, the resulting de novo and fixed distributions can have correlations with any combination of signs. Nonetheless, we suggest that natural systems with a finite number of beneficial mutations will frequently have the kind of nominal distribution that induces negative correlations in the fixed distribution. We apply our mathematical framework, along with population simulations, to explore joint distributions of selection coefficients and mutation rates from deep mutational scanning and cancer informatics. Finally, we consider the evolutionary implications of these joint distributions together with two additional joint distributions relevant to parallelism and the rate of adaptation.
Collapse
|
56
|
Lam YK, Yu J, Huang H, Ding X, Wong AM, Leung HH, Chan AW, Ng KK, Xu M, Wang X, Wong N. TP53 R249S mutation in hepatic organoids captures the predisposing cancer risk. Hepatology 2023; 78:727-740. [PMID: 36221953 PMCID: PMC10086078 DOI: 10.1002/hep.32802] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Major genomic drivers of hepatocellular carcinoma (HCC) are nowadays well recognized, although models to establish their roles in human HCC initiation remain scarce. Here, we used human liver organoids in experimental systems to mimic the early stages of human liver carcinogenesis from the genetic lesions of TP53 loss and L3 loop R249S mutation. In addition, chromatin immunoprecipitation sequencing (ChIP-seq) of HCC cell lines shed important functional insights into the initiation of HCC consequential to the loss of tumor-suppressive function from TP53 deficiency and gain-of-function activities from mutant p53. APPROACH AND RESULTS Human liver organoids were generated from surgical nontumor liver tissues. CRISPR knockout of TP53 in liver organoids consistently demonstrated tumor-like morphological changes, increased in stemness and unrestricted in vitro propagation. To recapitulate TP53 status in human HCC, we overexpressed mutant R249S in TP53 knockout organoids. A spontaneous increase in tumorigenic potentials and bona fide HCC histology in xenotransplantations were observed. ChIP-seq analysis of HCC cell lines underscored gain-of-function properties from L3 loop p53 mutants in chromatin remodeling and overcoming extrinsic stress. More importantly, direct transcriptional activation of PSMF1 by mutant R249S could increase organoid resistance to endoplasmic reticulum stress, which was readily abrogated by PSMF1 knockdown in rescue experiments. In a patient cohort of primary HCC tumors and genome-edited liver organoids, quantitative polymerase chain reaction corroborated ChIP-seq findings and verified preferential genes modulated by L3 mutants, especially those enriched by R249S. CONCLUSIONS We showed differential tumorigenic effects from TP53 loss and L3 mutations, which together confer normal hepatocytes with early clonal advantages and prosurvival functions.
Collapse
Affiliation(s)
- Yin Kau Lam
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianqing Yu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xiaofan Ding
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Alissa M. Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Howard H. Leung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Anthony W. Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelvin K. Ng
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingjing Xu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Nathalie Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
57
|
Livesey BJ, Marsh JA. Updated benchmarking of variant effect predictors using deep mutational scanning. Mol Syst Biol 2023; 19:e11474. [PMID: 37310135 PMCID: PMC10407742 DOI: 10.15252/msb.202211474] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
The assessment of variant effect predictor (VEP) performance is fraught with biases introduced by benchmarking against clinical observations. In this study, building on our previous work, we use independently generated measurements of protein function from deep mutational scanning (DMS) experiments for 26 human proteins to benchmark 55 different VEPs, while introducing minimal data circularity. Many top-performing VEPs are unsupervised methods including EVE, DeepSequence and ESM-1v, a protein language model that ranked first overall. However, the strong performance of recent supervised VEPs, in particular VARITY, shows that developers are taking data circularity and bias issues seriously. We also assess the performance of DMS and unsupervised VEPs for discriminating between known pathogenic and putatively benign missense variants. Our findings are mixed, demonstrating that some DMS datasets perform exceptionally at variant classification, while others are poor. Notably, we observe a striking correlation between VEP agreement with DMS data and performance in identifying clinically relevant variants, strongly supporting the validity of our rankings and the utility of DMS for independent benchmarking.
Collapse
Affiliation(s)
- Benjamin J Livesey
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
58
|
Lock IC, Leisenring NH, Floyd W, Xu ES, Luo L, Ma Y, Mansell EC, Cardona DM, Lee CL, Kirsch DG. Mis-splicing Drives Loss of Function of p53 E224D Point Mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551439. [PMID: 37577531 PMCID: PMC10418211 DOI: 10.1101/2023.08.01.551439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background Tp53 is the most commonly mutated gene in cancer. Canonical Tp53 DNA damage response pathways are well characterized and classically thought to underlie the tumor suppressive effect of Tp53. Challenging this dogma, mouse models have revealed that p53 driven apoptosis and cell cycle arrest are dispensable for tumor suppression. Here, we investigated the inverse context of a p53 mutation predicted to drive expression of canonical targets, but is detected in human cancer. Methods We established a novel mouse model with a single base pair mutation (GAG>GAC, p53E221D) in the DNA-Binding domain that has wild-type function in screening assays, but is paradoxically found in human cancer in Li-Fraumeni syndrome. Using mouse p53E221D and the analogous human p53E224D mutant, we evaluated expression, transcriptional activation, and tumor suppression in vitro and in vivo. Results Expression of human p53E224D from cDNA translated to a fully functional p53 protein. However, p53E221D/E221D RNA transcribed from the endogenous locus is mis-spliced resulting in nonsense mediated decay. Moreover, fibroblasts derived from p53E221D/E221D mice do not express a detectable protein product. Mice homozygous for p53E221D exhibited increased tumor penetrance and decreased life expectancy compared to p53 WT animals. Conclusions Mouse p53E221D and human p53E224D mutations lead to splice variation and a biologically relevant p53 loss of function in vitro and in vivo.
Collapse
Affiliation(s)
- Ian C. Lock
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nathan H. Leisenring
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA
| | - Warren Floyd
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eric S. Xu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erin C. Mansell
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Diana M. Cardona
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Chang-Lung Lee
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - David G. Kirsch
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
59
|
Doghish AS, Moustafa HAM, Elballal MS, Sallam AAM, El-Dakroury WA, Abdel Mageed SS, Elesawy AE, Abdelmaksoud NM, Shahin RK, Midan HM, Elrebehy MA, Elazazy O, Nassar YA, Elazab IM, Elballal AS, Elballal MS, Abulsoud AI. The potential role of miRNAs in the pathogenesis of testicular germ cell tumors - A Focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154611. [PMID: 37315401 DOI: 10.1016/j.prp.2023.154611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Testicular germ cell tumors (TGCTs) are the most common testicular neoplasms in adolescents and young males. Understanding the genetic basis of TGCTs represents a growing need to cope with the increased incidence of these neoplasms. Although the cure rates have been comparatively increased, investigation of mechanisms underlying the incidence, progression, metastasis, recurrence, and therapy resistance is still necessary. Early diagnosis and non-compulsory clinical therapeutic agents without long-term side effects are now required to reduce the cancer burden, especially in the younger age groups. MicroRNAs (miRNAs) control an extensive range of cellular functions and exhibit a pivotal action in the development and spreading of TGCTs. Because of their dysregulation and disruption in function, miRNAs have been linked to the malignant pathophysiology of TGCTs by influencing many cellular functions involved in the disease. These biological processes include increased invasive and proliferative perspective, cell cycle dysregulation, apoptosis disruption, stimulation of angiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, and resistance to certain treatments. Herein, we present an up-to-date review of the biogenesis of miRNAs, miRNA regulatory mechanisms, clinical challenges, and therapeutic interventions of TGCTs, and role of nanoparticles in the treatment of TGCTs.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Ibrahim M Elazab
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| | - Ahmed S Elballal
- Department of Dentistry, Medical Administration, University of Sadat, City Menoufia 32897, Egypt
| | | | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
60
|
Bilyalov A, Nikolaev S, Danishevich A, Khatkov I, Makhmudov K, Isakova Z, Bakirov N, Omurbaev E, Osipova A, Ramaldanov R, Shagimardanova E, Kiyasov A, Gusev O, Bodunova N. The Spectrum of Germline Nucleotide Variants in Gastric Cancer Patients in the Kyrgyz Republic. Curr Issues Mol Biol 2023; 45:6383-6394. [PMID: 37623222 PMCID: PMC10453583 DOI: 10.3390/cimb45080403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023] Open
Abstract
Gastric cancer is a major challenge in modern oncology due to its high detection rate and prevalence. While sporadic cases make up the majority of gastric cancer, hereditary gastric cancer is caused by germline mutations in several genes linked to different syndromes. Thus, identifying hereditary forms of gastric cancer is considered crucial globally. A survey study using NGS-based analysis was conducted to determine the frequency of different types of hereditary gastric cancer in the yet-unstudied Kyrgyz population. The study cohort included 113 patients with diagnosed gastric cancer from Kyrgyzstan. The age of patients was 57.6 ± 8.9. Next-generation sequencing analysis of genomic DNA was performed using a custom Roche NimbleGen enrichment panel. The results showed that 6.2% (7/113) of the patients had pathogenic or likely pathogenic genetic variants. Additionally, 3.5% (4/113) of the patients carried heterozygous pathogenic/likely pathogenic variants in high penetrance genes, such as TP53, POLD1, RET, and BRCA2. Moreover, 2.7% (3/113) of the patients carried heterozygous mutations in genes linked to autosomal recessive conditions, specifically PALB2, FANCA, and FANCD2. We have not identified any genetic variants in hereditary GC-associated genes: CDH1, STK11, SMAD4, BMPRIA, APC, MLH1, and others. Our study included patients with sporadic features of GC. The use of recognized criteria (NCCN, Gastric Cancer, Version 2.2022) would increase the number of identified genetic variants in hereditary GC-associated genes. Further research is required to determine the clinical relevance of the genetic variants identified in the current study.
Collapse
Affiliation(s)
- Airat Bilyalov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.M.); (E.S.); (A.K.); (O.G.)
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia; (S.N.); (A.D.); (I.K.); (A.O.); (N.B.)
| | - Sergey Nikolaev
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia; (S.N.); (A.D.); (I.K.); (A.O.); (N.B.)
| | - Anastasiia Danishevich
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia; (S.N.); (A.D.); (I.K.); (A.O.); (N.B.)
| | - Igor Khatkov
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia; (S.N.); (A.D.); (I.K.); (A.O.); (N.B.)
| | - Komron Makhmudov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.M.); (E.S.); (A.K.); (O.G.)
| | - Zhainagul Isakova
- Research Institute of Molecular Biology and Medicine, Bishkek 720005, Kyrgyzstan;
| | - Nurbek Bakirov
- National Center of Oncology and Hematology of the Ministry of Health of the Kyrgyz Republic, Bishkek 720055, Kyrgyzstan; (N.B.); (E.O.); (R.R.)
| | - Ernis Omurbaev
- National Center of Oncology and Hematology of the Ministry of Health of the Kyrgyz Republic, Bishkek 720055, Kyrgyzstan; (N.B.); (E.O.); (R.R.)
| | - Alena Osipova
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia; (S.N.); (A.D.); (I.K.); (A.O.); (N.B.)
- Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ramaldan Ramaldanov
- National Center of Oncology and Hematology of the Ministry of Health of the Kyrgyz Republic, Bishkek 720055, Kyrgyzstan; (N.B.); (E.O.); (R.R.)
| | - Elena Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.M.); (E.S.); (A.K.); (O.G.)
| | - Andrey Kiyasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.M.); (E.S.); (A.K.); (O.G.)
| | - Oleg Gusev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.M.); (E.S.); (A.K.); (O.G.)
- Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Endocrinology Research Centre, 117036 Moscow, Russia
| | - Natalia Bodunova
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia; (S.N.); (A.D.); (I.K.); (A.O.); (N.B.)
| |
Collapse
|
61
|
Solares MJ, Jonaid GM, Kelly DF. Resolving p53 to Create Clinically-Relevant Mutation Models. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1087-1090. [PMID: 37613432 DOI: 10.1093/micmic/ozad067.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Maria J Solares
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States
- Center for Structural Oncology, The Pennsylvania State University, University Park, PA, United States
| | - G M Jonaid
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States
- Center for Structural Oncology, The Pennsylvania State University, University Park, PA, United States
- Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Deborah F Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States
- Center for Structural Oncology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
62
|
Zakaria NH, Hashad D, Saied MH, Hegazy N, Elkayal A, Tayae E. Genetic mutations in HER2-positive breast cancer: possible association with response to trastuzumab therapy. Hum Genomics 2023; 17:43. [PMID: 37202799 DOI: 10.1186/s40246-023-00493-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND HER2-positive breast cancer occurs in 15-20% of breast cancer patients and is characterized by poor prognosis. Trastuzumab is considered the key drug for treatment of HER2-positive breast cancer patients. It improves patient survival; however, resistance to trastuzumab remains a challenge in HER2-positive breast cancer patients. Therefore, the prediction of response to trastuzumab is crucial to choose optimal treatment regimens. The aim of the study was to identify genetic variants that could predict response to anti-HER2-targeted therapy (trastuzumab) using next-generation sequencing. METHOD Genetic variants in the hotspot regions of 17 genes were studied in 24 Formalin-Fixed Paraffin-Embedded (FFPE) samples using Ion S5 next-generation sequencing system. FFPE samples were collected from HER2‑positive breast cancer patients previously treated with anti‑HER2‑targeted treatment (Trastuzumab). Patients were divided into two groups; trastuzumab-sensitive group and trastuzumab-resistant group based on their response to targeted therapy. RESULTS We identified 29 genetic variants in nine genes that only occurred in trastuzumab-resistant patients and could be associated with resistance to targeted therapy including TP53, ATM, RB1, MLH1, SMARCB1, SMO, GNAS, CDH1, and VHL. Four variants out of these 29 variants were repeated in more than one patient; two variants in TP53, one variant in ATM gene, and the last variant in RB1 gene. In addition, three genes were found to be mutated only in resistant patients; MLH1, SMARCB1 and SMO genes. Moreover, one novel allele (c.407A > G, p. Gln136Arg) was detected within exon 4 of TP53 gene in one resistant patient. CONCLUSION NGS sequencing is a useful tool to detect genetic variants that could predict response to trastuzumab therapy.
Collapse
Affiliation(s)
- Nermine H Zakaria
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Doaa Hashad
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Marwa H Saied
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Neamat Hegazy
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Alyaa Elkayal
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Eman Tayae
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| |
Collapse
|
63
|
Luppino F, Adzhubei IA, Cassa CA, Toth-Petroczy A. DeMAG predicts the effects of variants in clinically actionable genes by integrating structural and evolutionary epistatic features. Nat Commun 2023; 14:2230. [PMID: 37076482 PMCID: PMC10115847 DOI: 10.1038/s41467-023-37661-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
Despite the increasing use of genomic sequencing in clinical practice, the interpretation of rare genetic variants remains challenging even in well-studied disease genes, resulting in many patients with Variants of Uncertain Significance (VUSs). Computational Variant Effect Predictors (VEPs) provide valuable evidence in variant assessment, but they are prone to misclassifying benign variants, contributing to false positives. Here, we develop Deciphering Mutations in Actionable Genes (DeMAG), a supervised classifier for missense variants trained using extensive diagnostic data available in 59 actionable disease genes (American College of Medical Genetics and Genomics Secondary Findings v2.0, ACMG SF v2.0). DeMAG improves performance over existing VEPs by reaching balanced specificity (82%) and sensitivity (94%) on clinical data, and includes a novel epistatic feature, the 'partners score', which leverages evolutionary and structural partnerships of residues. The 'partners score' provides a general framework for modeling epistatic interactions, integrating both clinical and functional information. We provide our tool and predictions for all missense variants in 316 clinically actionable disease genes (demag.org) to facilitate the interpretation of variants and improve clinical decision-making.
Collapse
Affiliation(s)
- Federica Luppino
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center for Systems Biology Dresden, 01307, Dresden, Germany
| | - Ivan A Adzhubei
- Brigham and Women's Hospital Division of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher A Cassa
- Brigham and Women's Hospital Division of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Agnes Toth-Petroczy
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany.
- Center for Systems Biology Dresden, 01307, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, 01062, Dresden, Germany.
| |
Collapse
|
64
|
Romanovsky E, Kluck K, Ourailidis I, Menzel M, Beck S, Ball M, Kazdal D, Christopoulos P, Schirmacher P, Stiewe T, Stenzinger A, Budczies J. Homogenous TP53mut-associated tumor biology across mutation and cancer types revealed by transcriptome analysis. Cell Death Discov 2023; 9:126. [PMID: 37059713 PMCID: PMC10104808 DOI: 10.1038/s41420-023-01413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
TP53 is the most frequently mutated gene in human cancer. While no TP53-targeting drugs have been approved in the USA or Europe so far, preclinical and clinical studies are underway to investigate targeting of specific or all TP53 mutations, for example, by restoration of the functionality of mutated TP53 (TP53mut) or protecting wildtype TP53 (TP53wt) from negative regulation. We performed a comprehensive mRNA expression analysis in 24 cancer types of TCGA to extract (i) a consensus expression signature shared across TP53 mutation types and cancer types, (ii) differential gene expression patterns between tumors harboring different TP53 mutation types such as loss of function, gain of function or dominant-negative mutations, and (iii) cancer-type-specific patterns of gene expression and immune infiltration. Analysis of mutational hotspots revealed both similarities across cancer types and cancer type-specific hotspots. Underlying ubiquitous and cancer type-specific mutational processes with the associated mutational signatures contributed to explaining this observation. Virtually no genes were differentially expressed between tumors harboring different TP53 mutation types, while hundreds of genes were over- and underexpressed in TP53mut compared to TP53wt tumors. A consensus list included 178 genes that were overexpressed and 32 genes that were underexpressed in the TP53mut tumors of at least 16 of the investigated 24 cancer types. In an association analysis of immune infiltration with TP53 mutations in 32 cancer subtypes, decreased immune infiltration was observed in six subtypes, increased infiltration in two subtypes, a mixed pattern of decreased and increased immune cell populations in four subtypes, while immune infiltration was not associated with TP53 status in 20 subtypes. The analysis of a large cohort of human tumors complements results from experimental studies and supports the view that TP53 mutations should be further evaluated as predictive markers for immunotherapy and targeted therapies.
Collapse
Affiliation(s)
- Eva Romanovsky
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Klaus Kluck
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Iordanis Ourailidis
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Michael Menzel
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
- Center for Personalized Medicine (ZPM) Heidelberg, 69120, Heidelberg, Germany
| | - Susanne Beck
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Markus Ball
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumor Diseases (NCT) Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
- Center for Personalized Medicine (ZPM) Heidelberg, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg partner site, Heidelberg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, member of the German Center for Lung Research (DZL), Philipps-University, 35037, Marburg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
- Center for Personalized Medicine (ZPM) Heidelberg, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg partner site, Heidelberg, Germany
| | - Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany.
- Center for Personalized Medicine (ZPM) Heidelberg, 69120, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg partner site, Heidelberg, Germany.
| |
Collapse
|
65
|
Sun CX, Daniel P, Bradshaw G, Shi H, Loi M, Chew N, Parackal S, Tsui V, Liang Y, Koptyra M, Adjumain S, Sun C, Chong WC, Fernando D, Drinkwater C, Tourchi M, Habarakada D, Sooraj D, Carvalho D, Storm PB, Baubet V, Sayles LC, Fernandez E, Nguyen T, Pörksen M, Doan A, Crombie DE, Panday M, Zhukova N, Dun MD, Ludlow LE, Day B, Stringer BW, Neeman N, Rubens JA, Raabe EH, Vinci M, Tyrrell V, Fletcher JI, Ekert PG, Dumevska B, Ziegler DS, Tsoli M, Syed Sulaiman NF, Loh AHP, Low SYY, Sweet-Cordero EA, Monje M, Resnick A, Jones C, Downie P, Williams B, Rosenbluh J, Gough D, Cain JE, Firestein R. Generation and multi-dimensional profiling of a childhood cancer cell line atlas defines new therapeutic opportunities. Cancer Cell 2023; 41:660-677.e7. [PMID: 37001527 DOI: 10.1016/j.ccell.2023.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023]
Abstract
Pediatric solid and central nervous system tumors are the leading cause of cancer-related death among children. Identifying new targeted therapies necessitates the use of pediatric cancer models that faithfully recapitulate the patient's disease. However, the generation and characterization of pediatric cancer models has significantly lagged behind adult cancers, underscoring the urgent need to develop pediatric-focused cell line resources. Herein, we establish a single-site collection of 261 cell lines, including 224 pediatric cell lines representing 18 distinct extracranial and brain childhood tumor types. We subjected 182 cell lines to multi-omics analyses (DNA sequencing, RNA sequencing, DNA methylation), and in parallel performed pharmacological and genetic CRISPR-Cas9 loss-of-function screens to identify pediatric-specific treatment opportunities and biomarkers. Our work provides insight into specific pathway vulnerabilities in molecularly defined pediatric tumor classes and uncovers biomarker-linked therapeutic opportunities of clinical relevance. Cell line data and resources are provided in an open access portal.
Collapse
Affiliation(s)
- Claire Xin Sun
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Gabrielle Bradshaw
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Hui Shi
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Melissa Loi
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Nicole Chew
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Sarah Parackal
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Vanessa Tsui
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Yuqing Liang
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Mateusz Koptyra
- Center for Data Driven Discovery in Biomedicine, Neurosurgery Department, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shazia Adjumain
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Christie Sun
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Wai Chin Chong
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Dasun Fernando
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Caroline Drinkwater
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Motahhareh Tourchi
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Dilru Habarakada
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Dhanya Sooraj
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Diana Carvalho
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK
| | - Phillip B Storm
- Center for Data Driven Discovery in Biomedicine, Neurosurgery Department, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Valerie Baubet
- Center for Data Driven Discovery in Biomedicine, Neurosurgery Department, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Leanne C Sayles
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elisabet Fernandez
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK
| | - Thy Nguyen
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Mia Pörksen
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; Department of Paediatrics, University of Lübeck, 23562 Lübeck, Germany
| | - Anh Doan
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Duncan E Crombie
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Monty Panday
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Nataliya Zhukova
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; Children's Cancer Centre, Monash Children's Hospital, Monash Health, Clayton, VIC 3168, Australia; Department of Paediatrics, Monash University, Clayton, VIC 3168, Australia
| | - Matthew D Dun
- Hunter Cancer Research Alliance, University of Newcastle, Callaghan, NSW 2308, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Louise E Ludlow
- Children's Cancer Centre Biobank, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Bryan Day
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Brett W Stringer
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Naama Neeman
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Jeffrey A Rubens
- Division of Pediatric Oncology, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eric H Raabe
- Division of Pediatric Oncology, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Maria Vinci
- Department of Onco-haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital-IRCCS, 00165 Rome, Italy
| | - Vanessa Tyrrell
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Paul G Ekert
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia; Centre for Cancer Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Biljana Dumevska
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia; Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW 2031, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Nur Farhana Syed Sulaiman
- Neurosurgical Service, KK Women's and Children's Hospital, Singapore 229899, Singapore; VIVA-KKH Paediatric Brain and Solid Tumours Programme, Singapore 229899, Singapore
| | - Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumours Programme, Singapore 229899, Singapore; Duke-NUS Medical School, Singapore 169857, Singapore
| | - Sharon Yin Yee Low
- Neurosurgical Service, KK Women's and Children's Hospital, Singapore 229899, Singapore; VIVA-KKH Paediatric Brain and Solid Tumours Programme, Singapore 229899, Singapore; SingHealth-Duke NUS Neuroscience Academic Clinical Programme, Singapore 308433, Singapore; SingHealth-Duke NUS Paediatrics Academic Clinical Programme, Singapore 229899, Singapore
| | | | - Michelle Monje
- Department of Neurology, Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adam Resnick
- Center for Data Driven Discovery in Biomedicine, Neurosurgery Department, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; Division of Cancer Therapeutics, The Institute of Cancer Research, London SM2 5NG, UK
| | - Peter Downie
- Children's Cancer Centre, Monash Children's Hospital, Monash Health, Clayton, VIC 3168, Australia; Department of Paediatrics, Monash University, Clayton, VIC 3168, Australia
| | - Bryan Williams
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Joseph Rosenbluh
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Daniel Gough
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
66
|
Song H, Wu J, Tang Y, Dai Y, Xiang X, Li Y, Wu L, Wu J, Liang Y, Xing Y, Yan N, Li Y, Wang Z, Xiao S, Li J, Zheng D, Chen X, Fang H, Ye C, Ma Y, Wu Y, Wu W, Li J, Zhang S, Lu M. Diverse rescue potencies of p53 mutations to ATO are predetermined by intrinsic mutational properties. Sci Transl Med 2023; 15:eabn9155. [PMID: 37018419 DOI: 10.1126/scitranslmed.abn9155] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Tumor suppressor p53 is inactivated by thousands of heterogeneous mutations in cancer, but their individual druggability remains largely elusive. Here, we evaluated 800 common p53 mutants for their rescue potencies by the representative generic rescue compound arsenic trioxide (ATO) in terms of transactivation activity, cell growth inhibition, and mouse tumor-suppressive activities. The rescue potencies were mainly determined by the solvent accessibility of the mutated residue, a key factor determining whether a mutation is a structural one, and the temperature sensitivity, the ability to reassemble the wild-type DNA binding surface at a low temperature, of the mutant protein. A total of 390 p53 mutants were rescued to varying degrees and thus were termed as type 1, type 2a, and type 2b mutations, depending on the degree to which they were rescued. The 33 type 1 mutations were rescued to amounts comparable to the wild type. In PDX mouse trials, ATO preferentially inhibited growth of tumors harboring type 1 and type 2a mutants. In an ATO clinical trial, we report the first-in-human mutant p53 reactivation in a patient harboring the type 1 V272M mutant. In 47 cell lines derived from 10 cancer types, ATO preferentially and effectively rescued type 1 and type 2a mutants, supporting the broad applicability of ATO in rescuing mutant p53. Our study provides the scientific and clinical communities with a resource of the druggabilities of numerous p53 mutations (www.rescuep53.net) and proposes a conceptual p53-targeting strategy based on individual mutant alleles rather than mutation type.
Collapse
Affiliation(s)
- Huaxin Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiale Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yigang Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinrong Xiang
- Hematology Research Laboratory, West China Hospital, Department of Hematology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ya Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lili Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiaqi Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Liang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yangfei Xing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ni Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuntong Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengyuan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shujun Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiabing Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Derun Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinjie Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenjing Ye
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuting Ma
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yu Wu
- Hematology Research Laboratory, West China Hospital, Department of Hematology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wen Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junming Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sujiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
67
|
Garcia FADO, Evangelista AF, Mançano BM, Moreno DA, Berardinelli GN, de Paula FE, Antoniazzi AP, Júnior CA, Lombardi I, Santana I, Teixeira GR, Costa CE, Reis RM. Genomic profile of two Brazilian choroid plexus tumors by whole-exome sequencing. Cold Spring Harb Mol Case Stud 2023; 9:mcs.a006245. [PMID: 36963804 PMCID: PMC10111795 DOI: 10.1101/mcs.a006245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/24/2023] [Indexed: 03/26/2023] Open
Abstract
Choroid plexus tumors (CPTs) are rare intracranial neoplasms, representing <1% of all brain tumors, yet they represent 20% of first-year pediatric brain tumors. Although these tumors have been linked to TP53 germline mutations in the context of Li-Fraumeni syndrome, their somatic driver alterations remain poorly understood. In this study, we report two cases of lateral ventricle tumors: 3-yr-old male diagnosed with an atypical choroid plexus papilloma (aCPP), and a 6-mo-old female diagnosed with a choroid plexus carcinoma (CPC). We performed whole-exome sequencing of paired blood and tumor tissue in both patients, categorized somatic variants, and determined copy-number alterations. Our analysis revealed a tier II variant (Association for Molecular Pathology [AMP] criteria) in BRD1, a H3 and TP53 acetylation agent, in the aCPP. In addition, we detected copy-number gains on Chromosomes 12, 18, and 20 and copy-number losses on Chromosomes 13q and 22q (BRD1 locus) in this tumor. The CPC tumor had only a pathogenic germline TP53 variant, based on American College of Medical Genetics (ACMG) criteria, with a clinical and familiar history of Li-Fraumeni syndrome. The CPC patient presented loss of heterozygosity (LoH) of TP53 loci and hyperdiploid genome. Both tumors were microsatellite-stable. This is the first study performing whole-exome sequencing in Brazilian choroid plexus tumors, and in line with the literature, we corroborate the absence of recurrent somatic mutations in these tumors. Further studies with larger sample sizes are necessary to confirm our findings and better understand the underlying biology of these tumors.
Collapse
Affiliation(s)
| | | | - Bruna Minniti Mançano
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784-400, Brazil
| | - Daniel Antunes Moreno
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784-400, Brazil
| | | | | | | | | | - Ismael Lombardi
- Neurosurgery Department, Barretos Cancer Hospital, Barretos, 14784-400, Brazil
| | - Iara Santana
- Pathology Department, Barretos Cancer Hospital, Barretos, 14784-400, Brazil
| | - Gustavo Ramos Teixeira
- Pathology Department, Barretos Cancer Hospital, Barretos, 14784-400, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata-FACISB 14785-002
| | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784-400, Brazil;
- Laboratory of Molecular Diagnostics, Barretos Cancer Hospital, Barretos, 14784-400, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4710-057, Portugal
| |
Collapse
|
68
|
Kim D, Ha D, Lee K, Lee H, Kim I, Kim S. An evolution-based machine learning to identify cancer type-specific driver mutations. Brief Bioinform 2023; 24:6961611. [PMID: 36575568 DOI: 10.1093/bib/bbac593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 12/29/2022] Open
Abstract
Identifying cancer type-specific driver mutations is crucial for illuminating distinct pathologic mechanisms across various tumors and providing opportunities of patient-specific treatment. However, although many computational methods were developed to predict driver mutations in a type-specific manner, the methods still have room to improve. Here, we devise a novel feature based on sequence co-evolution analysis to identify cancer type-specific driver mutations and construct a machine learning (ML) model with state-of-the-art performance. Specifically, relying on 28 000 tumor samples across 66 cancer types, our ML framework outperformed current leading methods of detecting cancer driver mutations. Interestingly, the cancer mutations identified by sequence co-evolution feature are frequently observed in interfaces mediating tissue-specific protein-protein interactions that are known to associate with shaping tissue-specific oncogenesis. Moreover, we provide pre-calculated potential oncogenicity on available human proteins with prediction scores of all possible residue alterations through user-friendly website (http://sbi.postech.ac.kr/w/cancerCE). This work will facilitate the identification of cancer type-specific driver mutations in newly sequenced tumor samples.
Collapse
Affiliation(s)
| | | | | | | | - Inhae Kim
- ImmunoBiome Inc., Pohang, South Korea
| | - Sanguk Kim
- Department of Life Sciences.,Artificial Intelligence Graduate Program, Pohang University of Science and Technology, Pohang 790-784, South Korea.,Institute of Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 120-149, South Korea
| |
Collapse
|
69
|
Krysiak K, Danos A, Saliba J, McMichael J, Coffman A, Kiwala S, Barnell E, Sheta L, Grisdale C, Kujan L, Pema S, Lever J, Ridd S, Spies N, Andric V, Chiorean A, Rieke D, Clark K, Reisle C, Venigalla A, Evans M, Jani P, Takahashi H, Suda A, Horak P, Ritter D, Zhou X, Ainscough B, Delong S, Kesserwan C, Lamping M, Shen H, Marr A, Hoang M, Singhal K, Khanfar M, Li B, Lin WH, Terraf P, Corson L, Salama Y, Campbell K, Farncombe K, Ji J, Zhao X, Xu X, Kanagal-Shamanna R, King I, Cotto K, Skidmore Z, Walker J, Zhang J, Milosavljevic A, Patel R, Giles R, Kim R, Schriml L, Mardis E, Jones SJM, Raca G, Rao S, Madhavan S, Wagner A, Griffith M, Griffith O. CIViCdb 2022: evolution of an open-access cancer variant interpretation knowledgebase. Nucleic Acids Res 2023; 51:D1230-D1241. [PMID: 36373660 PMCID: PMC9825608 DOI: 10.1093/nar/gkac979] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022] Open
Abstract
CIViC (Clinical Interpretation of Variants in Cancer; civicdb.org) is a crowd-sourced, public domain knowledgebase composed of literature-derived evidence characterizing the clinical utility of cancer variants. As clinical sequencing becomes more prevalent in cancer management, the need for cancer variant interpretation has grown beyond the capability of any single institution. CIViC contains peer-reviewed, published literature curated and expertly-moderated into structured data units (Evidence Items) that can be accessed globally and in real time, reducing barriers to clinical variant knowledge sharing. We have extended CIViC's functionality to support emergent variant interpretation guidelines, increase interoperability with other variant resources, and promote widespread dissemination of structured curated data. To support the full breadth of variant interpretation from basic to translational, including integration of somatic and germline variant knowledge and inference of drug response, we have enabled curation of three new Evidence Types (Predisposing, Oncogenic and Functional). The growing CIViC knowledgebase has over 300 contributors and distributes clinically-relevant cancer variant data currently representing >3200 variants in >470 genes from >3100 publications.
Collapse
Affiliation(s)
- Kilannin Krysiak
- To whom correspondence should be addressed. Tel: +1 314 273 4218;
| | | | | | - Joshua F McMichael
- McDonnell Genome Institute, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Adam C Coffman
- McDonnell Genome Institute, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Susanna Kiwala
- McDonnell Genome Institute, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Erica K Barnell
- McDonnell Genome Institute, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Lana Sheta
- McDonnell Genome Institute, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | | | - Lynzey Kujan
- McDonnell Genome Institute, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Shahil Pema
- McDonnell Genome Institute, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Jake Lever
- School of Computer Science, University of Glasgow, Glasgow, UK
| | - Sarah Ridd
- Department of Medicine, Division of Medical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Nicholas C Spies
- McDonnell Genome Institute, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Veronica Andric
- Department of Medicine, Division of Medical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Andreea Chiorean
- Department of Medicine, Division of Medical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Damian T Rieke
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kaitlin A Clark
- McDonnell Genome Institute, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Caralyn Reisle
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
- Bioinformatics Graduate Program, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Ajay C Venigalla
- Department of Medicine, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | | | - Payal Jani
- Department of Medicine, Division of Medical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Hideaki Takahashi
- Department of Experimental Therapeutics/Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Avila Suda
- Department of Medicine, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Peter Horak
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Deborah I Ritter
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benjamin J Ainscough
- McDonnell Genome Institute, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Sean Delong
- Lassonde School of Engineering, York University, Toronto, Ontario, Canada
| | - Chimene Kesserwan
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA and Genetics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Mario Lamping
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Haolin Shen
- Department of Medicine, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Alex R Marr
- Department of Pathology and Immunology, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - My H Hoang
- Department of Medicine, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Kartik Singhal
- Department of Medicine, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Mariam Khanfar
- Department of Medicine, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Brian V Li
- McDonnell Genome Institute, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | | | - Panieh Terraf
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura B Corson
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Yasser Salama
- Department of Medicine, Division of Medical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Katie M Campbell
- McDonnell Genome Institute, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Kirsten M Farncombe
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jianling Ji
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xinjie Xu
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ian King
- Division of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network (UHN), Toronto, ON, Canada
| | - Kelsy C Cotto
- Department of Medicine, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Zachary L Skidmore
- McDonnell Genome Institute, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Jason R Walker
- McDonnell Genome Institute, Washington University in St Louis School of Medicine, St. Louis, MO, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Ronak Y Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rachel H Giles
- International Kidney Cancer Coalition, Duivendrecht-Amsterdam, the Netherlands
| | - Raymond H Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Sinai Health System, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Ontario Institute for Cancer Research, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lynn M Schriml
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Departments of Pediatrics and Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Gordana Raca
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Shruti Rao
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, WA DC, USA
| | - Subha Madhavan
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, WA DC, USA
| | - Alex H Wagner
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Departments of Pediatrics and Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Malachi Griffith
- Correspondence may also be addressed to Malachi Griffith. Tel: +1 314 286 1274;
| | - Obi L Griffith
- Correspondence may also be addressed to Obi L. Griffith. Tel: +1 314 747 9248;
| |
Collapse
|
70
|
Landau J, Tsaban L, Yaacov A, Ben Cohen G, Rosenberg S. Shared Cancer Dataset Analysis Identifies and Predicts the Quantitative Effects of Pan-Cancer Somatic Driver Variants. Cancer Res 2023; 83:74-88. [PMID: 36264175 DOI: 10.1158/0008-5472.can-22-1038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/02/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Driver mutations endow tumors with selective advantages and produce an array of pathogenic effects. Determining the function of somatic variants is important for understanding cancer biology and identifying optimal therapies. Here, we compiled a shared dataset from several cancer genomic databases. Two measures were applied to 535 cancer genes based on observed and expected frequencies of driver variants as derived from cancer-specific rates of somatic mutagenesis. The first measure comprised a binary classifier based on a binomial test; the second was tumor variant amplitude (TVA), a continuous measure representing the selective advantage of individual variants. TVA outperformed all other computational tools in terms of its correlation with experimentally derived functional scores of cancer mutations. TVA also highly correlated with drug response, overall survival, and other clinical implications in relevant cancer genes. This study demonstrates how a selective advantage measure based on a large cancer dataset significantly impacts our understanding of the spectral effect of driver variants in cancer. The impact of this information will increase as cancer treatment becomes more precise and personalized to tumor-specific mutations. SIGNIFICANCE A new selective advantage estimation assists in oncogenic driver identification and relative effect measurements, enabling better prognostication, therapy selection, and prioritization.
Collapse
Affiliation(s)
- Jakob Landau
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Linoy Tsaban
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adar Yaacov
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil Ben Cohen
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shai Rosenberg
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
71
|
Fu Y, Bedő J, Papenfuss AT, Rubin AF. Integrating deep mutational scanning and low-throughput mutagenesis data to predict the impact of amino acid variants. Gigascience 2022; 12:giad073. [PMID: 37721410 PMCID: PMC10506130 DOI: 10.1093/gigascience/giad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/02/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Evaluating the impact of amino acid variants has been a critical challenge for studying protein function and interpreting genomic data. High-throughput experimental methods like deep mutational scanning (DMS) can measure the effect of large numbers of variants in a target protein, but because DMS studies have not been performed on all proteins, researchers also model DMS data computationally to estimate variant impacts by predictors. RESULTS In this study, we extended a linear regression-based predictor to explore whether incorporating data from alanine scanning (AS), a widely used low-throughput mutagenesis method, would improve prediction results. To evaluate our model, we collected 146 AS datasets, mapping to 54 DMS datasets across 22 distinct proteins. CONCLUSIONS We show that improved model performance depends on the compatibility of the DMS and AS assays, and the scale of improvement is closely related to the correlation between DMS and AS results.
Collapse
Affiliation(s)
- Yunfan Fu
- The Walter and Eliza Hall Institute of Medical Research, Bioinformatics Division, 1G Royal Pde, Parkville, Victoria 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, Victoria 3010, Australia
| | - Justin Bedő
- The Walter and Eliza Hall Institute of Medical Research, Bioinformatics Division, 1G Royal Pde, Parkville, Victoria 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, Victoria 3010, Australia
| | - Anthony T Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Bioinformatics Division, 1G Royal Pde, Parkville, Victoria 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, Victoria 3010, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Alan F Rubin
- The Walter and Eliza Hall Institute of Medical Research, Bioinformatics Division, 1G Royal Pde, Parkville, Victoria 3052, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, Victoria 3010, Australia
| |
Collapse
|
72
|
The mutational spectrum in whole exon of p53 in oral squamous cell carcinoma and its clinical implications. Sci Rep 2022; 12:21695. [PMID: 36522371 PMCID: PMC9755123 DOI: 10.1038/s41598-022-25744-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Mutations in p53 are common in human oral squamous cell carcinoma (OSCC). However, in previous analyses, only detection of mutant p53 protein using immunohistochemistry or mutations in some exons have been examined. Full length mutant p53 protein in many cases shows a loss of tumor suppressor function, but in some cases possibly shows a gain of oncogenic function. In this study, we investigate relationships of outcomes with the mutational spectrum of p53 (missense and truncation mutations) in whole exon in OSCC. Specimens from biopsy or surgery (67 cases) were evaluated using next-generation sequencing for p53, and other oncogenic driver genes. The data were compared with overall survival (OS) and disease-free survival (DFS) using univariate and multivariate analyses. p53 mutations were detected in 54 patients (80.6%), 33 missense mutations and 24 truncation mutations. p53 mutations were common in the DNA-binding domain (43/52) and many were missense mutations (31/43). Mutations in other regions were mostly p53 truncation mutations. We detected some mutations in 6 oncogenic driver genes on 67 OSCC, 25 in NOTCH1, 14 in CDKN2A, 5 in PIK3CA, 3 in FBXW7, 3 in HRAS, and 1 in BRAF. However, there was no associations of the p53 mutational spectrum with mutations of oncogenic driver genes in OSCC. A comparison of cases with p53 mutations (missense or truncation) with wild-type p53 cases showed a significant difference in lymph node metastasis. DFS was significantly poorer in cases with p53 truncation mutations. Cases with p53 truncation mutations increased malignancy. In contrast, significant differences were not found between cases with p53 missense mutations and other mutations. The p53 missense mutation cases might include cases with mostly similar function to that of the wild-type, cases with loss of function, and cases with various degrees of gain of oncogenic function.
Collapse
|
73
|
Solares MJ, Kelly DF. Complete Models of p53 Better Inform the Impact of Hotspot Mutations. Int J Mol Sci 2022; 23:ijms232315267. [PMID: 36499604 PMCID: PMC9740296 DOI: 10.3390/ijms232315267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in tumor suppressor genes often lead to cancerous phenotypes. Current treatments leverage signaling pathways that are often compromised by disease-derived deficiencies in tumor suppressors. P53 falls into this category as genetic mutations lead to physical changes in the protein that impact multiple cellular pathways. Here, we show the first complete structural models of mutated p53 to reveal how hotspot mutations physically deviate from the wild-type protein. We employed a recently determined structure for the p53 monomer to map seven frequent clinical mutations using computational modeling approaches. Results showed that missense mutations often changed the conformational structure of p53 in the DNA-binding site along with its electrostatic surface charges. We posit these changes may amplify the toxic effects of these hotspot mutations by destabilizing an important zinc ion coordination region in p53 to impede proper DNA interactions. These results highlight the imperative need for new studies on patient-derived proteins that may assist in redesigning structure-informed targeted therapies.
Collapse
Affiliation(s)
- Maria J. Solares
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Correspondence:
| |
Collapse
|
74
|
Zhang H, Xu MS, Fan X, Chung WK, Shen Y. Predicting functional effect of missense variants using graph attention neural networks. NAT MACH INTELL 2022; 4:1017-1028. [PMID: 37484202 PMCID: PMC10361701 DOI: 10.1038/s42256-022-00561-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Accurate prediction of damaging missense variants is critically important for interpreting a genome sequence. Although many methods have been developed, their performance has been limited. Recent advances in machine learning and the availability of large-scale population genomic sequencing data provide new opportunities to considerably improve computational predictions. Here we describe the graphical missense variant pathogenicity predictor (gMVP), a new method based on graph attention neural networks. Its main component is a graph with nodes that capture predictive features of amino acids and edges weighted by co-evolution strength, enabling effective pooling of information from the local protein context and functionally correlated distal positions. Evaluation of deep mutational scan data shows that gMVP outperforms other published methods in identifying damaging variants in TP53, PTEN, BRCA1 and MSH2. Furthermore, it achieves the best separation of de novo missense variants in neuro developmental disorder cases from those in controls. Finally, the model supports transfer learning to optimize gain- and loss-of-function predictions in sodium and calcium channels. In summary, we demonstrate that gMVP can improve interpretation of missense variants in clinical testing and genetic studies.
Collapse
Affiliation(s)
- Haicang Zhang
- Department of Systems Biology, Columbia University, New York, NY, USA
| | | | - Xiao Fan
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- JP Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| |
Collapse
|
75
|
Su Y, Sai Y, Zhou L, Liu Z, Du P, Wu J, Zhang J. Current insights into the regulation of programmed cell death by TP53 mutation in cancer. Front Oncol 2022; 12:1023427. [PMID: 36313700 PMCID: PMC9608511 DOI: 10.3389/fonc.2022.1023427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gene mutation is a complicated process that influences the onset and progression of cancer, and the most prevalent mutation involves the TP53 gene. One of the ways in which the body maintains homeostasis is programmed cell death, which includes apoptosis, autophagic cell death, pyroptosis, ferroptosis, NETosis, and the more recently identified process of cuprotosis. Evasion of these cell deaths is a hallmark of cancer cells, and our elucidation of the way these cells die helps us better understands the mechanisms by which cancer arises and provides us with more ways to treat it.Studies have shown that programmed cell death requires wild-type p53 protein and that mutations of TP53 can affect these modes of programmed cell death. For example, mutant p53 promotes iron-dependent cell death in ferroptosis and inhibits apoptotic and autophagic cell death. It is clear that TP53 mutations act on more than one pathway to death, and these pathways to death do not operate in isolation. They interact with each other and together determine cell death. This review focuses on the mechanisms via which TP53 mutation affects programmed cell death. Clinical investigations of TP53 mutation and the potential for targeted pharmacological agents that can be used to treat cancer are discussed.
Collapse
Affiliation(s)
- Yali Su
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Yingying Sai
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Linfeng Zhou
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Zeliang Liu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Panyan Du
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Jinghua Wu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| | - Jinghua Zhang
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| |
Collapse
|
76
|
Kai M, Kubo M, Shikada S, Hayashi S, Morisaki T, Yamada M, Takao Y, Shimazaki A, Harada Y, Kaneshiro K, Mizuuchi Y, Shindo K, Nakamura M. A novel germline mutation of TP53 with breast cancer diagnosed as Li-Fraumeni syndrome. Surg Case Rep 2022; 8:197. [PMID: 36219266 PMCID: PMC9554102 DOI: 10.1186/s40792-022-01546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
TP53 is a tumor suppressor gene and, when dysfunctional, it is known to be involved in the development of cancers. Li-Fraumeni syndrome (LFS) is a hereditary tumor with autosomal dominant inheritance that develops in people with germline pathogenic variants of TP53. LFS frequently develops in parallel to tumors, including breast cancer. We describe a novel germline mutation in TP53 identified by performing a multi-gene panel assay in a breast cancer patient with bilateral breast cancer.
Collapse
Affiliation(s)
- Masaya Kai
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Makoto Kubo
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Clinical Genetics and Medicine, Kyushu University Hospital, Fukuoka, Japan.
| | - Sawako Shikada
- Department of Clinical Genetics and Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Saori Hayashi
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Clinical Genetics and Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Takafumi Morisaki
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mai Yamada
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuka Takao
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akiko Shimazaki
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yurina Harada
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuhisa Kaneshiro
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yusuke Mizuuchi
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Clinical Genetics and Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
77
|
Xiong L, Garfinkel A. A common pathway to cancer: Oncogenic mutations abolish p53 oscillations. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:28-40. [PMID: 35752348 DOI: 10.1016/j.pbiomolbio.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The tumor suppressor p53 oscillates in response to DNA double-strand breaks, a behavior that has been suggested to be essential to its anti-cancer function. Nearly all human cancers have genetic alterations in the p53 pathway; a number of these alterations have been shown to be oncogenic by experiment. These alterations include somatic mutations and copy number variations as well as germline polymorphisms. Intriguingly, they exhibit a mixed pattern of interactions in tumors, such as co-occurrence, mutual exclusivity, and paradoxically, mutual antagonism. Using a differential equation model of p53-Mdm2 dynamics, we employ Hopf bifurcation analysis to show that these alterations have a common mode of action, to abolish the oscillatory competence of p53, thereby, we suggest, impairing its tumor suppressive function. In this analysis, diverse genetic alterations, widely associated with human cancers clinically, have a unified mechanistic explanation of their role in oncogenesis.
Collapse
Affiliation(s)
- Lingyun Xiong
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90007 USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90007, USA; Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, UK
| | - Alan Garfinkel
- Departments of Medicine (Cardiology) and Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA; Newton-Abraham Visiting Professor (2019-2020), Lincoln College and Department of Computer Science, University of Oxford, Oxford, OX1 3DR, UK.
| |
Collapse
|
78
|
Identification of key somatic oncogenic mutation based on a confounder-free causal inference model. PLoS Comput Biol 2022; 18:e1010529. [PMID: 36137089 PMCID: PMC9499235 DOI: 10.1371/journal.pcbi.1010529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Abnormal cell proliferation and epithelial-mesenchymal transition (EMT) are the essential events that induce cancer initiation and progression. A fundamental goal in cancer research is to develop an efficient method to detect mutational genes capable of driving cancer. Although several computational methods have been proposed to identify these key mutations, many of them focus on the association between genetic mutations and functional changes in relevant biological processes, but not their real causality. Causal effect inference provides a way to estimate the real induce effect of a certain mutation on vital biological processes of cancer initiation and progression, through addressing the confounder bias due to neutral mutations and unobserved latent variables. In this study, integrating genomic and transcriptomic data, we construct a novel causal inference model based on a deep variational autoencoder to identify key oncogenic somatic mutations. Applied to 10 cancer types, our method quantifies the causal effect of genetic mutations on cell proliferation and EMT by reducing both observed and unobserved confounding biases. The experimental results indicate that genes with higher mutation frequency do not necessarily mean they are more potent in inducing cancer and promoting cancer development. Moreover, our study fills a gap in the use of machine learning for causal inference to identify oncogenic mutations. Identifying key mutations of cancers is helpful to better understand the mechanisms of cancer cell transformation and is critical for therapeutic approaches. Besides sequence and structure-based computational approaches, some functional impact-based methods which consider the association between mutation events and the activity of cancer-related biological processes have also been developed to detect key mutations. However, these methods mainly consider the correlation but ignore that the correlation is far from causality due to the existence of observed and unobserved confounding factors. We develop a confounder-free machine learning-based causal inference framework to estimate the causal effect of mutations on abnormal cell proliferation and epithelial-mesenchymal transition (EMT). It fills a gap in the use of causal mechanisms to discover potential driver mutations in cancer biological systems. Applying our method to 10 cancer types, the identified key mutations are highly consistent with public well-verified ones. Additionally, some new key mutations have also been discovered.
Collapse
|
79
|
Zhou J, Lai Y, Peng S, Tang C, Chen Y, Li L, Huang H, Guo Z. Comprehensive analysis of TP53 and SPOP mutations and their impact on survival in metastatic prostate cancer. Front Oncol 2022; 12:957404. [PMID: 36119488 PMCID: PMC9471084 DOI: 10.3389/fonc.2022.957404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
BackgroundAlthough TP53 and SPOP are frequently mutated in metastatic prostate cancer (PCa), their prognostic value is ambiguous, and large sample studies are lacking, especially when they co-occur with other genetic alterations.MethodsGenomic data and patients’ clinical characteristics in PCa were downloaded from the cBioPortal database. We extensively analyzed other gene alterations in different mutation status of TP53 and SPOP. We further subdivided TP53 and SPOP mutation into subgroups based on different mutation status, and then evaluated the prognostic value. Two classification systems for TP53 survival analysis were used.ResultsA total of 2,172 patients with PCa were analyzed in our study, of which 1,799 were metastatic PCa patients. The mutual exclusivity analysis showed that TP53 and SPOP mutation has a strong mutual exclusion (p<0.001). In multivariable analysis, truncating TP53 mutations (HR=1.773, 95%CI:1.403-2.239, p<0.001) and other TP53 mutations(HR=1.555, 95%CI:1.267-1.908, p<0.001) were independent negative prognostic markers in metastatic PCa, whereas SPOP mutations(HR=0.592, 95%CI:0.427-0.819, p<0.001) were an independent prognostic factor for better prognosis. Mutations in TP53 were significantly associated with wild-type status for SPOP and CDK12, structural variants/fusions for TMPRSS2 and ERG, AR amplification and PTEN deletion (p<0.001). And truncating TP53 mutations have higher AR amplification rates than other TP53 mutations (p=0.022). Consistently, truncating TP53 mutations had a worse prognosis than other TP53 mutations (p<0.05). Then Kaplan-Meier survival curve showed that Co-occurring TP53 mutations in AR amplification or PTEN deletion tumors significantly reduced survival (p<0.05). Furthermore, those with SPOP-mutant tumors with co-occurring TP53 truncating mutations had shorter overall survival than those with SPOP-mutant tumors with wild-type or other TP53 mutations.ConclusionsThis study found that TP53 and SPOP mutations were mutually exclusive and both were independent prognostic markers for metastatic PCa. Genomic alteration and survival analysis revealed that TP53 and SPOP mutations represented distinct molecular subtypes. Our data suggest that molecular stratification on the basis of TP53 and SPOP mutation status should be implemented for metastatic PCa to optimize and modify clinical decision-making.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiming Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chen Tang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongming Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lingfeng Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Zhenghui Guo, ; Hai Huang,
| | - Zhenghui Guo
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Zhenghui Guo, ; Hai Huang,
| |
Collapse
|
80
|
Paduano F, Colao E, Fabiani F, Rocca V, Dinatolo F, Dattola A, D’Antona L, Amato R, Trapasso F, Baudi F, Perrotti N, Iuliano R. Germline Testing in a Cohort of Patients at High Risk of Hereditary Cancer Predisposition Syndromes: First Two-Year Results from South Italy. Genes (Basel) 2022; 13:1286. [PMID: 35886069 PMCID: PMC9319682 DOI: 10.3390/genes13071286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Germline pathogenic variants (PVs) in oncogenes and tumour suppressor genes are responsible for 5 to 10% of all diagnosed cancers, which are commonly known as hereditary cancer predisposition syndromes (HCPS). A total of 104 individuals at high risk of HCPS were selected by genetic counselling for genetic testing in the past 2 years. Most of them were subjects having a personal and family history of breast cancer (BC) selected according to current established criteria. Genes analysis involved in HCPS was assessed by next-generation sequencing (NGS) using a custom cancer panel with high- and moderate-risk susceptibility genes. Germline PVs were identified in 17 of 104 individuals (16.3%) analysed, while variants of uncertain significance (VUS) were identified in 21/104 (20.2%) cases. Concerning the germline PVs distribution among the 13 BC individuals with positive findings, 8/13 (61.5%) were in the BRCA1/2 genes, whereas 5/13 (38.4%) were in other high- or moderate-risk genes including PALB2, TP53, ATM and CHEK2. NGS genetic testing showed that 6/13 (46.1%) of the PVs observed in BC patients were detected in triple-negative BC. Interestingly, the likelihood of carrying the PVs in the moderate-to-high-risk genes calculated by the cancer risk model BOADICEA was significantly higher in pathogenic variant carriers than in negative subjects. Collectively, this study shows that multigene panel testing can offer an effective diagnostic approach for patients at high risk of hereditary cancers.
Collapse
Affiliation(s)
- Francesco Paduano
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Emma Colao
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Fernanda Fabiani
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Valentina Rocca
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Experimental and Clinical Medicine, Campus S. Venuta, University Magna Graecia of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Francesca Dinatolo
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Adele Dattola
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
| | - Lucia D’Antona
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosario Amato
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Trapasso
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Experimental and Clinical Medicine, Campus S. Venuta, University Magna Graecia of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Francesco Baudi
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Perrotti
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (F.F.); (V.R.); (F.D.); (A.D.); (L.D.); (R.A.); (F.T.); (F.B.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
81
|
Tashakori M, Kadia T, Loghavi S, Daver N, Kanagal-Shamanna R, Pierce S, Sui D, Wei P, Khodakarami F, Tang Z, Routbort M, Bivins CA, Jabbour EJ, Medeiros LJ, Bhalla K, Kantarjian HM, Ravandi F, Khoury JD. TP53 copy number and protein expression inform mutation status across risk categories in acute myeloid leukemia. Blood 2022; 140:58-72. [PMID: 35390143 PMCID: PMC9346958 DOI: 10.1182/blood.2021013983] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Mutant TP53 is an adverse risk factor in acute myeloid leukemia (AML), but large-scale integrated genomic-proteomic analyses of TP53 alterations in patients with AML remain limited. We analyzed TP53 mutational status, copy number (CN), and protein expression data in AML (N = 528) and provide a compilation of mutation sites and types across disease subgroups among treated and untreated patients. Our analysis shows differential hotspots in subsets of AML and uncovers novel pathogenic variants involving TP53 splice sites. In addition, we identified TP53 CN loss in 70.2% of TP53-mutated AML cases, which have more deleterious TP53 mutations, as well as copy neutral loss of heterozygosity in 5/32 (15.6%) AML patients who had intact TP53 CN. Importantly, we demonstrate that mutant p53 protein expression patterns by immunohistochemistry evaluated using digital image-assisted analysis provide a robust readout that integrates TP53 mutation and allelic states in patients with AML. Expression of p53 by immunohistochemistry informed mutation status irrespective of TP53 CN status. Genomic analysis of comutations in TP53-mutant AML shows a muted landscape encompassing primarily mutations in genes involved in epigenetic regulation (DNMT3A and TET2), RAS/MAPK signaling (NF1, KRAS/NRAS, PTPN11), and RNA splicing (SRSF2). In summary, our data provide a rationale to refine risk stratification of patients with AML on the basis of integrated molecular and protein-level TP53 analyses.
Collapse
Affiliation(s)
- Mehrnoosh Tashakori
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | | | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Dawen Sui
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX; and
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX; and
| | | | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mark Routbort
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
82
|
Dragoš VŠ, Strojnik K, Klančar G, Škerl P, Stegel V, Blatnik A, Banjac M, Krajc M, Novaković S. Identification of Spliceogenic Variants beyond Canonical GT-AG Splice Sites in Hereditary Cancer Genes. Int J Mol Sci 2022; 23:7446. [PMID: 35806449 PMCID: PMC9267136 DOI: 10.3390/ijms23137446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Pathogenic/likely pathogenic variants in susceptibility genes that interrupt RNA splicing are a well-documented mechanism of hereditary cancer syndromes development. However, if RNA studies are not performed, most of the variants beyond the canonical GT-AG splice site are characterized as variants of uncertain significance (VUS). To decrease the VUS burden, we have bioinformatically evaluated all novel VUS detected in 732 consecutive patients tested in the routine genetic counseling process. Twelve VUS that were predicted to cause splicing defects were selected for mRNA analysis. Here, we report a functional characterization of 12 variants located beyond the first two intronic nucleotides using RNAseq in APC, ATM, FH, LZTR1, MSH6, PALB2, RAD51C, and TP53 genes. Based on the analysis of mRNA, we have successfully reclassified 50% of investigated variants. 25% of variants were downgraded to likely benign, whereas 25% were upgraded to likely pathogenic leading to improved clinical management of the patient and the family members.
Collapse
Affiliation(s)
- Vita Šetrajčič Dragoš
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (G.K.); (P.Š.); (V.S.)
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Ksenija Strojnik
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (K.S.); (M.B.); (M.K.)
| | - Gašper Klančar
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (G.K.); (P.Š.); (V.S.)
| | - Petra Škerl
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (G.K.); (P.Š.); (V.S.)
| | - Vida Stegel
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (G.K.); (P.Š.); (V.S.)
| | - Ana Blatnik
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (K.S.); (M.B.); (M.K.)
| | - Marta Banjac
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (K.S.); (M.B.); (M.K.)
| | - Mateja Krajc
- Cancer Genetics Clinic, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (K.S.); (M.B.); (M.K.)
| | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia; (V.Š.D.); (G.K.); (P.Š.); (V.S.)
- Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
83
|
Benjamin R, Giacoletto CJ, FitzHugh ZT, Eames D, Buczek L, Wu X, Newsome J, Han MV, Pearson T, Wei Z, Banerjee A, Brown L, Valente LJ, Shen S, Deng HW, Schiller MR. GigaAssay - An adaptable high-throughput saturation mutagenesis assay platform. Genomics 2022; 114:110439. [PMID: 35905834 PMCID: PMC9420302 DOI: 10.1016/j.ygeno.2022.110439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/12/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022]
Abstract
High-throughput assay systems have had a large impact on understanding the mechanisms of basic cell functions. However, high-throughput assays that directly assess molecular functions are limited. Herein, we describe the "GigaAssay", a modular high-throughput one-pot assay system for measuring molecular functions of thousands of genetic variants at once. In this system, each cell was infected with one virus from a library encoding thousands of Tat mutant proteins, with each viral particle encoding a random unique molecular identifier (UMI). We demonstrate proof of concept by measuring transcription of a GFP reporter in an engineered reporter cell line driven by binding of the HIV Tat transcription factor to the HIV long terminal repeat. Infected cells were flow-sorted into 3 bins based on their GFP fluorescence readout. The transcriptional activity of each Tat mutant was calculated from the ratio of signals from each bin. The use of UMIs in the GigaAssay produced a high average accuracy (95%) and positive predictive value (98%) determined by comparison to literature benchmark data, known C-terminal truncations, and blinded independent mutant tests. Including the substitution tolerance with structure/function analysis shows restricted substitution types spatially concentrated in the Cys-rich region. Tat has abundant intragenic epistasis (10%) when single and double mutants are compared.
Collapse
Affiliation(s)
- Ronald Benjamin
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Christopher J Giacoletto
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA
| | - Zachary T FitzHugh
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Danielle Eames
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Lindsay Buczek
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Xiaogang Wu
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Jacklyn Newsome
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Mira V Han
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Tony Pearson
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, GITC 4214C, University Heights, Newark, NJ 07102, USA
| | - Atoshi Banerjee
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Lancer Brown
- Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA
| | - Liz J Valente
- Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA
| | - Shirley Shen
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Hong-Wen Deng
- Center for Biomedical Informatics & Genomics Tulane University, 1440 Canal Street, Suite 1621, New Orleans, LA 70112, USA
| | - Martin R Schiller
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA; Heligenics Inc., 833 Las Vegas Blvd. North, Suite B, Las Vegas, NV 89101, USA.
| |
Collapse
|
84
|
Kim Y, Lee S, Cho S, Park J, Chae D, Park T, Minna JD, Kim HH. High-throughput functional evaluation of human cancer-associated mutations using base editors. Nat Biotechnol 2022; 40:874-884. [PMID: 35411116 PMCID: PMC10243181 DOI: 10.1038/s41587-022-01276-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/10/2022] [Indexed: 12/26/2022]
Abstract
Comprehensive phenotypic characterization of the many mutations found in cancer tissues is one of the biggest challenges in cancer genomics. In this study, we evaluated the functional effects of 29,060 cancer-related transition mutations that result in protein variants on the survival and proliferation of non-tumorigenic lung cells using cytosine and adenine base editors and single guide RNA (sgRNA) libraries. By monitoring base editing efficiencies and outcomes using surrogate target sequences paired with sgRNA-encoding sequences on the lentiviral delivery construct, we identified sgRNAs that induced a single primary protein variant per sgRNA, enabling linking those mutations to the cellular phenotypes caused by base editing. The functions of the vast majority of the protein variants (28,458 variants, 98%) were classified as neutral or likely neutral; only 18 (0.06%) and 157 (0.5%) variants caused outgrowing and likely outgrowing phenotypes, respectively. We expect that our approach can be extended to more variants of unknown significance and other tumor types.
Collapse
Affiliation(s)
- Younggwang Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungho Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soohyuk Cho
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinman Park
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dongwoo Chae
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taeyoung Park
- Department of Applied Statistics, Yonsei University, Seoul, Republic of Korea
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
85
|
Hoyos D, Zappasodi R, Schulze I, Sethna Z, de Andrade KC, Bajorin DF, Bandlamudi C, Callahan MK, Funt SA, Hadrup SR, Holm JS, Rosenberg JE, Shah SP, Vázquez-García I, Weigelt B, Wu M, Zamarin D, Campitelli LF, Osborne EJ, Klinger M, Robins HS, Khincha PP, Savage SA, Balachandran VP, Wolchok JD, Hellmann MD, Merghoub T, Levine AJ, Łuksza M, Greenbaum BD. Fundamental immune-oncogenicity trade-offs define driver mutation fitness. Nature 2022; 606:172-179. [PMID: 35545680 PMCID: PMC9159948 DOI: 10.1038/s41586-022-04696-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/28/2022] [Indexed: 12/29/2022]
Abstract
Missense driver mutations in cancer are concentrated in a few hotspots1. Various mechanisms have been proposed to explain this skew, including biased mutational processes2, phenotypic differences3-6 and immunoediting of neoantigens7,8; however, to our knowledge, no existing model weighs the relative contribution of these features to tumour evolution. We propose a unified theoretical 'free fitness' framework that parsimoniously integrates multimodal genomic, epigenetic, transcriptomic and proteomic data into a biophysical model of the rate-limiting processes underlying the fitness advantage conferred on cancer cells by driver gene mutations. Focusing on TP53, the most mutated gene in cancer1, we present an inference of mutant p53 concentration and demonstrate that TP53 hotspot mutations optimally solve an evolutionary trade-off between oncogenic potential and neoantigen immunogenicity. Our model anticipates patient survival in The Cancer Genome Atlas and patients with lung cancer treated with immunotherapy as well as the age of tumour onset in germline carriers of TP53 variants. The predicted differential immunogenicity between hotspot mutations was validated experimentally in patients with cancer and in a unique large dataset of healthy individuals. Our data indicate that immune selective pressure on TP53 mutations has a smaller role in non-cancerous lesions than in tumours, suggesting that targeted immunotherapy may offer an early prophylactic opportunity for the former. Determining the relative contribution of immunogenicity and oncogenic function to the selective advantage of hotspot mutations thus has important implications for both precision immunotherapies and our understanding of tumour evolution.
Collapse
Affiliation(s)
- David Hoyos
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roberta Zappasodi
- Swim Across America Laboratory and Ludwig Collaborative, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| | - Isabell Schulze
- Swim Across America Laboratory and Ludwig Collaborative, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary Sethna
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kelvin César de Andrade
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Dean F Bajorin
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chaitanya Bandlamudi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Margaret K Callahan
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel A Funt
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sine R Hadrup
- Experimental and Translational Immunology, Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jeppe S Holm
- Experimental and Translational Immunology, Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jonathan E Rosenberg
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ignacio Vázquez-García
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelle Wu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dmitriy Zamarin
- Swim Across America Laboratory and Ludwig Collaborative, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | - Payal P Khincha
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Vinod P Balachandran
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jedd D Wolchok
- Swim Across America Laboratory and Ludwig Collaborative, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew D Hellmann
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Taha Merghoub
- Swim Across America Laboratory and Ludwig Collaborative, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Arnold J Levine
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA
| | - Marta Łuksza
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
86
|
Hassin O, Nataraj NB, Shreberk-Shaked M, Aylon Y, Yaeger R, Fontemaggi G, Mukherjee S, Maddalena M, Avioz A, Iancu O, Mallel G, Gershoni A, Grosheva I, Feldmesser E, Ben-Dor S, Golani O, Hendel A, Blandino G, Kelsen D, Yarden Y, Oren M. Different hotspot p53 mutants exert distinct phenotypes and predict outcome of colorectal cancer patients. Nat Commun 2022; 13:2800. [PMID: 35589715 PMCID: PMC9120190 DOI: 10.1038/s41467-022-30481-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
The TP53 gene is mutated in approximately 60% of all colorectal cancer (CRC) cases. Over 20% of all TP53-mutated CRC tumors carry missense mutations at position R175 or R273. Here we report that CRC tumors harboring R273 mutations are more prone to progress to metastatic disease, with decreased survival, than those with R175 mutations. We identify a distinct transcriptional signature orchestrated by p53R273H, implicating activation of oncogenic signaling pathways and predicting worse outcome. These features are shared also with the hotspot mutants p53R248Q and p53R248W. p53R273H selectively promotes rapid CRC cell spreading, migration, invasion and metastasis. The transcriptional output of p53R273H is associated with preferential binding to regulatory elements of R273 signature genes. Thus, different TP53 missense mutations contribute differently to cancer progression. Elucidation of the differential impact of distinct TP53 mutations on disease features may make TP53 mutational information more actionable, holding potential for better precision-based medicine.
Collapse
Affiliation(s)
- Ori Hassin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Yael Aylon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Saptaparna Mukherjee
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Martino Maddalena
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Avioz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ortal Iancu
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Anat Gershoni
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Grosheva
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ayal Hendel
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - David Kelsen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
87
|
Shallis RM, Bewersdorf JP, Stahl MF, Halene S, Zeidan AM. Are We Moving the Needle for Patients with TP53-Mutated Acute Myeloid Leukemia? Cancers (Basel) 2022; 14:2434. [PMID: 35626039 PMCID: PMC9140008 DOI: 10.3390/cancers14102434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
The currently available therapeutic options for patients with TP53-mutated acute myeloid leukemia (AML) are insufficient, as they translate to a median overall of only 6-9 months, and less than 10% of patients undergoing the most aggressive treatments, such as intensive induction therapy and allogeneic hematopoietic stem cell transplantation, will be cured. The lack of clear differences in outcomes with different treatments precludes the designation of a standard of care. Recently, there has been growing attention on this critical area of need by way of better understanding the biology of TP53 alterations and the disparities in outcomes among patients in this molecular subgroup, reflected in the development and testing of agents with novel mechanisms of action. Promising preclinical and efficacy data exist for therapies that are directed at the p53 protein rendered dysfunctional via mutation or that inhibit the CD47/SIRPα axis or other immune checkpoints such as TIM-3. In this review, we discuss recently attractive and emerging therapeutic agents, their preclinical rationale and the available clinical data as a monotherapy or in combination with the currently accepted backbones in frontline and relapsed/refractory settings for patients with TP53-mutated AML.
Collapse
Affiliation(s)
- Rory M. Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT 06520, USA; (R.M.S.); (S.H.)
| | - Jan P. Bewersdorf
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Maximilian F. Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT 06520, USA; (R.M.S.); (S.H.)
| | - Amer M. Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT 06520, USA; (R.M.S.); (S.H.)
| |
Collapse
|
88
|
Kennedy MC, Lowe SW. Mutant p53: it's not all one and the same. Cell Death Differ 2022; 29:983-987. [PMID: 35361963 PMCID: PMC9090915 DOI: 10.1038/s41418-022-00989-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/06/2023] Open
Abstract
Mutation of the TP53 tumor suppressor gene is the most common genetic alteration in cancer, and almost 1000 alleles have been identified in human tumors. While virtually all TP53 mutations are thought to compromise wild type p53 activity, the prevalence and recurrence of missense TP53 alleles has motivated countless research studies aimed at understanding the function of the resulting mutant p53 protein. The data from these studies support three distinct, but perhaps not necessarily mutually exclusive, mechanisms for how different p53 mutants impact cancer: first, they lose the ability to execute wild type p53 functions to varying degrees; second, they act as a dominant negative (DN) inhibitor of wild type p53 tumor-suppressive programs; and third, they may gain oncogenic functions that go beyond mere p53 inactivation. Of these possibilities, the gain of function (GOF) hypothesis is the most controversial, in part due to the dizzying array of biological functions that have been attributed to different mutant p53 proteins. Herein we discuss the current state of understanding of TP53 allele variation in cancer and recent reports that both support and challenge the p53 GOF model. In these studies and others, researchers are turning to more systematic approaches to profile TP53 mutations, which may ultimately determine once and for all how different TP53 mutations act as cancer drivers and whether tumors harboring distinct mutations are phenotypically unique. From a clinical perspective, such information could lead to new therapeutic approaches targeting the effects of different TP53 alleles and/or better sub-stratification of patients harboring TP53 mutant cancers.
Collapse
Affiliation(s)
- Margaret C Kennedy
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Howard Hughes Medical Institute, New York, NY, 10065, USA.
| |
Collapse
|
89
|
Cross-talk between mutant p53 and p62/SQSTM1 augments cancer cell migration by promoting the degradation of cell adhesion proteins. Proc Natl Acad Sci U S A 2022; 119:e2119644119. [PMID: 35439056 PMCID: PMC9173583 DOI: 10.1073/pnas.2119644119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Missense mutations in the TP53 gene, encoding the p53 tumor suppressor, are very frequent in human cancer. Some of those mutations, particularly the more common (“hotspot”) ones, not only abrogate p53’s tumor suppressor activities but also endow the mutant protein with oncogenic gain of function (GOF). We report that p53R273H, the most common p53 mutant in pancreatic cancer, interacts with the SQSTM1/p62 protein to accelerate the degradation of cell adhesion proteins. This enables pancreatic cancer cells to detach from the epithelial sheet and engage in individualized cell migration, probably augmenting metastatic spread. By providing insights into mechanisms that underpin mutant p53 GOF, this study may suggest ways to interfere with the progression of cancers bearing particular p53 mutants. Missense mutations in the p53 tumor suppressor abound in human cancer. Common (“hotspot”) mutations endow mutant p53 (mutp53) proteins with oncogenic gain of function (GOF), including enhanced cell migration and invasiveness, favoring cancer progression. GOF is usually attributed to transcriptional effects of mutp53. To elucidate transcription-independent effects of mutp53, we characterized the protein interactome of the p53R273H mutant in cells derived from pancreatic ductal adenocarcinoma (PDAC), where p53R273H is the most frequent p53 mutant. We now report that p53R273H, but not the p53R175H hotspot mutant, interacts with SQSTM1/p62 and promotes cancer cell migration and invasion in a p62-dependent manner. Mechanistically, the p53R273H-p62 axis drives the proteasomal degradation of several cell junction–associated proteins, including the gap junction protein Connexin 43, facilitating scattered cell migration. Concordantly, down-regulation of Connexin 43 augments PDAC cell migration, while its forced overexpression blunts the promigratory effect of the p53R273H-p62 axis. These findings define a mechanism of mutp53 GOF.
Collapse
|
90
|
Ma Y, Sender S, Sekora A, Kong W, Bauer P, Ameziane N, Krake S, Radefeldt M, Al-Ali R, Weiss FU, Lerch MM, Parveen A, Zechner D, Junghanss C, Murua Escobar H. Inhibitory Response to CK II Inhibitor Silmitasertib and CDKs Inhibitor Dinaciclib Is Related to Genetic Differences in Pancreatic Ductal Adenocarcinoma Cell Lines. Int J Mol Sci 2022; 23:4409. [PMID: 35457227 PMCID: PMC9031017 DOI: 10.3390/ijms23084409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/15/2023] Open
Abstract
Casein kinase II (CK2) and cyclin-dependent kinases (CDKs) frequently interact within multiple pathways in pancreatic ductal adenocarcinoma (PDAC). Application of CK2- and CDK-inhibitors have been considered as a therapeutic option, but are currently not part of routine chemotherapy regimens. We investigated ten PDAC cell lines exposed to increasing concentrations of silmitasertib and dinaciclib. Cell proliferation, metabolic activity, biomass, and apoptosis/necrosis were evaluated, and bioinformatic clustering was used to classify cell lines into sensitive groups based on their response to inhibitors. Furthermore, whole exome sequencing (WES) and RNA sequencing (RNA-Seq) was conducted to assess recurrent mutations and the expression profile of inhibitor targets and genes frequently mutated in PDAC, respectively. Dinaciclib and silmitasertib demonstrated pronounced and limited cell line specific effects in cell death induction, respectively. WES revealed no genomic variants causing changes in the primary structure of the corresponding inhibitor target proteins. RNA-Seq demonstrated that the expression of all inhibitor target genes was higher in the PDAC cell lines compared to non-neoplastic pancreatic tissue. The observed differences in PDAC cell line sensitivity to silmitasertib or dinaciclib did not depend on target gene expression or the identified gene variants. For the PDAC hotspot genes kirsten rat sarcoma virus (KRAS) and tumor protein p53 (TP53), three and eight variants were identified, respectively. In conclusion, both inhibitors demonstrated in vitro efficacy on the PDAC cell lines. However, aberrations and expression of inhibitor target genes did not appear to affect the efficacy of the corresponding inhibitors. In addition, specific aberrations in TP53 and KRAS affected the efficacy of both inhibitors.
Collapse
Affiliation(s)
- Yixuan Ma
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (Y.M.); (S.S.); (A.S.); (W.K.); (P.B.); (C.J.)
| | - Sina Sender
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (Y.M.); (S.S.); (A.S.); (W.K.); (P.B.); (C.J.)
| | - Anett Sekora
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (Y.M.); (S.S.); (A.S.); (W.K.); (P.B.); (C.J.)
| | - Weibo Kong
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (Y.M.); (S.S.); (A.S.); (W.K.); (P.B.); (C.J.)
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Peter Bauer
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (Y.M.); (S.S.); (A.S.); (W.K.); (P.B.); (C.J.)
- CENTOGENE GmbH, 18057 Rostock, Germany; (N.A.); (S.K.); (M.R.); (R.A.-A.)
| | - Najim Ameziane
- CENTOGENE GmbH, 18057 Rostock, Germany; (N.A.); (S.K.); (M.R.); (R.A.-A.)
- Arcensus GmbH, 18055 Rostock, Germany
| | - Susann Krake
- CENTOGENE GmbH, 18057 Rostock, Germany; (N.A.); (S.K.); (M.R.); (R.A.-A.)
| | - Mandy Radefeldt
- CENTOGENE GmbH, 18057 Rostock, Germany; (N.A.); (S.K.); (M.R.); (R.A.-A.)
| | - Ruslan Al-Ali
- CENTOGENE GmbH, 18057 Rostock, Germany; (N.A.); (S.K.); (M.R.); (R.A.-A.)
| | - Frank Ulrich Weiss
- Department of Medicine A, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (F.U.W.); (M.M.L.)
| | - Markus M. Lerch
- Department of Medicine A, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (F.U.W.); (M.M.L.)
- LMU Munich University Hospital, 81377 Munich, Germany
| | - Alisha Parveen
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany; (A.P.); (D.Z.)
| | - Dietmar Zechner
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany; (A.P.); (D.Z.)
| | - Christian Junghanss
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (Y.M.); (S.S.); (A.S.); (W.K.); (P.B.); (C.J.)
| | - Hugo Murua Escobar
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (Y.M.); (S.S.); (A.S.); (W.K.); (P.B.); (C.J.)
| |
Collapse
|
91
|
Tang Y, Song H, Wang Z, Xiao S, Xiang X, Zhan H, Wu L, Wu J, Xing Y, Tan Y, Liang Y, Yan N, Li Y, Li J, Wu J, Zheng D, Jia Y, Chen Z, Li Y, Zhang Q, Zhang J, Zeng H, Tao W, Liu F, Wu Y, Lu M. Repurposing antiparasitic antimonials to noncovalently rescue temperature-sensitive p53 mutations. Cell Rep 2022; 39:110622. [PMID: 35417717 DOI: 10.1016/j.celrep.2022.110622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/23/2021] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
The tumor suppressor p53 is inactivated by over hundreds of heterogenous mutations in cancer. Here, we purposefully selected phenotypically reversible temperature-sensitive (TS) p53 mutations for pharmacological rescue with thermostability as the compound-screening readout. This rational screening identified antiparasitic drug potassium antimony tartrate (PAT) as an agent that can thermostabilize the representative TS mutant p53-V272M via noncovalent binding. PAT met the three basic criteria for a targeted drug: availability of a co-crystal structure, compatible structure-activity relationship, and intracellular target specificity, consequently exhibiting antitumor activity in a xenograft mouse model. At the antimony dose in clinical antiparasitic therapy, PAT effectively and specifically rescued p53-V272M in patient-derived primary leukemia cells in single-cell RNA sequencing. Further scanning of 815 frequent p53-missense mutations identified 65 potential PAT-treatable mutations, most of which were temperature sensitive. These results lay the groundwork for repurposing noncovalent antiparasitic antimonials for precisely treating cancers with the 65 p53 mutations.
Collapse
Affiliation(s)
- Yigang Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huaxin Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengyuan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shujun Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinrong Xiang
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Huien Zhan
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Lili Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiale Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yangfei Xing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Liang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ni Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuntong Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiabing Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiaqi Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Derun Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunchuan Jia
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiming Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunqi Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qianqian Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Wei Tao
- Department of Hematology, The People's Hospital of Jianyang City, Jianyang 641400, Sichuan, China
| | - Feng Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yu Wu
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
92
|
Cancer mutation profiles predict ICIs efficacy in patients with non-small cell lung cancer. Expert Rev Mol Med 2022; 24:e16. [PMID: 35373730 DOI: 10.1017/erm.2022.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although immune checkpoint inhibitors (ICIs) have produced remarkable responses in non-small cell lung cancer (NSCLC) patients, receivers still have a relatively low response rate. Initial response assessment by conventional imaging and evaluation criteria is often unable to identify whether patients can achieve durable clinical benefit from ICIs. Overall, there are sparse effective biomarkers identified to screen NSCLC patients responding to this therapy. A lot of studies have reported that patients with specific gene mutations may benefit from or resist to immunotherapy. However, the single gene mutation may be not effective enough to predict the benefit from immunotherapy for patients. With the advancement in sequencing technology, further studies indicate that many mutations often co-occur and suggest a drastic transformation of tumour microenvironment phenotype. Moreover, co-mutation events have been reported to synergise to activate or suppress signalling pathways of anti-tumour immune response, which also indicates a potential target for combining intervention. Thus, the different mutation profile (especially co-mutation) of patients may be an important concern for predicting or promoting the efficacy of ICIs. However, there is a lack of comprehensive knowledge of this field until now. Therefore, in this study, we reviewed and elaborated the value of cancer mutation profile in predicting the efficacy of immunotherapy and analysed the underlying mechanisms, to provide an alternative way for screening dominant groups, and thereby, optimising individualised therapy for NSCLC patients.
Collapse
|
93
|
Lazarian G, Theves F, Hormi M, Letestu R, Eclache V, Bidet A, Cornillet‐Lefebvre P, Davi F, Delabesse E, Estienne M, Etancelin P, Kosmider O, Laibe S, Lode L, Muller M, Nadal N, Naguib D, Pastoret C, Poulain S, Sujobert P, Veronese L, Imache S, Lefebvre V, Cymbalista F, Baran‐Marszak F, Soussi T. TP53 mutations at codon 234 are associated with chlorambucil treatment in chronic lymphocytic leukemia. Am J Hematol 2022; 97:E159-E162. [PMID: 35083778 DOI: 10.1002/ajh.26479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Grégory Lazarian
- Service d'hématologie biologique GHUPPSD, Hopital Avicenne, Université Sobonne Paris Nord, INSERM U978 Bobigny France
| | | | - Myriam Hormi
- Service d'hématologie biologique GHUPPSD, Hopital Avicenne, Université Sobonne Paris Nord, INSERM U978 Bobigny France
| | - Rémi Letestu
- Service d'hématologie biologique GHUPPSD, Hopital Avicenne, Université Sobonne Paris Nord, INSERM U978 Bobigny France
| | - Virginie Eclache
- Service d'hématologie biologique GHUPPSD, Hopital Avicenne, Université Sobonne Paris Nord, INSERM U978 Bobigny France
| | - Audrey Bidet
- Service d'hématologie biologique CHU Bordeaux‐Haut Lévêque Bordeaux France
| | | | - Frédéric Davi
- Service d'hématologie biologique CHU Pitié Salpétrière Paris France
| | - Eric Delabesse
- Service d'hématologie biologique CHU Toulouse Toulouse France
| | | | | | - Olivier Kosmider
- Service d'hématologie biologique CHU Hopital Cochin Paris France
| | | | - Laurence Lode
- Laboratoire d'oncobiologie CHU Montpellier Montpellier France
| | - Marc Muller
- Laboratoire de génétique médicale CHU Nancy Hôpitaux de Brabois Vandoeuvre‐lès‐Nancy France
| | - Nathalie Nadal
- Service de génétique chromosomique et moléculaire CHU Dijon Dijon France
| | - Dina Naguib
- Service d'hématologie biologique CHU Caen Caen France
| | | | | | - Pierre Sujobert
- Service d'Hématologie Cellulaire Hospices civils de Lyon Lyon France
| | - Lauren Veronese
- Service de cytogénétique médicale CHU Clermont‐Ferrand Clermont‐Ferrand France
| | - Samia Imache
- Service d'hématologie biologique GHUPPSD, Hopital Avicenne, Université Sobonne Paris Nord, INSERM U978 Bobigny France
| | - Valérie Lefebvre
- Service d'hématologie biologique GHUPPSD, Hopital Avicenne, Université Sobonne Paris Nord, INSERM U978 Bobigny France
| | - Florence Cymbalista
- Service d'hématologie biologique GHUPPSD, Hopital Avicenne, Université Sobonne Paris Nord, INSERM U978 Bobigny France
| | - Fanny Baran‐Marszak
- Service d'hématologie biologique GHUPPSD, Hopital Avicenne, Université Sobonne Paris Nord, INSERM U978 Bobigny France
| | - Thierry Soussi
- Centre de Recherche des Cordeliers Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Paris France
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala University Uppsala Sweden
| | | |
Collapse
|
94
|
Soussi T, Baliakas P. Landscape of TP53 Alterations in Chronic Lymphocytic Leukemia via Data Mining Mutation Databases. Front Oncol 2022; 12:808886. [PMID: 35251978 PMCID: PMC8890000 DOI: 10.3389/fonc.2022.808886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Locus-specific databases are invaluable tools for both basic and clinical research. The extensive information they contain is gathered from the literature and manually curated by experts. Cancer genome sequencing projects generate an immense amount of data, which are stored directly in large repositories (cancer genome databases). The presence of a TP53 defect (17p deletion and/or TP53 mutations) is an independent prognostic factor in chronic lymphocytic leukemia (CLL) and TP53 status analysis has been adopted in routine clinical practice. For that reason, TP53 mutation databases have become essential for the validation of the plethora of TP53 variants detected in tumor samples. TP53 profiles in CLL are characterized by a great number of subclonal TP53 mutations with low variant allelic frequencies and the presence of multiple minor subclones harboring different TP53 mutations. In this review, we describe the various characteristics of the multiple levels of heterogeneity of TP53 variants in CLL through the analysis of TP53 mutation databases and the utility of their diagnosis in the clinic.
Collapse
Affiliation(s)
- Thierry Soussi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Sorbonne Université, UPMC Univ Paris 06, Paris, France
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
95
|
Klimovich B, Merle N, Neumann M, Elmshäuser S, Nist A, Mernberger M, Kazdal D, Stenzinger A, Timofeev O, Stiewe T. p53 partial loss-of-function mutations sensitize to chemotherapy. Oncogene 2022; 41:1011-1023. [PMID: 34907344 PMCID: PMC8837531 DOI: 10.1038/s41388-021-02141-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022]
Abstract
The tumor suppressive transcription factor p53 is frequently inactivated in cancer cells by missense mutations that cluster in the DNA binding domain. 30% hit mutational hotspot residues, resulting in a complete loss of transcriptional activity and mutant p53-driven chemotherapy resistance. Of the remaining 70% of non-hotspot mutants, many are partial loss-of-function (partial-LOF) mutants with residual transcriptional activity. The therapeutic consequences of a partial-LOF have remained largely elusive. Using a p53 mutation engineered to reduce DNA binding, we demonstrate that partial-LOF is sufficient to enhance oncogene-driven tumorigenesis in mouse models of lung and pancreatic ductal adenocarcinoma and acute myeloid leukemia. Interestingly, mouse and human tumors with partial-LOF mutations showed mutant p53 protein accumulation similar as known for hotspot mutants. Different from the chemotherapy resistance caused by p53-loss, the partial-LOF mutant sensitized to an apoptotic chemotherapy response and led to a survival benefit. Mechanistically, the pro-apoptotic transcriptional activity of mouse and human partial-LOF mutants was rescued at high mutant protein levels, suggesting that accumulation of partial-LOF mutants enables the observed apoptotic chemotherapy response. p53 non-hotspot mutants with partial-LOF, therefore, represent tumorigenic p53 mutations that need to be distinguished from other mutations because of their beneficial impact on survival in a therapy context.
Collapse
MESH Headings
- Animals
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Humans
- Mice
- Loss of Function Mutation
- Drug Resistance, Neoplasm/genetics
- Apoptosis/genetics
- Apoptosis/drug effects
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Boris Klimovich
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Nastasja Merle
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Michelle Neumann
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Sabrina Elmshäuser
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Oleg Timofeev
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany.
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany.
- Genomics Core Facility, Philipps-University, Marburg, Germany.
| |
Collapse
|
96
|
Agrawal A, Bhattacharya S. Cutting-edge Nanotechnological Approaches for Lung Cancer Therapy. Curr Drug Res Rev 2022; 14:171-187. [PMID: 35440332 DOI: 10.2174/2589977514666220418085658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Lung cancer is the second leading cancer with a high rate of mortality. It can be treated using different intervention techniques such as chemotherapy, radiation therapy, surgical removal, and photodynamic therapy. All of these interventions lack specificity, implying that it harms the normal cells adjacent to the infected ones. Nanotechnology provides a promising solution that increases the bioavailability of anticancer drugs at the tumor site with reduced toxicity and improved therapeutic efficacy. Nanotechnology also improves the way lung cancer is diagnosed and treated. Various nanocarriers like liposomes, polymeric nanoparticles, magnetic nanoparticles, and different theranostic approaches are already approved for medical use, while various are under clinical and preclinical stages. This review article covers the details about lung cancer, types of overexpressed receptors, and cutting-edge nanocarriers used for treating lung cancer at its specific target.
Collapse
Affiliation(s)
- Amaiyya Agrawal
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM\'S NMIMS Deemed-to-be University, Shirpur 425405, Maharashtra, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM\'S NMIMS Deemed-to-be University, Shirpur 425405, Maharashtra, India
| |
Collapse
|
97
|
Xu X, Xie L, Meng L, Geng S, Liu J, Cao X, Dong Z, Xing Z. Genetic features of TP53 mutation and its downstream FOXA1 in prostate cancer. Biosci Trends 2022; 16:221-229. [PMID: 35768267 DOI: 10.5582/bst.2022.01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Limei Xie
- Department of Public Health, The Second Hospital of Shandong University, Ji'nan, Shandong, China
| | - Liwei Meng
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Shangzhen Geng
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Jin Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Xiangting Cao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Zhaoquan Xing
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| |
Collapse
|
98
|
Dary Gutiérrez-Castañeda L, Nova J, Irene Cerezo-Cortés M. Somatic Mutations in TP53 Gene in Colombian Patients With Non-melanoma Skin Cancer. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:107-114. [PMID: 35400008 PMCID: PMC8962838 DOI: 10.21873/cdp.10084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM Non-melanoma skin cancer is the most common cancer in the world. Somatic mutations in the TP53 gene are associated with the development of this cancer. To describe mutations in exons 5-8 of the TP53 gene in a sample of Colombian patients with non-melanoma skin cancer. MATERIALS AND METHODS One hundred and fifteen patients with non-melanoma skin cancer were included. Exons 5-8 were amplified and analyzed by PCR-High Resolution Melting and Sanger sequencing. RESULTS Fifty-seven patients with basal cell carcinomas and 58 with squamous cell carcinomas were studied. 16% of patients with basal cell carcinoma and 26% of patients with squamous cell carcinoma had mutations in the TP53 gene. The most frequent mutations were substitutions, while three patients had deletions. The most frequent mutation was p.R158G. CONCLUSION The analysis showed that Colombian individuals with non-melanoma skin cancer have genetic TP53 variants different from those reported as recurrent for this disease.
Collapse
Affiliation(s)
- Luz Dary Gutiérrez-Castañeda
- General Dermatology Group, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá, Colombia
| | - John Nova
- General Dermatology Group, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá, Colombia
| | - María Irene Cerezo-Cortés
- General Dermatology Group, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá, Colombia
| |
Collapse
|
99
|
Douglass DP, Stine KC, Farrar JE. A Novel Germline TP53 Mutation in a Patient With Li-Fraumeni Syndrome: Resolving a Variant of Uncertain Significance. J Pediatr Hematol Oncol 2021; 43:e1220-e1222. [PMID: 33633026 DOI: 10.1097/mph.0000000000002115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/15/2021] [Indexed: 11/25/2022]
Abstract
Increasing availability of genomic testing poses new challenges to clinicians, particularly where variant interpretation from commercial sources may be equivocal. The authors report a patient with recurrent rhabdomyosarcoma and subsequent bilateral breast cancer who was found to harbor a previously undescribed germline TP53 sequence alteration annotated by the commercial laboratory as a variant of uncertain significance. By investigating publicly available databases of aggregated normal germline and malignant somatic genomic sequences, the authors conclude that this missense variant, c.476C>T (p.A159V), is a novel, pathogenic Li-Fraumeni syndrome mutation and demonstrate the utility of these resources in clinical pediatric hematology and oncology practice.
Collapse
Affiliation(s)
- David P Douglass
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | | | | |
Collapse
|
100
|
Pinto EM, Maxwell KN, Halalsheh H, Phillips A, Powers J, MacFarland S, Walsh MF, Breen K, Formiga MN, Kriwacki R, Nichols KE, Mostafavi R, Wang J, Clay MR, Rodriguez-Galindo C, Ribeiro RC, Zambetti GP. Clinical and Functional Significance of TP53 Exon 4-Intron 4 Splice Junction Variants. Mol Cancer Res 2021; 20:207-216. [PMID: 34675114 DOI: 10.1158/1541-7786.mcr-21-0583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Germline TP53 splicing variants are uncommon, and their clinical relevance is unknown. However, splice-altering variants at exon 4-intron 4 junctions are relatively enriched in pediatric adrenocortical tumors (ACT). Nevertheless, family histories of cancer compatible with classic Li-Fraumeni syndrome are rarely seen in these patients. We used conventional and in silico assays to determine protein stability, splicing, and transcriptional activity of 10 TP53 variants at exon 4-intron 4 junctions and analyzed their clinical correlates. We reviewed public databases that report the impact of TP53 variants in human cancer and examined individual reports, focusing on family history of cancer. TP53 exon 4-intron 4 junction germline variants were identified in 9 of 75 pediatric ACTs enrolled in the International Pediatric Adrenocortical Tumor Registry and Children's Oncology Group ARAR0332 study. An additional eight independent TP53 variants involving exon 4 splicing were identified in the Pediatric Cancer Genome Project (n = 5,213). These variants resulted in improper expression due to ineffective splicing, protein instability, altered subcellular localization, and loss of function. Clinical case review of carriers of TP53 exon 4-intron 4 junction variants revealed a high incidence of pediatric ACTs and atypical tumor types not consistent with classic Li-Fraumeni syndrome. Germline variants involving TP53 exon 4-intron 4 junctions are frequent in ACT and rare in other pediatric tumors. The collective impact of these germline TP53 variants on the fidelity of splicing, protein structure, and function must be considered in evaluating cancer susceptibility. IMPLICATIONS: Taken together, the data indicate that splice variants at TP53 codon 125 and surrounding bases differentially impacted p53 gene expression and function.
Collapse
Affiliation(s)
- Emilia M Pinto
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Kara N Maxwell
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Aaron Phillips
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jacquelyn Powers
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Suzanne MacFarland
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael F Walsh
- Department of Pediatrics and Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kelsey Breen
- Department of Pediatrics and Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria N Formiga
- Department of Oncogenetics, A.C. Camargo Center, Sao Paulo, Brazil
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Roya Mostafavi
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinling Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael R Clay
- Department of Pathology, University of Colorado, Boulder, Colorado
| | - Carlos Rodriguez-Galindo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Global Pediatric Medicine at St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Raul C Ribeiro
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Gerard P Zambetti
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|