51
|
Xu C, Kleinschmidt H, Yang J, Leith E, Johnson J, Tan S, Mahony S, Bai L. Systematic Dissection of Sequence Features Affecting the Binding Specificity of a Pioneer Factor Reveals Binding Synergy Between FOXA1 and AP-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566246. [PMID: 37986839 PMCID: PMC10659273 DOI: 10.1101/2023.11.08.566246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Despite the unique ability of pioneer transcription factors (PFs) to target nucleosomal sites in closed chromatin, they only bind a small fraction of their genomic motifs. The underlying mechanism of this selectivity is not well understood. Here, we design a high-throughput assay called ChIP-ISO to systematically dissect sequence features affecting the binding specificity of a classic PF, FOXA1. Combining ChIP-ISO with in vitro and neural network analyses, we find that 1) FOXA1 binding is strongly affected by co-binding TFs AP-1 and CEBPB, 2) FOXA1 and AP-1 show binding cooperativity in vitro, 3) FOXA1's binding is determined more by local sequences than chromatin context, including eu-/heterochromatin, and 4) AP-1 is partially responsible for differential binding of FOXA1 in different cell types. Our study presents a framework for elucidating genetic rules underlying PF binding specificity and reveals a mechanism for context-specific regulation of its binding.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Holly Kleinschmidt
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jianyu Yang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Erik Leith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jenna Johnson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Song Tan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
52
|
Liu Z, Lee DS, Liang Y, Zheng Y, Dixon JR. Foxp3 orchestrates reorganization of chromatin architecture to establish regulatory T cell identity. Nat Commun 2023; 14:6943. [PMID: 37932264 PMCID: PMC10628232 DOI: 10.1038/s41467-023-42647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023] Open
Abstract
Chromatin conformation reorganization is emerging as an important layer of regulation for gene expression and lineage specification. Yet, how lineage-specific transcription factors contribute to the establishment of cell type-specific 3D chromatin architecture in the immune cells remains unclear, especially for the late stages of T cell subset differentiation and maturation. Regulatory T cells (Treg) are mainly generated in the thymus as a subpopulation of T cells specializing in suppressing excessive immune responses. Here, by comprehensively mapping 3D chromatin organization during Treg cell differentiation, we show that Treg-specific chromatin structures were progressively established during its lineage specification, and highly associated with Treg signature gene expression. Additionally, the binding sites of Foxp3, a Treg lineage specifying transcription factor, were highly enriched at Treg-specific chromatin loop anchors. Further comparison of the chromatin interactions between wide-type Tregs versus Treg cells from Foxp3 knock-in/knockout or newly-generated Foxp3 domain-swap mutant mouse revealed that Foxp3 was essential for the establishment of Treg-specific 3D chromatin architecture, although it was not dependent on the formation of the Foxp3 domain-swapped dimer. These results highlighted an underappreciated role of Foxp3 in modulating Treg-specific 3D chromatin structure formation.
Collapse
Affiliation(s)
- Zhi Liu
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dong-Sung Lee
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Life Sciences, University of Seoul, Seoul, South Korea
| | - Yuqiong Liang
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ye Zheng
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Jesse R Dixon
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
53
|
Liu Y, Wan X, Li H, Chen Y, Hu X, Chen H, Zhu D, Li C, Zhang Y. CTCF coordinates cell fate specification via orchestrating regulatory hubs with pioneer transcription factors. Cell Rep 2023; 42:113259. [PMID: 37851578 DOI: 10.1016/j.celrep.2023.113259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 06/17/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
CCCTC-binding factor (CTCF), a ubiquitously expressed architectural protein, has emerged as a key regulator of cell identity gene transcription. However, the precise molecular mechanism underlying specialized functions of CTCF remains elusive. Here, we investigate the mechanism through integrative analyses of primary hepatocytes, myocytes, and B cells from mouse and human. We demonstrate that CTCF cooperates with lineage-specific pioneer transcription factors (TFs), including MyoD, FOXA, and PU.1, to control cell identity at 1D and 3D levels. At the 1D level, pioneer TFs facilitate lineage-specific CTCF occupancy via opening chromatin. At the 3D level, CTCF and pioneer TFs form regulatory hubs to govern the expression of cell identity genes. This mechanism is validated using MyoD-null mice, CTCF knockout mice, and CRISPR editing during myogenic differentiation. Collectively, these findings uncover a general mechanism whereby CTCF acts as a cell identity cofactor to control cell identity genes via orchestrating regulatory hubs with pioneer TFs.
Collapse
Affiliation(s)
- Yuting Liu
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Xin Wan
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Hu Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Yingxi Chen
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Xiaodi Hu
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Taiping Road 27TH, Haidian District, Beijing 100850, China
| | - Dahai Zhu
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China.
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing 100871, China.
| | - Yong Zhang
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China.
| |
Collapse
|
54
|
Abstract
Cells must tightly regulate their gene expression programs and yet rapidly respond to acute biochemical and biophysical cues within their environment. This information is transmitted to the nucleus through various signaling cascades, culminating in the activation or repression of target genes. Transcription factors (TFs) are key mediators of these signals, binding to specific regulatory elements within chromatin. While live-cell imaging has conclusively proven that TF-chromatin interactions are highly dynamic, how such transient interactions can have long-term impacts on developmental trajectories and disease progression is still largely unclear. In this review, we summarize our current understanding of the dynamic nature of TF functions, starting with a historical overview of early live-cell experiments. We highlight key factors that govern TF dynamics and how TF dynamics, in turn, affect downstream transcriptional bursting. Finally, we conclude with open challenges and emerging technologies that will further our understanding of transcriptional regulation.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; , ,
- Department of Physics, University of Maryland, College Park, Maryland, USA;
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; , ,
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, Maryland, USA;
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; , ,
| |
Collapse
|
55
|
Heuts BMH, Martens JHA. Understanding blood development and leukemia using sequencing-based technologies and human cell systems. Front Mol Biosci 2023; 10:1266697. [PMID: 37886034 PMCID: PMC10598665 DOI: 10.3389/fmolb.2023.1266697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
Our current understanding of human hematopoiesis has undergone significant transformation throughout the years, challenging conventional views. The evolution of high-throughput technologies has enabled the accumulation of diverse data types, offering new avenues for investigating key regulatory processes in blood cell production and disease. In this review, we will explore the opportunities presented by these advancements for unraveling the molecular mechanisms underlying normal and abnormal hematopoiesis. Specifically, we will focus on the importance of enhancer-associated regulatory networks and highlight the crucial role of enhancer-derived transcription regulation. Additionally, we will discuss the unprecedented power of single-cell methods and the progression in using in vitro human blood differentiation system, in particular induced pluripotent stem cell models, in dissecting hematopoietic processes. Furthermore, we will explore the potential of ever more nuanced patient profiling to allow precision medicine approaches. Ultimately, we advocate for a multiparameter, regulatory network-based approach for providing a more holistic understanding of normal hematopoiesis and blood disorders.
Collapse
Affiliation(s)
- Branco M H Heuts
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
56
|
Das ND, Chang JC, Hon CC, Kelly ST, Ito S, Lizio M, Kaczkowski B, Watanabe H, Katsushima K, Natsume A, Koseki H, Kondo Y, Minoda A, Umehara T. Defining super-enhancers by highly ranked histone H4 multi-acetylation levels identifies transcription factors associated with glioblastoma stem-like properties. BMC Genomics 2023; 24:574. [PMID: 37759202 PMCID: PMC10523799 DOI: 10.1186/s12864-023-09659-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Super-enhancers (SEs), which activate genes involved in cell-type specificity, have mainly been defined as genomic regions with top-ranked enrichment(s) of histone H3 with acetylated K27 (H3K27ac) and/or transcription coactivator(s) including a bromodomain and extra-terminal domain (BET) family protein, BRD4. However, BRD4 preferentially binds to multi-acetylated histone H4, typically with acetylated K5 and K8 (H4K5acK8ac), leading us to hypothesize that SEs should be defined by high H4K5acK8ac enrichment at least as well as by that of H3K27ac. RESULTS Here, we conducted genome-wide profiling of H4K5acK8ac and H3K27ac, BRD4 binding, and the transcriptome by using a BET inhibitor, JQ1, in three human glial cell lines. When SEs were defined as having the top ranks for H4K5acK8ac or H3K27ac signal, 43% of H4K5acK8ac-ranked SEs were distinct from H3K27ac-ranked SEs in a glioblastoma stem-like cell (GSC) line. CRISPR-Cas9-mediated deletion of the H4K5acK8ac-preferred SEs associated with MYCN and NFIC decreased the stem-like properties in GSCs. CONCLUSIONS Collectively, our data highlights H4K5acK8ac's utility for identifying genes regulating cell-type specificity.
Collapse
Affiliation(s)
- Nando D Das
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Jen-Chien Chang
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Chung-Chau Hon
- Laboratory for Genome Information Analysis, RIKEN IMS, Yokohama, Japan
| | - S Thomas Kelly
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Shinsuke Ito
- Laboratory of Developmental Genetics, RIKEN IMS, Yokohama, Japan
| | - Marina Lizio
- Laboratory for Genome Information Analysis, RIKEN IMS, Yokohama, Japan
| | - Bogumil Kaczkowski
- Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN IMS, Yokohama, Japan
| | - Hisami Watanabe
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Keisuke Katsushima
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN IMS, Yokohama, Japan
- Immune Regulation, Advanced Research Departments, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
57
|
Christou-Kent M, Cuartero S, Garcia-Cabau C, Ruehle J, Naderi J, Erber J, Neguembor MV, Plana-Carmona M, Alcoverro-Bertran M, De Andres-Aguayo L, Klonizakis A, Julià-Vilella E, Lynch C, Serrano M, Hnisz D, Salvatella X, Graf T, Stik G. CEBPA phase separation links transcriptional activity and 3D chromatin hubs. Cell Rep 2023; 42:112897. [PMID: 37516962 DOI: 10.1016/j.celrep.2023.112897] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
Cell identity is orchestrated through an interplay between transcription factor (TF) action and genome architecture. The mechanisms used by TFs to shape three-dimensional (3D) genome organization remain incompletely understood. Here we present evidence that the lineage-instructive TF CEBPA drives extensive chromatin compartment switching and promotes the formation of long-range chromatin hubs during induced B cell-to-macrophage transdifferentiation. Mechanistically, we find that the intrinsically disordered region (IDR) of CEBPA undergoes in vitro phase separation (PS) dependent on aromatic residues. Both overexpressing B cells and native CEBPA-expressing cell types such as primary granulocyte-macrophage progenitors, liver cells, and trophectoderm cells reveal nuclear CEBPA foci and long-range 3D chromatin hubs at CEBPA-bound regions. In short, we show that CEBPA can undergo PS through its IDR, which may underlie in vivo foci formation and suggest a potential role of PS in regulating CEBPA function.
Collapse
Affiliation(s)
- Marie Christou-Kent
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain; Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Julia Ruehle
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Julian Naderi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Julia Erber
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Marcos Plana-Carmona
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | - Luisa De Andres-Aguayo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Antonios Klonizakis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | - Cian Lynch
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Altos Labs, Cambridge Institute of Science, Cambridge CB21 6GP, UK
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Altos Labs, Cambridge Institute of Science, Cambridge CB21 6GP, UK
| | - Denes Hnisz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Thomas Graf
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Grégoire Stik
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.
| |
Collapse
|
58
|
Deng L, Zhou Q, Zhou J, Zhang Q, Jia Z, Zhu G, Cheng S, Cheng L, Yin C, Yang C, Shen J, Nie J, Zhu JK, Li G, Zhao L. 3D organization of regulatory elements for transcriptional regulation in Arabidopsis. Genome Biol 2023; 24:181. [PMID: 37550699 PMCID: PMC10405511 DOI: 10.1186/s13059-023-03018-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 07/20/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Although spatial organization of compartments and topologically associating domains at large scale is relatively well studied, the spatial organization of regulatory elements at fine scale is poorly understood in plants. RESULTS Here we perform high-resolution chromatin interaction analysis using paired-end tag sequencing approach. We map chromatin interactions tethered with RNA polymerase II and associated with heterochromatic, transcriptionally active, and Polycomb-repressive histone modifications in Arabidopsis. Analysis of the regulatory repertoire shows that distal active cis-regulatory elements are linked to their target genes through long-range chromatin interactions with increased expression of the target genes, while poised cis-regulatory elements are linked to their target genes through long-range chromatin interactions with depressed expression of the target genes. Furthermore, we demonstrate that transcription factor MYC2 is critical for chromatin spatial organization, and propose that MYC2 occupancy and MYC2-mediated chromatin interactions coordinately facilitate transcription within the framework of 3D chromatin architecture. Analysis of functionally related gene-defined chromatin connectivity networks reveals that genes implicated in flowering-time control are functionally compartmentalized into separate subdomains via their spatial activity in the leaf or shoot apical meristem, linking active mark- or Polycomb-repressive mark-associated chromatin conformation to coordinated gene expression. CONCLUSION The results reveal that the regulation of gene transcription in Arabidopsis is not only by linear juxtaposition, but also by long-range chromatin interactions. Our study uncovers the fine scale genome organization of Arabidopsis and the potential roles of such organization in orchestrating transcription and development.
Collapse
Affiliation(s)
- Li Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiangwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhibo Jia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangfeng Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Cheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lulu Cheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Caijun Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junwei Nie
- Vazyme Biotech Co., Ltd., Nanjing, 210000, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Agricultural Bioinformatics Key Laboratory of Hubei Province and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
59
|
Tav C, Fournier É, Fournier M, Khadangi F, Baguette A, Côté MC, Silveira MAD, Bérubé-Simard FA, Bourque G, Droit A, Bilodeau S. Glucocorticoid stimulation induces regionalized gene responses within topologically associating domains. Front Genet 2023; 14:1237092. [PMID: 37576549 PMCID: PMC10413275 DOI: 10.3389/fgene.2023.1237092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
Transcription-factor binding to cis-regulatory regions regulates the gene expression program of a cell, but occupancy is often a poor predictor of the gene response. Here, we show that glucocorticoid stimulation led to the reorganization of transcriptional coregulators MED1 and BRD4 within topologically associating domains (TADs), resulting in active or repressive gene environments. Indeed, we observed a bias toward the activation or repression of a TAD when their activities were defined by the number of regions gaining and losing MED1 and BRD4 following dexamethasone (Dex) stimulation. Variations in Dex-responsive genes at the RNA levels were consistent with the redistribution of MED1 and BRD4 at the associated cis-regulatory regions. Interestingly, Dex-responsive genes without the differential recruitment of MED1 and BRD4 or binding by the glucocorticoid receptor were found within TADs, which gained or lost MED1 and BRD4, suggesting a role of the surrounding environment in gene regulation. However, the amplitude of the response of Dex-regulated genes was higher when the differential recruitment of the glucocorticoid receptor and transcriptional coregulators was observed, reaffirming the role of transcription factor-driven gene regulation and attributing a lesser role to the TAD environment. These results support a model where a signal-induced transcription factor induces a regionalized effect throughout the TAD, redefining the notion of direct and indirect effects of transcription factors on target genes.
Collapse
Affiliation(s)
- Christophe Tav
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives de l’Université Laval, Québec, QC, Canada
| | - Éric Fournier
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives de l’Université Laval, Québec, QC, Canada
| | - Michèle Fournier
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Fatemeh Khadangi
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Audrey Baguette
- Department of Human Genetics, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Maxime C. Côté
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Maruhen A. D. Silveira
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Félix-Antoine Bérubé-Simard
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
| | - Guillaume Bourque
- Department of Human Genetics, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Canadian Center for Computational Genomics, McGill University, Montréal, QC, Canada
| | - Arnaud Droit
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives de l’Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec—Université Laval, Axe Endocrinologie et Néphrologie, Québec, QC, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Steve Bilodeau
- Centre de Recherche du CHU de Québec—Université Laval, Axe Oncologie, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives de l’Université Laval, Québec, QC, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
60
|
Sen D, Maniyadath B, Chowdhury S, Kaur A, Khatri S, Chakraborty A, Mehendale N, Nadagouda S, Sandra U, Kamat SS, Kolthur-Seetharam U. Metabolic regulation of CTCF expression and chromatin association dictates starvation response in mice and flies. iScience 2023; 26:107128. [PMID: 37416476 PMCID: PMC10320512 DOI: 10.1016/j.isci.2023.107128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 05/16/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Coordinated temporal control of gene expression is essential for physiological homeostasis, especially during metabolic transitions. However, the interplay between chromatin architectural proteins and metabolism in regulating transcription is less understood. Here, we demonstrate a conserved bidirectional interplay between CTCF (CCCTC-binding factor) expression/function and metabolic inputs during feed-fast cycles. Our results indicate that its loci-specific functional diversity is associated with physiological plasticity in mouse hepatocytes. CTCF differential expression and long non-coding RNA-Jpx mediated changes in chromatin occupancy, unraveled its paradoxical yet tuneable functions, which are governed by metabolic inputs. We illustrate the key role of CTCF in controlling temporal cascade of transcriptional response, with effects on hepatic mitochondrial energetics and lipidome. Underscoring the evolutionary conservation of CTCF-dependent metabolic homeostasis, CTCF knockdown in flies abrogated starvation resistance. In summary, we demonstrate the interplay between CTCF and metabolic inputs that highlights the coupled plasticity of physiological responses and chromatin function.
Collapse
Affiliation(s)
- Devashish Sen
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Babukrishna Maniyadath
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Shreyam Chowdhury
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Arshdeep Kaur
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Subhash Khatri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Neelay Mehendale
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Snigdha Nadagouda
- Tata Institute of Fundamental Research- Hyderabad (TIFR-H), Hyderabad, Telangana 500046, India
| | - U.S. Sandra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Siddhesh S. Kamat
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
- Tata Institute of Fundamental Research- Hyderabad (TIFR-H), Hyderabad, Telangana 500046, India
| |
Collapse
|
61
|
Ramasamy S, Aljahani A, Karpinska MA, Cao TBN, Velychko T, Cruz JN, Lidschreiber M, Oudelaar AM. The Mediator complex regulates enhancer-promoter interactions. Nat Struct Mol Biol 2023:10.1038/s41594-023-01027-2. [PMID: 37430065 DOI: 10.1038/s41594-023-01027-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/30/2023] [Indexed: 07/12/2023]
Abstract
Enhancer-mediated gene activation generally requires physical proximity between enhancers and their target gene promoters. However, the molecular mechanisms by which interactions between enhancers and promoters are formed are not well understood. Here, we investigate the function of the Mediator complex in the regulation of enhancer-promoter interactions, by combining rapid protein depletion and high-resolution MNase-based chromosome conformation capture approaches. We show that depletion of Mediator leads to reduced enhancer-promoter interaction frequencies, which are associated with a strong decrease in gene expression. In addition, we find increased interactions between CTCF-binding sites upon Mediator depletion. These changes in chromatin architecture are associated with a redistribution of the Cohesin complex on chromatin and a reduction in Cohesin occupancy at enhancers. Together, our results indicate that the Mediator and Cohesin complexes contribute to enhancer-promoter interactions and provide insights into the molecular mechanisms by which communication between enhancers and promoters is regulated.
Collapse
Affiliation(s)
- Shyam Ramasamy
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Abrar Aljahani
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Magdalena A Karpinska
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - T B Ngoc Cao
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Taras Velychko
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - J Neos Cruz
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - A Marieke Oudelaar
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
62
|
Rappoport N, Chomsky E, Nagano T, Seibert C, Lubling Y, Baran Y, Lifshitz A, Leung W, Mukamel Z, Shamir R, Fraser P, Tanay A. Single cell Hi-C identifies plastic chromosome conformations underlying the gastrulation enhancer landscape. Nat Commun 2023; 14:3844. [PMID: 37386027 PMCID: PMC10310791 DOI: 10.1038/s41467-023-39549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
Embryonic development involves massive proliferation and differentiation of cell lineages. This must be supported by chromosome replication and epigenetic reprogramming, but how proliferation and cell fate acquisition are balanced in this process is not well understood. Here we use single cell Hi-C to map chromosomal conformations in post-gastrulation mouse embryo cells and study their distributions and correlations with matching embryonic transcriptional atlases. We find that embryonic chromosomes show a remarkably strong cell cycle signature. Despite that, replication timing, chromosome compartment structure, topological associated domains (TADs) and promoter-enhancer contacts are shown to be variable between distinct epigenetic states. About 10% of the nuclei are identified as primitive erythrocytes, showing exceptionally compact and organized compartment structure. The remaining cells are broadly associated with ectoderm and mesoderm identities, showing only mild differentiation of TADs and compartment structures, but more specific localized contacts in hundreds of ectoderm and mesoderm promoter-enhancer pairs. The data suggest that while fully committed embryonic lineages can rapidly acquire specific chromosomal conformations, most embryonic cells are showing plastic signatures driven by complex and intermixed enhancer landscapes.
Collapse
Affiliation(s)
- Nimrod Rappoport
- Department of Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Elad Chomsky
- Department of Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Takashi Nagano
- Laboratory for Nuclear Dynamics, Institute for Protein Research, Osaka University, Osaka, Japan
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Charlie Seibert
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Yaniv Lubling
- Department of Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Baran
- Department of Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Aviezer Lifshitz
- Department of Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Wing Leung
- Laboratory for Nuclear Dynamics, Institute for Protein Research, Osaka University, Osaka, Japan
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK
| | - Zohar Mukamel
- Department of Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Shamir
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, UK.
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| | - Amos Tanay
- Department of Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
63
|
Wang X, Bigman LS, Greenblatt HM, Yu B, Levy Y, Iwahara J. Negatively charged, intrinsically disordered regions can accelerate target search by DNA-binding proteins. Nucleic Acids Res 2023; 51:4701-4712. [PMID: 36774964 PMCID: PMC10250230 DOI: 10.1093/nar/gkad045] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/14/2023] Open
Abstract
In eukaryotes, many DNA/RNA-binding proteins possess intrinsically disordered regions (IDRs) with large negative charge, some of which involve a consecutive sequence of aspartate (D) or glutamate (E) residues. We refer to them as D/E repeats. The functional role of D/E repeats is not well understood, though some of them are known to cause autoinhibition through intramolecular electrostatic interaction with functional domains. In this work, we investigated the impacts of D/E repeats on the target DNA search kinetics for the high-mobility group box 1 (HMGB1) protein and the artificial protein constructs of the Antp homeodomain fused with D/E repeats of varied lengths. Our experimental data showed that D/E repeats of particular lengths can accelerate the target association in the overwhelming presence of non-functional high-affinity ligands ('decoys'). Our coarse-grained molecular dynamics (CGMD) simulations showed that the autoinhibited proteins can bind to DNA and transition into the uninhibited complex with DNA through an electrostatically driven induced-fit process. In conjunction with the CGMD simulations, our kinetic model can explain how D/E repeats can accelerate the target association process in the presence of decoys. This study illuminates an unprecedented role of the negatively charged IDRs in the target search process.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Lavi S Bigman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Harry M Greenblatt
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Binhan Yu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1068, USA
| |
Collapse
|
64
|
Dejosez M, Dall'Agnese A, Ramamoorthy M, Platt J, Yin X, Hogan M, Brosh R, Weintraub AS, Hnisz D, Abraham BJ, Young RA, Zwaka TP. Regulatory architecture of housekeeping genes is driven by promoter assemblies. Cell Rep 2023; 42:112505. [PMID: 37182209 PMCID: PMC10329844 DOI: 10.1016/j.celrep.2023.112505] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/22/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Genes that are key to cell identity are generally regulated by cell-type-specific enhancer elements bound by transcription factors, some of which facilitate looping to distant gene promoters. In contrast, genes that encode housekeeping functions, whose regulation is essential for normal cell metabolism and growth, generally lack interactions with distal enhancers. We find that Ronin (Thap11) assembles multiple promoters of housekeeping and metabolic genes to regulate gene expression. This behavior is analogous to how enhancers are brought together with promoters to regulate cell identity genes. Thus, Ronin-dependent promoter assemblies provide a mechanism to explain why housekeeping genes can forgo distal enhancer elements and why Ronin is important for cellular metabolism and growth control. We propose that clustering of regulatory elements is a mechanism common to cell identity and housekeeping genes but is accomplished by different factors binding distinct control elements to establish enhancer-promoter or promoter-promoter interactions, respectively.
Collapse
Affiliation(s)
- Marion Dejosez
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Alessandra Dall'Agnese
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Mahesh Ramamoorthy
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Jesse Platt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Xing Yin
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Megan Hogan
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Ran Brosh
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Abraham S Weintraub
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Denes Hnisz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brian J Abraham
- St. Jude Research Children's Hospital, Memphis, TN 38105, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Thomas P Zwaka
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA.
| |
Collapse
|
65
|
Uyehara CM, Apostolou E. 3D enhancer-promoter interactions and multi-connected hubs: Organizational principles and functional roles. Cell Rep 2023; 42:112068. [PMID: 37059094 PMCID: PMC10556201 DOI: 10.1016/j.celrep.2023.112068] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/25/2022] [Accepted: 01/20/2023] [Indexed: 04/16/2023] Open
Abstract
The spatiotemporal control of gene expression is dependent on the activity of cis-acting regulatory sequences, called enhancers, which regulate target genes over variable genomic distances and, often, by skipping intermediate promoters, suggesting mechanisms that control enhancer-promoter communication. Recent genomics and imaging technologies have revealed highly complex enhancer-promoter interaction networks, whereas advanced functional studies have started interrogating the forces behind the physical and functional communication among multiple enhancers and promoters. In this review, we first summarize our current understanding of the factors involved in enhancer-promoter communication, with a particular focus on recent papers that have revealed new layers of complexities to old questions. In the second part of the review, we focus on a subset of highly connected enhancer-promoter "hubs" and discuss their potential functions in signal integration and gene regulation, as well as the putative factors that might determine their dynamics and assembly.
Collapse
Affiliation(s)
- Christopher M Uyehara
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
66
|
Liu Z, Lee DS, Liang Y, Zheng Y, Dixon JR. Foxp3 Orchestrates Reorganization of Chromatin Architecture to Establish Regulatory T Cell Identity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529589. [PMID: 36865315 PMCID: PMC9980151 DOI: 10.1101/2023.02.22.529589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Chromatin conformation reorganization is emerging as an important layer of regulation for gene expression and lineage specification. Yet, how lineage-specific transcription factors contribute to the establishment of cell type-specific 3D chromatin architecture in the immune cells remains unclear, especially for the late stages of T cell subset differentiation and maturation. Regulatory T cells (Treg) are mainly generated in the thymus as a subpopulation of T cells specializing in suppressing excessive immune responses. Here, by comprehensively mapping 3D chromatin organization during Treg cell differentiation, we show that Treg-specific chromatin structures were progressively established during its lineage specification, and highly associated with Treg signature gene expression. Additionally, the binding sites of Foxp3, a Treg lineage specifying transcription factor, were highly enriched at Treg-specific chromatin loop anchors. Further comparison of the chromatin interactions between wide-type Tregs versus Treg cells from Foxp3 knock-in/knockout or newly-generated Foxp3 domain-swap mutant mouse revealed that Foxp3 was essential for the establishment of Treg-specific 3D chromatin architecture, although it was not dependent on the formation of the Foxp3 domain-swapped dimer. These results highlighted an underappreciated role of Foxp3 in modulating Treg-specific 3D chromatin structure formation.
Collapse
Affiliation(s)
- Zhi Liu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Sung Lee
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Life Sciences, University of Seoul, Seoul, South Korea
| | - Yuqiong Liang
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ye Zheng
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jesse R Dixon
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
67
|
Wang Y, Huang Z, Sun M, Huang W, Xia L. ETS transcription factors: Multifaceted players from cancer progression to tumor immunity. Biochim Biophys Acta Rev Cancer 2023; 1878:188872. [PMID: 36841365 DOI: 10.1016/j.bbcan.2023.188872] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
The E26 transformation specific (ETS) family comprises 28 transcription factors, the majority of which are involved in tumor initiation and development. Serving as a group of functionally heterogeneous gene regulators, ETS factors possess a structurally conserved DNA-binding domain. As one of the most prominent families of transcription factors that control diverse cellular functions, ETS activation is modulated by multiple intracellular signaling pathways and post-translational modifications. Disturbances in ETS activity often lead to abnormal changes in oncogenicity, including cancer cell survival, growth, proliferation, metastasis, genetic instability, cell metabolism, and tumor immunity. This review systematically addresses the basics and advances in studying ETS factors, from their tumor relevance to clinical translational utility, with a particular focus on elucidating the role of ETS family in tumor immunity, aiming to decipher the vital role and clinical potential of regulation of ETS factors in the cancer field.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
68
|
Zheng J, Huang J, Xia J, Zhou W, Dai L, Lin S, Gao L, Zou C. Transcription factor E2F8 is a therapeutic target in the basal-like subtype of breast cancer. Front Oncol 2023; 13:1038787. [PMID: 36814821 PMCID: PMC9939474 DOI: 10.3389/fonc.2023.1038787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Tumorigenesis in breast cancers usually accompanied by the dysregulation of transcription factors (TFs). Abnormal amplification of TFs leads aberrant expression of its downstream target genes. However, breast cancers are heterogeneous disease with different subtypes that have distinguished clinical behaviours, and the identification of prognostic TFs may enable to provide diagnosis and treatment of breast cancer based on subtypes, especially in Basal-like breast cancer. Methods The RNA-sequencing was performed to screen differential TFs in breast cancer subtypes. The GEPIA dataset analysis was used to analyze the genes expression in invasive breast carcinoma. The expression of MYBL2, HOXC13, and E2F8 was verified by qRT-PCR assay in breast cancers. The depiction analysis of co-expressed proteins was revealed using the STRING datasets. The cellular infiltration level analysis by the TISIDB and TIMER databases. The transwell assay was performed to analyze cellular migration and invasion. CCK-8 assay was used to evaluate cellular drug susceptibility for docetaxel treatment. Predicted targeted drugs in breast cancers by GSCA Lite database online. Results Kaplan-Meier plotter suggested that high expression of both E2F8 and MYBL2 in Basal-like subtype had a poor relapse-free survival. Functional enrichment results identified that apoptosis, cell cycle, and hormone ER pathway were represented the crucial regulation pathways by both E2F8 and MYBL2. In the meantime, database analysis indicated that high expression of E2F8 responded to chemotherapy, while those patients of high expression of MYBL2 responded to endocrinotherapy, and a positive correlation between the expression of E2F8 and PD-L1/CTLA4. Our cell line experiments confirmed the importance of E2F8 and MYBL2 in proliferation and chemotherapy sensitivity, possibly, the relationship with PD-L1. Additionally, we also observed that the up-regulation of E2F8 was accompanied with higher enrichments of CD4+ T cells and CD8+ T cells in breast cancers. Conclusion Taken together, our findings elucidated a prospective target in Basal-like breast cancer, providing underlying molecular biomarkers for the development of breast cancer treatment.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jingyi Huang
- Department of Clinical Medical Research Center, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jinquan Xia
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wenbin Zhou
- Department of Thyroid and Breast Surgery, Department of General Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lingyun Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Sihang Lin
- Department of Thyroid and Breast Surgery, Department of General Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lin Gao
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China,*Correspondence: Lin Gao, ; Chang Zou,
| | - Chang Zou
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, Guangdong, China,School of Life and Health Sciences, The Chinese University of Kong Hong, Shenzhen, Guangdong, China,*Correspondence: Lin Gao, ; Chang Zou,
| |
Collapse
|
69
|
Bencurova E, Akash A, Dobson RC, Dandekar T. DNA storage-from natural biology to synthetic biology. Comput Struct Biotechnol J 2023; 21:1227-1235. [PMID: 36817961 PMCID: PMC9932295 DOI: 10.1016/j.csbj.2023.01.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Natural DNA storage allows cellular differentiation, evolution, the growth of our children and controls all our ecosystems. Here, we discuss the fundamental aspects of DNA storage and recent advances in this field, with special emphasis on natural processes and solutions that can be exploited. We point out new ways of efficient DNA and nucleotide storage that are inspired by nature. Within a few years DNA-based information storage may become an attractive and natural complementation to current electronic data storage systems. We discuss rapid and directed access (e.g. DNA elements such as promotors, enhancers), regulatory signals and modulation (e.g. lncRNA) as well as integrated high-density storage and processing modules (e.g. chromosomal territories). There is pragmatic DNA storage for use in biotechnology and human genetics. We examine DNA storage as an approach for synthetic biology (e.g. light-controlled nucleotide processing enzymes). The natural polymers of DNA and RNA offer much for direct storage operations (read-in, read-out, access control). The inbuilt parallelism (many molecules at many places working at the same time) is important for fast processing of information. Using biology concepts from chromosomal storage, nucleic acid processing as well as polymer material sciences such as electronical effects in enzymes, graphene, nanocellulose up to DNA macramé , DNA wires and DNA-based aptamer field effect transistors will open up new applications gradually replacing classical information storage methods in ever more areas over time (decades).
Collapse
Affiliation(s)
- Elena Bencurova
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Aman Akash
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Renwick C.J. Dobson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany,Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany,Corresponding author at: Department of Bioinformatics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
70
|
HSFA1a modulates plant heat stress responses and alters the 3D chromatin organization of enhancer-promoter interactions. Nat Commun 2023; 14:469. [PMID: 36709329 PMCID: PMC9884265 DOI: 10.1038/s41467-023-36227-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/19/2023] [Indexed: 01/30/2023] Open
Abstract
The complex and dynamic three-dimensional organization of chromatin within the nucleus makes understanding the control of gene expression challenging, but also opens up possible ways to epigenetically modulate gene expression. Because plants are sessile, they evolved sophisticated ways to rapidly modulate gene expression in response to environmental stress, that are thought to be coordinated by changes in chromatin conformation to mediate specific cellular and physiological responses. However, to what extent and how stress induces dynamic changes in chromatin reorganization remains poorly understood. Here, we comprehensively investigated genome-wide chromatin changes associated with transcriptional reprogramming response to heat stress in tomato. Our data show that heat stress induces rapid changes in chromatin architecture, leading to the transient formation of promoter-enhancer contacts, likely driving the expression of heat-stress responsive genes. Furthermore, we demonstrate that chromatin spatial reorganization requires HSFA1a, a transcription factor (TF) essential for heat stress tolerance in tomato. In light of our findings, we propose that TFs play a key role in controlling dynamic transcriptional responses through 3D reconfiguration of promoter-enhancer contacts.
Collapse
|
71
|
Huang Z, Efthymiadou A, Liang N, Fan R, Treuter E. Antagonistic action of GPS2 and KDM1A at enhancers governs alternative macrophage activation by interleukin 4. Nucleic Acids Res 2023; 51:1067-1086. [PMID: 36610795 PMCID: PMC9943668 DOI: 10.1093/nar/gkac1230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
The Th2 cytokine interleukin 4 (IL4) promotes macrophage differentiation into alternative subtypes and plays important roles in physiology, in metabolic and inflammatory diseases, in cancer and in tissue regeneration. While the regulatory transcription factor networks governing IL4 signaling are already well-characterized, it is currently less understood which transcriptional coregulators are involved and how they operate mechanistically. In this study, we discover that G protein pathway suppressor 2 (GPS2), a core subunit of the HDAC3 corepressor complex assembled by SMRT and NCOR, represses IL4-dependent enhancer activation in mouse macrophages. Our genome-wide and gene-specific characterization revealed that, instead of directly repressing STAT6, chromatin-bound GPS2 cooperates with SMRT and NCOR to antagonize enhancer activation by lysine demethylase 1A (KDM1A, LSD1). Mechanistically, corepressor depletion increased KDM1A recruitment to enhancers linked to IL4-induced genes, accompanied by demethylation of the repressive histone marks H3K9me2/3 without affecting H3K4me1/2, the classic KDM1A substrates for demethylation in other cellular contexts. This in turn caused enhancer and gene activation already in the absence of IL4/STAT6 and sensitized the STAT6-dependent IL4 responsiveness of macrophages. Thus, our work identified with the antagonistic action of a GPS2-containing corepressor complex and the lysine demethylase KDM1A a hitherto unknown epigenetic corepressor-coactivator switching mechanism that governs alternative macrophage activation.
Collapse
Affiliation(s)
- Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Astradeni Efthymiadou
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Ning Liang
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Rongrong Fan
- Correspondence may also be addressed to Rongrong Fan. Tel: +46 8 524 81161;
| | - Eckardt Treuter
- To whom correspondence should be addressed. Tel: +46 8 524 81060;
| |
Collapse
|
72
|
Can changes in 3D genome architecture create new regulatory landscapes that contribute to phenotypic evolution? Essays Biochem 2022; 66:745-752. [PMID: 36250960 DOI: 10.1042/ebc20220057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022]
Abstract
Animal genomes are compartmentalized into insulated regulatory units named topology-associated domains (TADs). TADs insulate gene promoters from enhancers that occupy neighboring TADs. Chromosomal rearrangements that disrupt TAD structure can generate new regulatory interactions between enhancers and promoters that were once separated into different TADs, which might lead to new gene expression patterns. On the one hand, TAD rearrangements are known to cause deleterious phenotypes, but, on the other hand, rearrangements can also create novel expression patterns that may be selected during evolution because they generate advantageous phenotypes. Here, we review recent studies that explore the effects of chromosomal rearrangements and genetic perturbations on TAD structure and gene regulation in the context of development and evolution. We discuss the possible contribution of evolutionary breakpoints (EBRs) that affect TAD structure to the evolution of gene regulation and the phenotype.
Collapse
|
73
|
Dumetier B, Sauter C, Hajmirza A, Pernon B, Aucagne R, Fournier C, Row C, Guidez F, Rossi C, Lepage C, Delva L, Callanan MB. Repeat Element Activation-Driven Inflammation: Role of NFκB and Implications in Normal Development and Cancer? Biomedicines 2022; 10:biomedicines10123101. [PMID: 36551854 PMCID: PMC9775655 DOI: 10.3390/biomedicines10123101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
The human genome is composed of unique DNA sequences that encode proteins and unique sequence noncoding RNAs that are essential for normal development and cellular differentiation. The human genome also contains over 50% of genome sequences that are repeat in nature (tandem and interspersed repeats) that are now known to contribute dynamically to genetic diversity in populations, to be transcriptionally active under certain physiological conditions, and to be aberrantly active in disease states including cancer, where consequences are pleiotropic with impact on cancer cell phenotypes and on the tumor immune microenvironment. Repeat element-derived RNAs play unique roles in exogenous and endogenous cell signaling under normal and disease conditions. A key component of repeat element-derived transcript-dependent signaling occurs via triggering of innate immune receptor signaling that then feeds forward to inflammatory responses through interferon and NFκB signaling. It has recently been shown that cancer cells display abnormal transcriptional activity of repeat elements and that this is linked to either aggressive disease and treatment failure or to improved prognosis/treatment response, depending on cell context and the amplitude of the so-called 'viral mimicry' response that is engaged. 'Viral mimicry' refers to a cellular state of active antiviral response triggered by endogenous nucleic acids often derived from aberrantly transcribed endogenous retrotransposons and other repeat elements. In this paper, the literature regarding transcriptional activation of repeat elements and engagement of inflammatory signaling in normal (focusing on hematopoiesis) and cancer is reviewed with an emphasis on the role of innate immune receptor signaling, in particular by dsRNA receptors of the RIG-1 like receptor family and interferons/NFκB. How repeat element-derived RNA reprograms cell identity through RNA-guided chromatin state modulation is also discussed.
Collapse
Affiliation(s)
- Baptiste Dumetier
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Correspondence: (B.D.); (M.B.C.)
| | - Camille Sauter
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Azadeh Hajmirza
- Institute for Research in Immunology and Cancer, Montreal, QC H3C 3J7, Canada
| | - Baptiste Pernon
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Romain Aucagne
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, 21000 Dijon, France
- CRIGEN, Crispr-Functional Genomics, Dijon University Hospital and University of Burgundy, 21000 Dijon, France
| | - Cyril Fournier
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, 21000 Dijon, France
| | - Céline Row
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, 21000 Dijon, France
| | - Fabien Guidez
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Cédric Rossi
- School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Côme Lepage
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Laurent Delva
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
| | - Mary B. Callanan
- Faculty of Medicine, INSERM1231, University of Burgundy, 21000 Dijon, France
- Unit for Innovation in Genetics and Epigenetics in Oncology, Dijon University Hospital, 21000 Dijon, France
- CRIGEN, Crispr-Functional Genomics, Dijon University Hospital and University of Burgundy, 21000 Dijon, France
- Correspondence: (B.D.); (M.B.C.)
| |
Collapse
|
74
|
Zelenka T, Klonizakis A, Tsoukatou D, Papamatheakis DA, Franzenburg S, Tzerpos P, Tzonevrakis IR, Papadogkonas G, Kapsetaki M, Nikolaou C, Plewczynski D, Spilianakis C. The 3D enhancer network of the developing T cell genome is shaped by SATB1. Nat Commun 2022; 13:6954. [PMID: 36376298 PMCID: PMC9663569 DOI: 10.1038/s41467-022-34345-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanisms of tissue-specific gene expression regulation via 3D genome organization are poorly understood. Here we uncover the regulatory chromatin network of developing T cells and identify SATB1, a tissue-specific genome organizer, enriched at the anchors of promoter-enhancer loops. We have generated a T-cell specific Satb1 conditional knockout mouse which allows us to infer the molecular mechanisms responsible for the deregulation of its immune system. H3K27ac HiChIP and Hi-C experiments indicate that SATB1-dependent promoter-enhancer loops regulate expression of master regulator genes (such as Bcl6), the T cell receptor locus and adhesion molecule genes, collectively being critical for cell lineage specification and immune system homeostasis. SATB1-dependent regulatory chromatin loops represent a more refined layer of genome organization built upon a high-order scaffold provided by CTCF and other factors. Overall, our findings unravel the function of a tissue-specific factor that controls transcription programs, via spatial chromatin arrangements complementary to the chromatin structure imposed by ubiquitously expressed genome organizers.
Collapse
Affiliation(s)
- Tomas Zelenka
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Despina Tsoukatou
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Dionysios-Alexandros Papamatheakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | | | - Petros Tzerpos
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, HU-4032, Hungary
| | | | - George Papadogkonas
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Manouela Kapsetaki
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Christoforos Nikolaou
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", 16672, Vari, Greece
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Charalampos Spilianakis
- Department of Biology, University of Crete, Heraklion, Crete, Greece.
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
75
|
Yu D, Chen G, Wang Y, Wang Y, Lin R, Liu N, Zhu P, Liu H, Hu T, Feng R, Feng H, Lan F, Cai J, Chen H. Regulation of cohesin-mediated chromosome folding by PDS5 in mammals. EMBO Rep 2022; 23:e54853. [PMID: 36129789 PMCID: PMC9638874 DOI: 10.15252/embr.202254853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 09/23/2023] Open
Abstract
Cohesin regulates sister chromatid cohesion but also contributes to chromosome folding by promoting the formation of chromatin loops, a process mediated by loop extrusion. Although PDS5 regulates cohesin dynamics on chromatin, the exact function of PDS5 in cohesin-mediated chromatin looping remains unclear. Two paralogs of PDS5 exist in vertebrates, PDS5A and PDS5B. Here we show that PDS5A and PDS5B co-localize with RAD21 and CTCF at loop anchors. Rapid PDS5A or PDS5B degradation in liver cancer cells using an inducible degron system reduces chromatin loops and increases loop size. RAD21 enrichment at loop anchors is decreased upon depletion of PDS5A or PDS5B. PDS5B loss also reduces CTCF signals at loop anchors and has a stronger effect on loop enlargement compared with PDS5A. Co-depletion of PDS5A and PDS5B reduces RAD21 levels at loop anchors although the amount of cohesin on chromatin is increased. Our study provides insight into how PDS5 proteins regulate cohesin-mediated chromatin looping.
Collapse
Affiliation(s)
- Dingdang Yu
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Guoyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji HospitalShanghaiChina
- Renji‐Med X Clinical Stem Cell Research Center, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuci Wang
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yining Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Risheng Lin
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Nanbo Liu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Ping Zhu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Hang Liu
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Tao Hu
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Rui Feng
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji HospitalShanghaiChina
- Renji‐Med X Clinical Stem Cell Research Center, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fei Lan
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jiabin Cai
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Hao Chen
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
76
|
Liu S, Cao Y, Cui K, Tang Q, Zhao K. Hi-TrAC reveals division of labor of transcription factors in organizing chromatin loops. Nat Commun 2022; 13:6679. [PMID: 36335136 PMCID: PMC9637178 DOI: 10.1038/s41467-022-34276-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022] Open
Abstract
The three-dimensional genomic structure plays a critical role in gene expression, cellular differentiation, and pathological conditions. It is pivotal to elucidate fine-scale chromatin architectures, especially interactions of regulatory elements, to understand the temporospatial regulation of gene expression. In this study, we report Hi-TrAC as a proximity ligation-free, robust, and sensitive technique to profile genome-wide chromatin interactions at high-resolution among regulatory elements. Hi-TrAC detects chromatin looping among accessible regions at single nucleosome resolution. With almost half-million identified loops, we reveal a comprehensive interaction network of regulatory elements across the genome. After integrating chromatin binding profiles of transcription factors, we discover that cohesin complex and CTCF are responsible for organizing long-range chromatin loops, related to domain formation; whereas ZNF143 and HCFC1 are involved in structuring short-range chromatin loops between regulatory elements, which directly regulate gene expression. Thus, we introduce a methodology to identify a delicate and comprehensive network of cis-regulatory elements, revealing the complexity and a division of labor of transcription factors in organizing chromatin loops for genome organization and gene expression.
Collapse
Affiliation(s)
- Shuai Liu
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Yaqiang Cao
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Kairong Cui
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Qingsong Tang
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Keji Zhao
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
77
|
Ito S, Das ND, Umehara T, Koseki H. Factors and Mechanisms That Influence Chromatin-Mediated Enhancer-Promoter Interactions and Transcriptional Regulation. Cancers (Basel) 2022; 14:5404. [PMID: 36358822 PMCID: PMC9659172 DOI: 10.3390/cancers14215404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic gene expression is regulated through chromatin conformation, in which enhancers and promoters physically interact (E-P interactions). How such chromatin-mediated E-P interactions affect gene expression is not yet fully understood, but the roles of histone acetylation and methylation, pioneer transcription factors, and architectural proteins such as CCCTC binding factor (CTCF) and cohesin have recently attracted attention. Moreover, accumulated data suggest that E-P interactions are mechanistically involved in biophysical events, including liquid-liquid phase separation, and in biological events, including cancers. In this review, we discuss various mechanisms that regulate eukaryotic gene expression, focusing on emerging views regarding chromatin conformations that are involved in E-P interactions and factors that establish and maintain them.
Collapse
Affiliation(s)
- Shinsuke Ito
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Nando Dulal Das
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Immune Regulation, Advanced Research Departments, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| |
Collapse
|
78
|
Battistelli C, Garbo S, Maione R. MyoD-Induced Trans-Differentiation: A Paradigm for Dissecting the Molecular Mechanisms of Cell Commitment, Differentiation and Reprogramming. Cells 2022; 11:3435. [PMID: 36359831 PMCID: PMC9654159 DOI: 10.3390/cells11213435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 10/20/2023] Open
Abstract
The discovery of the skeletal muscle-specific transcription factor MyoD represents a milestone in the field of transcriptional regulation during differentiation and cell-fate reprogramming. MyoD was the first tissue-specific factor found capable of converting non-muscle somatic cells into skeletal muscle cells. A unique feature of MyoD, with respect to other lineage-specific factors able to drive trans-differentiation processes, is its ability to dramatically change the cell fate even when expressed alone. The present review will outline the molecular strategies by which MyoD reprograms the transcriptional regulation of the cell of origin during the myogenic conversion, focusing on the activation and coordination of a complex network of co-factors and epigenetic mechanisms. Some molecular roadblocks, found to restrain MyoD-dependent trans-differentiation, and the possible ways for overcoming these barriers, will also be discussed. Indeed, they are of critical importance not only to expand our knowledge of basic muscle biology but also to improve the generation skeletal muscle cells for translational research.
Collapse
Affiliation(s)
| | | | - Rossella Maione
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
79
|
Nguyen Q, Tran HV, Nguyen BP, Do TTT. Identifying Transcription Factors That Prefer Binding to Methylated DNA Using Reduced G-Gap Dipeptide Composition. ACS OMEGA 2022; 7:32322-32330. [PMID: 36119976 PMCID: PMC9475634 DOI: 10.1021/acsomega.2c03696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Transcription factors (TFs) play an important role in gene expression and regulation of 3D genome conformation. TFs have ability to bind to specific DNA fragments called enhancers and promoters. Some TFs bind to promoter DNA fragments which are near the transcription initiation site and form complexes that allow polymerase enzymes to bind to initiate transcription. Previous studies showed that methylated DNAs had ability to inhibit and prevent TFs from binding to DNA fragments. However, recent studies have found that there were TFs that could bind to methylated DNA fragments. The identification of these TFs is an important steppingstone to a better understanding of cellular gene expression mechanisms. However, as experimental methods are often time-consuming and labor-intensive, developing computational methods is essential. In this study, we propose two machine learning methods for two problems: (1) identifying TFs and (2) identifying TFs that prefer binding to methylated DNA targets (TFPMs). For the TF identification problem, the proposed method uses the position-specific scoring matrix for data representation and a deep convolutional neural network for modeling. This method achieved 90.56% sensitivity, 83.96% specificity, and an area under the receiver operating characteristic curve (AUC) of 0.9596 on an independent test set. For the TFPM identification problem, we propose to use the reduced g-gap dipeptide composition for data representation and the support vector machine algorithm for modeling. This method achieved 82.61% sensitivity, 64.86% specificity, and an AUC of 0.8486 on another independent test set. These results are higher than those of other studies on the same problems.
Collapse
Affiliation(s)
- Quang
H. Nguyen
- School
of Information and Communication Technology, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 100000, Vietnam
| | - Hoang V. Tran
- School
of Information and Communication Technology, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 100000, Vietnam
| | - Binh P. Nguyen
- School
of Mathematics and Statistics, Victoria
University of Wellington, Kelburn Parade, Wellington 6140, New Zealand
| | - Trang T. T. Do
- School
of Innovation, Design and Technology, Wellington
Institute of Technology, 21 Kensington Avenue, Lower Hutt 5012, New Zealand
| |
Collapse
|
80
|
Zhang H, Huo QY, Gao YQ. DNA Sequence-Dependent Binding of Linker Histone gH1 Regulates Nucleosome Conformations. J Phys Chem B 2022; 126:6771-6779. [PMID: 36062461 DOI: 10.1021/acs.jpcb.2c03785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sequence-dependent binding between DNA and proteins in chromatin is an essential part of gene expression. Linker histone H1 is an important protein in the regulation of chromatin compartmentalization and compaction, and its binding with the nucleosome is sensitive to the DNA sequence. Although the interactions of H1 and DNA have been widely investigated, the mechanism of nucleosome conformation changes induced by the DNA-sequence-dependent binding with gH1 (globular H1.0) remains largely unclear at the atomic level. In the present molecular dynamics simulations, both linker and dyad DNAs were mutated to investigate the conformational changes of the nucleosome induced by the sequence-dependent binding of gH1 based on the on-dyad binding mode. Our results indicate that gH1 is insensitive to the DNA sequence of the dyad DNA but presents an apparent preference to linker DNA with an AT-rich sequence. Moreover, this specific binding induces the entry/exit region of a nucleosome to a tight conformation and regulates the accessibility of core histones. Considering that the entry/exit region of the nucleosome is a crucial binding site for many functional proteins related to gene expression, the conformational change at this region could represent an important gene regulation signal.
Collapse
Affiliation(s)
- Hong Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qin Yuan Huo
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| |
Collapse
|
81
|
Flashner S, Swift M, Sowash A, Fahmy AN, Azizkhan-Clifford J. Transcription factor Sp1 regulates mitotic chromosome assembly and segregation. Chromosoma 2022; 131:175-191. [PMID: 35916925 PMCID: PMC9470683 DOI: 10.1007/s00412-022-00778-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
Aneuploidy is a pervasive feature of cancer cells that results from chromosome missegregation. Several transcription factors have been associated with aneuploidy; however, no studies to date have demonstrated that mammalian transcription factors directly regulate chromosome segregation during mitosis. Here, we demonstrate that the ubiquitously expressed transcription factor specificity protein 1 (Sp1), which we have previously linked to aneuploidy, has a mitosis-specific role regulating chromosome segregation. We find that Sp1 localizes to mitotic centromeres and auxin-induced rapid Sp1 degradation at mitotic onset results in chromosome segregation errors and aberrant mitotic progression. Furthermore, rapid Sp1 degradation results in anomalous mitotic chromosome assembly characterized by loss of condensin complex I localization to mitotic chromosomes and chromosome condensation defects. Consistent with these defects, Sp1 degradation results in reduced chromosome passenger complex activity and histone H3 serine 10 phosphorylation during mitosis, which is essential for condensin complex I recruitment and chromosome condensation. Together, these data provide the first evidence of a mammalian transcription factor acting specifically during mitosis to regulate chromosome segregation.
Collapse
Affiliation(s)
- Samuel Flashner
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, MS 497, Philadelphia, PA, 19102, USA
| | - Michelle Swift
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, MS 497, Philadelphia, PA, 19102, USA
| | - Aislinn Sowash
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, MS 497, Philadelphia, PA, 19102, USA
| | - Alexander N Fahmy
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, MS 497, Philadelphia, PA, 19102, USA
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N 15th Street, MS 497, Philadelphia, PA, 19102, USA.
| |
Collapse
|
82
|
Bühler MM, Martin‐Subero JI, Pan‐Hammarström Q, Campo E, Rosenquist R. Towards precision medicine in lymphoid malignancies. J Intern Med 2022; 292:221-242. [PMID: 34875132 PMCID: PMC11497354 DOI: 10.1111/joim.13423] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Careful histopathologic examination remains the cornerstone in the diagnosis of the clinically and biologically heterogeneous group of lymphoid malignancies. However, recent advances in genomic and epigenomic characterization using high-throughput technologies have significantly improved our understanding of these tumors. Although no single genomic alteration is completely specific for a lymphoma entity, some alterations are highly recurrent in certain entities and thus can provide complementary diagnostic information when integrated in the hematopathological diagnostic workup. Moreover, other alterations may provide important information regarding the clinical course, that is, prognostic or risk-stratifying markers, or response to treatment, that is, predictive markers, which may allow tailoring of the patient's treatment based on (epi)genetic characteristics. In this review, we will focus on clinically relevant diagnostic, prognostic, and predictive biomarkers identified in more common types of B-cell malignancies, and discuss how diagnostic assays designed for comprehensive molecular profiling may pave the way for the implementation of precision diagnostics/medicine approaches. We will also discuss future directions in this rapidly evolving field, including the application of single-cell sequencing and other omics technologies, to decipher clonal dynamics and evolution in lymphoid malignancies.
Collapse
Affiliation(s)
- Marco M. Bühler
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
| | - José I. Martin‐Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC)MadridSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | | | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC)MadridSpain
| | - Richard Rosenquist
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Clinical GeneticsKarolinska University LaboratoryKarolinska University HospitalSolnaSweden
| |
Collapse
|
83
|
Interplay between regulatory elements and chromatin topology in cellular lineage determination. Trends Genet 2022; 38:1048-1061. [DOI: 10.1016/j.tig.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022]
|
84
|
Pang QY, Tan TZ, Sundararajan V, Chiu YC, Chee EYW, Chung VY, Choolani MA, Huang RYJ. 3D genome organization in the epithelial-mesenchymal transition spectrum. Genome Biol 2022; 23:121. [PMID: 35637517 PMCID: PMC9150291 DOI: 10.1186/s13059-022-02687-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/09/2022] [Indexed: 12/14/2022] Open
Abstract
Background The plasticity along the epithelial-mesenchymal transition (EMT) spectrum has been shown to be regulated by various epigenetic repertoires. Emerging evidence of local chromatin conformation changes suggests that regulation of EMT may occur at a higher order of three-dimensional genome level. Results We perform Hi-C analysis and combine ChIP-seq data across cancer cell lines representing different EMT states. We demonstrate that the epithelial and mesenchymal genes are regulated distinctively. We find that EMT genes are regulated within their topologically associated domains (TADs), with only a subset of mesenchymal genes being influenced by A/B compartment switches, indicating topological remodeling is required in the transcriptional regulation of these genes. At the TAD level, epithelial and mesenchymal genes are associated with different regulatory trajectories. The epithelial gene-residing TADs are enriched with H3K27me3 marks in the mesenchymal-like states. The mesenchymal gene-residing TADs, which do not show enrichment of H3K27me3 in epithelial-like states, exhibit increased interaction frequencies with regulatory elements in the mesenchymal-like states. Conclusions We propose a novel workflow coupling immunofluorescence and dielectrophoresis to unravel EMT heterogeneity at single-cell resolution. The predicted three-dimensional structures of chromosome 10, harboring Vimentin, identify cell clusters of different states. Our results pioneer a novel avenue to decipher the complexities underlying the regulation of EMT and may infer the barriers of plasticity in the 3D genome context. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02687-x.
Collapse
Affiliation(s)
- Qing You Pang
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, 119077, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore, 117599, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore, 117599, Singapore.,Genomics and Data Analytics Core (GeDaC), Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, #12-01, Singapore, 117599, Singapore
| | - Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore, 117599, Singapore
| | - Yi-Chia Chiu
- School of Medicine, College of Medicine, National Taiwan University, No. 1, Ren-Ai Road Section I, Taipei, 10051, Taiwan
| | - Edward Yu Wing Chee
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore, 117599, Singapore
| | - Vin Yee Chung
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore, 117599, Singapore
| | - Mahesh A Choolani
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, 119077, Singapore
| | - Ruby Yun-Ju Huang
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, 119077, Singapore. .,School of Medicine, College of Medicine, National Taiwan University, No. 1, Ren-Ai Road Section I, Taipei, 10051, Taiwan. .,Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
| |
Collapse
|
85
|
Guo H, Wang M, Wang B, Guo L, Cheng Y, Wang Z, Sun YQ, Wang Y, Chang YJ, Huang XJ. PRDM1 Drives Human Primary T Cell Hyporesponsiveness by Altering the T Cell Transcriptome and Epigenome. Front Immunol 2022; 13:879501. [PMID: 35572579 PMCID: PMC9097451 DOI: 10.3389/fimmu.2022.879501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
T cell hyporesponsiveness is crucial for the functional immune system and prevents the damage induced by alloreactive T cells in autoimmune pathology and transplantation. Here, we found low expression of PRDM1 in T cells from donor and recipients both related to the occurrence of acute graft-versus-host disease (aGVHD). Our systematic multiomics analysis found that the transcription factor PRDM1 acts as a master regulator during inducing human primary T cell hyporesponsiveness. PRDM1-overexpression in primary T cells expanded Treg cell subset and increased the expression level of FOXP3, while decreased expression had the opposite effects. Moreover, the binding motifs of key T cell function regulators, such as FOS, JUN and AP-1, were enriched in PRDM1 binding sites and that PRDM1 altered the chromatin accessibility of these regions. Multiomics analysis showed that PRDM1 directly upregulated T cell inhibitory genes such as KLF2 and KLRD1 and downregulated the T cell activation gene IL2, indicating that PRDM1 could promote a tolerant transcriptional profile. Further analysis showed that PRDM1 upregulated FOXP3 expression level directly by binding to FOXP3 upstream enhancer region and indirectly by upregulating KLF2. These results indicated that PRDM1 is sufficient for inducing human primary T cell hyporesponsiveness by transcriptomic and epigenetic manners.
Collapse
Affiliation(s)
- Huidong Guo
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ming Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bixia Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Guo
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yifei Cheng
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhidong Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China.,Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies (2019RU029), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
86
|
Tian H, He Y, Xue Y, Gao YQ. Expression regulation of genes is linked to their CpG density distributions around transcription start sites. Life Sci Alliance 2022; 5:5/9/e202101302. [PMID: 35580989 PMCID: PMC9113945 DOI: 10.26508/lsa.202101302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
The CpG dinucleotide and its methylation behaviors play vital roles in gene regulation. Previous studies have divided genes into several categories based on the CpG intensity around transcription starting sites and found that housekeeping genes tend to possess high CpG density, whereas tissue-specific genes are generally characterized by low CpG density. In this study, we investigated how the CpG density distribution of a gene affects its transcription and regulation pattern. Based on the CpG density distribution around transcription starting site, by means of a semi-supervised neural network we designed, which took data augmentation into account, we divided the human genes into three categories, and genes within each cluster shared similar CpG density distribution. Not only sequence properties, these different clusters exhibited distinctly different structural features, regulatory mechanisms, correlation patterns between the expression level and CpG/TpG density, and expression and epigenetic mark variations during tumorigenesis. For instance, the activation of cluster 3 genes relies more on 3D genome reorganization, compared with cluster 1 and 2 genes, whereas cluster 2 genes showed the strongest correlation between gene expression and H3K27me3. Genes exhibiting uncoupled correlation between gene regulation and histone modifications are mainly in cluster 3. These results emphasized that the usage of epigenetic marks in gene regulation is partially rooted in the sequence property of genes such as their CpG density distribution and explained to some extent why the relation between epigenetic marks and gene expression is controversial.
Collapse
Affiliation(s)
- Hao Tian
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yueying He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China .,Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| |
Collapse
|
87
|
Llimos G, Gardeux V, Koch U, Kribelbauer JF, Hafner A, Alpern D, Pezoldt J, Litovchenko M, Russeil J, Dainese R, Moia R, Mahmoud AM, Rossi D, Gaidano G, Plass C, Lutsik P, Gerhauser C, Waszak SM, Boettiger A, Radtke F, Deplancke B. A leukemia-protective germline variant mediates chromatin module formation via transcription factor nucleation. Nat Commun 2022; 13:2042. [PMID: 35440565 PMCID: PMC9018852 DOI: 10.1038/s41467-022-29625-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Non-coding variants coordinate transcription factor (TF) binding and chromatin mark enrichment changes over regions spanning >100 kb. These molecularly coordinated regions are named "variable chromatin modules" (VCMs), providing a conceptual framework of how regulatory variation might shape complex traits. To better understand the molecular mechanisms underlying VCM formation, here, we mechanistically dissect a VCM-modulating noncoding variant that is associated with reduced chronic lymphocytic leukemia (CLL) predisposition and disease progression. This common, germline variant constitutes a 5-bp indel that controls the activity of an AXIN2 gene-linked VCM by creating a MEF2 binding site, which, upon binding, activates a super-enhancer-like regulatory element. This triggers a large change in TF binding activity and chromatin state at an enhancer cluster spanning >150 kb, coinciding with subtle, long-range chromatin compaction and robust AXIN2 up-regulation. Our results support a model in which the indel acts as an AXIN2 VCM-activating TF nucleation event, which modulates CLL pathology.
Collapse
Affiliation(s)
- Gerard Llimos
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vincent Gardeux
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ute Koch
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Judith F Kribelbauer
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Antonina Hafner
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Daniel Alpern
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joern Pezoldt
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Maria Litovchenko
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Cancer Research UK Lung Cancer Centre of Excellence, University College London (UCL) Cancer Institute, Cancer Genome Evolution Research Group, London, UK
| | - Julie Russeil
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Riccardo Dainese
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Abdurraouf Mokhtar Mahmoud
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Rossi
- Oncology Institute of Southern Switzerland, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clarissa Gerhauser
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Alistair Boettiger
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Freddy Radtke
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
88
|
Rinaldi L, Fettweis G, Kim S, Garcia DA, Fujiwara S, Johnson TA, Tettey TT, Ozbun L, Pegoraro G, Puglia M, Blagoev B, Upadhyaya A, Stavreva DA, Hager GL. The glucocorticoid receptor associates with the cohesin loader NIPBL to promote long-range gene regulation. SCIENCE ADVANCES 2022; 8:eabj8360. [PMID: 35353576 PMCID: PMC8967222 DOI: 10.1126/sciadv.abj8360] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/07/2022] [Indexed: 05/13/2023]
Abstract
The cohesin complex is central to chromatin looping, but mechanisms by which these long-range chromatin interactions are formed and persist remain unclear. We demonstrate that interactions between a transcription factor (TF) and the cohesin loader NIPBL regulate enhancer-dependent gene activity. Using mass spectrometry, genome mapping, and single-molecule tracking methods, we demonstrate that the glucocorticoid (GC) receptor (GR) interacts with NIPBL and the cohesin complex at the chromatin level, promoting loop extrusion and long-range gene regulation. Real-time single-molecule experiments show that loss of cohesin markedly diminishes the concentration of TF molecules at specific nuclear confinement sites, increasing TF local concentration and promoting gene regulation. Last, patient-derived acute myeloid leukemia cells harboring cohesin mutations exhibit a reduced response to GCs, suggesting that the GR-NIPBL-cohesin interaction is defective in these patients, resulting in poor response to GC treatment.
Collapse
Affiliation(s)
- Lorenzo Rinaldi
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sohyoung Kim
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A. Garcia
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Saori Fujiwara
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas A. Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theophilus T. Tettey
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laurent Ozbun
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- High-Throughput Imaging Facility (HiTIF), Center for Cancer Research (CCR), NCI/NIH, Bethesda, MD 20892, USA
| | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- High-Throughput Imaging Facility (HiTIF), Center for Cancer Research (CCR), NCI/NIH, Bethesda, MD 20892, USA
| | - Michele Puglia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Diana A. Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
89
|
Herrmann JC, Beagrie RA, Hughes JR. Making connections: enhancers in cellular differentiation. Trends Genet 2022; 38:395-408. [PMID: 34753603 DOI: 10.1016/j.tig.2021.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/23/2023]
Abstract
Deciphering the process by which hundreds of distinct cell types emerge from a single zygote to form a complex multicellular organism remains one of the greatest challenges in biological research. Enhancers are known to be central to cell type-specific gene expression, yet many questions regarding how these genomic elements interact both temporally and spatially with other cis- and trans-acting factors to control transcriptional activity during differentiation and development remain unanswered. Here, we review our current understanding of the role of enhancers and their interactions in this context and highlight recent progress achieved with experimental methods of unprecedented resolution.
Collapse
Affiliation(s)
- Jennifer C Herrmann
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Robert A Beagrie
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
90
|
Yan C, Zhang N, Wang Q, Fu Y, Zhao H, Wang J, Wu G, Wang F, Li X, Liao H. Full-length transcriptome sequencing reveals the molecular mechanism of potato seedlings responding to low-temperature. BMC PLANT BIOLOGY 2022; 22:125. [PMID: 35300606 PMCID: PMC8932150 DOI: 10.1186/s12870-022-03461-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Potato (Solanum tuberosum L.) is one of the world's most important crops, the cultivated potato is frost-sensitive, and low-temperature severely influences potato production. However, the mechanism by which potato responds to low-temperature stress is unclear. In this research, we apply a combination of second-generation sequencing and third-generation sequencing technologies to sequence full-length transcriptomes in low-temperature-sensitive cultivars to identify the important genes and main pathways related to low-temperature resistance. RESULTS In this study, we obtained 41,016 high-quality transcripts, which included 15,189 putative new transcripts. Amongst them, we identified 11,665 open reading frames, 6085 simple sequence repeats out of the potato dataset. We used public available genomic contigs to analyze the gene features, simple sequence repeat, and alternative splicing event of 24,658 non-redundant transcript sequences, predicted the coding sequence and identified the alternative polyadenylation. We performed cluster analysis, GO, and KEGG functional analysis of 4518 genes that were differentially expressed between the different low-temperature treatments. We examined 36 transcription factor families and identified 542 transcription factors in the differentially expressed genes, and 64 transcription factors were found in the AP2 transcription factor family which was the most. We measured the malondialdehyde, soluble sugar, and proline contents and the expression genes changed associated with low temperature resistance in the low-temperature treated leaves. We also tentatively speculate that StLPIN10369.5 and StCDPK16 may play a central coordinating role in the response of potatoes to low temperature stress. CONCLUSIONS Overall, this study provided the first large-scale full-length transcriptome sequencing of potato and will facilitate structure-function genetic and comparative genomics studies of this important crop.
Collapse
Affiliation(s)
- Chongchong Yan
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China.
| | - Nan Zhang
- Anhui Vocational College of City Management, Hefei, 231635, Anhui, China
| | - Qianqian Wang
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Yuying Fu
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Hongyuan Zhao
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Jiajia Wang
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Gang Wu
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Feng Wang
- Jieshou County Agricultural Technology Promotion Center, Jieshou, 236500, Anhui, China
| | - Xueyan Li
- Funan County Agricultural Technology Promotion Center, Funan, 236300, Anhui, China
| | - Huajun Liao
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China.
| |
Collapse
|
91
|
Bourbon HMG, Benetah MH, Guillou E, Mojica-Vazquez LH, Baanannou A, Bernat-Fabre S, Loubiere V, Bantignies F, Cavalli G, Boube M. A shared ancient enhancer element differentially regulates the bric-a-brac tandem gene duplicates in the developing Drosophila leg. PLoS Genet 2022; 18:e1010083. [PMID: 35294439 PMCID: PMC8959175 DOI: 10.1371/journal.pgen.1010083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/28/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
Gene duplications and transcriptional enhancer emergence/modifications are thought having greatly contributed to phenotypic innovations during animal evolution. Nevertheless, little is known about how enhancers evolve after gene duplication and how regulatory information is rewired between duplicated genes. The Drosophila melanogaster bric-a-brac (bab) complex, comprising the tandem paralogous genes bab1 and bab2, provides a paradigm to address these issues. We previously characterized an intergenic enhancer (named LAE) regulating bab2 expression in the developing legs. We show here that bab2 regulators binding directly the LAE also govern bab1 expression in tarsal cells. LAE excision by CRISPR/Cas9-mediated genome editing reveals that this enhancer appears involved but not strictly required for bab1 and bab2 co-expression in leg tissues. Instead, the LAE enhancer is critical for paralog-specific bab2 expression along the proximo-distal leg axis. Chromatin features and phenotypic rescue experiments indicate that LAE functions partly redundantly with leg-specific regulatory information overlapping the bab1 transcription unit. Phylogenomics analyses indicate that (i) the bab complex originates from duplication of an ancestral singleton gene early on within the Cyclorrhapha dipteran sublineage, and (ii) LAE sequences have been evolutionarily-fixed early on within the Brachycera suborder thus predating the gene duplication event. This work provides new insights on enhancers, particularly about their emergence, maintenance and functional diversification during evolution.
Collapse
Affiliation(s)
- Henri-Marc G. Bourbon
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit, Federal University of Toulouse, Toulouse, France
| | - Mikhail H. Benetah
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit, Federal University of Toulouse, Toulouse, France
| | - Emmanuelle Guillou
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit, Federal University of Toulouse, Toulouse, France
| | - Luis Humberto Mojica-Vazquez
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit, Federal University of Toulouse, Toulouse, France
| | - Aissette Baanannou
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit, Federal University of Toulouse, Toulouse, France
| | - Sandra Bernat-Fabre
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit, Federal University of Toulouse, Toulouse, France
| | - Vincent Loubiere
- Institute of Human Genetics, University of Montpellier, CNRS Montpellier, France
| | - Frédéric Bantignies
- Institute of Human Genetics, University of Montpellier, CNRS Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, University of Montpellier, CNRS Montpellier, France
| | - Muriel Boube
- Center for Integrative Biology, Molecular Cellular and Developmental (MCD) Biology Unit, Federal University of Toulouse, Toulouse, France
- * E-mail:
| |
Collapse
|
92
|
Schmitz RJ, Grotewold E, Stam M. Cis-regulatory sequences in plants: Their importance, discovery, and future challenges. THE PLANT CELL 2022; 34:718-741. [PMID: 34918159 PMCID: PMC8824567 DOI: 10.1093/plcell/koab281] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/20/2021] [Indexed: 05/19/2023]
Abstract
The identification and characterization of cis-regulatory DNA sequences and how they function to coordinate responses to developmental and environmental cues is of paramount importance to plant biology. Key to these regulatory processes are cis-regulatory modules (CRMs), which include enhancers and silencers. Despite the extraordinary advances in high-quality sequence assemblies and genome annotations, the identification and understanding of CRMs, and how they regulate gene expression, lag significantly behind. This is especially true for their distinguishing characteristics and activity states. Here, we review the current knowledge on CRMs and breakthrough technologies enabling identification, characterization, and validation of CRMs; we compare the genomic distributions of CRMs with respect to their target genes between different plant species, and discuss the role of transposable elements harboring CRMs in the evolution of gene expression. This is an exciting time to study cis-regulomes in plants; however, significant existing challenges need to be overcome to fully understand and appreciate the role of CRMs in plant biology and in crop improvement.
Collapse
Affiliation(s)
- Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
93
|
Freeman BC. Genome Organization and Dynamics Specialty Grand Challenge. Front Mol Biosci 2022; 8:818707. [PMID: 35036413 PMCID: PMC8758561 DOI: 10.3389/fmolb.2021.818707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
|
94
|
Salbert G, Sérandour AA, Staels B, Lefebvre P, Eeckhoute J. The conundrum of the functional relationship between transcription factors and chromatin. Epigenomics 2022; 14:223-225. [PMID: 35034474 DOI: 10.2217/epi-2021-0509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Gilles Salbert
- Université de Rennes 1, UMR6290 CNRS, Institut de Génétique et Développement de Rennes, Campus de Beaulieu, 35042, Rennes Cedex, France
| | | | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000, Lille, France
| |
Collapse
|
95
|
Wang R, Chen F, Chen Q, Wan X, Shi M, Chen AK, Ma Z, Li G, Wang M, Ying Y, Liu Q, Li H, Zhang X, Ma J, Zhong J, Chen M, Zhang MQ, Zhang Y, Chen Y, Zhu D. MyoD is a 3D genome structure organizer for muscle cell identity. Nat Commun 2022; 13:205. [PMID: 35017543 PMCID: PMC8752600 DOI: 10.1038/s41467-021-27865-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
The genome exists as an organized, three-dimensional (3D) dynamic architecture, and each cell type has a unique 3D genome organization that determines its cell identity. An unresolved question is how cell type-specific 3D genome structures are established during development. Here, we analyzed 3D genome structures in muscle cells from mice lacking the muscle lineage transcription factor (TF), MyoD, versus wild-type mice. We show that MyoD functions as a “genome organizer” that specifies 3D genome architecture unique to muscle cell development, and that H3K27ac is insufficient for the establishment of MyoD-induced chromatin loops in muscle cells. Moreover, we present evidence that other cell lineage-specific TFs might also exert functional roles in orchestrating lineage-specific 3D genome organization during development. Pioneer transcription factors (TFs) have been proposed to act as protein anchors to orchestrate cell type-specific 3D genome architecture. MyoD is a pioneer TF for myogenic lineage specification. Here the authors provide further support for the role of MyoD in 3D genome architecture in muscle stem cells by comparing MyoD knockout and wild-type mice.
Collapse
Affiliation(s)
- Ruiting Wang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Fengling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China
| | - Qian Chen
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Xin Wan
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Minglei Shi
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871, Beijing, China
| | - Zhao Ma
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871, Beijing, China.,Department of Biomedical Engineering, College of Engineering, Peking University, 100871, Beijing, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellent in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Science, 100049, Beijing, China
| | - Min Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellent in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Science, 100049, Beijing, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871, Beijing, China.,Department of Biomedical Engineering, College of Engineering, Peking University, 100871, Beijing, China
| | - Qinyao Liu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Hu Li
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510320, Guangzhou, China
| | - Xu Zhang
- Beijing institute of collaborative innovation, 100094, Beijing, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Jiayun Zhong
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Meihong Chen
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China. .,MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Medicine, Tsinghua University, 100084, Beijing, China. .,Department of Biological Sciences, Center for Systems Biology, The University of Texas, Dallas 800 West Campbell Road, RL11, Richardson, TX, 75080-3021, USA.
| | - Yong Zhang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China.
| | - Yang Chen
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China. .,MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, 100084, Beijing, China. .,MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Medicine, Tsinghua University, 100084, Beijing, China.
| | - Dahai Zhu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, 100005, Beijing, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510320, Guangzhou, China.
| |
Collapse
|
96
|
Li X, Han M, Zhang H, Liu F, Pan Y, Zhu J, Liao Z, Chen X, Zhang B. Structures and biological functions of zinc finger proteins and their roles in hepatocellular carcinoma. Biomark Res 2022; 10:2. [PMID: 35000617 PMCID: PMC8744215 DOI: 10.1186/s40364-021-00345-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Zinc finger proteins are transcription factors with the finger domain, which plays a significant role in gene regulation. As the largest family of transcription factors in the human genome, zinc finger (ZNF) proteins are characterized by their different DNA binding motifs, such as C2H2 and Gag knuckle. Different kinds of zinc finger motifs exhibit a wide variety of biological functions. Zinc finger proteins have been reported in various diseases, especially in several cancers. Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated death worldwide, especially in China. Most of HCC patients have suffered from hepatitis B virus (HBV) and hepatitis C virus (HCV) injection for a long time. Although the surgical operation of HCC has been extremely developed, the prognosis of HCC is still very poor, and the underlying mechanisms in HCC tumorigenesis are still not completely understood. Here, we summarize multiple functions and recent research of zinc finger proteins in HCC tumorigenesis and progression. We also discuss the significance of zinc finger proteins in HCC diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Xinxin Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Jinghan Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| |
Collapse
|
97
|
Teague CD, Nestler EJ. Key transcription factors mediating cocaine-induced plasticity in the nucleus accumbens. Mol Psychiatry 2022; 27:687-709. [PMID: 34079067 PMCID: PMC8636523 DOI: 10.1038/s41380-021-01163-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/01/2023]
Abstract
Repeated cocaine use induces coordinated changes in gene expression that drive plasticity in the nucleus accumbens (NAc), an important component of the brain's reward circuitry, and promote the development of maladaptive, addiction-like behaviors. Studies on the molecular basis of cocaine action identify transcription factors, a class of proteins that bind to specific DNA sequences and regulate transcription, as critical mediators of this cocaine-induced plasticity. Early methods to identify and study transcription factors involved in addiction pathophysiology primarily relied on quantifying the expression of candidate genes in bulk brain tissue after chronic cocaine treatment, as well as conventional overexpression and knockdown techniques. More recently, advances in next generation sequencing, bioinformatics, cell-type-specific targeting, and locus-specific neuroepigenomic editing offer a more powerful, unbiased toolbox to identify the most important transcription factors that drive drug-induced plasticity and to causally define their downstream molecular mechanisms. Here, we synthesize the literature on transcription factors mediating cocaine action in the NAc, discuss the advancements and remaining limitations of current experimental approaches, and emphasize recent work leveraging bioinformatic tools and neuroepigenomic editing to study transcription factors involved in cocaine addiction.
Collapse
|
98
|
Vervoort SJ, Devlin JR, Kwiatkowski N, Teng M, Gray NS, Johnstone RW. Targeting transcription cycles in cancer. Nat Rev Cancer 2022; 22:5-24. [PMID: 34675395 DOI: 10.1038/s41568-021-00411-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Accurate control of gene expression is essential for normal development and dysregulation of transcription underpins cancer onset and progression. Similar to cell cycle regulation, RNA polymerase II-driven transcription can be considered as a unidirectional multistep cycle, with thousands of unique transcription cycles occurring in concert within each cell. Each transcription cycle comprises recruitment, initiation, pausing, elongation, termination and recycling stages that are tightly controlled by the coordinated action of transcriptional cyclin-dependent kinases and their cognate cyclins as well as the opposing activity of transcriptional phosphatases. Oncogenic dysregulation of transcription can entail defective control of gene expression, either at select loci or more globally, impacting a large proportion of the genome. The resultant dependency on the core-transcriptional machinery is believed to render 'transcriptionally addicted' cancers sensitive to perturbation of transcription. Based on these findings, small molecules targeting transcriptional cyclin-dependent kinases and associated proteins hold promise for the treatment of cancer. Here, we utilize the transcription cycles concept to explain how dysregulation of these finely tuned gene expression processes may drive tumorigenesis and how therapeutically beneficial responses may arise from global or selective transcriptional perturbation. This conceptual framework helps to explain tumour-selective transcriptional dependencies and facilitates the rational design of combination therapies.
Collapse
Affiliation(s)
- Stephin J Vervoort
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer R Devlin
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas Kwiatkowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingxing Teng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA.
| | - Ricky W Johnstone
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
99
|
Moolhuijsen LME, Louwers YV, McLuskey A, Broer L, Uitterlinden AG, Verdiesen RMG, Sisk RK, Dunaif A, Laven JSE, Visser JA. OUP accepted manuscript. Hum Reprod 2022; 37:1544-1556. [PMID: 35451015 PMCID: PMC9247424 DOI: 10.1093/humrep/deac082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
STUDY QUESTION Do polymorphisms in the anti-Müllerian hormone (AMH) promoter have an effect on AMH levels in patients with polycystic ovary syndrome (PCOS)? SUMMARY ANSWER We have identified a novel AMH promoter polymorphism rs10406324 that is associated with lower serum AMH levels and is suggested to play a role in the mechanism of regulation of AMH gene expression in women. WHAT IS KNOWN ALREADY Follicle number is positively correlated with serum AMH levels, reflected by elevated AMH levels in women with PCOS. In addition, it is suggested that AMH production per follicle is higher in women with PCOS than in normo-ovulatory women, implying an altered regulation of AMH in PCOS. STUDY DESIGN, SIZE, DURATION A discovery cohort of 655 PCOS women of Northern European ancestry and both an internal and external validation PCOS cohort (n = 458 and n = 321, respectively) were included in this study. Summary-level data of an AMH genome-wide association study meta-analysis including 7049 normo-ovulatory women was included as a control cohort. A genetic approach was taken through association analysis and in silico analysis of the associated variants in the AMH promoter. In vitro analysis was performed to investigate the functional mechanisms. PARTICIPANTS/MATERIALS, SETTING, METHODS All common two-allelic single-nucleotide polymorphisms (SNPs) in the region Chr19:2 245 353–2 250 827 bp (Build 37) were selected for the analysis. Linear regression analyses were performed to determine the association between SNPs in the AMH promoter region and serum AMH levels. For the in silico analysis, the webtools ‘HaploReg’ v4.1 for ENCODE prediction weight matrices and ‘atSNP’ were used. In vitro analysis was performed using KK1 cells, a mouse granulosa cell line and COV434 cells, a human granulosa tumor cell line. Cells were transfected with the reference or the variant human AMH promoter reporter construct together with several transcription factors (TFs). Dual-Glo® Luciferase Assay was performed to measure the luciferase activity. MAIN RESULTS AND THE ROLE OF CHANCE Polymorphism rs10406324 was significantly associated with serum AMH levels in all three PCOS cohorts. Carriers of the minor allele G had significantly lower log-transformed serum AMH levels compared to non-carriers (P = 8.58 × 10−8, P = 1.35 × 10−3 and P = 1.24 × 10−3, respectively). This result was validated in a subsequent meta-analysis (P = 3.24 × 10−12). Interestingly, rs10406324 was not associated with follicle count, nor with other clinical traits. Also, in normo-ovulatory women, the minor allele of this variant was associated with lower serum AMH levels (P = 1.04 × 10−5). These findings suggest that polymorphism rs10406324 plays a role in the regulation of AMH expression, irrespective of clinical background. In silico analysis suggested a decreased binding affinity of the TFs steroidogenenic factor 1, estrogen-related receptor alpha and glucocorticoid receptor to the minor allele G variant, however in vitro analysis did not show a difference in promoter activity between the A and G allele. LIMITATIONS, REASONS FOR CAUTION Functional analyses were performed in a mouse and a human granulosa cell line using an AMH promoter reporter construct. This may have limited assessment of the impact of the polymorphism on higher order chromatin structures. Human granulosa cells generated from induced pluripotent stem cells, combined with gene editing, may provide a method to elucidate the exact mechanism behind the decrease in serum AMH levels in carriers of the −210 G allele. We acknowledge that the lack of follicle number in the external validation and the control cohort is a limitation of the paper. Although we observed that the association between rs10406324 and AMH levels was independent of follicle number in our discovery and internal validation PCOS cohorts, we cannot fully rule out that the observed effects on serum AMH levels are, in part, caused by differences in follicle number. WIDER IMPLICATIONS OF THE FINDINGS These results suggest that variations in serum AMH levels are not only caused by differences in follicle number but also by genetic factors. Therefore, the genetic context should be taken into consideration when assessing serum AMH levels in women. This may have clinical consequences when serum AMH levels are used as a marker for the polycystic ovarian morphology phenotype. STUDY FUNDING/COMPETING INTEREST(S) No external funding was used. J.S.E.L. has received consultancy fees from the following companies: Ferring, Roche Diagnostics and Ansh Labs and has received travel reimbursement from Ferring. J.A.V. has received royalties from AMH assays, paid to the institute/lab with no personal financial gain. The other authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Loes M E Moolhuijsen
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Yvonne V Louwers
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Anke McLuskey
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Renée M G Verdiesen
- Division of Molecular Pathology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ryan K Sisk
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrea Dunaif
- Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joop S E Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
100
|
Yin X, Liu J, Wang X, Yang T, Li G, Shang Y, Teng X, Yu H, Wang S, Huang W. Identification of Key Transcription Factors and Immune Infiltration Patterns Associated With Breast Cancer Prognosis Using WGCNA and Cox Regression Analysis. Front Oncol 2021; 11:742792. [PMID: 34993131 PMCID: PMC8724129 DOI: 10.3389/fonc.2021.742792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/30/2021] [Indexed: 12/01/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and the second leading cause of cancer death among women worldwide. Therefore, the need for effective breast cancer treatment is urgent. Transcription factors (TFs) directly participate in gene transcription, and their dysregulation plays a key role in breast cancer. Our study identified 459 differentially expressed TFs between tumor and normal samples from The Cancer Genome Atlas database. Based on gene expression analysis and weighted gene co-expression network analysis, the co-expression yellow module was found to be integral for breast cancer progression. A total of 121 genes in the yellow module were used for function enrichment. To further confirm prognosis-related TFs, COX regression and LASSO analyses were performed; consequently, a prognostic risk model was constructed, and its validity was verified. Ten prognosis-related TFs were identified according to their expression profile, survival probability, and target genes. COPS5, HDAC2, and NONO were recognized as hub TFs in breast cancer. These TFs were highly expressed in human breast cancer cell lines and clinical breast cancer samples; this result was consistent with the information from multiple databases. Immune infiltration analysis revealed that the proportions of resting dendritic and mast cells were greater in the low-risk group than those in the high-risk group. Thus, in this study, we identified three hub biomarkers related to breast cancer prognosis. The results provide a framework for the co-expression of TF modules and immune infiltration in breast cancer.
Collapse
Affiliation(s)
- Xin Yin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiaxiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianshu Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Gen Li
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yaxin Shang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuang Wang
- Department of Cardio Surgery Center, Shandong Second Provincial General Hospital, Jinan, China
- *Correspondence: Shuang Wang, ; Wei Huang,
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Shuang Wang, ; Wei Huang,
| |
Collapse
|