51
|
Anoz-Carbonell E, Timson DJ, Pey AL, Medina M. The Catalytic Cycle of the Antioxidant and Cancer-Associated Human NQO1 Enzyme: Hydride Transfer, Conformational Dynamics and Functional Cooperativity. Antioxidants (Basel) 2020; 9:E772. [PMID: 32825392 PMCID: PMC7554937 DOI: 10.3390/antiox9090772] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Human NQO1 [NAD(H):quinone oxidoreductase 1] is a multi-functional and stress-inducible dimeric protein involved in the antioxidant defense, the activation of cancer prodrugs and the stabilization of oncosuppressors. Despite its roles in human diseases, such as cancer and neurological disorders, a detailed characterization of its enzymatic cycle is still lacking. In this work, we provide a comprehensive analysis of the NQO1 catalytic cycle using rapid mixing techniques, including multiwavelength and spectral deconvolution studies, kinetic modeling and temperature-dependent kinetic isotope effects (KIEs). Our results systematically support the existence of two pathways for hydride transfer throughout the NQO1 catalytic cycle, likely reflecting that the two active sites in the dimer catalyze two-electron reduction with different rates, consistent with the cooperative binding of inhibitors such as dicoumarol. This negative cooperativity in NQO1 redox activity represents a sort of half-of-sites activity. Analysis of KIEs and their temperature dependence also show significantly different contributions from quantum tunneling, structural dynamics and reorganizations to catalysis at the two active sites. Our work will improve our understanding of the effects of cancer-associated single amino acid variants and post-translational modifications in this protein of high relevance in cancer progression and treatment.
Collapse
Affiliation(s)
- Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - David J. Timson
- School of Pharmacy and Biomolecular Sciences, The University of Brighton, Brighton BN2 4GJ, UK;
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, 50009 Zaragoza, Spain;
| |
Collapse
|
52
|
Hepatic transcriptomics analysis reveals that fructose intervention down-regulated xenobiotics-metabolising enzymes through aryl hydrocarbon receptor signalling suppression in C57BL/6N mice. Br J Nutr 2020; 122:769-779. [PMID: 31262372 DOI: 10.1017/s0007114519001612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For decades, fructose intake has been recognised as an environmental risk for metabolic syndromes and diseases. Here we comprehensively examined the effects of fructose intake on mice liver transcriptomes. Fructose-supplemented water (34 %; w/v) was fed to both male and female C57BL/6N mice at their free will for 6 weeks, followed by hepatic transcriptomics analysis. Based on our criteria, differentially expressed genes (DEG) were selected and subjected to further computational analyses to predict key pathways and upstream regulator(s). Subsequently, predicted genes and pathways from the transcriptomics dataset were validated via quantitative RT-PCR analyses. As a result, we identified eighty-nine down-regulated and eighty-eight up-regulated mRNA in fructose-fed mice livers. These DEG were subjected to bioinformatics analysis tools in which DEG were mainly enriched in xenobiotic metabolic processes; further, in the Ingenuity Pathway Analysis software, it was suggested that the aryl hydrocarbon receptor (AhR) is an upstream regulator governing overall changes, while fructose suppresses the AhR signalling pathway. In our quantitative RT-PCR validation, we confirmed that fructose suppressed AhR signalling through modulating expressions of transcription factor (AhR nuclear translocator; Arnt) and upstream regulators (Ncor2, and Rb1). Altogether, we demonstrated that ad libitum fructose intake suppresses the canonical AhR signalling pathway in C57BL/6N mice liver. Based on our current observations, further studies are warranted, especially with regard to the effects of co-exposure to fructose on (1) other types of carcinogens and (2) inflammation-inducing agents (or even diets such as a high-fat diet), to find implications of fructose-induced AhR suppression.
Collapse
|
53
|
Lumlerdkij N, Boonrak R, Booranasubkajorn S, Akarasereenont P, Heinrich M. In vitro protective effects of plants frequently used traditionally in cancer prevention in Thai traditional medicine: An ethnopharmacological study. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112409. [PMID: 31751648 DOI: 10.1016/j.jep.2019.112409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thai traditional medicine (TTM) has been used widely in cancer management in Thailand. Although several Thai medicinal plants were screened for pharmacological activities related to cancer treatment, such evidence still suffers from the lack of linking with TTM knowledge. AIM OF THE STUDY To document knowledge and species used in cancer prevention in TTM and to preliminary investigate pharmacological activities related to the documented knowledge of twenty-six herbal drugs used in cancer/mareng prevention. METHODS Fieldwork gathering data on TTM concept and herbal medicines used in cancer prevention was performed with TTM practitioners across Thailand. Later, water and ethanol extracts from twenty-six herbal drugs mentioned as being used in cancer prevention were screened for their protective effect against tert-butyl hydroperoxide-induced cell death in HepG2 cells. Then active extracts were investigated for their effects on NQO1 activity, glutathione level, and safety in normal rat hepatocytes. RESULTS The fieldwork helped in the development of TTM cancer prevention strategy and possible experimental models to test the pharmacological activities of selected medicinal plants. Fifteen plant extracts showed significant protective effect by restoring the cell viability to 40-59.3%, which were comparable or better than the positive control EGCG. Among them, ethanol extracts from S. rugata and T. laurifolia showed the most promising chemopreventive properties by significantly increased NQO1 activity, restored GSH level from oxidative damage, as well as showed non-toxic effect in normal rat hepatocytes. CONCLUSION TTM knowledge in cancer prevention was documented and used in the planning of pharmacological experiment to study herbal medicines, especially in cancer, inflammation, and other chronic diseases. The proposed strategy should be applied to in vivo and clinical studies in order to further confirm the validity of such a strategy. Other traditional medical systems that use integrated approaches could also apply our strategy to develop evidence that supports a more rational uses in traditional medicine.
Collapse
Affiliation(s)
- Natchagorn Lumlerdkij
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand; Research Group Pharmacognosy and Phytotherapy, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Ranida Boonrak
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Suksalin Booranasubkajorn
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Pravit Akarasereenont
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Michael Heinrich
- Research Group Pharmacognosy and Phytotherapy, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
54
|
Pedroso-Fidelis GDS, Farias HR, Mastella GA, Boufleur-Niekraszewicz LA, Dias JF, Alves MC, Silveira PCL, Nesi RT, Carvalho F, Zocche JJ, Pinho RA. Pulmonary oxidative stress in wild bats exposed to coal dust: A model to evaluate the impact of coal mining on health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110211. [PMID: 31978763 DOI: 10.1016/j.ecoenv.2020.110211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
This study aimed to verify possible alterations involving histological and oxidative stress parameters in the lungs of wild bats in the Carboniferous Basin of Santa Catarina (CBSC) state, Southern Brazil, as a means to evaluate the impact of coal dust on the health of wildlife. Specimens of frugivorous bat species Artibeus lituratus and Sturnira lilium were collected from an area free of coal dust contamination and from coal mining areas. Chemical composition, histological parameters, synthesis of oxidants and antioxidant enzymes, and oxidative damage in the lungs of bats were analyzed. Levels of Na, Cl, Cu, and Br were higher in both species collected in the CBSC than in the controls. Levels of K and Rb were higher in A. lituratus, and levels of Si, Ca, and Fe were higher in S. lilium collected in the carboniferous basin. Both bat species inhabiting the CBSC areas exhibited an increase in the degree of pulmonary emphysema compared to their counterparts collected from control areas. Sturnira lilium showed increased reactive oxygen species (ROS) and 2',7'-dichlorofluorescein (DCF) levels, while A. lituratus showed a significant decrease in nitrite levels in the CBSC samples. Superoxide dismutase (SOD) activity did not change significantly; however, the activity of catalase (CAT) and levels of glutathione (GSH) decreased in the A. lituratus group from CBSC compared to those in the controls. There were no differences in NAD(P)H quinone dehydrogenase 1 protein (NQO1) abundance or nitrotyrosine expression among the different groups of bats. Total thiol levels showed a significant reduction in A. lituratus from CBSC, while the amount of malondialdehyde (MDA) was higher in both A. lituratus and S. lilium groups from coal mining areas. Our results suggested that bats, especially A. lituratus, living in the CBSC could be used as sentinel species for harmful effects of coal dust on the lungs.
Collapse
Affiliation(s)
- Giulia Dos Santos Pedroso-Fidelis
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Hémelin Resende Farias
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gustavo Antunes Mastella
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Liana Appel Boufleur-Niekraszewicz
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Johnny Ferraz Dias
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcio Correa Alves
- Laboratório de Ecologia de Paisagem e de Vertebrados, Programa de Pós-Graduação em Ciências Ambientais, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Renata Tiscoski Nesi
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Fernando Carvalho
- Laboratório de Zoologia e Ecologia de Vertebrados, Programa de Pós-Graduação em Ciências Ambientais, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Jairo José Zocche
- Laboratório de Ecologia de Paisagem e de Vertebrados, Programa de Pós-Graduação em Ciências Ambientais, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil.
| | - Ricardo Aurino Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
55
|
Jin YM, Tao XM, Shi YN, Lu Y, Mei JY. Salvianolic acid B exerts a protective effect in acute liver injury by regulating the Nrf2/HO-1 signaling pathway. Can J Physiol Pharmacol 2020; 98:162-168. [PMID: 31604020 DOI: 10.1139/cjpp-2019-0349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Salvianolic acid B (Sal B) exerts strong antioxidant activity and eliminates the free radical effect. However, how it affects the antioxidant pathway is not very clear. The objective of this study was to investigate the underlying mechanism of Sal B in CCl4-induced acute liver injury, especially its effect on the Nrf2/HO-1 signaling pathway. For the in vivo experiment, an acute liver injury model was induced using CCl4 and treated with Sal B. For the in vitro experiment, an oxidative damage model was established followed by Sal B treatment. Serum biochemical indicators and reactive oxygen species activity were detected using corresponding kits. Oxidant/antioxidant status was determined based on the levels of malondialdehyde, glutathione, and superoxide dismutase. Nrf2 and HO-1 levels were analyzed by Western blotting and immunohistochemical staining. Sal B treatment improved liver histology, decreased the aminotransferase levels, and attenuated oxidative stress in the acute liver injury model. Nrf2 and HO-1 levels were increased both in vivo and in vitro. Sal B suppresses acute liver injury and Nrf2/HO-1 signaling plays a key role in this process.
Collapse
Affiliation(s)
- Yong-mei Jin
- Department of Respiratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xiang-ming Tao
- Department of Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei, Anhui 230032, China
| | - Yi-ning Shi
- Department of Respiratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Youjin Lu
- Department of Respiratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jin-yu Mei
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
56
|
Zhang QL, Li XM, Lian DD, Zhu MJ, Yim SH, Lee JH, Jiang RH, Kim CD. Tumor Suppressive Function of NQO1 in Cutaneous Squamous Cell Carcinoma (SCC) Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2076579. [PMID: 31886179 PMCID: PMC6893255 DOI: 10.1155/2019/2076579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
Cutaneous squamous cell carcinoma (SCC) is a common cancer that significantly decreases the quality of life. It is known that external stimulus such as ultraviolet (UV) radiation induces cutaneous SCC via provoking oxidative stress. NAD(P)H dehydrogenase 1 (NQO1) is a ubiquitous flavoenzyme that functions as a guardian against oxidative stress. However, the effect of NQO1 on cutaneous SCC is not clearly elucidated. In this study, we investigated the effect of NQO1 on cutaneous SCC cells using the recombinant adenoviruses that can upregulate and/or downregulate NQO1 expression. Overexpression of NQO1 resulted in significant decrease of cell proliferation and colony forming activity of SCC lines (SCC12 and SCC13 cells). By contrast, knockdown of NQO1 increased the cell proliferation and colony forming activity. Accordingly, the levels of proliferation-related regulators, such as Cyclin D1, Cyclin E, PCNA, SOX2, and p63, were decreased by the overexpression of NQO1, while those were increased by knockdown of NQO1. In addition, NQO1 affected the invasion and migration of SCC cells in a very similar way, with the regulation of epithelial-mesenchymal transition- (EMT-) related molecules, including E-cadherin, N-cadherin, Vimentin, Snail, and Slug. Finally, the overexpression of NQO1 decreased the level of phosphorylated AKT, JNK, and p38 MAPK, while the knockdown of NQO1 increased the level of phosphorylated signaling molecules. Based on these data, NQO1 has tumor suppressive function in cutaneous SCC cells.
Collapse
Affiliation(s)
- Qing-Ling Zhang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Xue Mei Li
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - De-De Lian
- Department of Intensive Care Unit, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ming Ji Zhu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Su-Hyuk Yim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Skin Med Company, Daejeon, Republic of Korea
| | - Ri-Hua Jiang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
57
|
Fuda H, Miyanaga S, Furukawa T, Umetsu S, Joko S, Roan Y, Suzuki H, Hui SP, Watanabe M, Chiba H. Flazin as a Promising Nrf2 Pathway Activator. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12844-12853. [PMID: 31668063 DOI: 10.1021/acs.jafc.9b04600] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flazin is a β-carboline-derived alkaloid found in Japanese fermented foods. Here, the potential of flazin as an antioxidant food was studied with particular reference to its effect on the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) system in human hepatocytes (C3A). Flazin and flazin analogues including the decarboxylated derivative perlolyrine were chemically synthesized and compared with each other and with chlorogenic acid and curcumin. Among these compounds, flazin showed the lowest cytotoxicity (IC50 < 500 μM) and the highest capacity to activate the Keap1-Nrf2 system. It provided the largest (>3-fold of the control) cytoprotection ability against a pro-oxidant, although its radical absorbance capacity was relatively low. Flazin increased the expressions of Nrf2-dependent phase II enzyme genes and their products (NQO1, GSTP, and GSH proteins). The strong cytoprotection ability of flazin associated with low log P (0-3) is shared by sulforaphane and 3,5-dihydroxy-4-methoxybenzyl alcohol, suggesting the potential value of flazin and flazin-rich foods for the prevention of oxidation-related health disorders.
Collapse
Affiliation(s)
- Hirotoshi Fuda
- Faculty of Health Sciences , Hokkaido University , Sapporo 060-0812 , Japan
| | - Satoshi Miyanaga
- Faculty of Health Sciences , Hokkaido University , Sapporo 060-0812 , Japan
| | - Takayuki Furukawa
- Faculty of Health Sciences , Hokkaido University , Sapporo 060-0812 , Japan
| | - Satomi Umetsu
- Faculty of Health Sciences , Hokkaido University , Sapporo 060-0812 , Japan
| | - Sae Joko
- Faculty of Health Sciences , Hokkaido University , Sapporo 060-0812 , Japan
| | - Yuning Roan
- Faculty of Health Sciences , Hokkaido University , Sapporo 060-0812 , Japan
| | - Hirotaka Suzuki
- Faculty of Health Sciences , Hokkaido University , Sapporo 060-0812 , Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences , Hokkaido University , Sapporo 060-0812 , Japan
| | - Mitsugu Watanabe
- Watanabe Oyster Laboratory Co. Ltd. , 490-3, Shimoongata-cho , Hachioji , Tokyo 190-0154 , Japan
| | - Hitoshi Chiba
- Department of Nutrition , Sapporo University of Health Sciences , Nakanuma Nishi-4-2-1-15 , Higashi-ku, Sapporo 007-0894 , Japan
| |
Collapse
|
58
|
Sun X, Li X, Jia H, Loor JJ, Bucktrout R, Xu Q, Wang Y, Shu X, Dong J, Zuo R, Yang L, Liu G, Li X. Effect of heat-shock protein B7 on oxidative stress in adipocytes from preruminant calves. J Dairy Sci 2019; 102:5673-5685. [PMID: 30954260 DOI: 10.3168/jds.2018-15726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/10/2019] [Indexed: 12/11/2022]
Abstract
Dairy cows with ketosis display excessive lipolysis in adipose tissue. Heat-shock protein B7 (HSPB7), a small heat-shock protein, plays important roles in mediating cytoprotective responses to oxidative stress in rodent adipose tissue. Accordingly, it is assumed that HSPB7 may also play important roles in the antioxidant response in adipose tissue of ketotic cows. Therefore, the aim of this study is to investigate (1) the redox state of adipose tissue in ketotic cows and (2) the role and mechanism of HSPB7 on the regulation of oxidative stress in adipocytes from preruminant calves. An in vivo study consisting of 15 healthy and 15 clinically ketotic cows was performed to harvest subcutaneous adipose tissue and blood samples. In addition, adipocytes isolated from calves were treated with different concentrations of H2O2 (0, 12.5, 25, 50, 100, or 200 μM) for 2 h, transfected with adenovirus-mediated overexpression of HSPB7 for 48 h, or transfected with small interfering RNA of HSPB7 for 48 h followed by exposure to H2O2 (200 μM) for 2 h. Serum concentrations of nonesterified fatty acids and β-hydroxybutyrate were greater in cows with clinical ketosis, whereas serum concentration of glucose was lower. Compared with healthy cows, the malondialdehyde content was greater but the activity of glutathione peroxidase and superoxide dismutase was lower in adipose tissue of clinically ketotic cows. The abundance of HSPB7 and nuclear factor, erythroid 2 like 2 (NFE2L2) was greater in adipose tissue of clinically ketotic cows. In vitro, H2O2 treatment induced the overproduction of reactive oxygen species and malondialdehyde, and inhibited the activity of antioxidant enzymes glutathione peroxidase and superoxide dismutase in adipocytes from preruminant calves. The low concentration of H2O2 (12.5, 25, and 50 μM) increased the abundance of HSPB7 and NFE2L2, but high concentrations of H2O2 (100 or 200 μM) reduced the abundance of HSPB7 and NFE2L2. The overexpression of HSPB7 improved the H2O2-induced oxidative stress in adipocytes via increasing the abundance of NFE2L2 and its downstream target genes heme oxygenase-1 (HMOX1) and NADH quinone oxidoreductase 1 (NQO1). Knockdown of HSPB7 markedly inhibited the expression of NFE2L2, HMOX1, and NQO1 and further exacerbated H2O2-induced oxidative stress. Overall, these results indicate that activation of the HSPB7-NFE2L2 pathway increases cellular antioxidant capacity, thereby alleviating oxidative stress in bovine adipocytes.
Collapse
Affiliation(s)
- Xudong Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Hongdou Jia
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Ryan Bucktrout
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Qiushi Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Yazhe Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xin Shu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Jihong Dong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Rankun Zuo
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Guowen Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Xinwei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| |
Collapse
|
59
|
Hyun DH. Plasma membrane redox enzymes: new therapeutic targets for neurodegenerative diseases. Arch Pharm Res 2019; 42:436-445. [PMID: 30919268 DOI: 10.1007/s12272-019-01147-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/16/2019] [Indexed: 01/06/2023]
Abstract
Mitochondrial dysfunction caused by oxidative stress appears at early stages of aging and age-related diseases. Plasma membrane redox enzymes act in a compensatory manner to decrease oxidative stress and supply reductive capacity to ensure cell survival. Plasma membrane redox enzymes transfer electrons from NAD(P)H to oxidized ubiquinone and α-tocopherol, resulting in inhibition of further oxidative damage. Plasma membrane redox enzymes and their partners are affected by aging, leading to progression of neurodegenerative disease pathogenesis. Up-regulating plasma membrane redox enzymes via calorie restriction and phytochemicals make cells more resistant to oxidative damage under stress conditions by maintaining redox homeostasis and improving mitochondrial function. Investigation into plasma membrane redox enzymes can provide mechanistic details underlying the relationships between plasma membrane redox enzymes and mitochondrial complexes and provide a good therapeutic target for prevention and delay of neurodegenerative disorders.
Collapse
Affiliation(s)
- Dong-Hoon Hyun
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea.
| |
Collapse
|
60
|
Selvakumar R, Anantha Krishnan D, Ramakrishnan C, Velmurugan D, Gunasekaran K. Identification of novel NAD(P)H dehydrogenase [quinone] 1 antagonist using computational approaches. J Biomol Struct Dyn 2019; 38:682-696. [DOI: 10.1080/07391102.2019.1585291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rajendran Selvakumar
- CAS in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | | | - Chandrasekaran Ramakrishnan
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, India
| | - Devadasan Velmurugan
- CAS in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | - Krishnasamy Gunasekaran
- CAS in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
- Bioinformatics Infrastructure Facility, University of Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
61
|
Zhang C, Zhang QZ, Zhang K, Li LY, Pluth MD, Yi L, Xi Z. Dual-biomarker-triggered fluorescence probes for differentiating cancer cells and revealing synergistic antioxidant effects under oxidative stress. Chem Sci 2019; 10:1945-1952. [PMID: 30931093 PMCID: PMC6399676 DOI: 10.1039/c8sc03781g] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022] Open
Abstract
Hydrogen sulfide (H2S) and human NAD(P)H:quinine oxidoreductase 1 (hNQO1) are potential cancer biomarkers and also vital participants in cellular redox homeostasis. Simultaneous detection of these two biomarkers would benefit the diagnostic precision of related cancers and could also help to investigate their crosstalk in response to oxidative stress. Despite this importance, fluorescent probes that can be activated by the dual action of H2S detection and hNQO1 activity have not been investigated. To this end, dual-biomarker-triggered fluorescent probes 1 and 2 were rationally constructed by installing two chemoselective triggering groups into one fluorophore. Probe 1 provides a small turn-on fluorescence response toward H2S but a much larger response to both H2S and hNQO1 in tandem. By contrast, fluorescence probe 2 is activated only in the presence of both H2S and hNQO1. Probe 2 exhibits a large fluorescence turn-on (>400 fold), high sensitivity, excellent selectivity as well as good biocompatibility, enabling the detection of both endogenous H2S and hNQO1 activity in living cells. Bioimaging results indicated that probe 2 could differentiate HT29 and HepG2 cancer cells from HCT116, FHC and HeLa cells owing to the existence of relatively high endogenous levels of both biomarkers. Expanded investigations using 2 revealed that cells could generate more endogenous H2S and hNQO1 upon exposure to exogenous hydrogen peroxide (H2O2), implying the synergistic antioxidant effects under conditions of cellular oxidative stress.
Collapse
Affiliation(s)
- Changyu Zhang
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology (BUCT) , 15 Beisanhuan East Road, Chaoyang District , Beijing 100029 , China .
| | - Qiang-Zhe Zhang
- State Key Laboratory of Medicinal Chemical Biology , College of Pharmacy , Nankai University , Tianjin 300071 , China .
| | - Kun Zhang
- State Key Laboratory of Medicinal Chemical Biology , College of Pharmacy , Nankai University , Tianjin 300071 , China .
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology , College of Pharmacy , Nankai University , Tianjin 300071 , China .
| | - Michael D Pluth
- Materials Science Institute , Institute of Molecular Biology , Department of Chemistry and Biochemistry , University of Oregon , Eugene , OR 97403 , USA
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology (BUCT) , 15 Beisanhuan East Road, Chaoyang District , Beijing 100029 , China .
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry , College of Chemistry , National Pesticide Engineering Research Center (Tianjin) , Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , China .
| |
Collapse
|
62
|
Dodson M, de la Vega MR, Cholanians AB, Schmidlin CJ, Chapman E, Zhang DD. Modulating NRF2 in Disease: Timing Is Everything. Annu Rev Pharmacol Toxicol 2019; 59:555-575. [PMID: 30256716 PMCID: PMC6538038 DOI: 10.1146/annurev-pharmtox-010818-021856] [Citation(s) in RCA: 348] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor erythroid 2 (NF-E2)-related factor 2 (NRF2) is a central regulator of redox, metabolic, and protein homeostasis that intersects with many other signaling cascades. Although the understanding of the complex nature of NRF2 signaling continues to grow, there is only one therapeutic targeting NRF2 for clinical use, dimethyl fumarate, used for the treatment of multiple sclerosis. The discovery of new therapies is confounded by the fact that NRF2 levels vary significantly depending on physiological and pathological context. Thus, properly timed and targeted manipulation of the NRF2 pathway is critical in creating effective therapeutic regimens. In this review, we summarize the regulation and downstream targets of NRF2. Furthermore, we discuss the role of NRF2 in cancer, neurodegeneration, and diabetes as well as cardiovascular, kidney, and liver disease, with a special emphasis on NRF2-based therapeutics, including those that have made it into clinical trials.
Collapse
Affiliation(s)
- Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Montserrat Rojo de la Vega
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Aram B Cholanians
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Cody J Schmidlin
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA;
- Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, USA
| |
Collapse
|
63
|
NAD(P)H quinone oxidoreductase (NQO1): an enzyme which needs just enough mobility, in just the right places. Biosci Rep 2019; 39:BSR20180459. [PMID: 30518535 PMCID: PMC6328894 DOI: 10.1042/bsr20180459] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022] Open
Abstract
NAD(P)H quinone oxidoreductase 1 (NQO1) catalyses the two electron reduction of quinones and a wide range of other organic compounds. Its physiological role is believed to be partly the reduction of free radical load in cells and the detoxification of xenobiotics. It also has non-enzymatic functions stabilising a number of cellular regulators including p53. Functionally, NQO1 is a homodimer with two active sites formed from residues from both polypeptide chains. Catalysis proceeds via a substituted enzyme mechanism involving a tightly bound FAD cofactor. Dicoumarol and some structurally related compounds act as competitive inhibitors of NQO1. There is some evidence for negative cooperativity in quinine oxidoreductases which is most likely to be mediated at least in part by alterations to the mobility of the protein. Human NQO1 is implicated in cancer. It is often over-expressed in cancer cells and as such is considered as a possible drug target. Interestingly, a common polymorphic form of human NQO1, p.P187S, is associated with an increased risk of several forms of cancer. This variant has much lower activity than the wild-type, primarily due to its substantially reduced affinity for FAD which results from lower stability. This lower stability results from inappropriate mobility of key parts of the protein. Thus, NQO1 relies on correct mobility for normal function, but inappropriate mobility results in dysfunction and may cause disease.
Collapse
|
64
|
Satsu H. Regulation of Detoxification Enzymes by Food Components in Intestinal Epithelial Cells. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hideo Satsu
- Department of Biotechnology, Faculty of Engineering, Maebashi Institute of Technology
| |
Collapse
|
65
|
Shi YS, Zhang Y, Liu B, Li CB, Wu J, Li Y. Nomilin protects against cerebral ischemia–reperfusion induced neurological deficits and blood–brain barrier disruption via the Nrf2 pathway. Food Funct 2019; 10:5323-5332. [DOI: 10.1039/c9fo01481k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative stress is considered to play an important role in the cerebral ischemia–reperfusion injury.
Collapse
Affiliation(s)
- Yu-Sheng Shi
- Key Laboratory of Biotechnology and Bioresources Utilization
- Educational of Minister
- College of Life Science
- Dalian Nationalities University
- Dalian 116600
| | - Yan Zhang
- Jiamusi College
- Heilongjiang University of Chinese Medicine
- Jiamusi 154007
- China
| | - Bin Liu
- Jiamusi College
- Heilongjiang University of Chinese Medicine
- Jiamusi 154007
- China
| | - Chun-Bin Li
- Key Laboratory of Biotechnology and Bioresources Utilization
- Educational of Minister
- College of Life Science
- Dalian Nationalities University
- Dalian 116600
| | - Jiao Wu
- Key Laboratory of Biotechnology and Bioresources Utilization
- Educational of Minister
- College of Life Science
- Dalian Nationalities University
- Dalian 116600
| | - Yang Li
- Key Laboratory of Biotechnology and Bioresources Utilization
- Educational of Minister
- College of Life Science
- Dalian Nationalities University
- Dalian 116600
| |
Collapse
|
66
|
NQO1 Is Regulated by PTEN in Glioblastoma, Mediating Cell Proliferation and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9146528. [PMID: 30595797 PMCID: PMC6286748 DOI: 10.1155/2018/9146528] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/27/2018] [Indexed: 12/03/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a dismal prognosis, and the patients carrying EGFR-driven tumors with PTEN mutation do not respond to anti-EGFR therapy. The molecular mechanisms for this resistance remain unknown. Here, we show that PTEN induces the expression of NQO1, a flavoenzyme with dual roles in pro- and antitumorigenesis that decreases the formation of reactive oxygen species (ROS), which mediates the oxidative stress and GBM cell proliferation. NQO1 is reduced in EGFRvIII-overexpressed U87MG cells associated with low ROS, whereas NQO1 is highly escalated in PTEN stably expressed U87MG/EGFRvIII cells with high ROS. Interestingly, knockdown of NQO1 augments ROS and diminishes cell proliferation. Conversely, overexpression of NQO1 attenuates ROS and increases cell proliferation. By contrast, overexpression of PINK1, a PTEN-induced kinase 1, represses ROS and inhibits GBM cell proliferation. Therefore, our findings support that NQO1 displays a paradoxical role in mediating GBM growth in response to tumor suppressor PTEN.
Collapse
|
67
|
Prasansuklab A, Tencomnao T. Acanthus ebracteatus leaf extract provides neuronal cell protection against oxidative stress injury induced by glutamate. Altern Ther Health Med 2018; 18:278. [PMID: 30326896 PMCID: PMC6192065 DOI: 10.1186/s12906-018-2340-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acanthus ebracteatus (AE), an herb native to Asia, has been recognized in traditional folk medicine not only for its antioxidant properties and various pharmacological activities but also as an ingredient of longevity formulas. However, its anti-neurodegenerative potential is not yet clearly known. This work aimed to evaluate the protective effect of AE leaf extract against glutamate-induced oxidative damage in mouse hippocampal HT22 cells, a neurodegenerative model system due to a reduction in glutathione levels and an increase in reactive oxygen species (ROS). METHODS Cell viability, apoptosis, and ROS assays were performed to assess the protective effect of AE leaf extract against glutamate-induced oxidative toxicity in HT22 cells. The antioxidant capacity of AE was evaluated using in vitro radical scavenging assays. The subcellular localization of apoptosis-inducing factor (AIF) and the mRNA and protein levels of genes associated with the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant system were determined to elucidate the mechanisms underlying the neuroprotective effect of AE leaf extract. RESULTS We demonstrated that AE leaf extract is capable of attenuating the intracellular ROS generation and HT22 cell death induced by glutamate in a concentration-dependent manner. Co-treatment of glutamate with the extract significantly reduced apoptotic cell death via inhibition of AIF nuclear translocation. The increases in Nrf2 levels in the nucleus and gene expression levels of antioxidant-related downstream genes under Nrf2 control were found to be significant in cells treated with the extract. CONCLUSIONS The results suggested that AE leaf extract possesses neuroprotective activity against glutamate-induced oxidative injury and may have therapeutic potential for the treatment of neurodegenerative diseases associated with oxidative stress.
Collapse
|
68
|
Park SY, Ahn CB, Chang KJ, Kim SH, Lee W, Um JH, Han EJ, Jeon YJ, Cheong SH, Ahn G. Hepatoprotective Effects of Xylose-Taurine Reduced Against Hydrogen Peroxide-Induced Oxidative Stress in Cultured Hepatocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:621-631. [PMID: 28849486 DOI: 10.1007/978-94-024-1079-2_48] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, Xylose-Taurine reduced (X-T-R) was synthesized to enhance biological activities. Hence, we investigated the hepatoprotective effects of X-T-R against H2O2-induced hepatocyte damage and apoptosis. The results showed that X-T-R led to the cytoprotective effect against H2O2-induced oxidative stress in cultured hepatocytes such as the improvement of cell viability and the reduction of reactive oxygen species (ROS) production. Additionally, pre-treatment with X-T-R increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H dehydrogenase:quinone 1 (NQO1) and heme oxygenase 1 (HO-1) in cultured hepatocytes. Furthermore, X-T-R protected the cells against apoptosis via regulating the expression level of Bcl-2/Bax as well as the activation of caspase-3. According to the results obtained, X-T-R may be a bio-material for the therapy of hepatic diseases.
Collapse
Affiliation(s)
- Soo Yeon Park
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, South Korea
| | - Chang-Bum Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, South Korea
- Division of Food and Nutrition, Chonnam National University, Gwang ju, South Korea
| | - Kyung Ja Chang
- Department of Food and Nutrition, Inha University, Incheon, South Korea
| | - Sung Hoon Kim
- Department of Chemistry, Konkuk University, Seoul, South Korea
| | - WonWoo Lee
- Department of Marine Life Science, Jeju National University, Jeju, South Korea
| | - Ju Hyung Um
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, South Korea
| | - Eui Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, South Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, South Korea
| | - Sun Hee Cheong
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, South Korea.
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, South Korea.
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, South Korea.
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, South Korea.
| |
Collapse
|
69
|
Nilsen BW, Simon‐Santamaria J, Örtengren U, Jensen E, Bruun J, Michelsen VB, Sørensen KK. Dose- and time-dependent effects of triethylene glycol dimethacrylate on the proteome of human THP-1 monocytes. Eur J Oral Sci 2018; 126:345-358. [PMID: 30051916 PMCID: PMC6585793 DOI: 10.1111/eos.12559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Triethylene glycol dimethacrylate (TEGDMA) is commonly used in polymer resin-based dental materials. This study investigated the molecular mechanisms of TEGDMA toxicity by identifying its time- and dose-dependent effects on the proteome of human THP-1 monocytes. The effects of different concentrations (0.07-5 mM) and exposure times (0-72 h) of TEGDMA on cell viability, proliferation, and morphology were determined using a real-time viability assay, automated cell counting, and electron microscopy, and laid the fundament for choice of exposure scenarios in the proteomic experiments. Solvents were not used, as TEGDMA is soluble in cell culture medium (determined by photon correlation spectroscopy). Cells were metabolically labeled [using the stable isotope labeled amino acids in cell culture (SILAC) strategy], and exposed to 0, 0.3 or 2.5 mM TEGDMA for 6 or 16 h before liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses. Regulated proteins were analyzed in the STRING database. Cells exposed to 0.3 mM TEGDMA showed increased viability and time-dependent upregulation of proteins associated with stress/oxidative stress, autophagy, and cytoprotective functions. Cells exposed to 2.5 mM TEGDMA showed diminished viability and a protein expression profile associated with oxidative stress, DNA damage, mitochondrial dysfunction, and cell cycle inhibition. Altered expression of immune genes was observed in both groups. The study provides novel knowledge about TEGDMA toxicity at the proteomic level. Of note, even low doses of TEGDMA induced a substantial cellular response.
Collapse
Affiliation(s)
- Bo W. Nilsen
- Department of Clinical DentistryUiT – The Arctic University of NorwayTromsøNorway
| | | | - Ulf Örtengren
- Department of Clinical DentistryUiT – The Arctic University of NorwayTromsøNorway
- Department of CariologyInstitute of Odontology/Sahlgrenska AcademyGöteborgSweden
| | - Einar Jensen
- Department of PharmacyUiT The Arctic University of NorwayTromsøNorway
| | - Jack‐Ansgar Bruun
- Department of Medical BiologyUiT – The Arctic University of NorwayTromsøNorway
| | | | - Karen K. Sørensen
- Department of Medical BiologyUiT – The Arctic University of NorwayTromsøNorway
| |
Collapse
|
70
|
Abbaoui B, Lucas CR, Riedl KM, Clinton SK, Mortazavi A. Cruciferous Vegetables, Isothiocyanates, and Bladder Cancer Prevention. Mol Nutr Food Res 2018; 62:e1800079. [PMID: 30079608 DOI: 10.1002/mnfr.201800079] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/11/2018] [Indexed: 12/16/2022]
Abstract
Bladder cancer is a significant health burden due to its high prevalence, risk of mortality, morbidity, and high cost of medical care. Epidemiologic evidence suggests that diets rich in cruciferous vegetables, particularly broccoli, are associated with lower bladder cancer risk. Phytochemicals in cruciferous vegetables, such as glucosinolates, which are enzymatically hydrolyzed to bioactive isothiocyanates, are possible mediators of an anticancer effect. In vitro studies have shown inhibition of bladder cancer cell lines, cell cycle arrest, and induction of apoptosis by these isothiocyanates, in particular sulforaphane and erucin. Although not yet completely understood, many mechanisms of anticancer activity at the steps of cancer initiation, promotion, and progression have been attributed to these isothiocyanates. They target multiple pathways including the adaptive stress response, phase I/II enzyme modulation, pro-growth, pro-survival, pro-inflammatory signaling, angiogenesis, and even epigenetic modulation. Multiple in vivo studies have shown the bioavailability of isothiocyanates and their antitumoral effects. Although human studies are limited, they support oral bioavailability with reasonable plasma and urine concentrations achieved. Overall, both cell and animal studies support a potential role for isothiocyanates in bladder cancer prevention and treatment. Future studies are necessary to examine clinically relevant outcomes and define guidelines on ameliorating the bladder cancer burden.
Collapse
Affiliation(s)
- Besma Abbaoui
- Foods for Health Discovery Theme, The College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Department of Food Science and Technology, The College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, 43210
| | - Christopher R Lucas
- Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, 43210.,Department of Mechanical and Aerospace Engineering, The College of Engineering, The Ohio State University, Columbus, OH, 43210.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210
| | - Ken M Riedl
- Department of Food Science and Technology, The College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, 43210.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210
| | - Steven K Clinton
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210.,Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210
| | - Amir Mortazavi
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210.,Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
71
|
Qiu L, Wang M, Zhu Y, Xiang Y, Zhang Y. A Naturally-Occurring Dominant-Negative Inhibitor of Keap1 Competitively against Its Negative Regulation of Nrf2. Int J Mol Sci 2018; 19:ijms19082150. [PMID: 30042301 PMCID: PMC6122090 DOI: 10.3390/ijms19082150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 12/30/2022] Open
Abstract
Transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2) is a master regulator of antioxidant and/or electrophile response elements (AREs/EpREs)-driven genes involved in homeostasis, detoxification, and adaptation to various stresses. The cytoprotective activity of Nrf2, though being oppositely involved in both cancer prevention and progression, is critically controlled by Keap1 (Kelch-like ECH-associated protein 1), which is an adaptor subunit of Cullin 3-based E3 ubiquitin ligase and also is a key sensor for oxidative and electrophilic stresses. Here, we first report a novel naturally-occurring mutant of Keap1, designated Keap1ΔC, which lacks most of its C-terminal Nrf2-interacting domain essential for inhibition of the cap’n’collar (CNC) basic-region leucine zipper (bZIP) factor. This mutant Keap1ΔC is yielded by translation from an alternatively mRNA-spliced variant lacking the fourth and fifth exons, but their coding sequences are retained in the wild-type Keap1 locus (with no genomic deletions). Although this variant was found primarily in the human highly-metastatic hepatoma (MHCC97H) cells, it was widely expressed at very lower levels in all other cell lines examined. Such Keap1ΔC retains no or less ability to inhibit Nrf2, so that it functions as a dominant-negative competitor of Keap1 against its inhibition of Nrf2 due to its antagonist effect on Keap1-mediated turnover of Nrf2 protein.
Collapse
Affiliation(s)
- Lu Qiu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Meng Wang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Yuping Zhu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Yuancai Xiang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Yiguo Zhang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| |
Collapse
|
72
|
Srijiwangsa P, Ponnikorn S, Na-Bangchang K. Effect of β-Eudesmol on NQO1 suppression-enhanced sensitivity of cholangiocarcinoma cells to chemotherapeutic agents. BMC Pharmacol Toxicol 2018; 19:32. [PMID: 29914576 PMCID: PMC6006851 DOI: 10.1186/s40360-018-0223-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/10/2018] [Indexed: 01/17/2023] Open
Abstract
Background Cholangiocarcinoma (CCA), an epithelial malignancy of the biliary tree, is one of the aggressive cancers with poor prognosis and unsatisfactory response to chemotherapy with acquired resistance. NAD(P)H-quinone oxidoreductase 1 (NQO1), an antioxidant/detoxifying enzyme, plays important roles in chemo-resistance and proliferation in several cancer cells. The study aimed to investigate the inhibitory effect of β-eudesmol on NQO1 enhanced chemotherapeutic effects of 5-fluorouracil (5-FU) and doxorubicin (DOX) in the high NQO1-expressing human CCA cell line, NQO1-KKU-100. In addition, the molecular events associated with the inhibition of the cell proliferation, cell migration, and induction of apoptosis were investigated. Methods Human CCA KKU-100 cells were exposed to β-eudesmol at various concentrations. NQO1 enzyme activity and protein expression were measured by enzymatic assay and Western blot analysis, respectively. Sulforhodamine B (SRB) assay and wound healing assay were performed to detect the inhibitory effect of β-eudesmol on cell proliferation, cell migration, and sensitivity to 5-FU and DOX. Apoptotic induction was detected by flow cytometry with annexin V/PI and DAPI nuclear staining. Caspase 3/7 activation was determined by fluorescence microscopy. The mechanism of enhanced chemo-sensitivity was evaluated by Western blot analysis. Results β-Eudesmol significantly suppressed NQO1 enzyme activity (both in KKU-100 cells and cell lysates) and protein expression in KKU-100 cells in a concentration-dependent manner. β-Eudesmol exhibited potent cytotoxicity on KKU-100 cells with mean ± SD IC50 values of 47.62 ± 9.54 and 37.46 ± 12.58 μM at 24 and 48 h, respectively. In addition, it also potentiated the cytotoxic activities and inhibitory activities of 5-FU and DOX on cell migration through induction of cell apoptosis and activation of caspase 3/7. Western blot analysis suggested that β-eudesmol enhanced chemosensitivity was associated with the suppression of NQO1 protein and activation of Bax/Bcl-2 protein expression ratio in CCA cells. Conclusions β-Eudesmol may serve as a potential anti-CCA candidate particularly when used in combination with conventional chemotherapeutics. The mechanisms involved may be mediated via NQO1 suppression-related apoptosis pathway.
Collapse
Affiliation(s)
- Pimradasiri Srijiwangsa
- Chulabhorn International College of Medicine, Thammasat University, (Rangsit Campus), Pathum Thani, 12121, Thailand
| | - Saranyoo Ponnikorn
- Chulabhorn International College of Medicine, Thammasat University, (Rangsit Campus), Pathum Thani, 12121, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, (Rangsit Campus), Pathum Thani, 12121, Thailand. .,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand.
| |
Collapse
|
73
|
Zhang K, Chen D, Ma K, Wu X, Hao H, Jiang S. NAD(P)H:Quinone Oxidoreductase 1 (NQO1) as a Therapeutic and Diagnostic Target in Cancer. J Med Chem 2018; 61:6983-7003. [DOI: 10.1021/acs.jmedchem.8b00124] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Dong Chen
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kun Ma
- Center for Drug Evaluation, China Food and Drug Administration, Beijing 100038, China
| | - Xiaoxing Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
74
|
Miao ZY, Xia X, Che L, Song YT. Genistein attenuates brain damage induced by transient cerebral ischemia through up-regulation of Nrf2 expression in ovariectomized rats. Neurol Res 2018; 40:689-695. [PMID: 29688134 DOI: 10.1080/01616412.2018.1462879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Postmenopausal women possess higher incidence of stroke and worse prognosis. Although estrogen replacement therapy has obvious neuroprotective effects against stroke, it is always accompanied with several adverse effects and undesired outcomes. Genistein, a natural phytoestrogen, has been indicated to be a potential neuroprotective alternative for postmenopausal women against stroke. However, the role and mechanism of genistein's neuroprotective effects against stroke in ovariectomized rats have rarely been explored. METHODS In this study, ovariectomized rats were treated with genistein (10 mg/kg) or vehicle daily for two weeks before they received middle cerebral artery occlusion (MCAO) and reperfusion. After 72 hours of reperfusion, the neurological function was evaluated by Garcia test, infarct volume was detected by 2,3,5-triphenyltetrazolium chloride staining, and neuronal damage was detected by Nissl staining. In addition, ROS production and the expression of Nrf2, NQO1 and cleaved-Caspase3 in the ischemic penumbra were detected. RESULTS The results showed that genistein treatment significantly improved the neurological outcome, reduced infarct volume, increased Nrf2 and NQO1 expression, and reduced ROS production and cleaved-Caspase3 expression in ovariectomized rats. DISCUSSION Our findings indicated that treatment with genistein could alleviated oxidative stress injury induced by cerebral ischemia in ovariectomized rats via promoting Nrf2 and NQO1 expression, which provide a new molecular mechanism for the neuroprotective effects of genistein against stroke in postmenopausal women.
Collapse
Affiliation(s)
- Zhong-Yan Miao
- a Department of Medical Examination , The Second Affiliated Hospital of Mudanjiang Medical University , Heilongjiang , China
| | - Xu Xia
- b Department of Psychology , Hongqi Hospital Affiliated to Mudanjiang Medical University , Heilongjiang , China
| | - Lu Che
- c Department of Medical Record , Hongqi Hospital Affiliated to Mudanjiang Medical University , Heilongjiang , China
| | - Yan-Tao Song
- d Department of Teaching and Research , The Second Affiliated Hospital of Mudanjiang Medical University , Heilongjiang , China
| |
Collapse
|
75
|
Tong YH, Zhang B, Yan YY, Fan Y, Yu JW, Kong SS, Zhang D, Fang L, Su D, Lin NM. Dual-negative expression of Nrf2 and NQO1 predicts superior outcomes in patients with non-small cell lung cancer. Oncotarget 2018; 8:45750-45758. [PMID: 28501854 PMCID: PMC5542223 DOI: 10.18632/oncotarget.17403] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/03/2017] [Indexed: 12/02/2022] Open
Abstract
Functional studies in non-small cell lung cancer (NSCLC) patients revealed that hyperactivation of the NF-E2-related factor 2 (Nrf2) pathway facilitates tumor growth. We examined the usefulness of Nrf2 and NQO1 as indicators of prognosis in NSCLC. Tumor and adjacent non-tumor tissue samples were collected from 215 NSCLC patients who had tumor resections between 2006 and 2011. Immunohistochemistry was performed to detect Nrf2 or NQO1 expression. The correlation between Nrf2 or NQO1 expression and survival outcomes was evaluated using the Kaplan-Meier method and Cox proportional hazards regression model. Levels of Nrf2 and NQO1 were elevated in tumor tissues. In particular, Nrf2 was elevated in nearly all tumor cells. NQO1 expression positively correlated with Nrf2 expression (P = 0.039). Nrf2 expression positively correlated with lymph node metastasis (P = 0.001) and negatively correlated with tumor differentiation (P = 0.032). As compared with either Nrf2 or NQO1 alone, dual-negative expression of Nrf2 and NQO1 was more predictive of superior overall survival (P = 0.020) and disease free survival (P = 0.037). Subgroup analyses showed that females, nonsmokers, and patients with advanced-stage NSCLC were suitable populations in which to evaluate prognosis based on Nrf2 and NQO1 co-expression. These results indicate that dual-negative expression of Nrf2 and NQO1 is predictive of a better prognosis in NSCLC patients.
Collapse
Affiliation(s)
- Ying-Hui Tong
- Laboratory of Clinical Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Bo Zhang
- Laboratory of Clinical Pharmacology, Translational Medicine Research Center, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, China
| | - You-You Yan
- Laboratory of Clinical Pharmacology, Translational Medicine Research Center, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, China
| | - Yun Fan
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology (Esophagus, Lung), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Jia-Wen Yu
- Laboratory of Clinical Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Si-Si Kong
- Laboratory of Clinical Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Dan Zhang
- Laboratory of Clinical Pharmacology, Translational Medicine Research Center, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, China
| | - Luo Fang
- Laboratory of Clinical Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Dan Su
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology (Esophagus, Lung), Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Neng-Ming Lin
- Laboratory of Clinical Pharmacology, Translational Medicine Research Center, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
76
|
Activation of Nrf2 Pathway Contributes to Neuroprotection by the Dietary Flavonoid Tiliroside. Mol Neurobiol 2018; 55:8103-8123. [PMID: 29508282 PMCID: PMC6132780 DOI: 10.1007/s12035-018-0975-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/19/2018] [Indexed: 02/08/2023]
Abstract
Hyperactivated microglia plays a key role in regulating neuroinflammatory responses which cause damage to neurons. In recent years, substantial attention has been paid in identifying new strategies to abrogate neuroinflammation. Tiliroside, a natural dietary glycosidic flavonoid, is known to inhibit neuroinflammation. This study was aimed at investigating the molecular mechanisms involved in the inhibition of neuroinflammation and neurotoxicity by tiliroside. The effects of tiliroside on Nrf2 and SIRT1 activities in BV2 microglia and HT22 hippocampal neurons were investigated using immunoblotting and DNA binding assays. The roles of Nrf2 and SIRT1 in the anti-inflammatory activity of tiliroside were further investigated using RNA interference experiments. HT22 neuronal viability was determined by XTT, calcium influx, DNA fragmentation assays. The effect of tiliroside on MAP2 protein expression in HT22 neurons was investigated using western blotting and immunofluorescence. We also studied the impact of tiliroside on DNA fragmentation and ROS generation in APPSwe-transfected 3D neuronal stem cells. Results show that tiliroside increased protein levels of Nrf2, HO-1 and NQO1, indicating an activation of the Nrf2 protective mechanisms in the microglia. Furthermore, transfection of BV2 cells with Nrf2 siRNA resulted in the loss of anti-inflammatory activity by tiliroside. Tiliroside reduced protein levels of acetylated-NF-κB-p65, and increased SIRT1 in LPS/IFNγ-activated BV2 microglia. RNAi experiments revealed that inhibition of neuroinflammation by tiliroside was not affected by silencing SIRT1 gene. Results of neurotoxicity experiments revealed that neuroinflammation-induced toxicity, DNA fragmentation, ROS generation and calcium accumulation in HT22 neurons were significantly reduced by tiliroside treatment. In addition, the compound also protected differentiated human neural progenitor cells by blocking ROS generation and DNA fragmentation. Overall, this study has established that tiliroside protected BV2 microglia from LPS/IFNγ-induced neuroinflammation and HT22 neuronal toxicity by targeting Nrf2 antioxidant mechanisms. The compound also produced inhibition of NF-κB acetylation through activation of SIRT1, as well as increasing SIRT1 activity in mouse hippocampal neurons. Results from this study have further established the mechanisms involved in the anti-neuroinflammatory and neuroprotective activities of tiliroside.
Collapse
|
77
|
Nrf2 as regulator of innate immunity: A molecular Swiss army knife! Biotechnol Adv 2018; 36:358-370. [DOI: 10.1016/j.biotechadv.2017.12.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
|
78
|
Förster N, Mewis I, Glatt H, Haack M, Brigelius-Flohé R, Schreiner M, Ulrichs C. Characteristic single glucosinolates from Moringa oleifera: Induction of detoxifying enzymes and lack of genotoxic activity in various model systems. Food Funct 2018; 7:4660-4674. [PMID: 27775133 DOI: 10.1039/c6fo01231k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Leaves of Moringa oleifera are used by tribes as biological cancer medicine. Scientific investigations with M. oleifera conducted so far have almost exclusively used total plant extracts. Studies on the activity of single compounds are missing. Therefore, the biological effects of the two main aromatic multi-glycosylated glucosinolates of M. oleifera were investigated in the present study. The cytotoxic effects of M. oleifera glucosinolates were identified for HepG2 cells (NRU assay), for V79-MZ cells (HPRT assay, SCE assay), and for two Salmonella typhimurium strains (Ames test). Genotoxic effects of these glucosinolates were not observed (Ames test, HPRT assay, and SCE assay). Reporter gene assays revealed a significant increase in the ARE-dependent promoter activity of NQO1 and GPx2 indicating an activation of the Nrf2 pathway by M. oleifera glucosinolates. Since both enzymes can also be induced via activation of the AhR, plasmids containing promoters of both enzymes mutated in the respective binding sites (pGL3enh-hNQO1-ARE, pGL3enh-hNQO1-XRE, pGL3bas-hGPX2-mutARE, pGL3bas-hGPX2-mutXRE) were transfected. Analyses revealed that the majority of the stimulating effects was mediated by the ARE motif, whereas the XRE motif played only a minor role. The stimulating effects of M. oleifera glucosinolates could be demonstrated both at the transcriptional (reporter gene assay, real time-PCR) and translational levels (enzyme activity) making them interesting compounds for further investigation.
Collapse
Affiliation(s)
- Nadja Förster
- Division Urban Plant Ecophysiology, Humboldt-Universität zu Berlin, Lentzeallee 55-57, 14195 Berlin, Germany.
| | - Inga Mewis
- Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn-Institute, Königin-Luise-Straße 19, 14195 Berlin, Germany
| | - Hansruedi Glatt
- Former Department of Nutritional Toxicology, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany and Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Michael Haack
- Former Department of Biochemistry of Micronutrients, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Regina Brigelius-Flohé
- Former Department of Biochemistry of Micronutrients, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Monika Schreiner
- Department of Plant Quality, Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Christian Ulrichs
- Division Urban Plant Ecophysiology, Humboldt-Universität zu Berlin, Lentzeallee 55-57, 14195 Berlin, Germany.
| |
Collapse
|
79
|
Yu S, Yan Z, Feng F, Ni J, Wang W, Nabie K, Zhang Y, Qu L, Wu Y. NF-E2-related factor 2 serves a key function in resistance to malignant transformation of BEAS-2B cells induced by coal tar pitch. Oncol Lett 2018; 15:5143-5148. [PMID: 29552149 DOI: 10.3892/ol.2018.7924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/29/2017] [Indexed: 11/06/2022] Open
Abstract
Coal tar pitch (CTP) is a key factor in the development of occupational lung cancer. In order to investigate the function of the anti-oxidative signaling pathway regulated by NF-E2-related factor 2 (Nrf2) during cancer development, BEAS-2B cells were cultured with CTP extract for 30 passages. It was revealed that malignant transformation occurred in cells between the 20 and 30th passage. The expression levels of Nrf2 and NAD(P)H:quinone oxidoreductase 1 (NQO1) were promoted throughout the CTP exposure culture, and there was a positive linear correlation between the expression levels of Nrf2 and NQO1. Following knockdown of Nrf2 expression, the level of NQO1 decreased markedly and malignant transformation was more likely to occur. It was hypothesized that CTP may be toxic to BEAS-2B cells, which may lead to malignant transformation. Nrf2 was a quick response factor: Counteracting cytotoxicity by promoting the expression of anti-oxidative genes. Thus, Nrf2 was associated with the malignant transformation of BEAS-2B cells exposed to CTP and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Zhen Yan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jing Ni
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Kadijatu Nabie
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yiguo Zhang
- College of Medical Bioengineering and Faculty of Life Sciences, University of Chongqing, Chongqing 400044, P.R. China
| | - Lingbo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
80
|
|
81
|
Pomatto LCD, Davies KJA. The role of declining adaptive homeostasis in ageing. J Physiol 2017; 595:7275-7309. [PMID: 29028112 PMCID: PMC5730851 DOI: 10.1113/jp275072] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Adaptive homeostasis is "the transient expansion or contraction of the homeostatic range for any given physiological parameter in response to exposure to sub-toxic, non-damaging, signalling molecules or events, or the removal or cessation of such molecules or events" (Davies, 2016). Adaptive homeostasis enables biological systems to make continuous short-term adjustments for optimal functioning despite ever-changing internal and external environments. Initiation of adaptation in response to an appropriate signal allows organisms to successfully cope with much greater, normally toxic, stresses. These short-term responses are initiated following effective signals, including hypoxia, cold shock, heat shock, oxidative stress, exercise-induced adaptation, caloric restriction, osmotic stress, mechanical stress, immune response, and even emotional stress. There is now substantial literature detailing a decline in adaptive homeostasis that, unfortunately, appears to manifest with ageing, especially in the last third of the lifespan. In this review, we present the hypothesis that one hallmark of the ageing process is a significant decline in adaptive homeostasis capacity. We discuss the mechanistic importance of diminished capacity for short-term (reversible) adaptive responses (both biochemical and signal transduction/gene expression-based) to changing internal and external conditions, for short-term survival and for lifespan and healthspan. Studies of cultured mammalian cells, worms, flies, rodents, simians, apes, and even humans, all indicate declining adaptive homeostasis as a potential contributor to age-dependent senescence, increased risk of disease, and even mortality. Emerging work points to Nrf2-Keap1 signal transduction pathway inhibitors, including Bach1 and c-Myc, both of whose tissue concentrations increase with age, as possible major causes for age-dependent loss of adaptive homeostasis.
Collapse
Affiliation(s)
- Laura C. D. Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
| | - Kelvin J. A. Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
- Molecular and Computational Biology Program, Department of Biological Sciences of the Dornsife College of LettersArts & Sciences: the University of Southern CaliforniaLos AngelesCA 90089‐0191USA
| |
Collapse
|
82
|
Various Mechanisms Involve the Nuclear Factor (Erythroid-Derived 2)-Like (NRF2) to Achieve Cytoprotection in Long-Term Cisplatin-Treated Urothelial Carcinoma Cell Lines. Int J Mol Sci 2017; 18:ijms18081680. [PMID: 28767070 PMCID: PMC5578070 DOI: 10.3390/ijms18081680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 02/08/2023] Open
Abstract
Therapeutic efficacy of cisplatin-based chemotherapy for advanced-stage urothelial carcinoma (UC) is limited by drug resistance. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) pathway is a major regulator of cytoprotective responses. We investigated its involvement in cisplatin resistance in long-term cisplatin treated UC cell lines (LTTs). Expression of NRF2 pathway components and targets was evaluated by qRT-PCR and western blotting in LTT sublines from four different parental cells. NRF2 transcriptional activity was determined by reporter assays and total glutathione (GSH) was quantified enzymatically. Effects of siRNA-mediated NRF2 knockdown on chemosensitivity were analysed by viability assays, γH2AX immunofluorescence, and flow cytometry. Increased expression of NRF2, its positive regulator p62/SQSTM1, and elevated NRF2 activity was observed in 3/4 LTTs, which correlated with KEAP1 expression. Expression of cytoprotective enzymes and GSH concentration were upregulated in some LTTs. NRF2 knockdown resulted in downregulation of cytoprotective enzymes and resensitised 3/4 LTTs towards cisplatin as demonstrated by reduced IC50 values, increased γH2AX foci formation, and elevated number of apoptotic cells. In conclusion, while LTT lines displayed diversity in NRF2 activation, NRF2 signalling contributed to cisplatin resistance in LTT lines, albeit in diverse ways. Accordingly, inhibition of NRF2 can be used to resensitise UC cells to cisplatin, but responses in patients may likewise be variable.
Collapse
|
83
|
Insuan O, Chariyakornkul A, Rungrote Y, Wongpoomchai R. Antimutagenic and Antioxidant Activities of Thai Rice Brans. J Cancer Prev 2017; 22:89-97. [PMID: 28698862 PMCID: PMC5503220 DOI: 10.15430/jcp.2017.22.2.89] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 12/20/2022] Open
Abstract
Background Rice bran is the outer layer of the rice grain, and contains high amounts of bioactive phytochemicals. Here, we investigated and compared chemopreventive properties of purple and white rice bran extracts. Methods Rice bran was extracted with dichloromethane and methanol. Chemical constituents in the extracts were analyzed by colorimetric assay and high performance liquid chromatography. The mutagenicity and antimutagenicity of the extracts were determined via the Salmonella mutation assay. The anticarcinogenic enzyme induction and antioxidant activities of the extracts were examined using Hepa1c1c7 cells and 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, respectively. Results The methanol extracts of rice bran contained high amounts of phenolic acids, flavonoids, anthocyanins, and phytic acid, whereas large amounts of γ-oryzanol and vitamin E were presented in the dichloromethane extract. None of the extracts were mutagenic to Salmonella typhimurium. All rice bran extracts had strong antimutagenic effects against aflatoxin B1- and 2-amino-3,4-dimethylimidazo [4,5-f]quinoline-induced mutagenesis. The inhibitory effect against 2-aminofluorene-induced mutagenesis was found in the dichloromethane extract, while only the methanol extract of purple rice bran exhibited antimutagenic effects against benzo(a)pyrene. None of the extracts induced quinone reductase activity in Hepa1c1c7 cells. Additionally, the greatest antioxidant capacity was found in the methanol extract of purple rice bran. Conclusions The methanol extract of purple rice bran containing high amount of phenolic acids, flavonoids, anthocyanins, and phytic acid showed the most effective antioxidant and antimutagenic activities by inhibiting mutagenic metabolizing enzymes and/or scavenging free radicals. These results demonstrate the nutritional and medical value of Thai rice for cancer prevention.
Collapse
Affiliation(s)
- Orapin Insuan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Yuwada Rungrote
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
84
|
Mulberry Anthocyanin Extract Ameliorates Oxidative Damage in HepG2 Cells and Prolongs the Lifespan of Caenorhabditis elegans through MAPK and Nrf2 Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7956158. [PMID: 28713491 PMCID: PMC5497675 DOI: 10.1155/2017/7956158] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/31/2017] [Accepted: 05/11/2017] [Indexed: 12/20/2022]
Abstract
Mulberry anthocyanins possess many pharmacological effects including liver protection, anti-inflammation, and anticancer. The aim of this study was to evaluate whether mulberry anthocyanin extract (MAE) exerts beneficial effects against oxidative stress damage in HepG2 cells and Caenorhabditis elegans. In vitro, MAE prevented cytotoxicity, increased glucose consumption and uptake, and eliminated excessive intracellular free radicals in H2O2-induced cells. Moreover, MAE pretreatment maintained Nrf2, HO-1, and p38 MAPK stimulation and abolished upregulation of p-JNK, FOXO1, and PGC-1α that were involved in oxidative stress and insulin signalling modulation. In vivo, extended lifespan was observed in C. elegans damaged by paraquat in the presence of MAE, while these beneficial effects were disappeared in pmk-1 and daf-16 mutants. PMK-1 and SKN-1 were activated after exposure to paraquat and MAE suppressed PMK-1 activation but enhanced SKN-1 stimulation. Our findings suggested that MAE recovered redox status in HepG2 cells and C. elegans that suffered from oxidative stress, which might be by targeting MAPKs and Nrf2.
Collapse
|
85
|
Roubalová L, Dinkova-Kostova AT, Biedermann D, Křen V, Ulrichová J, Vrba J. Flavonolignan 2,3-dehydrosilydianin activates Nrf2 and upregulates NAD(P)H:quinone oxidoreductase 1 in Hepa1c1c7 cells. Fitoterapia 2017; 119:115-120. [PMID: 28450126 PMCID: PMC5476199 DOI: 10.1016/j.fitote.2017.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/11/2017] [Accepted: 04/23/2017] [Indexed: 12/13/2022]
Abstract
Silybum marianum (milk thistle) is a medicinal plant used for the treatment of various liver disorders. This study examined whether the main flavonolignans from S. marianum (i.e. silybin, silychristin, silydianin) and their 2,3-dehydro derivatives (i.e. 2,3-dehydrosilybin, 2,3-dehydrosilychristin, 2,3-dehydrosilydianin) activate the Nrf2 pathway, which regulates the expression of genes encoding many cytoprotective enzymes, including NAD(P)H:quinone oxidoreductase 1 (NQO1). After 48h of exposure, 2,3-dehydrosilydianin at concentrations of 25μM and higher significantly elevated the activity of NQO1 in murine hepatoma Hepa1c1c7 cells. In contrast, other tested compounds at non-cytotoxic concentrations had a mild or negligible effect on the NQO1 activity. Using a luciferase reporter assay, 2,3-dehydrosilydianin was found to significantly activate transcription via the antioxidant response element in stably transfected human AREc32 reporter cells. Moreover, 2,3-dehydrosilydianin caused the accumulation of Nrf2 and significantly induced the expression of the Nqo1 gene at both the mRNA and protein levels in Hepa1c1c7 cells. We found that 2,3-dehydrosilydianin also increased to some extent the expression of other Nrf2 target genes, namely of the heme oxygenase-1 gene (Hmox1) and the glutamate-cysteine ligase modifier subunit gene (Gclm). We conclude that 2,3-dehydrosilydianin activates Nrf2 and induces Nrf2-mediated gene expression in Hepa1c1c7 cells.
Collapse
Affiliation(s)
- Lenka Roubalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - David Biedermann
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, Prague 14220, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, Prague 14220, Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic.
| |
Collapse
|
86
|
Lee J, Oh ET, Yoon H, Kim CW, Han Y, Song J, Jang H, Park HJ, Kim C. Mesoporous nanocarriers with a stimulus-responsive cyclodextrin gatekeeper for targeting tumor hypoxia. NANOSCALE 2017; 9:6901-6909. [PMID: 28503686 DOI: 10.1039/c7nr00808b] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tissue hypoxia developed in most malignant tumors makes a significant difference to normal tissues in the reduction potential and the activity of various bioreductive enzymes. Given the superior enzymatic activity of NAD(P)H:quinone oxidoreductase 1 (NQO1, a cytosolic reductase up-regulated in many human cancers) in hypoxia relative to that in normoxia, NQO1 has great potential for targeting hypoxic tumor cells. In the present report, the core concept of hypoxic NQO1-responsive mesoporous silica nanoparticles (MSNs) is based on the reasoning that the superior enzymatic activity of NQO1 within hypoxic cancer cells can be utilized as a key stimulus for the selective cleavage of an azobenzene stalk triggering the on-off gatekeeping for controlled release of guest drugs. We corroborate that the NQO1 specifically triggers to release the entrapped drug in the nanochannel of MSNs by reductive cleavage of the azobenzene linker only under hypoxic conditions in a controlled manner not only in vitro but also in vivo. Therefore, our results indicate that Si-Azo-CD-PEG could be utilized as a hypoxic cancer-targeting drug delivery carrier, and further suggest that the azobenzene linker could generally be useful for the construction of hypoxic NQO1-responsive nanomaterials.
Collapse
Affiliation(s)
- Jeonghun Lee
- Department of Polymer Science and Engineering, Inha University, Incheon 402-751, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Characteristics of ovarian cancer detection by a near-infrared fluorescent probe activated by human NAD(P)H: quinone oxidoreductase isozyme 1 (hNQO1). Oncotarget 2017; 8:61181-61192. [PMID: 28977855 PMCID: PMC5617415 DOI: 10.18632/oncotarget.18044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/12/2017] [Indexed: 12/17/2022] Open
Abstract
Near-infrared (NIR) fluorescent probes are ideal for in vivo imaging, because they offer deeper tissue penetration by the light and lower background autofluorescence than fluorophores that emit in the visible range. Q3STCy is a newly synthesized, NIR light-emitting probe that is activated by an enzyme commonly overexpressed in tumor cells, human nicotinamide adenine dinucleotide (phosphate): quinone oxidoreductase isozyme 1, known as hNQO1 or DT-diaphorase. The purpose of this study is to compare the sensitivity of detecting peritoneal ovarian cancer metastasis (POCM) with Q3STCy and gGlu-HMRG, a green fluorescent probe, upon their surface application. In vitro uptake of Q3STCy was significantly higher than that of gGlu-HMRG. Using a red fluorescence protein (RFP)-labeled in vivo tumor model of POCM, the Q3STCy probe provided high sensitivity (96.9%) but modest specificity (61.0%), most likely the result of albumin-probe interactions and non-specific activation in nearby altered but healthy cells. Three types of kinetic maps based on maximum fluorescence signal (MF), wash-in rate (WIR), and area under the curve (AUC) allowed for differentiation of the activated fluorescence signal associated with POCM from the background signal of the small intestine, thereby significantly improving the specificity of Q3STCy to 80%, 100%, and 100% for MF, WIR, and AUC, as well yielding a moderate improvement in sensitivity (100% for all approaches) that is comparable to that with gGlu-HMRG, but with the added advantages of NIR fluorescence as the transduction modality. Such a new methodology has the potential to afford identification of cancerous lesions deeper within tissue.
Collapse
|
88
|
Swamy SM, Rajasekaran NS, Thannickal VJ. Nuclear Factor-Erythroid-2-Related Factor 2 in Aging and Lung Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 186:1712-23. [PMID: 27338106 DOI: 10.1016/j.ajpath.2016.02.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/31/2016] [Accepted: 02/22/2016] [Indexed: 12/30/2022]
Abstract
Aging and age-related diseases have been associated with elevated oxidative stress, which may be related to increased production of reactive species and/or a deficiency in antioxidant defenses. The nuclear factor-erythroid-2-related factor 2 (Nrf2)-mediated antioxidant response pathway maintains cellular reduction-oxidation homeostasis by inducing the transcription of an array of cytoprotective genes. However, there is evidence of impaired Nrf2 response in aging contributing to age-related fibrotic diseases. Herein, we review mechanisms for the dysregulation of Nrf2 signaling in aging. This understanding will pave the way for the design of novel therapeutic strategies that restore Nrf2 signaling to reestablish cellular homeostasis in aging and age-related fibrotic diseases.
Collapse
Affiliation(s)
- Shobha M Swamy
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama School of Medicine, Birmingham, Alabama
| | - Namakkal S Rajasekaran
- Center of Free Radical Biology, University of Alabama School of Medicine, Birmingham, Alabama
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama School of Medicine, Birmingham, Alabama.
| |
Collapse
|
89
|
Campos CZ, Losi Guembarovski R, de Oliveira CEC, Banin Hirata BK, Vitiello GAF, Dias FL, Hiroki CH, Watanabe MAE, Mazzuco TL. Glutathione S-transferases deletions may act as prognosis and therapeutic markers in breast cancer. Clin Exp Med 2017; 18:27-35. [PMID: 28455582 DOI: 10.1007/s10238-017-0461-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Breast cancer (BC) is the main worldwide neoplasia in women. The metabolic balance between xenobiotic absorption and elimination rates plays an important role in preventing DNA damage and, consequently, tumor development. The glutathione S-transferases (GSTs), such as GSTM1 and GSTT1, and the NAD(P)H quinone oxidoreductase are important enzymes involved in phase II detoxification reactions. Deletions in GSTM1 and GSTT1, and single-nucleotide polymorphism (SNP) in NQO1 (rs1800655) have been investigated in cancer context, revealing conflicting results. The present study analyzed these genetic polymorphisms in 121 BC patients and 151 BC-free controls in order to verify if they could act as susceptibility modifiers and/or prognostic factors. Binary logistic regressions adjusted by age were performed to assess associations between allelic variants and interactions in polymorphisms combination with BC susceptibility, but no significant association was found. Genotypes distribution was also compared between BC subtypes, but no significant difference was observed (p > 0.05). GSTM1 deletion was significantly associated with histopathological grade, with a greater proportion of patients presenting grade III tumors (p = 0.007). Univariate analysis identified tumor size as the only clinicopathological parameter potentially associated with recurrence risk in patients that received adjuvant chemotherapy (p < 0.1). Thus, logistic regression analysis adjusted by tumor size revealed a positive association between GSTT1 deletion and recurrence risk in general BC (OR 4.25; p = 0.04), while GSTM1 was negatively associated with recurrence risk in ER/PR+HER2- samples (OR 0.07; p = 0.03). In conclusion, the present study indicated that GSTT1 deletion was associated with increased recurrence risk, while GSTM1 correlated with worst prognosis parameters at diagnosis, but was negatively associated with recurrence risk in luminal subtype samples.
Collapse
Affiliation(s)
- Clodoaldo Zago Campos
- Department of Medicine, Health Sciences Center, Londrina State University, Londrina, Parana, Brazil.,Department of Clinical Research, Londrina Cancer Hospital, Londrina, Parana, Brazil
| | - Roberta Losi Guembarovski
- Department of General Biology, Biological Sciences Center, Londrina State University, Londrina, Parana, Brazil
| | - Carlos Eduardo Coral de Oliveira
- Laboratory of Studies and Applications of DNA Polymorphisms, Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Celso Garcia Cid Highway, PR 445, Km 380, Londrina, Parana, Brazil
| | - Bruna Karina Banin Hirata
- Laboratory of Studies and Applications of DNA Polymorphisms, Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Celso Garcia Cid Highway, PR 445, Km 380, Londrina, Parana, Brazil
| | - Glauco Akelinghton Freire Vitiello
- Laboratory of Studies and Applications of DNA Polymorphisms, Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Celso Garcia Cid Highway, PR 445, Km 380, Londrina, Parana, Brazil
| | - Flávia Luísa Dias
- Laboratory of Studies and Applications of DNA Polymorphisms, Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Celso Garcia Cid Highway, PR 445, Km 380, Londrina, Parana, Brazil
| | - Carlos Hiroji Hiroki
- Laboratory of Studies and Applications of DNA Polymorphisms, Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Celso Garcia Cid Highway, PR 445, Km 380, Londrina, Parana, Brazil
| | - Maria Angelica Ehara Watanabe
- Laboratory of Studies and Applications of DNA Polymorphisms, Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Celso Garcia Cid Highway, PR 445, Km 380, Londrina, Parana, Brazil.
| | - Tânia Longo Mazzuco
- Endocrine Interactions Research Group, Department of Medical Clinic, Health Sciences Center, Londrina State University, Londrina, Parana, Brazil
| |
Collapse
|
90
|
Bartenbacher S, Östreicher C, Pischetsrieder M. Profiling of antioxidative enzyme expression induced by various food components using targeted proteome analysis. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201600655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Sven Bartenbacher
- Food Chemistry Unit; Department of Chemistry and Pharmacy; Emil Fischer Center; Friedrich-Alexander Universität Erlangen-Nürnberg (FAU); Erlangen Germany
| | - Christiane Östreicher
- Food Chemistry Unit; Department of Chemistry and Pharmacy; Emil Fischer Center; Friedrich-Alexander Universität Erlangen-Nürnberg (FAU); Erlangen Germany
| | - Monika Pischetsrieder
- Food Chemistry Unit; Department of Chemistry and Pharmacy; Emil Fischer Center; Friedrich-Alexander Universität Erlangen-Nürnberg (FAU); Erlangen Germany
| |
Collapse
|
91
|
Türkanoğlu Özçelik A, Can Demirdöğen B, Demirkaya Ş, Adalı O. Association of cytochrome P4502E1 and NAD(P)H:quinone oxidoreductase 1 genetic polymorphisms with susceptibility to large artery atherosclerotic ischemic stroke: a case–control study in the Turkish population. Neurol Sci 2017; 38:1077-1085. [DOI: 10.1007/s10072-017-2930-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 03/20/2017] [Indexed: 01/08/2023]
|
92
|
Elshenawy OH, Abdelhamid G, Althurwi HN, El-Kadi AOS. Dimethylarsinic acid modulates the aryl hydrocarbon receptor-regulated genes in C57BL/6 mice: in vivo study. Xenobiotica 2017; 48:124-134. [DOI: 10.1080/00498254.2017.1289423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Osama H. Elshenawy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada,
| | - Ghada Abdelhamid
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada,
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Greater Cairo, Egypt, and
| | - Hassan N. Althurwi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada,
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Kingdom of Saudi Arabia
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada,
| |
Collapse
|
93
|
Tanaviyutpakdee P, Yoovathaworn K, Sirivarasai J, Chanprasertyothin S, Panpunuan P, Petchpoung K, Tatsaneeyapant A, Sura T, Kaojarern S, Sritara P. Role of CYP2E1 and NQO1 polymorphisms in oxidative stress derived cancer in Thais with and without dyslipidemia. ASIAN BIOMED 2017. [DOI: 10.5372/1905-7415.0904.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Background
Hyperlipidemia can induce the endogenous production of reactive oxygen species (ROS), which may cause carcinogenesis. Cytochrome P450 (CYP) 2E1 activity, induced by various factors including polyunsaturated fatty acids, effects the incidence of cancers, whereas NQO1, a flavoprotein, may protect against ROS.
Objectives
To investigate the effect of CYP2E1 and NQO1 polymorphism on oxidative stress status in Thais with and without dyslipidemia.
Methods
We included 1380 apparently healthy employees of the Electricity Generating Authority of Thailand in this study. We determined their CYP2E1 and NQO1 genotypes and related these to blood lipid profiles, and circulating levels of antioxidant enzymes, malondialdehyde (MDA), and reduced glutathione (GSH). Lifestyle-related factors were determined from questionnaires.
Results
All tested genotype frequencies were in Hardy-Weinberg equilibrium. The heterozygous and variant genotype distribution and allele frequency of CYP2E1 *5B were less common than CYP2E1 *6. Heterozygous NQO1 was the most prevalent form. The frequency of the mutated allele CYP2E1 *5B was 0.16, CYP2E1 *6 was 0.22, and NQO1 *2 was 0.43. Significant differences were observed for blood cholesterol, triglyceride, low-density lipoprotein-cholesterol, and high-density lipoprotein-cholesterol between normolipidemic participants, and those with hypercholesterolemia, hypertriglyceridemia, and combined hyperlipidemia. Participants in the hyperlipidemic subgroup who bore any variant alleles of genes had higher plasma MDA and GSH levels, and superoxide dismutase and glutathione peroxidase activity, but lower catalase activity when compared with normolipidemic participants bearing wild-type alleles.
Conclusions
Variations in genetic disposition and dyslipidemia can modify oxidative stress status. Relatively more free radicals may be generated in individuals in subgroups with hyperlipidemia bearing any variant alleles.
Collapse
Affiliation(s)
| | - Krongtong Yoovathaworn
- Department of Pharmacology and Toxicology Graduate Program , Faculty of Science , Mahidol University , Bangkok 10400 , Thailand
| | - Jintana Sirivarasai
- Graduate Program in Nutrition , Faculty of Medicine , Ramathibodi Hospital , Bangkok 10400 Thailand
| | - Suwannee Chanprasertyothin
- Office of Research Academic and Innovation , Faculty of Medicine , Ramathibodi Hospital , Bangkok 10400 , Thailand
| | - Pachara Panpunuan
- Department of Medicine , Faculty of Medicine , Ramathibodi Hospital , Bangkok 10400 , Thailand
| | - Krittaya Petchpoung
- Research and Development Institute , Kasetsart University , Bangkok 10900 , Thailand
| | | | - Thunyachai Sura
- Department of Medicine , Faculty of Medicine , Ramathibodi Hospital , Bangkok 10400 , Thailand
| | - Sming Kaojarern
- Occupational and Environmental Toxicology Center , Faculty of Medicine Ramathibodi Hospital , Mahidol University , Bangkok 10400 , Thailand
| | - Piyamit Sritara
- Department of Medicine , Faculty of Medicine , Ramathibodi Hospital , Bangkok 10400 , Thailand
| |
Collapse
|
94
|
Gill JG, Piskounova E, Morrison SJ. Cancer, Oxidative Stress, and Metastasis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:163-175. [PMID: 28082378 DOI: 10.1101/sqb.2016.81.030791] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules that arise from a number of cellular sources, including oxidative metabolism in mitochondria. At low levels they can be advantageous to cells, activating signaling pathways that promote proliferation or survival. At higher levels, ROS can damage or kill cells by oxidizing proteins, lipids, and nucleic acids. It was hypothesized that antioxidants might benefit high-risk patients by reducing the rate of ROS-induced mutations and delaying cancer initiation. However, dietary supplementation with antioxidants has generally proven ineffective or detrimental in clinical trials. High ROS levels limit cancer cell survival during certain windows of cancer initiation and progression. During these periods, dietary supplementation with antioxidants may promote cancer cell survival and cancer progression. This raises the possibility that rather than treating cancer patients with antioxidants, they should be treated with pro-oxidants that exacerbate oxidative stress or block metabolic adaptations that confer oxidative stress resistance.
Collapse
Affiliation(s)
- Jennifer G Gill
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Elena Piskounova
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
95
|
Oh ET, Kim JW, Kim JM, Kim SJ, Lee JS, Hong SS, Goodwin J, Ruthenborg RJ, Jung MG, Lee HJ, Lee CH, Park ES, Kim C, Park HJ. NQO1 inhibits proteasome-mediated degradation of HIF-1α. Nat Commun 2016; 7:13593. [PMID: 27966538 PMCID: PMC5171868 DOI: 10.1038/ncomms13593] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/18/2016] [Indexed: 01/10/2023] Open
Abstract
Overexpression of NQO1 is associated with poor prognosis in human cancers including breast, colon, cervix, lung and pancreas. Yet, the molecular mechanisms underlying the pro-tumorigenic capacities of NQO1 have not been fully elucidated. Here we show a previously undescribed function for NQO1 in stabilizing HIF-1α, a master transcription factor of oxygen homeostasis that has been implicated in the survival, proliferation and malignant progression of cancers. We demonstrate that NQO1 directly binds to the oxygen-dependent domain of HIF-1α and inhibits the proteasome-mediated degradation of HIF-1α by preventing PHDs from interacting with HIF-1α. NQO1 knockdown in human colorectal and breast cancer cell lines suppresses HIF-1 signalling and tumour growth. Consistent with this pro-tumorigenic function for NQO1, high NQO1 expression levels correlate with increased HIF-1α expression and poor colorectal cancer patient survival. These results collectively reveal a function of NQO1 in the oxygen-sensing mechanism that regulates HIF-1α stability in cancers.
Collapse
Affiliation(s)
- Eun-Taex Oh
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Jung-whan Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Joon Mee Kim
- Department of Pathology, College of Medicine, Inha University, Incheon 400-712, Republic of Korea
| | - Soo Jung Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Jae-Seon Lee
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Justin Goodwin
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Robin J. Ruthenborg
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Myung Gu Jung
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Hae-June Lee
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Eun Sung Park
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Chulhee Kim
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Heon Joo Park
- Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Microbiology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
96
|
Ghorab MM, Alsaid MS, El-Gazzar MG, Higgins M, Dinkova-Kostova AT, Shahat AA. NAD(P)H: quinone oxidoreductase 1 inducer activity of novel 4-aminoquinazoline derivatives. J Enzyme Inhib Med Chem 2016; 31:1369-74. [PMID: 26796666 DOI: 10.3109/14756366.2015.1135913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 01/28/2023] Open
Abstract
Fourteen novel 4-aminoquinazoline derivatives 2-15 were designed and synthesized. The structure of the newly synthesized compounds was established on the basis of elemental analyses, IR, (1)H-NMR, (13)C-NMR, and mass spectral data. The compounds were evaluated for their potential cytoprotective activity in murine Hepa1c1c7 cells. All of the synthesized compounds showed concentration-dependent ability to induce the cytoprotective enzyme NAD(P)H quinone oxidoreductase (NQO1) with potencies in the low- to sub-micromolar range. This approach offers an encouraging framework which may lead to the discovery of potent cytoprotective agents.
Collapse
Affiliation(s)
- Mostafa M Ghorab
- a Department of Pharmacognosy , College of Pharmacy, King Saud University , Riyadh , Kingdom of Saudi Arabia
- b Department of Drug Radiation Research , National Center for Radiation Research and Technology, Atomic Energy Authority , Nasr City , Cairo , Egypt
| | - Mansour S Alsaid
- a Department of Pharmacognosy , College of Pharmacy, King Saud University , Riyadh , Kingdom of Saudi Arabia
| | - Marwa G El-Gazzar
- b Department of Drug Radiation Research , National Center for Radiation Research and Technology, Atomic Energy Authority , Nasr City , Cairo , Egypt
| | - Maureen Higgins
- c Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee , Dundee , UK
| | - Albena T Dinkova-Kostova
- c Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee , Dundee , UK
- d Departments of Medicine and Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , Baltimore , MD , USA , and
| | - Abdelaaty A Shahat
- a Department of Pharmacognosy , College of Pharmacy, King Saud University , Riyadh , Kingdom of Saudi Arabia
- e Phytochemistry Department , National Research Center Dokki , Cairo , Egypt
| |
Collapse
|
97
|
Wang W, Li N, Wang J, Chen G, Huang R, Zhao W, Li J, Si Y. Bioactive benzofuran-chalcanes as potential NQO1 inducers from Millettia pulchra (Benth) kurzvar-laxior (Dunn) Z.Wei. PHYTOCHEMISTRY 2016; 131:107-114. [PMID: 27663949 DOI: 10.1016/j.phytochem.2016.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 09/04/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Five chalcanes ((α'R)-2, α'-dimethoxy-furano-[4″, 5'': 3', 4'] chalcane, (α'R, βR)-2', α', β-trimethoxy-furano-[4″, 5'': 3', 4'] chalcane, (α'S, βR)-2', α', β-trimethoxy-furano-[4″, 5'': 3', 4'] chalcane, (α'R, βR)-2', β-dimethoxy-α'-hydroxyethoxy-furano-[4″, 5'': 3', 4'] chalcane, (α'S, βR)-2', β-dimethoxy-α'-hydroxyethoxy-furano-[4″, 5'': 3', 4'] chalcane) and a flavonoid glycoside (3', 7-dihydroxy-6-methoxy-4', 5'-methylenedioxyisoflavone 6-O-β-D- glucopyranoside), together with 15 known components, were isolated from the leaves of Millettia pulchra (Benth) Kurzvar-laxior (Dunn) Z. Wei, a traditional Zhuang medicine. Their chemical structures were established by extensive analysis of NMR, mass spectrometry and ECD spectra. Furthermore compounds (α'R, βR)-2', β-dimethoxy-α'-hydroxyethoxy-furano-[4″, 5'': 3', 4'] chalcane, (α'S, βR)-2', β-dimethoxy-α'-hydroxyethoxy-furano-[4″, 5'': 3', 4'] chalcane, quercetin, methyl 2-O-β-D-glucopyranosylbenzoate, 6,7-dimethoxy-3',4'-methylenedioxyisoflavone and lyoniresinol were suggested to be potential chemopreventive agents because of their significant activity in inducing NQO1 ([NAD(P)H quinine oxidoreductase 1], a phase II metabolism enzyme).
Collapse
Affiliation(s)
- Wenli Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Wenhua Road 103, Shenyang 110016, PR China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Wenhua Road 103, Shenyang 110016, PR China.
| | - Jian Wang
- Key Laboratory of Structure Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Wenhua Road 103, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Wenhua Road 103, Shenyang 110016, PR China
| | - Renbin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Weihong Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Wenhua Road 103, Shenyang 110016, PR China
| | - Jiayuan Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Wenhua Road 103, Shenyang 110016, PR China
| | - Yingying Si
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Wenhua Road 103, Shenyang 110016, PR China
| |
Collapse
|
98
|
Antioxidant Functions of the Aryl Hydrocarbon Receptor. Stem Cells Int 2016; 2016:7943495. [PMID: 27829840 PMCID: PMC5088273 DOI: 10.1155/2016/7943495] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/07/2016] [Indexed: 01/01/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT) and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.
Collapse
|
99
|
Zhang R, Xu M, Wang Y, Xie F, Zhang G, Qin X. Nrf2—a Promising Therapeutic Target for Defensing Against Oxidative Stress in Stroke. Mol Neurobiol 2016; 54:6006-6017. [DOI: 10.1007/s12035-016-0111-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 09/06/2016] [Indexed: 12/30/2022]
|
100
|
Abiko Y, Puga A, Kumagai Y. Covalent binding of quinones activates the Ah receptor in Hepa1c1c7 cells. J Toxicol Sci 2016; 40:873-86. [PMID: 26558468 DOI: 10.2131/jts.40.873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Highly reactive quinone species produced by photooxidation and/or metabolic activation of mono- or bi-aromatic hydrocarbons modulate cellular homeostasis and electrophilic signal transduction pathways through the covalent modification of proteins. Polycyclic aromatic hydrocarbons, but not mono- or bi-aromatic hydrocarbons, are well recognized as ligands for the aryl hydrocarbon receptor (AhR). However, quinone species produced from mono- and bi-aromatic hydrocarbons could potentially cause AhR activation. To clarify the AhR response to mono- and bi-aromatic hydrocarbon quinones, we studied Cyp1a1 (cytochrome P450 1A1) induction and AhR activation by these quinones. We detected Cyp1a1 induction during treatment with quinones in Hepa1c1c7 cells, but not their parent compounds. Nine of the twelve quinones with covalent binding capability for proteins induced Cyp1a1. Cyp1a1 induction mediated by 1,2-naphthoquinone (1,2-NQ), 1,4-NQ, 1,4-benzoquinone (1,4-BQ) and tert-butyl-1,4-BQ was suppressed by a specific AhR inhibitor and was not observed in c35 cells, which do not have a functional AhR. These quinones stimulated AhR nuclear translocation and interaction with the AhR nuclear translocator. Interestingly, 1,2-NQ covalently modified AhR, which was detected by an immunoprecipitation assay using a specific antibody against 1,2-NQ, resulting in enhancement of xenobiotic responsive element (XRE)-derived luciferase activity and binding of AhR to the Cyp1a1 promoter region. While mono- and bi-aromatic hydrocarbons are generally believed to be poor ligands for AhR and hence unable to induce Cyp1a1, our study suggests that the quinones of these molecules are able to modify AhR and activate the AhR/XRE pathway, thereby inducing Cyp1a1. Since we previously reported that 1,2-NQ and tert-butyl-1,4-BQ also activate NF-E2-related factor 2, it seems likely that some of quinones are bi-functional inducers for phase-I and phase-II reaction of xenobiotics.
Collapse
Affiliation(s)
- Yumi Abiko
- Faculty of Medicine, University of Tsukuba
| | | | | |
Collapse
|