51
|
Kline C, Jain P, Kilburn L, Bonner ER, Gupta N, Crawford JR, Banerjee A, Packer RJ, Villanueva-Meyer J, Luks T, Zhang Y, Kambhampati M, Zhang J, Yadavilli S, Zhang B, Gaonkar KS, Rokita JL, Kraya A, Kuhn J, Liang W, Byron S, Berens M, Molinaro A, Prados M, Resnick A, Waszak SM, Nazarian J, Mueller S. Upfront Biology-Guided Therapy in Diffuse Intrinsic Pontine Glioma: Therapeutic, Molecular, and Biomarker Outcomes from PNOC003. Clin Cancer Res 2022; 28:3965-3978. [PMID: 35852795 PMCID: PMC9475246 DOI: 10.1158/1078-0432.ccr-22-0803] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 07/15/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE PNOC003 is a multicenter precision medicine trial for children and young adults with newly diagnosed diffuse intrinsic pontine glioma (DIPG). PATIENTS AND METHODS Patients (3-25 years) were enrolled on the basis of imaging consistent with DIPG. Biopsy tissue was collected for whole-exome and mRNA sequencing. After radiotherapy (RT), patients were assigned up to four FDA-approved drugs based on molecular tumor board recommendations. H3K27M-mutant circulating tumor DNA (ctDNA) was longitudinally measured. Tumor tissue and matched primary cell lines were characterized using whole-genome sequencing and DNA methylation profiling. When applicable, results were verified in an independent cohort from the Children's Brain Tumor Network (CBTN). RESULTS Of 38 patients enrolled, 28 patients (median 6 years, 10 females) were reviewed by the molecular tumor board. Of those, 19 followed treatment recommendations. Median overall survival (OS) was 13.1 months [95% confidence interval (CI), 11.2-18.4] with no difference between patients who followed recommendations and those who did not. H3K27M-mutant ctDNA was detected at baseline in 60% of cases tested and associated with response to RT and survival. Eleven cell lines were established, showing 100% fidelity of key somatic driver gene alterations in the primary tumor. In H3K27-altered DIPGs, TP53 mutations were associated with worse OS (TP53mut 11.1 mo; 95% CI, 8.7-14; TP53wt 13.3 mo; 95% CI, 11.8-NA; P = 3.4e-2), genome instability (P = 3.1e-3), and RT resistance (P = 6.4e-4). The CBTN cohort confirmed an association between TP53 mutation status, genome instability, and clinical outcome. CONCLUSIONS Upfront treatment-naïve biopsy provides insight into clinically relevant molecular alterations and prognostic biomarkers for H3K27-altered DIPGs.
Collapse
Affiliation(s)
- Cassie Kline
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Payal Jain
- Division of Neurosurgery, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lindsay Kilburn
- Department of Hematology and Oncology, Children's National Hospital, Washington, DC
| | - Erin R. Bonner
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
- Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, California
| | - John R. Crawford
- Department of Neuroscience, University of California, San Diego, California
- Rady Children's Hospital San Diego, San Diego, California
| | - Anu Banerjee
- Department of Neurological Surgery, University of California, San Francisco, California
- Department of Pediatrics, University of California, San Francisco, California
| | - Roger J. Packer
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington, DC
| | - Javier Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Tracy Luks
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Yalan Zhang
- Department of Neurological Surgery, University of California, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Madhuri Kambhampati
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
| | - Jie Zhang
- Department of Neurology, University of California, San Francisco, California
| | - Sridevi Yadavilli
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
| | - Bo Zhang
- Division of Neurosurgery, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Krutika S. Gaonkar
- Division of Neurosurgery, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jo Lynne Rokita
- Division of Neurosurgery, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Adam Kraya
- Division of Neurosurgery, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - John Kuhn
- College of Pharmacy, University of Texas Health Science Center, San Antonio, Texas
| | - Winnie Liang
- Translational Genomic Research Institute (TGEN), Phoenix, Arizona
| | - Sara Byron
- Translational Genomic Research Institute (TGEN), Phoenix, Arizona
| | - Michael Berens
- Translational Genomic Research Institute (TGEN), Phoenix, Arizona
| | - Annette Molinaro
- Department of Neurological Surgery, University of California, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Michael Prados
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Adam Resnick
- Division of Neurosurgery, Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sebastian M. Waszak
- Department of Neurology, University of California, San Francisco, California
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Division of Pediatric and Adolescent Medicine, Department of Pediatric Research, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
- Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Sabine Mueller
- Department of Neurological Surgery, University of California, San Francisco, California
- Department of Pediatrics, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
52
|
Pal S, Kaplan JP, Nguyen H, Stopka SA, Savani MR, Regan MS, Nguyen QD, Jones KL, Moreau LA, Peng J, Dipiazza MG, Perciaccante AJ, Zhu X, Hunsel BR, Liu KX, Alexandrescu S, Drissi R, Filbin MG, McBrayer SK, Agar NYR, Chowdhury D, Haas-Kogan DA. A druggable addiction to de novo pyrimidine biosynthesis in diffuse midline glioma. Cancer Cell 2022; 40:957-972.e10. [PMID: 35985342 PMCID: PMC9575661 DOI: 10.1016/j.ccell.2022.07.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 12/18/2022]
Abstract
Diffuse midline glioma (DMG) is a uniformly fatal pediatric cancer driven by oncohistones that do not readily lend themselves to drug development. To identify druggable targets for DMG, we conducted a genome-wide CRISPR screen that reveals a DMG selective dependency on the de novo pathway for pyrimidine biosynthesis. This metabolic vulnerability reflects an elevated rate of uridine/uracil degradation that depletes DMG cells of substrates for the alternate salvage pyrimidine biosynthesis pathway. A clinical stage inhibitor of DHODH (rate-limiting enzyme in the de novo pathway) diminishes uridine-5'-phosphate (UMP) pools, generates DNA damage, and induces apoptosis through suppression of replication forks-an "on-target" effect, as shown by uridine rescue. Matrix-assisted laser desorption/ionization (MALDI) mass spectroscopy imaging demonstrates that this DHODH inhibitor (BAY2402234) accumulates in the brain at therapeutically relevant concentrations, suppresses de novo pyrimidine biosynthesis in vivo, and prolongs survival of mice bearing intracranial DMG xenografts, highlighting BAY2402234 as a promising therapy against DMGs.
Collapse
Affiliation(s)
- Sharmistha Pal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jakub P Kaplan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Huy Nguyen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Milan R Savani
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Kristen L Jones
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Lisa A Moreau
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jingyu Peng
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marina G Dipiazza
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew J Perciaccante
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaoting Zhu
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Bradley R Hunsel
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kevin X Liu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Radiation Oncology, Brigham and Women's Hospital, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Sanda Alexandrescu
- Department of Pathology, Harvard Medical School Boston, Boston Children's Hospital, 300 Longwood Avenue, Bader 104, Boston, MA 02115, USA
| | - Rachid Drissi
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Samuel K McBrayer
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Radiation Oncology, Brigham and Women's Hospital, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
53
|
Sun Y, Yan K, Wang Y, Xu C, Wang D, Zhou W, Guo S, Han Y, Tang L, Shao Y, Shan S, Zhang QC, Tang Y, Zhang L, Xi Q. Context-dependent tumor-suppressive BMP signaling in diffuse intrinsic pontine glioma regulates stemness through epigenetic regulation of CXXC5. NATURE CANCER 2022; 3:1105-1122. [PMID: 35915262 DOI: 10.1038/s43018-022-00408-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The most lethal subtype of diffuse intrinsic pontine glioma (DIPG) is H3K27M. Although ACVR1 mutations have been implicated in the pathogenesis of this currently incurable disease, the impacts of bone morphogenetic protein (BMP) signaling on more than 60% of H3K27M DIPG carrying ACVR1 wild-type remain unknown. Here we show that BMP ligands exert potent tumor-suppressive effects against H3.3K27M and ACVR1 WT DIPG in a SMAD-dependent manner. Specifically, clinical data revealed that many DIPG tumors have exploited the capacity of CHRDL1 to hijack BMP ligands. We discovered that activation of BMP signaling promotes the exit of DIPG tumor cells from 'prolonged stem-cell-like' state to differentiation by epigenetically regulating CXXC5, which acts as a tumor suppressor and positive regulator of BMP signaling. Beyond showing how BMP signaling impacts DIPG, our study also identified the potent antitumor efficacy of Dacinostat for DIPG. Thus, our study delineates context-dependent features of the BMP signaling pathway in a DIPG subtype.
Collapse
Affiliation(s)
- Ye Sun
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Cheng Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dan Wang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Zhou
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuning Guo
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujie Han
- Department of Pathophysiology, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Tang
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China
| | - Yanqiu Shao
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shaobo Shan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiangfeng C Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujie Tang
- Department of Pathophysiology, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Key Laboratory of Brain Tumor, Beijing, China.
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
54
|
Pan Y, Monje M. Neuron-Glial Interactions in Health and Brain Cancer. Adv Biol (Weinh) 2022; 6:e2200122. [PMID: 35957525 PMCID: PMC9845196 DOI: 10.1002/adbi.202200122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Indexed: 01/28/2023]
Abstract
Brain tumors are devastating diseases of the central nervous system. Brain tumor pathogenesis depends on both tumor-intrinsic oncogenic programs and extrinsic microenvironmental factors, including neurons and glial cells. Glial cells (oligodendrocytes, astrocytes, and microglia) make up half of the cells in the brain, and interact with neurons to modulate neurodevelopment and plasticity. Many brain tumor cells exhibit transcriptomic profiles similar to macroglial cells (oligodendrocytes and astrocytes) and their progenitors, making them likely to subvert existing neuron-glial interactions to support tumor pathogenesis. For example, oligodendrocyte precursor cells, a putative glioma cell of origin, can form bona fide synapses with neurons. Such synapses are recently identified in gliomas and drive glioma pathophysiology, underscoring how brain tumor cells can take advantage of neuron-glial interactions to support cancer progression. In this review, it is briefly summarized how neurons and their activity normally interact with glial cells and glial progenitors, and it is discussed how brain tumor cells utilize neuron-glial interactions to support tumor initiation and progression. Unresolved questions on these topics and potential avenues to therapeutically target neuron-glia-cancer interactions in the brain are also pointed out.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center,co-corresponding: ;
| | - Michelle Monje
- Department of Neurology, Stanford University,Howard Hughes Medical Institute, Stanford University,co-corresponding: ;
| |
Collapse
|
55
|
Eytan K, Versano Z, Oren R, Jacob-Hirsch J, Leitner M, Harmelin A, Rechavi G, Toren A, Paglin S, Yalon M. Pediatric glioblastoma cells are sensitive to drugs that inhibit eIF2α dephosphorylation and its phosphomimetic S51D variant. Front Oncol 2022; 12:959133. [PMID: 36091130 PMCID: PMC9462064 DOI: 10.3389/fonc.2022.959133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
We found that pediatric glioblastoma (PED-GBM) cell lines from diffuse intrinsic pontine glioma (DIPG) carrying the H3K27M mutation or from diffuse hemispheric glioma expressing the H3G34R mutation are sensitive to the combination of vorinostat (a histone deacetylase inhibitor) and PARP-1 inhibitors. The combined treatment increased the phosphorylation of eIF2α (P-eIF2α) relative to each drug alone and enhanced the decrease in cell survival. To explore the role played by increased P-eIF2α in modulating PED-GBM survival and response to treatments, we employed brain-penetrating inhibitors of P-eIF2α dephosphorylation: salubrinal and raphin-1. These drugs increased P-eIF2α, DNA damage, and cell death, similarly affecting the sensitivity of DIPG cells and derived neurospheres to PARP-1 inhibitors. Interestingly, these drugs also decreased the level of eIF2Bϵ (the catalytic subunit of eIF2B) and increased its phosphorylation, thereby enhancing the effect of increased P-eIF2α. Transient transfection with the S51D phosphomimetic eIF2α variant recapitulated the effect of salubrinal and raphin-1 on PED-GBM survival and sensitivity to PARP-1 inhibitors. Importantly, either salubrinal or raphin-1 dramatically increased the sensitivity of DIPG cells to radiation, the main treatment modality of PED-GBM. Finally, PED-GBM was more sensitive than normal human astrocytes to salubrinal, raphin-1, and the treatment combinations described herein. Our results indicate that combinations of histone deacetylase inhibitors and PARP-1 inhibitors should be evaluated for their toxicity and efficacy in PED-GBM patients and point to drugs that increase P-eIF2α or modulate its downstream effectors as a novel means of treating PED-GBM.
Collapse
Affiliation(s)
- Karin Eytan
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children’s Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Ziv Versano
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children’s Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roni Oren
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Jasmine Jacob-Hirsch
- Sheba Cancer Research Center (SCRC), Chaim Sheba Medical Center, Ramat Gan, Israel
- Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Moshe Leitner
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children’s Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Alon Harmelin
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - Gideon Rechavi
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Research Center (SCRC), Chaim Sheba Medical Center, Ramat Gan, Israel
- Wohl Centre for Translational Medicine, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Amos Toren
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children’s Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shoshana Paglin
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children’s Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Michal Yalon
- Pediatric Hemato-Oncology, Edmond and Lilly Safra Children’s Hospital and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
- Chaim Sheba Medical Center, Ramat Gan, Israel
- *Correspondence: Michal Yalon,
| |
Collapse
|
56
|
Dubois FPB, Shapira O, Greenwald NF, Zack T, Wala J, Tsai JW, Crane A, Baguette A, Hadjadj D, Harutyunyan AS, Kumar KH, Blattner-Johnson M, Vogelzang J, Sousa C, Kang KS, Sinai C, Wang DK, Khadka P, Lewis K, Nguyen L, Malkin H, Ho P, O'Rourke R, Zhang S, Gold R, Deng D, Serrano J, Snuderl M, Jones C, Wright KD, Chi SN, Grill J, Kleinman CL, Goumnerova LC, Jabado N, Jones DTW, Kieran MW, Ligon KL, Beroukhim R, Bandopadhayay P. Structural variants shape driver combinations and outcomes in pediatric high-grade glioma. NATURE CANCER 2022; 3:994-1011. [PMID: 35788723 PMCID: PMC10365847 DOI: 10.1038/s43018-022-00403-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/23/2022] [Indexed: 12/13/2022]
Abstract
We analyzed the contributions of structural variants (SVs) to gliomagenesis across 179 pediatric high-grade gliomas (pHGGs). The most recurrent SVs targeted MYC isoforms and receptor tyrosine kinases (RTKs), including an SV amplifying a MYC enhancer in 12% of diffuse midline gliomas (DMG), indicating an underappreciated role for MYC in pHGG. SV signature analysis revealed that tumors with simple signatures were TP53 wild type (TP53WT) but showed alterations in TP53 pathway members PPM1D and MDM4. Complex signatures were associated with direct aberrations in TP53, CDKN2A and RB1 early in tumor evolution and with later-occurring extrachromosomal amplicons. All pHGGs exhibited at least one simple-SV signature, but complex-SV signatures were primarily restricted to subsets of H3.3K27M DMGs and hemispheric pHGGs. Importantly, DMGs with complex-SV signatures were associated with shorter overall survival independent of histone mutation and TP53 status. These data provide insight into the impact of SVs on gliomagenesis and the mechanisms that shape them.
Collapse
Affiliation(s)
- Frank P B Dubois
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ofer Shapira
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Noah F Greenwald
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Travis Zack
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jeremiah Wala
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jessica W Tsai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Alexander Crane
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Audrey Baguette
- Quantitative Life Sciences, McGill University, Montreal, QC, Canada
| | - Djihad Hadjadj
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Kiran H Kumar
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mirjam Blattner-Johnson
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jayne Vogelzang
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cecilia Sousa
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kyung Shin Kang
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Claire Sinai
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Dayle K Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Prasidda Khadka
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lan Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hayley Malkin
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patricia Ho
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan O'Rourke
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rose Gold
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Davy Deng
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Chris Jones
- Division of Cancer Therapeutics and Department of Molecular Pathology, Institute of Cancer Research 15 Cotswold Road, Sutton, London, UK
| | - Karen D Wright
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Susan N Chi
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology and INSERM Unit 981, Gustave Roussy Institute and University of Paris Saclay, Villejuif, France
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Lady Davis Research Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Liliana C Goumnerova
- Department of Neurosurgery, Boston Children's Hospital; Dana Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- LCG: Tromboprotea, MWK: Day One Biopharmaceuticals, San Francisco, CA, USA
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine and Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark W Kieran
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- LCG: Tromboprotea, MWK: Day One Biopharmaceuticals, San Francisco, CA, USA
| | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham & Women's Hospital and Boston Children's Hospital, Boston, USA.
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | - Pratiti Bandopadhayay
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
| |
Collapse
|
57
|
Uthamacumaran A. Dissecting cell fate dynamics in pediatric glioblastoma through the lens of complex systems and cellular cybernetics. BIOLOGICAL CYBERNETICS 2022; 116:407-445. [PMID: 35678918 DOI: 10.1007/s00422-022-00935-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Cancers are complex dynamic ecosystems. Reductionist approaches to science are inadequate in characterizing their self-organized patterns and collective emergent behaviors. Since current approaches to single-cell analysis in cancer systems rely primarily on single time-point multiomics, many of the temporal features and causal adaptive behaviors in cancer dynamics are vastly ignored. As such, tools and concepts from the interdisciplinary paradigm of complex systems theory are introduced herein to decode the cellular cybernetics of cancer differentiation dynamics and behavioral patterns. An intuition for the attractors and complex networks underlying cancer processes such as cell fate decision-making, multiscale pattern formation systems, and epigenetic state-transitions is developed. The applications of complex systems physics in paving targeted therapies and causal pattern discovery in precision oncology are discussed. Pediatric high-grade gliomas are discussed as a model-system to demonstrate that cancers are complex adaptive systems, in which the emergence and selection of heterogeneous cellular states and phenotypic plasticity are driven by complex multiscale network dynamics. In specific, pediatric glioblastoma (GBM) is used as a proof-of-concept model to illustrate the applications of the complex systems framework in understanding GBM cell fate decisions and decoding their adaptive cellular dynamics. The scope of these tools in forecasting cancer cell fate dynamics in the emerging field of computational oncology and patient-centered systems medicine is highlighted.
Collapse
|
58
|
Sou IF, Hamer G, Tee WW, Vader G, McClurg UL. Cancer and meiotic gene expression: Two sides of the same coin? Curr Top Dev Biol 2022; 151:43-68. [PMID: 36681477 DOI: 10.1016/bs.ctdb.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Meiosis increases genetic diversity in offspring by generating genetically unique haploid gametes with reshuffled chromosomes. This process requires a specialized set of meiotic proteins, which facilitate chromosome recombination and segregation. However, re-expression of meiotic proteins in mitosis can have catastrophic oncogenic consequences and aberrant expression of meiotic proteins is a common occurrence in human tumors. Mechanistically, re-activation of meiotic genes in cancer promotes oncogenesis likely because cancers-conversely to healthy mitosis-are fueled by genetic instability which promotes tumor evolution, and evasion of immune response and treatment pressure. In this review, we explore similarities between meiotic and cancer cells with a particular focus on the oncogenic activation of meiotic genes in cancer. We emphasize the role of histones and their modifications, DNA methylation, genome organization, R-loops and the availability of distal enhancers.
Collapse
Affiliation(s)
- Ieng Fong Sou
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Chromatin Dynamics and Disease Epigenetics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gerben Vader
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Urszula Lucja McClurg
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
59
|
Uthamacumaran A, Zenil H. A Review of Mathematical and Computational Methods in Cancer Dynamics. Front Oncol 2022; 12:850731. [PMID: 35957879 PMCID: PMC9359441 DOI: 10.3389/fonc.2022.850731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/25/2022] [Indexed: 12/16/2022] Open
Abstract
Cancers are complex adaptive diseases regulated by the nonlinear feedback systems between genetic instabilities, environmental signals, cellular protein flows, and gene regulatory networks. Understanding the cybernetics of cancer requires the integration of information dynamics across multidimensional spatiotemporal scales, including genetic, transcriptional, metabolic, proteomic, epigenetic, and multi-cellular networks. However, the time-series analysis of these complex networks remains vastly absent in cancer research. With longitudinal screening and time-series analysis of cellular dynamics, universally observed causal patterns pertaining to dynamical systems, may self-organize in the signaling or gene expression state-space of cancer triggering processes. A class of these patterns, strange attractors, may be mathematical biomarkers of cancer progression. The emergence of intracellular chaos and chaotic cell population dynamics remains a new paradigm in systems medicine. As such, chaotic and complex dynamics are discussed as mathematical hallmarks of cancer cell fate dynamics herein. Given the assumption that time-resolved single-cell datasets are made available, a survey of interdisciplinary tools and algorithms from complexity theory, are hereby reviewed to investigate critical phenomena and chaotic dynamics in cancer ecosystems. To conclude, the perspective cultivates an intuition for computational systems oncology in terms of nonlinear dynamics, information theory, inverse problems, and complexity. We highlight the limitations we see in the area of statistical machine learning but the opportunity at combining it with the symbolic computational power offered by the mathematical tools explored.
Collapse
Affiliation(s)
| | - Hector Zenil
- Machine Learning Group, Department of Chemical Engineering and Biotechnology, The University of Cambridge, Cambridge, United Kingdom
- The Alan Turing Institute, British Library, London, United Kingdom
- Oxford Immune Algorithmics, Reading, United Kingdom
- Algorithmic Dynamics Lab, Karolinska Institute, Stockholm, Sweden
- Algorithmic Nature Group, LABORES, Paris, France
| |
Collapse
|
60
|
The Intricate Epigenetic and Transcriptional Alterations in Pediatric High-Grade Gliomas: Targeting the Crosstalk as the Oncogenic Achilles’ Heel. Biomedicines 2022; 10:biomedicines10061311. [PMID: 35740334 PMCID: PMC9219798 DOI: 10.3390/biomedicines10061311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
Pediatric high-grade gliomas (pHGGs) are a deadly and heterogenous subgroup of gliomas for which the development of innovative treatments is urgent. Advances in high-throughput molecular techniques have shed light on key epigenetic components of these diseases, such as K27M and G34R/V mutations on histone 3. However, modification of DNA compaction is not sufficient by itself to drive those tumors. Here, we review molecular specificities of pHGGs subcategories in the context of epigenomic rewiring caused by H3 mutations and the subsequent oncogenic interplay with transcriptional signaling pathways co-opted from developmental programs that ultimately leads to gliomagenesis. Understanding how transcriptional and epigenetic alterations synergize in each cellular context in these tumors could allow the identification of new Achilles’ heels, thereby highlighting new levers to improve their therapeutic management.
Collapse
|
61
|
Kfoury-Beaumont N, Prakasam R, Pondugula S, Lagas JS, Matkovich S, Gontarz P, Yang L, Yano H, Kim AH, Rubin JB, Kroll KL. The H3K27M mutation alters stem cell growth, epigenetic regulation, and differentiation potential. BMC Biol 2022; 20:124. [PMID: 35637482 PMCID: PMC9153095 DOI: 10.1186/s12915-022-01324-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders increase brain tumor risk, suggesting that normal brain development may have protective properties. Mutations in epigenetic regulators are common in pediatric brain tumors, highlighting a potentially central role for disrupted epigenetic regulation of normal brain development in tumorigenesis. For example, lysine 27 to methionine mutation (H3K27M) in the H3F3A gene occurs frequently in Diffuse Intrinsic Pontine Gliomas (DIPGs), the most aggressive pediatric glioma. As H3K27M mutation is necessary but insufficient to cause DIPGs, it is accompanied by additional mutations in tumors. However, how H3K27M alone increases vulnerability to DIPG tumorigenesis remains unclear. RESULTS Here, we used human embryonic stem cell models with this mutation, in the absence of other DIPG contributory mutations, to investigate how H3K27M alters cellular proliferation and differentiation. We found that H3K27M increased stem cell proliferation and stem cell properties. It interfered with differentiation, promoting anomalous mesodermal and ectodermal gene expression during both multi-lineage and germ layer-specific cell specification, and blocking normal differentiation into neuroectoderm. H3K27M mutant clones exhibited transcriptomic diversity relative to the more homogeneous wildtype population, suggesting reduced fidelity of gene regulation, with aberrant expression of genes involved in stem cell regulation, differentiation, and tumorigenesis. These phenomena were associated with global loss of H3K27me3 and concordant loss of DNA methylation at specific genes in H3K27M-expressing cells. CONCLUSIONS Together, these data suggest that H3K27M mutation disrupts normal differentiation, maintaining a partially differentiated state with elevated clonogenicity during early development. This disrupted response to early developmental cues could promote tissue properties that enable acquisition of additional mutations that cooperate with H3K27M mutation in genesis of DMG/DIPG. Therefore, this work demonstrates for the first time that H3K27M mutation confers vulnerability to gliomagenesis through persistent clonogenicity and aberrant differentiation and defines associated alterations of histone and DNA methylation.
Collapse
Affiliation(s)
- N. Kfoury-Beaumont
- Department of Neurosurgery, University of California in San Diego, La Jolla, CA USA
| | - R. Prakasam
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO USA
| | - S. Pondugula
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO USA
| | - J. S. Lagas
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO USA
| | - S. Matkovich
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St Louis, MO USA
| | - P. Gontarz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO USA
| | - L. Yang
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO USA
| | - H. Yano
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO USA
| | - A. H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO USA
- The Brain Tumor Center, Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO USA
| | - J. B. Rubin
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO USA
- The Brain Tumor Center, Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO USA
| | - K. L. Kroll
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO USA
- The Brain Tumor Center, Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO USA
| |
Collapse
|
62
|
du Chatinier A, Meel MH, Das AI, Metselaar DS, Waranecki P, Bugiani M, Breur M, Simonds EF, Lu ED, Weiss WA, Garcia Vallejo JJ, Hoving EW, Phoenix TN, Hulleman E. Generation of Immunocompetent Syngeneic Allograft Mouse Models for Pediatric Diffuse Midline Glioma. Neurooncol Adv 2022; 4:vdac079. [PMID: 35733514 PMCID: PMC9210310 DOI: 10.1093/noajnl/vdac079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Diffuse midline gliomas (DMG) are highly malignant incurable pediatric brain tumors. A lack of effective treatment options highlights the need to investigate novel therapeutic strategies. This includes the use of immunotherapy, which has shown promise in other hard-to-treat tumors. To facilitate preclinical immunotherapeutic research, immunocompetent mouse models that accurately reflect the unique genetic, anatomical, and histological features of DMG patients are warranted.
Methods
We established cell cultures from primary DMG mouse models (C57BL/6) that were generated by brainstem targeted intra-uterine electroporation (IUE). We subsequently created allograft DMG mouse models by orthotopically implanting these tumor cells into syngeneic mice. Immunohistochemistry and -fluorescence, mass cytometry, and cell-viability assays were then used to verify that these murine tumors recapitulated human DMG.
Results
We generated three genetically distinct allograft models representing histone 3 wildtype (H3 WT) and K27M-mutant DMG (H3.3 K27M and H3.1 K27M). These allograft models recapitulated the histopathologic phenotype of their human counterparts, including their diffuse infiltrative growth and expression of DMG-associated antigens. These murine pontine tumors also exhibited an immune microenvironment similar to human DMG, characterized by considerable myeloid cell infiltration and a paucity of T-lymphocytes and NK cells. Finally, we show that these murine DMG cells display similar sensitivity to histone deacetylase (HDAC) inhibition as patient-derived DMG cells.
Conclusions
We created and validated an accessible method to generate immunocompetent allograft models reflecting different subtypes of DMG. These models adequately recapitulated the histopathology, immune microenvironment, and therapeutic response of human DMG, providing useful tools for future preclinical studies.
Collapse
Affiliation(s)
| | - Michaël H Meel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Arvid I Das
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Piotr Waranecki
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marjolein Breur
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Erin F Simonds
- Departments of Neurology, Neurological Surgery, and Pediatrics, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Edbert D Lu
- Departments of Neurology, Neurological Surgery, and Pediatrics, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - William A Weiss
- Departments of Neurology, Neurological Surgery, and Pediatrics, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Juan J Garcia Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Eelco W Hoving
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Timothy N Phoenix
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati/ Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
63
|
Lewis NA, Klein RH, Kelly C, Yee J, Knoepfler PS. Histone H3.3 K27M chromatin functions implicate a network of neurodevelopmental factors including ASCL1 and NEUROD1 in DIPG. Epigenetics Chromatin 2022; 15:18. [PMID: 35590427 PMCID: PMC9121554 DOI: 10.1186/s13072-022-00447-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background The histone variant H3.3 K27M mutation is a defining characteristic of diffuse intrinsic pontine glioma (DIPG)/diffuse midline glioma (DMG). This histone mutation is responsible for major alterations to histone H3 post-translational modification (PTMs) and subsequent aberrant gene expression. However, much less is known about the effect this mutation has on chromatin structure and function, including open versus closed chromatin regions as well as their transcriptomic consequences. Results Recently, we developed isogenic CRISPR-edited DIPG cell lines that are wild-type for histone H3.3 that can be compared to their matched K27M lines. Here we show via ATAC-seq analysis that H3.3K27M glioma cells have unique accessible chromatin at regions corresponding to neurogenesis, NOTCH, and neuronal development pathways and associated genes that are overexpressed in H3.3K27M compared to our isogenic wild-type cell line. As to mechanisms, accessible enhancers and super-enhancers corresponding to increased gene expression in H3.3K27M cells were also mapped to genes involved in neurogenesis and NOTCH signaling, suggesting that these pathways are key to DIPG tumor maintenance. Motif analysis implicates specific transcription factors as central to the neuro-oncogenic K27M signaling pathway, in particular, ASCL1 and NEUROD1. Conclusions Altogether our findings indicate that H3.3K27M causes chromatin to take on a more accessible configuration at key regulatory regions for NOTCH and neurogenesis genes resulting in increased oncogenic gene expression, which is at least partially reversible upon editing K27M back to wild-type. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00447-6.
Collapse
Affiliation(s)
- Nichole A Lewis
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Rachel Herndon Klein
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Cailin Kelly
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Jennifer Yee
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA. .,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA. .,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA.
| |
Collapse
|
64
|
Chromatin structure predicts survival in glioma patients. Sci Rep 2022; 12:8221. [PMID: 35581287 PMCID: PMC9114333 DOI: 10.1038/s41598-022-11019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
The pathological changes in epigenetics and gene regulation that accompany the progression of low-grade to high-grade gliomas are under-studied. The authors use a large set of paired atac-seq and RNA-seq data from surgically resected glioma specimens to infer gene regulatory relationships in glioma. Thirty-eight glioma patient samples underwent atac-seq sequencing and 16 samples underwent additional RNA-seq analysis. Using an atac-seq/RNA-seq correlation matrix, atac-seq peaks were paired with genes based on high correlation values (|r2| > 0.6). Samples clustered by IDH1 status but not by grade. Surprisingly there was a trend for IDH1 mutant samples to have more peaks. The majority of peaks are positively correlated with survival and positively correlated with gene expression. Constructing a model of the top six atac-seq peaks created a highly accurate survival prediction model (r2 = 0.68). Four of these peaks were still significant after controlling for age, grade, pathology, IDH1 status and gender. Grade II, III, and IV (primary) samples have similar transcription factors and gene modules. However, grade IV (recurrent) samples have strikingly few peaks. Patient-derived glioma cultures showed decreased peak counts following radiation indicating that this may be radiation-induced. This study supports the notion that IDH1 mutant and IDH1 wildtype gliomas have different epigenetic landscapes and that accessible chromatin sites mapped by atac-seq peaks tend to be positively correlated with expression. The data in this study leads to a new model of treatment response wherein glioma cells respond to radiation therapy by closing open regions of DNA.
Collapse
|
65
|
Furth N, Algranati D, Dassa B, Beresh O, Fedyuk V, Morris N, Kasper LH, Jones D, Monje M, Baker SJ, Shema E. H3-K27M-mutant nucleosomes interact with MLL1 to shape the glioma epigenetic landscape. Cell Rep 2022; 39:110836. [PMID: 35584667 DOI: 10.1016/j.celrep.2022.110836] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/01/2022] [Accepted: 04/27/2022] [Indexed: 01/08/2023] Open
Abstract
Cancer-associated mutations in genes encoding histones dramatically reshape chromatin and support tumorigenesis. Lysine to methionine substitution of residue 27 on histone H3 (K27M) is a driver mutation in high-grade pediatric gliomas, known to abrogate polycomb repressive complex 2 (PRC2) activity. We applied single-molecule systems to image individual nucleosomes and delineate the combinatorial epigenetic patterns associated with H3-K27M expression. We found that chromatin marks on H3-K27M-mutant nucleosomes are dictated both by their incorporation preferences and by intrinsic properties of the mutation. Mutant nucleosomes not only preferentially bind PRC2 but also directly interact with MLL1, leading to genome-wide redistribution of H3K4me3. H3-K27M-mediated deregulation of repressive and active chromatin marks leads to unbalanced "bivalent" chromatin, which may support a poorly differentiated cellular state. This study provides evidence for a direct effect of H3-K27M oncohistone on the MLL1-H3K4me3 pathway and highlights the capability of single-molecule tools to reveal mechanisms of chromatin deregulation in cancer.
Collapse
Affiliation(s)
- Noa Furth
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Danielle Algranati
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Olga Beresh
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vadim Fedyuk
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Natasha Morris
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lawryn H Kasper
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Efrat Shema
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
66
|
Rechberger JS, Porath KA, Zhang L, Nesvick CL, Schrecengost RS, Sarkaria JN, Daniels DJ. IL-13Rα2 Status Predicts GB-13 (IL13.E13K-PE4E) Efficacy in High-Grade Glioma. Pharmaceutics 2022; 14:922. [PMID: 35631512 PMCID: PMC9143740 DOI: 10.3390/pharmaceutics14050922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
High-grade gliomas (HGG) are devastating diseases in children and adults. In the pediatric population, diffuse midline gliomas (DMG) harboring H3K27 alterations are the most aggressive primary malignant brain tumors. With no effective therapies available, children typically succumb to disease within one year of diagnosis. In adults, glioblastoma (GBM) remains largely intractable, with a median survival of approximately 14 months despite standard clinical care of radiation and temozolomide. Therefore, effective therapies for these tumors remain one of the most urgent and unmet needs in modern medicine. Interleukin 13 receptor subunit alpha 2 (IL-13Rα2) is a cell-surface transmembrane protein upregulated in many HGGs, including DMG and adult GBM, posing a potentially promising therapeutic target for these tumors. In this study, we investigated the pharmacological effects of GB-13 (also known as IL13.E13K-PE4E), a novel peptide-toxin conjugate that contains a targeting moiety designed to bind IL-13Rα2 with high specificity and a point-mutant cytotoxic domain derived from Pseudomonas exotoxin A. Glioma cell lines demonstrated a spectrum of IL-13Rα2 expression at both the transcript and protein level. Anti-tumor effects of GB-13 strongly correlated with IL-13Rα2 expression and were reflected in apoptosis induction and decreased cell proliferation in vitro. Direct intratumoral administration of GB-13 via convection-enhanced delivery (CED) significantly decreased tumor burden and resulted in prolonged survival in IL-13Rα2-upregulated orthotopic xenograft models of HGG. In summary, administration of GB-13 demonstrated a promising pharmacological response in HGG models both in vitro and in vivo in a manner strongly associated with IL-13Rα2 expression, underscoring the potential of this IL-13Rα2-targeted therapy in a subset of HGG with increased IL-13Rα2 levels.
Collapse
Affiliation(s)
- Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (J.S.R.); (L.Z.); (C.L.N.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Kendra A. Porath
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (K.A.P.); (J.N.S.)
| | - Liang Zhang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (J.S.R.); (L.Z.); (C.L.N.)
| | - Cody L. Nesvick
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (J.S.R.); (L.Z.); (C.L.N.)
| | | | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (K.A.P.); (J.N.S.)
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (J.S.R.); (L.Z.); (C.L.N.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| |
Collapse
|
67
|
Bölicke N, Albert M. Polycomb-mediated gene regulation in human brain development and neurodevelopmental disorders. Dev Neurobiol 2022; 82:345-363. [PMID: 35384339 DOI: 10.1002/dneu.22876] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
The neocortex is considered the seat of higher cognitive function in humans. It develops from a sheet of neural progenitor cells, most of which eventually give rise to neurons. This process of cell fate determination is controlled by precise temporal and spatial gene expression patterns that in turn are affected by epigenetic mechanisms including Polycomb group (PcG) regulation. PcG proteins assemble in multiprotein complexes and catalyze repressive posttranslational histone modifications. Their association with neurodevelopmental disease and various types of cancer of the central nervous system, as well as observations in mouse models, has implicated these epigenetic modifiers in controlling various stages of cortex development. The precise mechanisms conveying PcG-associated transcriptional repression remain incompletely understood and are an active field of research. PcG activity appears to be highly context-specific, raising the question of species-specific differences in the regulation of neural stem and progenitor regulation. In this review, we will discuss our growing understanding of how PcG regulation affects human cortex development, based on studies in murine model systems, but focusing mostly on findings obtained from examining impaired PcG activity in the context of human neurodevelopmental disorders and cancer. Furthermore, we will highlight relevant experimental approaches for functional investigations of PcG regulation in human cortex development.
Collapse
Affiliation(s)
- Nora Bölicke
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Mareike Albert
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
68
|
Abstract
Chromatin dysfunction has been implicated in a growing number of cancers especially in children and young adults. In addition to chromatin modifying and remodeling enzymes, mutations in histone genes are linked to human cancers. Since the first reports of hotspot missense mutations affecting key residues at histone H3 tail, studies have revealed how these so-called "oncohistones" dominantly (H3K27M and H3K36M) or locally (H3.3G34R/W) inhibit corresponding histone methyltransferases and misregulate epigenome and transcriptome to promote tumorigenesis. More recently, widespread mutations in all four core histones are identified in diverse cancer types. Furthermore, an "oncohistone-like" protein EZHIP has been implicated in driving childhood ependymomas through a mechanism highly reminiscent of H3K27M mutation. We will review recent progresses on understanding the biochemical, molecular and biological mechanisms underlying the canonical and novel histone mutations. Importantly, these mechanistic insights have identified therapeutic opportunities for oncohistone-driven tumors.
Collapse
Affiliation(s)
- Varun Sahu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA,Corresponding author: Chao Lu:
| |
Collapse
|
69
|
Deshmukh S, Ptack A, Krug B, Jabado N. Oncohistones: a roadmap to stalled development. FEBS J 2022; 289:1315-1328. [PMID: 33969633 PMCID: PMC9990449 DOI: 10.1111/febs.15963] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/17/2021] [Accepted: 05/07/2021] [Indexed: 01/18/2023]
Abstract
Since the discovery of recurrent mutations in histone H3 variants in paediatric brain tumours, so-called 'oncohistones' have been identified in various cancers. While their mechanism of action remains under active investigation, several studies have shed light on how they promote genome-wide epigenetic perturbations. These findings converge on altered post-translational modifications on two key lysine (K) residues of the H3 tail, K27 and K36, which regulate several cellular processes, including those linked to cell differentiation during development. We will review how these oncohistones affect the methylation of cognate residues, but also disrupt the distribution of opposing chromatin marks, creating genome-wide epigenetic changes which participate in the oncogenic process. Ultimately, tumorigenesis is promoted through the maintenance of a progenitor state at the expense of differentiation in defined cellular and developmental contexts. As these epigenetic disruptions are reversible, improved understanding of oncohistone pathogenicity can result in needed alternative therapies.
Collapse
Affiliation(s)
- Shriya Deshmukh
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Adam Ptack
- Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Nada Jabado
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Department of Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
70
|
Epigenetic mechanisms in paediatric brain tumours: regulators lose control. Biochem Soc Trans 2022; 50:167-185. [PMID: 35076654 DOI: 10.1042/bst20201227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022]
Abstract
Epigenetic mechanisms are essential to regulate gene expression during normal development. However, they are often disrupted in pathological conditions including tumours, where they contribute to their formation and maintenance through altered gene expression. In recent years, next generation genomic techniques has allowed a remarkable advancement of our knowledge of the genetic and molecular landscape of paediatric brain tumours and have highlighted epigenetic deregulation as a common hallmark in their pathogenesis. This review describes the main epigenetic dysregulations found in paediatric brain tumours, including at DNA methylation and histone modifications level, in the activity of chromatin-modifying enzymes and in the expression of non-coding RNAs. How these altered processes influence tumour biology and how they can be leveraged to dissect the molecular heterogeneity of these tumours and contribute to their classification is also addressed. Finally, the availability and value of preclinical models as well as the current clinical trials exploring targeting key epigenetic mediators in paediatric brain tumours are discussed.
Collapse
|
71
|
Abstract
Nervous system activity regulates development, homeostasis, and plasticity of the brain as well as other organs in the body. These mechanisms are subverted in cancer to propel malignant growth. In turn, cancers modulate neural structure and function to augment growth-promoting neural signaling in the tumor microenvironment. Approaching cancer biology from a neuroscience perspective will elucidate new therapeutic strategies for presently lethal forms of cancer. In this review, we highlight the neural signaling mechanisms recapitulated in primary brain tumors, brain metastases, and solid tumors throughout the body that regulate cancer progression. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Michael B Keough
- Department of Neurology and Neurological Sciences and Howard Hughes Medical Institute, Stanford University, Stanford, California, USA;
| | - Michelle Monje
- Department of Neurology and Neurological Sciences and Howard Hughes Medical Institute, Stanford University, Stanford, California, USA;
| |
Collapse
|
72
|
Hawkins C, Lubanszky E. The diverse landscape of histone-mutant pediatric high-grade gliomas: A narrative review. GLIOMA 2022. [DOI: 10.4103/glioma.glioma_1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
73
|
Oncohistone interactome profiling uncovers contrasting oncogenic mechanisms and identifies potential therapeutic targets in high grade glioma. Acta Neuropathol 2022; 144:1027-1048. [PMID: 36070144 PMCID: PMC9547787 DOI: 10.1007/s00401-022-02489-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 01/26/2023]
Abstract
Histone H3 mutations at amino acids 27 (H3K27M) and 34 (H3G34R) are recurrent drivers of pediatric-type high-grade glioma (pHGG). H3K27M mutations lead to global disruption of H3K27me3 through dominant negative PRC2 inhibition, while H3G34R mutations lead to local losses of H3K36me3 through inhibition of SETD2. However, their broader oncogenic mechanisms remain unclear. We characterized the H3.1K27M, H3.3K27M and H3.3G34R interactomes, finding that H3K27M is associated with epigenetic and transcription factor changes; in contrast H3G34R removes a break on cryptic transcription, limits DNA methyltransferase access, and alters mitochondrial metabolism. All 3 mutants had altered interactions with DNA repair proteins and H3K9 methyltransferases. H3K9me3 was reduced in H3K27M-containing nucleosomes, and cis-H3K9 methylation was required for H3K27M to exert its effect on global H3K27me3. H3K9 methyltransferase inhibition was lethal to H3.1K27M, H3.3K27M and H3.3G34R pHGG cells, underscoring the importance of H3K9 methylation for oncohistone-mutant gliomas and suggesting it as an attractive therapeutic target.
Collapse
|
74
|
Servidei T, Lucchetti D, Navarra P, Sgambato A, Riccardi R, Ruggiero A. Cell-of-Origin and Genetic, Epigenetic, and Microenvironmental Factors Contribute to the Intra-Tumoral Heterogeneity of Pediatric Intracranial Ependymoma. Cancers (Basel) 2021; 13:6100. [PMID: 34885210 PMCID: PMC8657076 DOI: 10.3390/cancers13236100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Intra-tumoral heterogeneity (ITH) is a complex multifaceted phenomenon that posits major challenges for the clinical management of cancer patients. Genetic, epigenetic, and microenvironmental factors are concurrent drivers of diversity among the distinct populations of cancer cells. ITH may also be installed by cancer stem cells (CSCs), that foster unidirectional hierarchy of cellular phenotypes or, alternatively, shift dynamically between distinct cellular states. Ependymoma (EPN), a molecularly heterogeneous group of tumors, shows a specific spatiotemporal distribution that suggests a link between ependymomagenesis and alterations of the biological processes involved in embryonic brain development. In children, EPN most often arises intra-cranially and is associated with an adverse outcome. Emerging evidence shows that EPN displays large intra-patient heterogeneity. In this review, after touching on EPN inter-tumoral heterogeneity, we focus on the sources of ITH in pediatric intra-cranial EPN in the framework of the CSC paradigm. We also examine how single-cell technology has shed new light on the complexity and developmental origins of EPN and the potential impact that this understanding may have on the therapeutic strategies against this deadly pediatric malignancy.
Collapse
Affiliation(s)
- Tiziana Servidei
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| | - Donatella Lucchetti
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (A.S.)
| | - Pierluigi Navarra
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Alessandro Sgambato
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (A.S.)
- Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Riccardo Riccardi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| |
Collapse
|
75
|
Bi J, Khan A, Tang J, Armando AM, Wu S, Zhang W, Gimple RC, Reed A, Jing H, Koga T, Wong ITL, Gu Y, Miki S, Yang H, Prager B, Curtis EJ, Wainwright DA, Furnari FB, Rich JN, Cloughesy TF, Kornblum HI, Quehenberger O, Rzhetsky A, Cravatt BF, Mischel PS. Targeting glioblastoma signaling and metabolism with a re-purposed brain-penetrant drug. Cell Rep 2021; 37:109957. [PMID: 34731610 PMCID: PMC8856626 DOI: 10.1016/j.celrep.2021.109957] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/10/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
The highly lethal brain cancer glioblastoma (GBM) poses a daunting challenge because the blood-brain barrier renders potentially druggable amplified or mutated oncoproteins relatively inaccessible. Here, we identify sphingomyelin phosphodiesterase 1 (SMPD1), an enzyme that regulates the conversion of sphingomyelin to ceramide, as an actionable drug target in GBM. We show that the highly brain-penetrant antidepressant fluoxetine potently inhibits SMPD1 activity, killing GBMs, through inhibition of epidermal growth factor receptor (EGFR) signaling and via activation of lysosomal stress. Combining fluoxetine with temozolomide, a standard of care for GBM, causes massive increases in GBM cell death and complete tumor regression in mice. Incorporation of real-world evidence from electronic medical records from insurance databases reveals significantly increased survival in GBM patients treated with fluoxetine, which was not seen in patients treated with other selective serotonin reuptake inhibitor (SSRI) antidepressants. These results nominate the repurposing of fluoxetine as a potentially safe and promising therapy for patients with GBM and suggest prospective randomized clinical trials.
Collapse
Affiliation(s)
- Junfeng Bi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; ChEM-H, Stanford University, Stanford, CA, USA.
| | - Atif Khan
- Department of Medicine, Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Jun Tang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; ChEM-H, Stanford University, Stanford, CA, USA
| | - Aaron M Armando
- Department of Pharmacology, UCSD School of Medicine, La Jolla, CA, USA
| | - Sihan Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; ChEM-H, Stanford University, Stanford, CA, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei Zhang
- Department of Medicine, UCSD School of Medicine, La Jolla, CA, USA
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alex Reed
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Hui Jing
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomoyuki Koga
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA; Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Ivy Tsz-Lo Wong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; ChEM-H, Stanford University, Stanford, CA, USA
| | - Yuchao Gu
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Shunichiro Miki
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Huijun Yang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; ChEM-H, Stanford University, Stanford, CA, USA
| | - Briana Prager
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ellis J Curtis
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; ChEM-H, Stanford University, Stanford, CA, USA; Department of Medicine, UCSD School of Medicine, La Jolla, CA, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA; Department of Pathology, UCSD School of Medicine, La Jolla, CA, USA; Moores Cancer Center, UCSD School of Medicine, La Jolla, CA, USA
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Harley I Kornblum
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | | | - Andrey Rzhetsky
- Department of Medicine, Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA; Department of Human Genetics, Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
76
|
Argersinger DP, Rivas SR, Shah AH, Jackson S, Heiss JD. New Developments in the Pathogenesis, Therapeutic Targeting, and Treatment of H3K27M-Mutant Diffuse Midline Glioma. Cancers (Basel) 2021; 13:cancers13215280. [PMID: 34771443 PMCID: PMC8582453 DOI: 10.3390/cancers13215280] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
H3K27M-mutant diffuse midline gliomas (DMGs) are rare childhood central nervous system tumors that carry a dismal prognosis. Thus, innovative treatment approaches are greatly needed to improve clinical outcomes for these patients. Here, we discuss current trends in research of H3K27M-mutant diffuse midline glioma. This review highlights new developments of molecular pathophysiology for these tumors, as they relate to epigenetics and therapeutic targeting. We focus our discussion on combinatorial therapies addressing the inherent complexity of treating H3K27M-mutant diffuse midline gliomas and incorporating recent advances in immunotherapy, molecular biology, genetics, radiation, and stereotaxic surgical diagnostics.
Collapse
|
77
|
Leszczynska KB, Jayaprakash C, Kaminska B, Mieczkowski J. Emerging Advances in Combinatorial Treatments of Epigenetically Altered Pediatric High-Grade H3K27M Gliomas. Front Genet 2021; 12:742561. [PMID: 34646308 PMCID: PMC8503186 DOI: 10.3389/fgene.2021.742561] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 01/27/2023] Open
Abstract
Somatic mutations in histone encoding genes result in gross alterations in the epigenetic landscape. Diffuse intrinsic pontine glioma (DIPG) is a pediatric high-grade glioma (pHGG) and one of the most challenging cancers to treat, with only 1% surviving for 5 years. Due to the location in the brainstem, DIPGs are difficult to resect and rapidly turn into a fatal disease. Over 80% of DIPGs confer mutations in genes coding for histone 3 variants (H3.3 or H3.1/H3.2), with lysine to methionine substitution at position 27 (H3K27M). This results in a global decrease in H3K27 trimethylation, increased H3K27 acetylation, and widespread oncogenic changes in gene expression. Epigenetic modifying drugs emerge as promising candidates to treat DIPG, with histone deacetylase (HDAC) inhibitors taking the lead in preclinical and clinical studies. However, some data show the evolving resistance of DIPGs to the most studied HDAC inhibitor panobinostat and highlight the need to further investigate its mechanism of action. A new forceful line of research explores the simultaneous use of multiple inhibitors that could target epigenetically induced changes in DIPG chromatin and enhance the anticancer response of single agents. In this review, we summarize the therapeutic approaches against H3K27M-expressing pHGGs focused on targeting epigenetic dysregulation and highlight promising combinatorial drug treatments. We assessed the effectiveness of the epigenetic drugs that are already in clinical trials in pHGGs. The constantly expanding understanding of the epigenetic vulnerabilities of H3K27M-expressing pHGGs provides new tumor-specific targets, opens new possibilities of therapy, and gives hope to find a cure for this deadly disease.
Collapse
Affiliation(s)
- Katarzyna B Leszczynska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Chinchu Jayaprakash
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Mieczkowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland.,3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
78
|
Parrello D, Vlasenok M, Kranz L, Nechaev S. Targeting the Transcriptome Through Globally Acting Components. Front Genet 2021; 12:749850. [PMID: 34603400 PMCID: PMC8481634 DOI: 10.3389/fgene.2021.749850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription is a step in gene expression that defines the identity of cells and its dysregulation is associated with diseases. With advancing technologies revealing molecular underpinnings of the cell with ever-higher precision, our ability to view the transcriptomes may have surpassed our knowledge of the principles behind their organization. The human RNA polymerase II (Pol II) machinery comprises thousands of components that, in conjunction with epigenetic and other mechanisms, drive specialized programs of development, differentiation, and responses to the environment. Parts of these programs are repurposed in oncogenic transformation. Targeting of cancers is commonly done by inhibiting general or broadly acting components of the cellular machinery. The critical unanswered question is how globally acting or general factors exert cell type specific effects on transcription. One solution, which is discussed here, may be among the events that take place at genes during early Pol II transcription elongation. This essay turns the spotlight on the well-known phenomenon of promoter-proximal Pol II pausing as a step that separates signals that establish pausing genome-wide from those that release the paused Pol II into the gene. Concepts generated in this rapidly developing field will enhance our understanding of basic principles behind transcriptome organization and hopefully translate into better therapies at the bedside.
Collapse
Affiliation(s)
- Damien Parrello
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| | - Maria Vlasenok
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lincoln Kranz
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| | - Sergei Nechaev
- Department of Biomedical Sciences, University of North Dakota School of Medicine, Grand Forks, ND, United States
| |
Collapse
|
79
|
Monje M, Káradóttir RT. The bright and the dark side of myelin plasticity: Neuron-glial interactions in health and disease. Semin Cell Dev Biol 2021; 116:10-15. [PMID: 33293232 PMCID: PMC8178421 DOI: 10.1016/j.semcdb.2020.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
Neuron-glial interactions shape neural circuit establishment, refinement and function. One of the key neuron-glial interactions takes place between axons and oligodendroglial precursor cells. Interactions between neurons and oligodendrocyte precursor cells (OPCs) promote OPC proliferation, generation of new oligodendrocytes and myelination, shaping myelin development and ongoing adaptive myelin plasticity in the brain. Communication between neurons and OPCs can be broadly divided into paracrine and synaptic mechanisms. Following the Nobel mini-symposium "The Dark Side of the Brain" in late 2019 at the Karolinska Institutet, this mini-review will focus on the bright and dark sides of neuron-glial interactions and discuss paracrine and synaptic interactions between neurons and OPCs and their malignant counterparts.
Collapse
Affiliation(s)
- Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
| | - Ragnhildur Thóra Káradóttir
- Wellcome - Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, UK; Department of Physiology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
80
|
Brien GL, Bressan RB, Monger C, Gannon D, Lagan E, Doherty AM, Healy E, Neikes H, Fitzpatrick DJ, Deevy O, Grant V, Marqués-Torrejón MA, Alfazema N, Pollard SM, Bracken AP. Simultaneous disruption of PRC2 and enhancer function underlies histone H3.3-K27M oncogenic activity in human hindbrain neural stem cells. Nat Genet 2021; 53:1221-1232. [PMID: 34294917 DOI: 10.1038/s41588-021-00897-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
Driver mutations in genes encoding histone H3 proteins resulting in p.Lys27Met substitutions (H3-K27M) are frequent in pediatric midline brain tumors. However, the precise mechanisms by which H3-K27M causes tumor initiation remain unclear. Here, we use human hindbrain neural stem cells to model the consequences of H3.3-K27M on the epigenomic landscape in a relevant developmental context. Genome-wide mapping of epitope-tagged histone H3.3 revealed that both the wild type and the K27M mutant incorporate abundantly at pre-existing active enhancers and promoters, and to a lesser extent at Polycomb repressive complex 2 (PRC2)-bound regions. At active enhancers, H3.3-K27M leads to focal H3K27ac loss, decreased chromatin accessibility and reduced transcriptional expression of nearby neurodevelopmental genes. In addition, H3.3-K27M deposition at a subset of PRC2 target genes leads to increased PRC2 and PRC1 binding and augmented transcriptional repression that can be partially reversed by PRC2 inhibitors. Our work suggests that, rather than imposing de novo transcriptional circuits, H3.3-K27M drives tumorigenesis by locking initiating cells in their pre-existing, immature epigenomic state, via disruption of PRC2 and enhancer functions.
Collapse
Affiliation(s)
- Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| | - Raul Bardini Bressan
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Craig Monger
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Dáire Gannon
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Eimear Lagan
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Anthony M Doherty
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Evan Healy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Hannah Neikes
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Orla Deevy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Vivien Grant
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Maria-Angeles Marqués-Torrejón
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Neza Alfazema
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Steven M Pollard
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK.
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
81
|
Deregulation of Transcriptional Enhancers in Cancer. Cancers (Basel) 2021; 13:cancers13143532. [PMID: 34298745 PMCID: PMC8303223 DOI: 10.3390/cancers13143532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary One of the major challenges in cancer treatments is the dynamic adaptation of tumor cells to cancer therapies. In this regard, tumor cells can modify their response to environmental cues without altering their DNA sequence. This cell plasticity enables cells to undergo morphological and functional changes, for example, during the process of tumour metastasis or when acquiring resistance to cancer therapies. Central to cell plasticity, are the dynamic changes in gene expression that are controlled by a set of molecular switches called enhancers. Enhancers are DNA elements that determine when, where and to what extent genes should be switched on and off. Thus, defects in enhancer function can disrupt the gene expression program and can lead to tumour formation. Here, we review how enhancers control the activity of cancer-associated genes and how defects in these regulatory elements contribute to cell plasticity in cancer. Understanding enhancer (de)regulation can provide new strategies for modulating cell plasticity in tumour cells and can open new research avenues for cancer therapy. Abstract Epigenetic regulations can shape a cell’s identity by reversible modifications of the chromatin that ultimately control gene expression in response to internal and external cues. In this review, we first discuss the concept of cell plasticity in cancer, a process that is directly controlled by epigenetic mechanisms, with a particular focus on transcriptional enhancers as the cornerstone of epigenetic regulation. In the second part, we discuss mechanisms of enhancer deregulation in adult stem cells and epithelial-to-mesenchymal transition (EMT), as two paradigms of cell plasticity that are dependent on epigenetic regulation and serve as major sources of tumour heterogeneity. Finally, we review how genetic variations at enhancers and their epigenetic modifiers contribute to tumourigenesis, and we highlight examples of cancer drugs that target epigenetic modifications at enhancers.
Collapse
|
82
|
DNA methylation and histone variants in aging and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:1-110. [PMID: 34507780 DOI: 10.1016/bs.ircmb.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging-related diseases such as cancer can be traced to the accumulation of molecular disorder including increased DNA mutations and epigenetic drift. We provide a comprehensive review of recent results in mice and humans on modifications of DNA methylation and histone variants during aging and in cancer. Accumulated errors in DNA methylation maintenance lead to global decreases in DNA methylation with relaxed repression of repeated DNA and focal hypermethylation blocking the expression of tumor suppressor genes. Epigenetic clocks based on quantifying levels of DNA methylation at specific genomic sites is proving to be a valuable metric for estimating the biological age of individuals. Histone variants have specialized functions in transcriptional regulation and genome stability. Their concentration tends to increase in aged post-mitotic chromatin, but their effects in cancer are mainly determined by their specialized functions. Our increased understanding of epigenetic regulation and their modifications during aging has motivated interventions to delay or reverse epigenetic modifications using the epigenetic clocks as a rapid readout for efficacity. Similarly, the knowledge of epigenetic modifications in cancer is suggesting new approaches to target these modifications for cancer therapy.
Collapse
|
83
|
Zhuo Z, Qu L, Zhang P, Duan Y, Cheng D, Xu X, Sun T, Ding J, Xie C, Liu X, Haller S, Barkhof F, Zhang L, Liu Y. Prediction of H3K27M-mutant brainstem glioma by amide proton transfer-weighted imaging and its derived radiomics. Eur J Nucl Med Mol Imaging 2021; 48:4426-4436. [PMID: 34131804 DOI: 10.1007/s00259-021-05455-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 01/28/2023]
Abstract
PURPOSE H3K27M-mutant associated brainstem glioma (BSG) carries a very poor prognosis. We aimed to predict H3K27M mutation status by amide proton transfer-weighted (APTw) imaging and radiomic features. METHODS Eighty-one BSG patients with APTw imaging at 3T MR and known H3K27M status were retrospectively studied. APTw values (mean, median, and max) and radiomic features within manually delineated 3D tumor masks were extracted. Comparison of APTw measures between H3K27M-mutant and wildtype groups was conducted by two-sample Student's T/Mann-Whitney U test and receiver operating characteristic curve (ROC) analysis. H3K27M-mutant prediction using APTw-derived radiomics was conducted using a machine learning algorithm (support vector machine) in randomly selected train (n = 64) and test (n = 17) sets. Sensitivity analysis with additional random splits of train and test sets, 2D tumor masks, and other classifiers were conducted. Finally, a prospective cohort including 29 BSG patients was acquired for validation of the radiomics algorithm. RESULTS BSG patients with H3K27M-mutant were younger and had higher max APTw values than those with wildtype. APTw-derived radiomic measures reflecting tumor heterogeneity could predict H3K27M mutation status with an accuracy of 0.88, sensitivity of 0.92, and specificity of 0.80 in the test set. Sensitivity analysis confirmed the predictive ability (accuracy range: 0.71-0.94). In the independent prospective validation cohort, the algorithm reached an accuracy of 0.86, sensitivity of 0.88, and specificity of 0.85 for predicting H3K27M-mutation status. CONCLUSION BSG patients with H3K27M-mutant had higher max APTw values than those with wildtype. APTw-derived radiomics could accurately predict a H3K27M-mutant status in BSG patients.
Collapse
Affiliation(s)
- Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Liying Qu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 10070, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Dan Cheng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaolu Xu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ting Sun
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jinli Ding
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Cong Xie
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xing Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 10070, China
| | - Sven Haller
- Department of Imaging and Medical Informatics, University Hospitals of Geneva and Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| | - Frederik Barkhof
- UCL Institutes of Neurology and Healthcare Engineering, London, UK.,Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 10070, China.
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
84
|
Krug B, Harutyunyan AS, Deshmukh S, Jabado N. Polycomb repressive complex 2 in the driver's seat of childhood and young adult brain tumours. Trends Cell Biol 2021; 31:814-828. [PMID: 34092471 DOI: 10.1016/j.tcb.2021.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
Deregulation of the epigenome underlies oncogenesis in numerous primary brain tumours in children and young adults. In this review, we describe how recurrent mutations in isocitrate dehydrogenases or histone 3 variants (oncohistones) in gliomas, expression of the oncohistone mimic enhancer of Zeste homologs inhibiting protein (EZHIP) in a subgroup of ependymoma, and epigenetic alterations in other embryonal tumours promote oncogenicity. We review the proposed mechanisms of cellular transformation, current tumorigenesis models and their link to development. We further stress the narrow developmental windows permissive to their oncogenic potential and how this may stem from converging effects deregulating polycomb repressive complex (PRC)2 function and targets. As altered chromatin states may be reversible, improved understanding of aberrant cancer epigenomes could orient the design of effective therapies.
Collapse
Affiliation(s)
- Brian Krug
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Shriya Deshmukh
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Department of Pediatrics, McGill University, Montreal, QC, Canada; The Research Institute of the McGill University Health Center, Montreal, H4A 3J, Canada.
| |
Collapse
|
85
|
Wang J, Huang TYT, Hou Y, Bartom E, Lu X, Shilatifard A, Yue F, Saratsis A. Epigenomic landscape and 3D genome structure in pediatric high-grade glioma. SCIENCE ADVANCES 2021; 7:7/23/eabg4126. [PMID: 34078608 PMCID: PMC10166578 DOI: 10.1126/sciadv.abg4126] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/16/2021] [Indexed: 05/10/2023]
Abstract
Pediatric high-grade gliomas (pHGGs), including glioblastoma multiforme (GBM) and diffuse intrinsic pontine glioma (DIPG), are morbid brain tumors. Even with treatment survival is poor, making pHGG the number one cause of cancer death in children. Up to 80% of DIPGs harbor a somatic missense mutation in genes encoding histone H3. To investigate whether H3K27M is associated with distinct chromatin structure that alters transcription regulation, we generated the first high-resolution Hi-C maps of pHGG cell lines and tumor tissue. By integrating transcriptome (RNA-seq), enhancer landscape (ChIP-seq), genome structure (Hi-C), and chromatin accessibility (ATAC-seq) datasets from H3K27M and wild-type specimens, we identified tumor-specific enhancers and regulatory networks for known oncogenes. We identified genomic structural variations that lead to potential enhancer hijacking and gene coamplification, including A2M, JAG2, and FLRT1 Together, our results imply three-dimensional genome alterations may play a critical role in the pHGG epigenetic landscape and contribute to tumorigenesis.
Collapse
Affiliation(s)
- Juan Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tina Yi-Ting Huang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ye Hou
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
| | - Amanda Saratsis
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
- Division of Pediatric Neurosurgery, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| |
Collapse
|
86
|
Not just a writer: PRC2 as a chromatin reader. Biochem Soc Trans 2021; 49:1159-1170. [PMID: 34060617 PMCID: PMC8286813 DOI: 10.1042/bst20200728] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
PRC2 deposits the H3K27me3 repressive mark, which facilitates transcription repression of developmental genes. The decision of whether a particular gene is silenced at a given point during development is heavily dependent on the chromatin context. More than just a simple epigenetic writer, PRC2 employs several distinct chromatin reading capabilities to sense the local chromatin environment and modulate the H3K27me3 writer activity in a context-dependent manner. Here we discuss the complex interplay of PRC2 with the hallmarks of active and repressive chromatin, how it affects H3K27me3 deposition and how it guides transcriptional activity.
Collapse
|
87
|
Lian X, Kats D, Rasmussen S, Martin LR, Karki A, Keller C, Berlow NE. Design considerations of an IL13Rα2 antibody-drug conjugate for diffuse intrinsic pontine glioma. Acta Neuropathol Commun 2021; 9:88. [PMID: 34001278 PMCID: PMC8127302 DOI: 10.1186/s40478-021-01184-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/18/2021] [Indexed: 11/10/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG), a rare pediatric brain tumor, afflicts approximately 350 new patients each year in the United States. DIPG is noted for its lethality, as fewer than 1% of patients survive to five years. Multiple clinical trials involving chemotherapy, radiotherapy, and/or targeted therapy have all failed to improve clinical outcomes. Recently, high-throughput sequencing of a cohort of DIPG samples identified potential therapeutic targets, including interleukin 13 receptor subunit alpha 2 (IL13Rα2) which was expressed in multiple tumor samples and comparably absent in normal brain tissue, identifying IL13Rα2 as a potential therapeutic target in DIPG. In this work, we investigated the role of IL13Rα2 signaling in progression and invasion of DIPG and viability of IL13Rα2 as a therapeutic target through the use of immunoconjugate agents. We discovered that IL13Rα2 stimulation via canonical ligands demonstrates minimal impact on both the cellular proliferation and cellular invasion of DIPG cells, suggesting IL13Rα2 signaling is non-essential for DIPG progression in vitro. However, exposure to an anti-IL13Rα2 antibody-drug conjugate demonstrated potent pharmacological response in DIPG cell models both in vitro and ex ovo in a manner strongly associated with IL13Rα2 expression, supporting the potential use of targeting IL13Rα2 as a DIPG therapy. However, the tested ADC was effective in most but not all cell models, thus selection of the optimal payload will be essential for clinical translation of an anti-IL13Rα2 ADC for DIPG.
Collapse
Affiliation(s)
- Xiaolei Lian
- Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR, 97005, USA
| | - Dina Kats
- Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR, 97005, USA
| | - Samuel Rasmussen
- Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR, 97005, USA
| | - Leah R Martin
- Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR, 97005, USA
| | - Anju Karki
- Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR, 97005, USA
| | - Charles Keller
- Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR, 97005, USA.
| | - Noah E Berlow
- Children's Cancer Therapy Development Institute, 12655 SW Beaverdam Road-West, Beaverton, OR, 97005, USA.
| |
Collapse
|
88
|
Brasil S, Neves CJ, Rijoff T, Falcão M, Valadão G, Videira PA, Dos Reis Ferreira V. Artificial Intelligence in Epigenetic Studies: Shedding Light on Rare Diseases. Front Mol Biosci 2021; 8:648012. [PMID: 34026829 PMCID: PMC8131862 DOI: 10.3389/fmolb.2021.648012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
More than 7,000 rare diseases (RDs) exist worldwide, affecting approximately 350 million people, out of which only 5% have treatment. The development of novel genome sequencing techniques has accelerated the discovery and diagnosis in RDs. However, most patients remain undiagnosed. Epigenetics has emerged as a promise for diagnosis and therapies in common disorders (e.g., cancer) with several epimarkers and epidrugs already approved and used in clinical practice. Hence, it may also become an opportunity to uncover new disease mechanisms and therapeutic targets in RDs. In this “big data” age, the amount of information generated, collected, and managed in (bio)medicine is increasing, leading to the need for its rapid and efficient collection, analysis, and characterization. Artificial intelligence (AI), particularly deep learning, is already being successfully applied to analyze genomic information in basic research, diagnosis, and drug discovery and is gaining momentum in the epigenetic field. The application of deep learning to epigenomic studies in RDs could significantly boost discovery and therapy development. This review aims to collect and summarize the application of AI tools in the epigenomic field of RDs. The lower number of studies found, specific for RDs, indicate that this is a field open to expansion, following the results obtained for other more common disorders.
Collapse
Affiliation(s)
- Sandra Brasil
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Cátia José Neves
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Tatiana Rijoff
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Marta Falcão
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Gonçalo Valadão
- Instituto de Telecomunicações, Lisbon, Portugal.,Departamento de Ciências e Tecnologias, Autónoma Techlab - Universidade Autónoma de Lisboa, Lisbon, Portugal.,Electronics, Telecommunications and Computers Engineering Department, Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal
| | - Paula A Videira
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal.,UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| |
Collapse
|
89
|
The incorporation loci of H3.3K36M determine its preferential prevalence in chondroblastomas. Cell Death Dis 2021; 12:311. [PMID: 33762579 PMCID: PMC7991640 DOI: 10.1038/s41419-021-03597-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
The histone H3.3K36M mutation, identified in over 90% of chondroblastoma cases, reprograms the H3K36 methylation landscape and gene expression to promote tumorigenesis. However, it's still unclear how the H3K36M mutation preferentially occurs in the histone H3 variant H3.3 in chondroblastomas. Here, we report that H3.3K36M-, but not H3.1K36M-, mutant cells showed increased colony formation ability and differentiation defects. H3K36 methylations and enhancers were reprogrammed to different status in H3.3K36M- and H3.1K36M-mutant cells. The reprogramming of H3K36 methylation and enhancers was depended on the specific loci at which H3.3K36M and H3.1K36M were incorporated. Moreover, targeting H3K36M-mutant proteins to the chromatin inhibited the H3K36 methylation locally. Taken together, these results highlight the roles of the chromatic localization of H3.3K36M-mutant protein in the reprogramming of the epigenome and the subsequent induction of tumorigenesis, and shed light on the molecular mechanisms by which the H3K36M mutation mainly occurs in histone H3.3 in chondroblastomas.
Collapse
|
90
|
Chen Z, Peng P, Zhang X, Mania-Farnell B, Xi G, Wan F. Advanced Pediatric Diffuse Pontine Glioma Murine Models Pave the Way towards Precision Medicine. Cancers (Basel) 2021; 13:cancers13051114. [PMID: 33807733 PMCID: PMC7961799 DOI: 10.3390/cancers13051114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) account for ~15% of pediatric brain tumors, which invariably present with poor survival regardless of treatment mode. Several seminal studies have revealed that 80% of DIPGs harbor H3K27M mutation coded by HIST1H3B, HIST1H3C and H3F3A genes. The H3K27M mutation has broad effects on gene expression and is considered a tumor driver. Determination of the effects of H3K27M on posttranslational histone modifications and gene regulations in DIPG is critical for identifying effective therapeutic targets. Advanced animal models play critical roles in translating these cutting-edge findings into clinical trial development. Here, we review current molecular research progress associated with DIPG. We also summarize DIPG animal models, highlighting novel genomic engineered mouse models (GEMMs) and innovative humanized DIPG mouse models. These models will pave the way towards personalized precision medicine for the treatment of DIPGs.
Collapse
Affiliation(s)
- Zirong Chen
- Department of Neurological Surgery, Tongji Hospital, Tongji Medical College, Huazhong University Science and Technology, Wuhan 430030, China; (Z.C.); (P.P.); (X.Z.)
| | - Peng Peng
- Department of Neurological Surgery, Tongji Hospital, Tongji Medical College, Huazhong University Science and Technology, Wuhan 430030, China; (Z.C.); (P.P.); (X.Z.)
| | - Xiaolin Zhang
- Department of Neurological Surgery, Tongji Hospital, Tongji Medical College, Huazhong University Science and Technology, Wuhan 430030, China; (Z.C.); (P.P.); (X.Z.)
| | - Barbara Mania-Farnell
- Department of Biological Science, Purdue University Northwest, Hammond, IN 46323, USA;
| | - Guifa Xi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Correspondence: (G.X.); (F.W.); Tel.: +1-(312)5034296 (G.X.); +86-(027)-8366-5201 (F.W.)
| | - Feng Wan
- Department of Neurological Surgery, Tongji Hospital, Tongji Medical College, Huazhong University Science and Technology, Wuhan 430030, China; (Z.C.); (P.P.); (X.Z.)
- Correspondence: (G.X.); (F.W.); Tel.: +1-(312)5034296 (G.X.); +86-(027)-8366-5201 (F.W.)
| |
Collapse
|
91
|
Nicholson JG, Fine HA. Diffuse Glioma Heterogeneity and Its Therapeutic Implications. Cancer Discov 2021; 11:575-590. [PMID: 33558264 DOI: 10.1158/2159-8290.cd-20-1474] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022]
Abstract
Diffuse gliomas represent a heterogeneous group of universally lethal brain tumors characterized by minimally effective genotype-targeted therapies. Recent advances have revealed that a remarkable level of genetic, epigenetic, and environmental heterogeneity exists within each individual glioma. Together, these interconnected layers of intratumoral heterogeneity result in extreme phenotypic heterogeneity at the cellular level, providing for multiple mechanisms of therapeutic resistance and forming a highly adaptable and resilient disease. In this review, we discuss how glioma intratumoral heterogeneity and malignant cellular state plasticity drive resistance to existing therapies and look to a future in which these challenges may be overcome. SIGNIFICANCE: Glioma intratumoral heterogeneity and malignant cell state plasticity represent formidable hurdles to the development of novel targeted therapies. However, the convergence of genotypically diverse glioma cells into a limited set of epigenetically encoded transcriptional cell states may present an opportunity for a novel therapeutic strategy we call "State Selective Lethality." In this approach, cellular states (as opposed to genetic perturbations/mutations) are the subject of therapeutic targeting, and plasticity-mediated resistance is minimized through the design of cell state "trapping agents."
Collapse
Affiliation(s)
- James G Nicholson
- Department of Neurology, The Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Howard A Fine
- Department of Neurology, The Meyer Cancer Center, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
92
|
Bailleul Q, Rakotomalala A, Ferry I, Leblond P, Meignan S, Furlan A. [The art of war as applied to pediatric gliomas: Know your enemy]. Med Sci (Paris) 2021; 37:159-166. [PMID: 33591259 DOI: 10.1051/medsci/2020279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pediatric brain cancers represent the most frequent solid tumors and the leading cause of cancer-driven mortality in children. Pediatric High Grade Gliomas display a very poor prognosis. Among these, DIPG (Diffuse Intrinsic Pontine Gliomas), localized to the brain stem, cannot benefit from a total exeresis due to this critical location and to their highly infiltrating nature. Radiotherapy remains the standard treatment against these tumors for almost five decades, and attempts to improve the prognosis of patients with chemotherapy or targeted therapies have failed. Thanks to the rise of high throughput sequencing, the knowledge of molecular alterations in pediatric gliomas strongly progressed and allowed to highlight distinct biomolecular entities and to establish more accurate diagnoses. In this review, we summarize this new information and the perspectives that it brings for clinical strategies.
Collapse
Affiliation(s)
- Quentin Bailleul
- Unité tumorigenèse et résistance aux traitements, Centre Oscar Lambret, Place de Verdun, 59045 Lille, France - Univ. Lille, CNRS, Inserm, CHU Lille, Institut de recherche contre le cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Andria Rakotomalala
- Unité tumorigenèse et résistance aux traitements, Centre Oscar Lambret, Place de Verdun, 59045 Lille, France - Univ. Lille, CNRS, Inserm, CHU Lille, Institut de recherche contre le cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Isabelle Ferry
- Unité tumorigenèse et résistance aux traitements, Centre Oscar Lambret, Place de Verdun, 59045 Lille, France - Univ. Lille, CNRS, Inserm, CHU Lille, Institut de recherche contre le cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Pierre Leblond
- Département de cancérologie pédiatrique, Institut d'hématologie et d'oncologie pédiatrique, Lyon, France
| | - Samuel Meignan
- Unité tumorigenèse et résistance aux traitements, Centre Oscar Lambret, Place de Verdun, 59045 Lille, France - Univ. Lille, CNRS, Inserm, CHU Lille, Institut de recherche contre le cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Alessandro Furlan
- Unité tumorigenèse et résistance aux traitements, Centre Oscar Lambret, Place de Verdun, 59045 Lille, France - Univ. Lille, CNRS, Inserm, CHU Lille, Institut de recherche contre le cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| |
Collapse
|
93
|
Abstract
Brain tumours are the commonest solid neoplasms in children, accounting for one quarter of all childhood cancers. Our growing knowledge of basic developmental mechanisms has significantly contributed to understanding the pathogenesis of these tumours and is beginning to impact clinical decisions on how children with these diseases are treated.
Collapse
Affiliation(s)
- Silvia Marino
- Blizard Institute, Barts Brain Tumour Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Richard J Gilbertson
- Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
94
|
Histone Variant H3.3 Mutations in Defining the Chromatin Function in Mammals. Cells 2020; 9:cells9122716. [PMID: 33353064 PMCID: PMC7766983 DOI: 10.3390/cells9122716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
The systematic mutation of histone 3 (H3) genes in model organisms has proven to be a valuable tool to distinguish the functional role of histone residues. No system exists in mammalian cells to directly manipulate canonical histone H3 due to a large number of clustered and multi-loci histone genes. Over the years, oncogenic histone mutations in a subset of H3 have been identified in humans, and have advanced our understanding of the function of histone residues in health and disease. The oncogenic mutations are often found in one allele of the histone variant H3.3 genes, but they prompt severe changes in the epigenetic landscape of cells, and contribute to cancer development. Therefore, mutation approaches using H3.3 genes could be relevant to the determination of the functional role of histone residues in mammalian development without the replacement of canonical H3 genes. In this review, we describe the key findings from the H3 mutation studies in model organisms wherein the genetic replacement of canonical H3 is possible. We then turn our attention to H3.3 mutations in human cancers, and discuss H3.3 substitutions in the N-terminus, which were generated in order to explore the specific residue or associated post-translational modification.
Collapse
|
95
|
Understanding the epigenetic landscape and cellular architecture of childhood brain tumors. Neurochem Int 2020; 144:104940. [PMID: 33333210 DOI: 10.1016/j.neuint.2020.104940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/12/2020] [Indexed: 11/22/2022]
Abstract
Pediatric brain tumors are the leading cancer-related cause of death in children and adolescents in the United States, affecting on average 1 in 2000 children per year. Recent advances in cancer genomics have led to profound discoveries about the underlying molecular biology and ontogeny of these tumors. In particular, these studies have revealed epigenetic dysregulation to be one of the main hallmarks of pediatric brain tumorigenesis. In this review, we will highlight a number of important recent findings about the nature of this dysregulation in different types of pediatric brain tumors as well as examine their implications for preclinical research and clinical practice. Specifically, we discuss the emergence of methylation signatures as tools for tumor stratification/classification while also highlighting the importance of mutations that directly affect the epigenome and clarifying their impact on risk stratification and pediatric brain tumor biology. We then incorporate recent advances in our understanding of pediatric brain tumor cellular architecture and emphasize the link between epigenetic dysregulation and the "stalled" development seen in many of these malignant neoplasms. Lastly, we explore recentwork investigating the use of these mutated epigenomic regulators as therapeutic targets and extrapolate their utility in overcoming this "stalling" to halt tumor growth.
Collapse
|
96
|
Sanders LM, Cheney A, Seninge L, van den Bout A, Chen M, Beale HC, Kephart ET, Pfeil J, Learned K, Lyle AG, Bjork I, Haussler D, Salama SR, Vaske OM. Identification of a differentiation stall in epithelial mesenchymal transition in histone H3-mutant diffuse midline glioma. Gigascience 2020; 9:giaa136. [PMID: 33319914 PMCID: PMC7736793 DOI: 10.1093/gigascience/giaa136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/17/2020] [Accepted: 11/05/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Diffuse midline gliomas with histone H3 K27M (H3K27M) mutations occur in early childhood and are marked by an invasive phenotype and global decrease in H3K27me3, an epigenetic mark that regulates differentiation and development. H3K27M mutation timing and effect on early embryonic brain development are not fully characterized. RESULTS We analyzed multiple publicly available RNA sequencing datasets to identify differentially expressed genes between H3K27M and non-K27M pediatric gliomas. We found that genes involved in the epithelial-mesenchymal transition (EMT) were significantly overrepresented among differentially expressed genes. Overall, the expression of pre-EMT genes was increased in the H3K27M tumors as compared to non-K27M tumors, while the expression of post-EMT genes was decreased. We hypothesized that H3K27M may contribute to gliomagenesis by stalling an EMT required for early brain development, and evaluated this hypothesis by using another publicly available dataset of single-cell and bulk RNA sequencing data from developing cerebral organoids. This analysis revealed similarities between H3K27M tumors and pre-EMT normal brain cells. Finally, a previously published single-cell RNA sequencing dataset of H3K27M and non-K27M gliomas revealed subgroups of cells at different stages of EMT. In particular, H3.1K27M tumors resemble a later EMT stage compared to H3.3K27M tumors. CONCLUSIONS Our data analyses indicate that this mutation may be associated with a differentiation stall evident from the failure to proceed through the EMT-like developmental processes, and that H3K27M cells preferentially exist in a pre-EMT cell phenotype. This study demonstrates how novel biological insights could be derived from combined analysis of several previously published datasets, highlighting the importance of making genomic data available to the community in a timely manner.
Collapse
Affiliation(s)
- Lauren M Sanders
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Allison Cheney
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Lucas Seninge
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Anouk van den Bout
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Marissa Chen
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Holly C Beale
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Ellen Towle Kephart
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Jacob Pfeil
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Katrina Learned
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - A Geoffrey Lyle
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Isabel Bjork
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - David Haussler
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Sofie R Salama
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Olena M Vaske
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
97
|
Epigenetic activation of a RAS/MYC axis in H3.3K27M-driven cancer. Nat Commun 2020; 11:6216. [PMID: 33277484 PMCID: PMC7718276 DOI: 10.1038/s41467-020-19972-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Histone H3 lysine 27 (H3K27M) mutations represent the canonical oncohistone, occurring frequently in midline gliomas but also identified in haematopoietic malignancies and carcinomas. H3K27M functions, at least in part, through widespread changes in H3K27 trimethylation but its role in tumour initiation remains obscure. To address this, we created a transgenic mouse expressing H3.3K27M in diverse progenitor cell populations. H3.3K27M expression drives tumorigenesis in multiple tissues, which is further enhanced by Trp53 deletion. We find that H3.3K27M epigenetically activates a transcriptome, enriched for PRC2 and SOX10 targets, that overrides developmental and tissue specificity and is conserved between H3.3K27M-mutant mouse and human tumours. A key feature of the H3K27M transcriptome is activation of a RAS/MYC axis, which we find can be targeted therapeutically in isogenic and primary DIPG cell lines with H3.3K27M mutations, providing an explanation for the common co-occurrence of alterations in these pathways in human H3.3K27M-driven cancer. Taken together, these results show how H3.3K27M-driven transcriptome remodelling promotes tumorigenesis and will be critical for targeting cancers with these mutations. Histone H3 at lysine 27 (H3K27M) is often mutated in cancer but its role in tumour initiation is unclear. Here, the authors generated a transgenic model expressing H3.3K27M from the Fabp7 gene promoter, demonstrating that H3.3K27M can initiate diverse tumorigesis on its own, acting through a RAS/MYC transcriptomic programme.
Collapse
|
98
|
An S, Camarillo JM, Huang TYT, Li D, Morris JA, Zoltek MA, Qi J, Behbahani M, Kambhampati M, Kelleher NL, Nazarian J, Thomas PM, Saratsis AM. Histone tail analysis reveals H3K36me2 and H4K16ac as epigenetic signatures of diffuse intrinsic pontine glioma. J Exp Clin Cancer Res 2020; 39:261. [PMID: 33239043 PMCID: PMC7687710 DOI: 10.1186/s13046-020-01773-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/09/2020] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Diffuse intrinsic pontine glioma (DIPG) is an aggressive pediatric brainstem tumor. Most DIPGs harbor a histone H3 mutation, which alters histone post-translational modification (PTM) states and transcription. Here, we employed quantitative proteomic analysis to elucidate the impact of the H3.3K27M mutation, as well as radiation and bromodomain inhibition (BRDi) with JQ1, on DIPG PTM profiles. METHODS We performed targeted mass spectrometry on H3.3K27M mutant and wild-type tissues (n = 12) and cell lines (n = 7). RESULTS We found 29.2 and 26.4% of total H3.3K27 peptides were H3.3K27M in mutant DIPG tumor cell lines and tissue specimens, respectively. Significant differences in modification states were observed in H3.3K27M specimens, including at H3K27, H3K36, and H4K16. In addition, H3.3K27me1 and H4K16ac were the most significantly distinct modifications in H3.3K27M mutant tumors, relative to wild-type. Further, H3.3K36me2 was the most abundant co-occurring modification on the H3.3K27M mutant peptide in DIPG tissue, while H4K16ac was the most acetylated residue. Radiation treatment caused changes in PTM abundance in vitro, including increased H3K9me3. JQ1 treatment resulted in increased mono- and di-methylation of H3.1K27, H3.3K27, H3.3K36 and H4K20 in vitro. CONCLUSION Taken together, our findings provide insight into the effects of the H3K27M mutation on histone modification states and response to treatment, and suggest that H3K36me2 and H4K16ac may represent unique tumor epigenetic signatures for targeted DIPG therapy.
Collapse
Affiliation(s)
- Shejuan An
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeannie M Camarillo
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Tina Yi-Ting Huang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daphne Li
- Department of Neurological Surgery, Loyola University, Chicago, IL, USA
| | - Juliette A Morris
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Madeline A Zoltek
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Jin Qi
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mandana Behbahani
- Department of Neurological Surgery, University of Illinois Chicago, Chicago, IL, USA
| | - Madhuri Kambhampati
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
| | - Neil L Kelleher
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children's National Health System, Washington, DC, USA
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Oncology, University Children's Hospital, Zurich, Switzerland
| | - Paul M Thomas
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Amanda M Saratsis
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Division of Pediatric Neurosurgery, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Avenue, Box 28., Chicago, IL, 60611-2991, USA.
| |
Collapse
|
99
|
Jain SU, Rashoff AQ, Krabbenhoft SD, Hoelper D, Do TJ, Gibson TJ, Lundgren SM, Bondra ER, Deshmukh S, Harutyunyan AS, Juretic N, Jabado N, Harrison MM, Lewis PW. H3 K27M and EZHIP Impede H3K27-Methylation Spreading by Inhibiting Allosterically Stimulated PRC2. Mol Cell 2020; 80:726-735.e7. [PMID: 33049227 PMCID: PMC7680438 DOI: 10.1016/j.molcel.2020.09.028] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/28/2020] [Accepted: 09/23/2020] [Indexed: 11/19/2022]
Abstract
Diffuse midline gliomas and posterior fossa type A ependymomas contain the recurrent histone H3 lysine 27 (H3 K27M) mutation and express the H3 K27M-mimic EZHIP (CXorf67), respectively. H3 K27M and EZHIP are competitive inhibitors of Polycomb Repressive Complex 2 (PRC2) lysine methyltransferase activity. In vivo, these proteins reduce overall H3 lysine 27 trimethylation (H3K27me3) levels; however, residual peaks of H3K27me3 remain at CpG islands (CGIs) through an unknown mechanism. Here, we report that EZHIP and H3 K27M preferentially interact with PRC2 that is allosterically activated by H3K27me3 at CGIs and impede its spreading. Moreover, H3 K27M oncohistones reduce H3K27me3 in trans, independent of their incorporation into the chromatin. Although EZHIP is not found outside placental mammals, expression of human EZHIP reduces H3K27me3 in Drosophila melanogaster through a conserved mechanism. Our results provide mechanistic insights for the retention of residual H3K27me3 in tumors driven by H3 K27M and EZHIP.
Collapse
Affiliation(s)
- Siddhant U Jain
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Andrew Q Rashoff
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Samuel D Krabbenhoft
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Dominik Hoelper
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Truman J Do
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Tyler J Gibson
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Stefan M Lundgren
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Eliana R Bondra
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Shriya Deshmukh
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Ashot S Harutyunyan
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University and The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Nikoleta Juretic
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University and The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University and The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Peter W Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
100
|
Ferrand J, Rondinelli B, Polo SE. Histone Variants: Guardians of Genome Integrity. Cells 2020; 9:E2424. [PMID: 33167489 PMCID: PMC7694513 DOI: 10.3390/cells9112424] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chromatin integrity is key for cell homeostasis and for preventing pathological development. Alterations in core chromatin components, histone proteins, recently came into the spotlight through the discovery of their driving role in cancer. Building on these findings, in this review, we discuss how histone variants and their associated chaperones safeguard genome stability and protect against tumorigenesis. Accumulating evidence supports the contribution of histone variants and their chaperones to the maintenance of chromosomal integrity and to various steps of the DNA damage response, including damaged chromatin dynamics, DNA damage repair, and damage-dependent transcription regulation. We present our current knowledge on these topics and review recent advances in deciphering how alterations in histone variant sequence, expression, and deposition into chromatin fuel oncogenic transformation by impacting cell proliferation and cell fate transitions. We also highlight open questions and upcoming challenges in this rapidly growing field.
Collapse
Affiliation(s)
| | | | - Sophie E. Polo
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, 75013 Paris, France; (J.F.); (B.R.)
| |
Collapse
|