51
|
Lin XP, Feng L, Xie CG, Chen DB, Pei Z, Liang XL, Xie QY, Li XH, Pan SY. Valproic acid attenuates the suppression of acetyl histone H3 and CREB activity in an inducible cell model of Machado-Joseph disease. Int J Dev Neurosci 2014; 38:17-22. [PMID: 25068645 DOI: 10.1016/j.ijdevneu.2014.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/26/2022] Open
Abstract
Machado-Joseph disease (MJD) is caused by a (CAG)n trinucleotide repeat expansion that is translated into an abnormally long polyglutamine tract. This disease is considered the most common form of spinocerebellar ataxia (SCA). In the present study, we developed stable inducible cell lines (PC12Tet-On-Ataxin-3-Q28/84) expressing ataxin-3 with either normal or abnormal CAG repeats under doxycycline control. The expression of acetyl histone H3 and the induction of c-Fos in response to cAMP were strongly suppressed in cells expressing the protein with the expanded polyglutamine tract. Treatment with valproic acid, a histone deacetylase inhibitor (HDACi), attenuated mutant ataxin-3-induced cell toxicity and suppression of acetyl histone H3, phosphorylated cAMP-responsive element binding protein (p-CREB) as well as c-Fos expression. These results indicate that VPA can stimulate the up-regulation of gene transcription through hyperacetylation. Thus, VPA might have a therapeutic effect on MJD.
Collapse
Affiliation(s)
- X P Lin
- Department of Huiqiao Building, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - L Feng
- Department of Neurological Intensive Care Unit, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - C G Xie
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - D B Chen
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Z Pei
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - X L Liang
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Q Y Xie
- Department of Hyperbaric Oxygen Therapy, Guangzhou General Hospital of Guangzhou Military Area Command of Chinese PLA, Guangzhou, Guangdong Province, China
| | - X H Li
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| | - S Y Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
52
|
Coppedè F. The potential of epigenetic therapies in neurodegenerative diseases. Front Genet 2014; 5:220. [PMID: 25071843 PMCID: PMC4094885 DOI: 10.3389/fgene.2014.00220] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/25/2014] [Indexed: 12/13/2022] Open
Abstract
Available treatments for neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, do not arrest disease progression but mainly help keeping patients from getting worse for a limited period of time. Increasing evidence suggests that epigenetic mechanisms such as DNA methylation and histone tail modifications are dynamically regulated in neurons and play a fundamental role in learning and memory processes. In addition, both global and gene-specific epigenetic changes and deregulated expression of the writer and eraser proteins of epigenetic marks are believed to contribute to the onset and progression of neurodegeneration. Studies in animal models of neurodegenerative diseases have highlighted the potential role of epigenetic drugs, including inhibitors of histone deacetylases and methyl donor compounds, in ameliorating the cognitive symptoms and preventing or delaying the motor symptoms of the disease, thereby opening the way for a potential application in human pathology.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa Pisa, Italy
| |
Collapse
|
53
|
Holmes WM, Klaips CL, Serio TR. Defining the limits: Protein aggregation and toxicity in vivo. Crit Rev Biochem Mol Biol 2014; 49:294-303. [PMID: 24766537 DOI: 10.3109/10409238.2014.914151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract others complementary, to resolve mis-folded proteins when they arise, ranging from refolding through the action of molecular chaperones to elimination through regulated proteolytic mechanisms. These protein quality control pathways are sufficient, under normal conditions, to maintain a functioning proteome, but in response to diverse environmental, genetic and/or stochastic events, protein mis-folding exceeds the corrective capacity of these pathways, leading to the accumulation of aggregates and ultimately toxicity. Particularly devastating examples of these effects include certain neurodegenerative diseases, such as Huntington's Disease, which are associated with the expansion of polyglutamine tracks in proteins. In these cases, protein mis-folding and aggregation are clear contributors to pathogenesis, but uncovering the precise mechanistic links between the two events remains an area of active research. Studies in the yeast Saccharomyces cerevisiae and other model systems have uncovered previously unanticipated complexity in aggregation pathways, the contributions of protein quality control processes to them and the cellular perturbations that result from them. Together these studies suggest that aggregate interactions and localization, rather than their size, are the crucial considerations in understanding the molecular basis of toxicity.
Collapse
Affiliation(s)
- William M Holmes
- Biology Department, College of the Holy Cross , Worcester, MA , USA and
| | | | | |
Collapse
|
54
|
Yildirim F, Ji S, Kronenberg G, Barco A, Olivares R, Benito E, Dirnagl U, Gertz K, Endres M, Harms C, Meisel A. Histone acetylation and CREB binding protein are required for neuronal resistance against ischemic injury. PLoS One 2014; 9:e95465. [PMID: 24748101 PMCID: PMC3991684 DOI: 10.1371/journal.pone.0095465] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/26/2014] [Indexed: 11/19/2022] Open
Abstract
Epigenetic transcriptional regulation by histone acetylation depends on the balance between histone acetyltransferase (HAT) and deacetylase activities (HDAC). Inhibition of HDAC activity provides neuroprotection, indicating that the outcome of cerebral ischemia depends crucially on the acetylation status of histones. In the present study, we characterized the changes in histone acetylation levels in ischemia models of focal cerebral ischemia and identified cAMP-response element binding protein (CREB)–binding protein (CBP) as a crucial factor in the susceptibility of neurons to ischemic stress. Both neuron-specific RNA interference and neurons derived from CBP heterozygous knockout mice showed increased damage after oxygen-glucose deprivation (OGD) in vitro. Furthermore, we demonstrated that ischemic preconditioning by a short (5 min) subthreshold occlusion of the middle cerebral artery (MCA), followed 24 h afterwards by a 30 min occlusion of the MCA, increased histone acetylation levels in vivo. Ischemic preconditioning enhanced CBP recruitment and histone acetylation at the promoter of the neuroprotective gene gelsolin leading to increased gelsolin expression in neurons. Inhibition of CBP's HAT activity attenuated neuronal ischemic preconditioning. Taken together, our findings suggest that the levels of CBP and histone acetylation determine stroke outcome and are crucially associated with the induction of an ischemia-resistant state in neurons.
Collapse
Affiliation(s)
- Ferah Yildirim
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB) and Klinik und Hochschulambulanz für Neurologie, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Shengbo Ji
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB) and Klinik und Hochschulambulanz für Neurologie, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Golo Kronenberg
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB) and Klinik und Hochschulambulanz für Neurologie, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Klinik und Poliklinik für Psychiatrie, Campus Mitte, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Angel Barco
- Instituto de Neurociencias de Alicante (Universidad Miguel Hernandez-Consejo Superior de Investigaciones Cientificas), Campus de Sant Joan, Sant Joan d'Alacant, Alicante, Spain
| | - Roman Olivares
- Instituto de Neurociencias de Alicante (Universidad Miguel Hernandez-Consejo Superior de Investigaciones Cientificas), Campus de Sant Joan, Sant Joan d'Alacant, Alicante, Spain
| | - Eva Benito
- Instituto de Neurociencias de Alicante (Universidad Miguel Hernandez-Consejo Superior de Investigaciones Cientificas), Campus de Sant Joan, Sant Joan d'Alacant, Alicante, Spain
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB) and Klinik und Hochschulambulanz für Neurologie, Charité–Universitätsmedizin Berlin, Berlin, Germany
- ExcellenceCluster NeuroCure, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Karen Gertz
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB) and Klinik und Hochschulambulanz für Neurologie, Charité–Universitätsmedizin Berlin, Berlin, Germany
- ExcellenceCluster NeuroCure, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Endres
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB) and Klinik und Hochschulambulanz für Neurologie, Charité–Universitätsmedizin Berlin, Berlin, Germany
- ExcellenceCluster NeuroCure, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB) and Klinik und Hochschulambulanz für Neurologie, Charité–Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| | - Andreas Meisel
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB) and Klinik und Hochschulambulanz für Neurologie, Charité–Universitätsmedizin Berlin, Berlin, Germany
- ExcellenceCluster NeuroCure, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
55
|
Abstract
Recent data support the view that epigenetic processes play a role in memory consolidation and help to transmit acquired memories even across generations in a Lamarckian manner. Drugs that target the epigenetic machinery were found to enhance memory function in rodents and ameliorate disease phenotypes in models for brain diseases such as Alzheimer's disease, Chorea Huntington, Depression or Schizophrenia. In this review, I will give an overview on the current knowledge of epigenetic processes in memory function and brain disease with a focus on Morbus Alzheimer as the most common neurodegenerative disease. I will address the question whether an epigenetic therapy could indeed be a suitable therapeutic avenue to treat brain diseases and discuss the necessary steps that should help to take neuroepigenetic research to the next level.
Collapse
Affiliation(s)
- Andre Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
56
|
Valor LM, Viosca J, Lopez-Atalaya JP, Barco A. Lysine acetyltransferases CBP and p300 as therapeutic targets in cognitive and neurodegenerative disorders. Curr Pharm Des 2014; 19:5051-64. [PMID: 23448461 PMCID: PMC3722569 DOI: 10.2174/13816128113199990382] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/18/2013] [Indexed: 01/27/2023]
Abstract
Neuropsychiatric pathologies, including neurodegenerative diseases and neurodevelopmental syndromes, are frequently associated with dysregulation of various essential cellular mechanisms, such as transcription, mitochondrial respiration and protein degradation. In these complex scenarios, it is difficult to pinpoint the specific molecular dysfunction that initiated the pathology or that led to the fatal cascade of events that ends with the death of the neuron. Among the possible original factors, epigenetic dysregulation has attracted special attention. This review focuses on two highly related epigenetic factors that are directly involved in a number of neurological disorders, the lysine acetyltransferases CREB-binding protein (CBP) and E1A-associated protein p300 (p300). We first comment on the role of chromatin acetylation and the enzymes that control it, particularly CBP and p300, in neuronal plasticity and cognition. Next, we describe the involvement of these proteins in intellectual disability and in different neurodegenerative diseases. Finally, we discuss the potential of ameliorative strategies targeting CBP/p300 for the treatment of these disorders.
Collapse
Affiliation(s)
- Luis M Valor
- Instituto de Neurociencias, Av. Santiago Ramon y Cajal s/n. Sant Joan d'Alacant 03550, Alicante, Spain
| | | | | | | |
Collapse
|
57
|
Choi M, Ko SY, Lee IY, Wang SE, Lee SH, Oh DH, Kim YS, Son H. Carbamylated erythropoietin promotes neurite outgrowth and neuronal spine formation in association with CBP/p300. Biochem Biophys Res Commun 2014; 446:79-84. [PMID: 24607903 DOI: 10.1016/j.bbrc.2014.02.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 02/12/2014] [Indexed: 11/29/2022]
Abstract
Both erythropoietin (EPO) and carbamylated EPO (cEPO) have been shown to increase the length of neurites and spine density in neurons. However, the molecular mechanism underlying the EPO- and cEPO-induced neuronal differentiation has yet to be investigated. To address this issue, we investigated epigenetic modifications that regulate gene expression in neurons. Neurons treated with EPO or cEPO display an upregulation of E1A-binding protein (p300) and p300-mediated p53 acetylation, possibly increasing the transactivation activity of p53 on growth-associated protein 43 (GAP43). Treatment of cells with cEPO markedly increases spine formation and potentiates p300-mediated transactivation of PSD95, Shank2 and 3 compared to EPO. These results demonstrate that cEPO controls neuronal differentiation via acetylation of transcription factors and subsequent transactivation of target genes. These findings have important medical implications because cEPO is of interest in the development of therapeutic agents against neuropsychiatric disorders.
Collapse
Affiliation(s)
- Miyeon Choi
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Seung Yeon Ko
- Graduate School of Biomedical Science and Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - In Young Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Sung Eun Wang
- Graduate School of Biomedical Science and Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Seung Hoon Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Dong Hoon Oh
- Department of Psychiatry, College of Medicine and Institute of Mental Health, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Yong-Seok Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Hyeon Son
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea.
| |
Collapse
|
58
|
Tourette C, Li B, Bell R, O'Hare S, Kaltenbach LS, Mooney SD, Hughes RE. A large scale Huntingtin protein interaction network implicates Rho GTPase signaling pathways in Huntington disease. J Biol Chem 2014; 289:6709-6726. [PMID: 24407293 DOI: 10.1074/jbc.m113.523696] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Huntington disease (HD) is an inherited neurodegenerative disease caused by a CAG expansion in the HTT gene. Using yeast two-hybrid methods, we identified a large set of proteins that interact with huntingtin (HTT)-interacting proteins. This network, composed of HTT-interacting proteins (HIPs) and proteins interacting with these primary nodes, contains 3235 interactions among 2141 highly interconnected proteins. Analysis of functional annotations of these proteins indicates that primary and secondary HIPs are enriched in pathways implicated in HD, including mammalian target of rapamycin, Rho GTPase signaling, and oxidative stress response. To validate roles for HIPs in mutant HTT toxicity, we show that the Rho GTPase signaling components, BAIAP2, EZR, PIK3R1, PAK2, and RAC1, are modifiers of mutant HTT toxicity. We also demonstrate that Htt co-localizes with BAIAP2 in filopodia and that mutant HTT interferes with filopodial dynamics. These data indicate that HTT is involved directly in membrane dynamics, cell attachment, and motility. Furthermore, they implicate dysregulation in these pathways as pathological mechanisms in HD.
Collapse
Affiliation(s)
| | - Biao Li
- Buck Institute for Research on Aging, Novato, California 94945
| | - Russell Bell
- Prolexys Pharmaceuticals, Salt Lake City, Utah 84116; Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112
| | - Shannon O'Hare
- Buck Institute for Research on Aging, Novato, California 94945
| | - Linda S Kaltenbach
- Prolexys Pharmaceuticals, Salt Lake City, Utah 84116; Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27704
| | - Sean D Mooney
- Buck Institute for Research on Aging, Novato, California 94945.
| | - Robert E Hughes
- Buck Institute for Research on Aging, Novato, California 94945.
| |
Collapse
|
59
|
Singh MD, Raj K, Sarkar S. Drosophila Myc, a novel modifier suppresses the poly(Q) toxicity by modulating the level of CREB binding protein and histone acetylation. Neurobiol Dis 2013; 63:48-61. [PMID: 24291519 DOI: 10.1016/j.nbd.2013.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/06/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022] Open
Abstract
Polyglutamine or poly(Q) disorders are dominantly inherited neurodegenerative diseases characterised by progressive loss of neurons in cerebellum, basal ganglia and cortex in adult human brain. Overexpression of human form of mutant SCA3 protein with 78 poly(Q) repeats leads to the formation of inclusion bodies and increases the cellular toxicity in Drosophila eye. The present study was directed to identify a genetic modifier of poly(Q) diseases that could be utilised as a potential drug target. The initial screening process was influenced by the fact of lower prevalence of cancer among patients suffering with poly(Q) disorders which appears to be related to the intrinsic biological factors. We investigated if Drosophila Myc (a homologue of human cMyc proto-oncogene) harbours intrinsic property of suppressing cellular toxicity induced by an abnormally long stretch of poly(Q). We show for the first time that targeted overexpression of Drosophila Myc (dMyc) mitigates the poly(Q) toxicity in eye and nervous systems. Upregulation of dMyc results in a significant reduction in accumulation of inclusion bodies with residual poly(Q) aggregates localising into cytoplasm. We demonstrate that dMyc mediated suppression of poly(Q) toxicity is achieved by alleviating the cellular level of CBP and improved histone acetylation, resulting restoration of transcriptional machinery which are otherwise abbreviated due to poly(Q) disease conditions. Moreover, our study also provides a rational justification of the enigma of poly(Q) patients showing resistance to the predisposition of cancer.
Collapse
Affiliation(s)
- M Dhruba Singh
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Kritika Raj
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi 110 021, India.
| |
Collapse
|
60
|
Lauterbach EC. Neuroprotective effects of psychotropic drugs in Huntington's disease. Int J Mol Sci 2013; 14:22558-603. [PMID: 24248060 PMCID: PMC3856079 DOI: 10.3390/ijms141122558] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
Psychotropics (antipsychotics, mood stabilizers, antidepressants, anxiolytics, etc.) are commonly prescribed to treat Huntington’s disease (HD). In HD preclinical models, while no psychotropic has convincingly affected huntingtin gene, HD modifying gene, or huntingtin protein expression, psychotropic neuroprotective effects include upregulated huntingtin autophagy (lithium), histone acetylation (lithium, valproate, lamotrigine), miR-222 (lithium-plus-valproate), mitochondrial protection (haloperidol, trifluoperazine, imipramine, desipramine, nortriptyline, maprotiline, trazodone, sertraline, venlafaxine, melatonin), neurogenesis (lithium, valproate, fluoxetine, sertraline), and BDNF (lithium, valproate, sertraline) and downregulated AP-1 DNA binding (lithium), p53 (lithium), huntingtin aggregation (antipsychotics, lithium), and apoptosis (trifluoperazine, loxapine, lithium, desipramine, nortriptyline, maprotiline, cyproheptadine, melatonin). In HD live mouse models, delayed disease onset (nortriptyline, melatonin), striatal preservation (haloperidol, tetrabenazine, lithium, sertraline), memory preservation (imipramine, trazodone, fluoxetine, sertraline, venlafaxine), motor improvement (tetrabenazine, lithium, valproate, imipramine, nortriptyline, trazodone, sertraline, venlafaxine), and extended survival (lithium, valproate, sertraline, melatonin) have been documented. Upregulated CREB binding protein (CBP; valproate, dextromethorphan) and downregulated histone deacetylase (HDAC; valproate) await demonstration in HD models. Most preclinical findings await replication and their limitations are reviewed. The most promising findings involve replicated striatal neuroprotection and phenotypic disease modification in transgenic mice for tetrabenazine and for sertraline. Clinical data consist of an uncontrolled lithium case series (n = 3) suggesting non-progression and a primarily negative double-blind, placebo-controlled clinical trial of lamotrigine.
Collapse
Affiliation(s)
- Edward C Lauterbach
- Department of Psychiatry and Behavioral Sciences, Mercer University School of Medicine, 655 First Street, Macon, GA 31201, USA.
| |
Collapse
|
61
|
Valor LM, Guiretti D. What's wrong with epigenetics in Huntington's disease? Neuropharmacology 2013; 80:103-14. [PMID: 24184315 DOI: 10.1016/j.neuropharm.2013.10.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) can be considered the paradigm of epigenetic dysregulation in neurodegenerative disorders. In this review, we attempted to compile the evidence that indicates, on the one hand, that several epigenetic marks (histone acetylation, methylation, ubiquitylation, phosphorylation and DNA modifications) are altered in multiple models and in postmortem patient samples, and on the other hand, that pharmacological treatments aimed to reverse such alterations have beneficial effects on HD phenotypic and biochemical traits. However, the working hypotheses regarding the biological significance of epigenetic dysregulation in this disease and the mechanisms of action of the tested ameliorative strategies need to be refined. Understanding the complexity of the epigenetics in HD will provide useful insights to examine the role of epigenetic dysregulation in other neuropathologies, such as Alzheimer's or Parkinson's diseases.
Collapse
Affiliation(s)
- Luis M Valor
- Instituto de Neurociencias de Alicante (Universidad Miguel Hernández, Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain.
| | - Deisy Guiretti
- Instituto de Neurociencias de Alicante (Universidad Miguel Hernández, Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| |
Collapse
|
62
|
Schneider A, Chatterjee S, Bousiges O, Selvi BR, Swaminathan A, Cassel R, Blanc F, Kundu TK, Boutillier AL. Acetyltransferases (HATs) as targets for neurological therapeutics. Neurotherapeutics 2013; 10:568-88. [PMID: 24006237 PMCID: PMC3805875 DOI: 10.1007/s13311-013-0204-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The acetylation of histone and non-histone proteins controls a great deal of cellular functions, thereby affecting the entire organism, including the brain. Acetylation modifications are mediated through histone acetyltransferases (HAT) and deacetylases (HDAC), and the balance of these enzymes regulates neuronal homeostasis, maintaining the pre-existing acetyl marks responsible for the global chromatin structure, as well as regulating specific dynamic acetyl marks that respond to changes and facilitate neurons to encode and strengthen long-term events in the brain circuitry (e.g., memory formation). Unfortunately, the dysfunction of these finely-tuned regulations might lead to pathological conditions, and the deregulation of the HAT/HDAC balance has been implicated in neurological disorders. During the last decade, research has focused on HDAC inhibitors that induce a histone hyperacetylated state to compensate acetylation deficits. The use of these inhibitors as a therapeutic option was efficient in several animal models of neurological disorders. The elaboration of new cell-permeant HAT activators opens a new era of research on acetylation regulation. Although pathological animal models have not been tested yet, HAT activator molecules have already proven to be beneficial in ameliorating brain functions associated with learning and memory, and adult neurogenesis in wild-type animals. Thus, HAT activator molecules contribute to an exciting area of research.
Collapse
Affiliation(s)
- Anne Schneider
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Snehajyoti Chatterjee
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Olivier Bousiges
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - B. Ruthrotha Selvi
- />Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Amrutha Swaminathan
- />Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Raphaelle Cassel
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Frédéric Blanc
- />Service de Neuropsychologie and CMRR (Centre Mémoire de Ressources et de recherche) Laboratoire ICube, Université de Strasbourg, CNRS, équipe IMIS-Neurocrypto, 1, place de l’Hôpital, 67000 Strasbourg, France
| | - Tapas K. Kundu
- />Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Anne-Laurence Boutillier
- />Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS, GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| |
Collapse
|
63
|
Lazzeroni G, Benicchi T, Heitz F, Magnoni L, Diamanti D, Rossini L, Massai L, Federico C, Fecke W, Caricasole A, La Rosa S, Porcari V. A Phenotypic Screening Assay for Modulators of Huntingtin-Induced Transcriptional Dysregulation. ACTA ACUST UNITED AC 2013; 18:984-96. [DOI: 10.1177/1087057113484802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Huntington’s Disease is a rare neurodegenerative disease caused by an abnormal expansion of CAG repeats encoding polyglutamine in the first exon of the huntingtin gene. N-terminal fragments containing polyglutamine (polyQ) sequences aggregate and can bind to cellular proteins, resulting in several pathophysiological consequences for affected neurons such as changes in gene transcription. One transcriptional pathway that has been implicated in HD pathogenesis is the CREB binding protein (CBP)/cAMP responsive element binding (CREB) pathway. We developed a phenotypic assay to screen for compounds that can reverse the transcriptional dysregulation of the pathway caused by induced mutated huntingtin protein (µHtt). 293/T-REx cells were stably co-transfected with an inducible full-length mutated huntingtin gene containing 138 glutamine repeats and with a reporter gene under control of the cAMP responsive element (CRE). One clone, which showed reversible inhibition of µHtt-induced reporter activity upon treatment with the neuroprotective Rho kinase inhibitor Y27632, was used for the development of a high-throughput phenotypic assay suitable for a primary screening campaign, which was performed on a library of 24,000 compounds. Several hit compounds were identified and validated further in a cell viability adenosine triphosphate assay. The assay has the potential for finding new drug candidates for the treatment of HD.
Collapse
Affiliation(s)
| | | | - Freddy Heitz
- Biomolecular Screening Unit, Siena Biotech Spa, Siena, Italy
- GenKyotex SA, Geneva, Switzerland
| | | | | | - Lara Rossini
- Department of Pharmacology, Siena Biotech Spa, Siena, Italy
| | - Luisa Massai
- Department of Pharmacology, Siena Biotech Spa, Siena, Italy
| | - Cesare Federico
- Department of Medicinal Chemistry, Siena Biotech Spa, Siena, Italy
| | - Wolfgang Fecke
- UCB Celltech, Slough, United Kingdom
- Hansabiomed OU, Tallinn, Estonia
| | | | | | | |
Collapse
|
64
|
Pirooznia SK, Elefant F. Targeting specific HATs for neurodegenerative disease treatment: translating basic biology to therapeutic possibilities. Front Cell Neurosci 2013; 7:30. [PMID: 23543406 PMCID: PMC3610086 DOI: 10.3389/fncel.2013.00030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/10/2013] [Indexed: 12/28/2022] Open
Abstract
Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HAT) activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC) inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and HATs in neurodegenerative diseases and the future promising prospects of using specific HAT based therapeutic approaches.
Collapse
|
65
|
Abstract
Epigenetic remodeling and modifications of chromatin structure by DNA methylation and histone modifications represent central mechanisms for the regulation of neuronal gene expression during brain development, higher-order processing, and memory formation. Emerging evidence implicates epigenetic modifications not only in normal brain function, but also in neuropsychiatric disorders. This review focuses on recent findings that disruption of chromatin modifications have a major role in the neurodegeneration associated with ischemic stroke and epilepsy. Although these disorders differ in their underlying causes and pathophysiology, they share a common feature, in that each disorder activates the gene silencing transcription factor REST (repressor element 1 silencing transcription factor), which orchestrates epigenetic remodeling of a subset of 'transcriptionally responsive targets' implicated in neuronal death. Although ischemic insults activate REST in selectively vulnerable neurons in the hippocampal CA1, seizures activate REST in CA3 neurons destined to die. Profiling the array of genes that are epigenetically dysregulated in response to neuronal insults is likely to advance our understanding of the mechanisms underlying the pathophysiology of these disorders and may lead to the identification of novel therapeutic strategies for the amelioration of these serious human conditions.
Collapse
|
66
|
Cohen-Carmon D, Meshorer E. Polyglutamine (polyQ) disorders: the chromatin connection. Nucleus 2012; 3:433-41. [PMID: 22892726 DOI: 10.4161/nucl.21481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Polyglutamine (PolyQ)-related diseases are dominant late-onset genetic disorders that are manifested by progressive neurodegeneration, leading to behavioral and physical impairments. An increased body of evidence suggests that chromatin structure and epigenetic regulation are involved in disease pathology. PolyQ diseases often display an aberrant transcriptional regulation due to the disrupted function of histone-modifying complexes and altered interactions of the polyQ-extended proteins with chromatin-related factors. In this review we describe recent findings relating to the role of chromatin in polyQ diseases. We discuss the involvement of epigenetic-related factors and chromatin structure in genomic instability of CAG repeats; we describe changes in the expression and regulation of chromatin-related enzymes and in the levels and patterns of histone modifications in disease state; we illustrate the potential beneficial effects of different histone deacetylase (HDAC) inhibitors for the treatment of polyQ diseases, and we end by describing the potential use of human pluripotent stem cells and their differentiated derivatives for modeling polyQ diseases in vitro. Taken together, these accumulating studies strongly suggest that disrupted chromatin regulation may be directly involved with the pathophysiology of polyQ-related diseases.
Collapse
Affiliation(s)
- Dorit Cohen-Carmon
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem-Edmond J. Safra Campus, Jerusalem, Israel
| | | |
Collapse
|
67
|
Chaturvedi RK, Hennessey T, Johri A, Tiwari SK, Mishra D, Agarwal S, Kim YS, Beal MF. Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington's disease. Hum Mol Genet 2012; 21:3474-88. [PMID: 22589249 DOI: 10.1093/hmg/dds178] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Huntington's disease (HD) is an incurable neurological disorder caused by an abnormal glutamine repeat expansion in the huntingtin (Htt) protein. In the present studies, we investigated the role of Transducers of Regulated cAMP response element-binding (CREB) protein activity (TORCs) in HD, since TORCs play an important role in the expression of the transcriptional co-regulator peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), whose expression is impaired in HD. We found significantly decreased TORC1 expression levels in STHdhQ111 cells expressing mutant Htt, in the striatum of NLS-N171-82Q, R6/2 and HdhQ111 HD transgenic mice and in postmortem striatal tissue from HD patients. TORC1 overexpression in wild-type (WT) and Htt striatal cells increased CREB mRNA and protein levels, PGC-1α promoter activity, mRNA expression of the PGC-1α, NRF-1, Tfam and CytC genes, mitochondrial DNA content, mitochondrial activity and mitochondrial membrane potential. TORC1 overexpression also increased the resistance of striatal cells to 3-nitropropionic (3-NP) acid-mediated toxicity. In cultured WT and mutant Htt striatal cells, small hairpin RNA-mediated TORC1 knockdown resulted in decreased PGC-1α expression and increased susceptibility to 3-NP-induced toxicity. Overexpression of PGC-1α partially prevented TORC1 knockdown-mediated increased susceptibility of Htt striatal cells to 3-NP. Specific knockdown of TORC1 in the striatum of NLS-N171-82Q HD transgenic mice induced neurodegeneration. Lastly, knockdown of Htt prevents transcriptional repression of TORC1 and CREB in Htt striatal cells. These findings show that impaired expression and function of TORC1, which results in a reduction in PGC-1α, plays an important role in mitochondrial dysfunction in HD.
Collapse
Affiliation(s)
- Rajnish Kumar Chaturvedi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Ehrlich ME. Huntington's disease and the striatal medium spiny neuron: cell-autonomous and non-cell-autonomous mechanisms of disease. Neurotherapeutics 2012; 9:270-84. [PMID: 22441874 PMCID: PMC3337013 DOI: 10.1007/s13311-012-0112-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Huntington's disease is an autosomal dominant disorder caused by a mutation in the gene encoding the protein huntingtin on chromosome 4. The mutation is an expanded CAG repeat in the first exon, encoding a polyglutamine tract. If the polyglutamine tract is > 40, penetrance is 100% and death is inevitable. Despite the widespread expression of huntingtin, HD has long been considered primarily as a disease of the striatum. It is characterized by selective vulnerability with dysfunction followed by death of the medium size spiny neuron. Considerable effort is being expended to determine whether striatal damage is cell-autonomous, non-cell-autonomous, requiring cell-cell and region to region communication, or both. We review data supporting both mechanisms. We also attempt to organize the data into common mechanisms that may arise outside the medium, spiny neuron, but ultimately have their greatest impact in the striatum.
Collapse
Affiliation(s)
- Michelle E Ehrlich
- Department of Pediatrics, Mount Sinai School of Medicine, Annenberg 14-44, 1 Gustave L. Levy Place, New York, NY 10019, USA.
| |
Collapse
|
69
|
Sp1 Regulates Human Huntingtin Gene Expression. J Mol Neurosci 2012; 47:311-21. [DOI: 10.1007/s12031-012-9739-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/27/2012] [Indexed: 01/01/2023]
|
70
|
Abstract
AbstractAlthough the pathophysiology of neurodegenerative diseases is distinct for each disease, considerable evidence suggests that a single manipulation, dietary restriction, is strikingly protective against a wide range of such diseases. Thus pharmacological mimetics of dietary restrictions could prove widely protective across a range of neurodegenerative diseases. The PPAR transcription complex functions to re-program gene expression in response to nutritional deprivation as well as in response to a wide variety of lipophilic compounds. In mammals there are three PPAR homologs, which dimerize with RXR homologs and recruit coactivators Pgc1-alpha and Creb-binding protein (Cbp). PPARs are currently of clinical interest mainly because PPAR activators are approved for use in humans to reduce lipidemia and to improve glucose control in Type 2 diabetic patients. However, pharmacological enhancement of the activity of the PPAR complex is neuroprotective across a wide variety of models for neuropathological processes, including stroke, Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. Conversely activity of the PPAR transcriptional complex is reduced in a variety of neuropathological processes. The main mechanisms mediating the neuroprotective effects of the PPAR transcription complex appear to be re-routing metabolism away from glucose metabolism and toward alternative subtrates, and reduction in inflammatory processes. Recent evidence suggests that the PPAR transcriptional complex may also mediate protective effects of dietary restriction on neuropathological processes. Thus this complex represents one of the most promising for the development of pharmacological treatment of neurodegenerative diseases.
Collapse
|
71
|
Giralt A, Puigdellívol M, Carretón O, Paoletti P, Valero J, Parra-Damas A, Saura CA, Alberch J, Ginés S. Long-term memory deficits in Huntington's disease are associated with reduced CBP histone acetylase activity. Hum Mol Genet 2011; 21:1203-16. [PMID: 22116937 DOI: 10.1093/hmg/ddr552] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder caused by an expanded CAG/polyglutamine repeat in the coding region of the huntingtin (htt) gene. Although HD is classically considered a motor disorder, there is now considerable evidence that early cognitive deficits appear in patients before the onset of motor disturbances. Here we demonstrate early impairment of long-term spatial and recognition memory in heterozygous HD knock-in mutant mice (Hdh(Q7/Q111)), a genetically accurate HD mouse model. Cognitive deficits are associated with reduced hippocampal expression of CREB-binding protein (CBP) and diminished levels of histone H3 acetylation. In agreement with reduced CBP, the expression of CREB/CBP target genes related to memory, such c-fos, Arc and Nr4a2, was significantly reduced in the hippocampus of Hdh(Q7/Q111) mice compared with wild-type mice. Finally, and consistent with a role of CBP in cognitive impairment in Hdh(Q7/Q111) mice, administration of the histone deacetylase inhibitor trichostatin A rescues recognition memory deficits and transcription of selective CREB/CBP target genes in Hdh(Q7/Q111) mice. These findings demonstrate an important role for CBP in cognitive dysfunction in HD and suggest the use of histone deacetylase inhibitors as a novel therapeutic strategy for the treatment of memory deficits in this disease.
Collapse
Affiliation(s)
- A Giralt
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Choi YJ, Kim SI, Lee JW, Kwon YS, Lee HJ, Kim SS, Chun W. Suppression of aggregate formation of mutant huntingtin potentiates CREB-binding protein sequestration and apoptotic cell death. Mol Cell Neurosci 2011; 49:127-37. [PMID: 22122824 DOI: 10.1016/j.mcn.2011.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/19/2011] [Accepted: 11/12/2011] [Indexed: 12/11/2022] Open
Abstract
Although aggregates of mutant huntingtin are a pathological hallmark of Huntington's disease (HD), the role of inclusions in the pathogenesis remains inconclusive. Sequestration of CBP into mutant huntingtin has been reported to play a significant role in the pathogenesis of HD. However, whether aggregate formation of mutant huntingtin is necessary for the sequestration of CBP is not fully elucidated. In the present study, YFP was linked into either N- or C-terminus of exon 1 huntingtin to modulate the aggregation propensity of huntingtin. Efficient aggregation was observed with C-terminally YFP-tagged huntingtin (MT-YFP) whereas N-terminally YFP-tagged mutant huntingtin (YFP-MT) exhibited significantly attenuated aggregation frequency. The sequestration of CBP and apoptosis were significantly increased with YFP-MT. Microarray study showed transcriptional changes favoring apoptosis. Furthermore, expression of PGC1-α was significantly decreased with YFP-MT. The data strongly demonstrate that microscopically non-aggregate form of mutant huntingtin might exert essential pathogenic role of mutant huntingtin in HD.
Collapse
Affiliation(s)
- Yong-Joon Choi
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, South Korea
| | | | | | | | | | | | | |
Collapse
|
73
|
Vitalis A, Pappu RV. Assessing the contribution of heterogeneous distributions of oligomers to aggregation mechanisms of polyglutamine peptides. Biophys Chem 2011; 159:14-23. [PMID: 21530061 PMCID: PMC3166968 DOI: 10.1016/j.bpc.2011.04.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/05/2011] [Accepted: 04/05/2011] [Indexed: 11/25/2022]
Abstract
Polyglutamine aggregation is associated with neurodegeneration in nine different disorders. The effects of polyglutamine length and peptide concentration on the kinetics of aggregation were previously analyzed using a homogeneous nucleation model that assumes the presence of a single bottleneck along the free energy profile G(n), where n denotes the number of polyglutamine molecules. The observation of stable, soluble oligomers as intermediates along aggregation pathways is refractory to the assumptions of homogeneous nucleation. Furthermore, the analysis of in vitro kinetic data using a specific variant of homogeneous nucleation leads to confounding observations such as fractional and/or negative values for estimates of the critical nucleus size. Here, we show that the homogeneous nucleation model is inherently robust and is unlikely to yield fractional values if the underlying process is strictly homogeneous with a free energy profile G(n) that displays a sharp maximum at n=n*, where n* corresponds to the critical nucleus. Conversely, a model that includes oligomers of different size and different potentials for supporting turnover into fibrils yields estimates of fractional and/or negative nucleus sizes when the kinetic data are analyzed using the assumption of a homogeneous process. This model provides a route to reconcile independent observations of heterogeneous distributions of oligomers and other non-fibrillar aggregates with results obtained from analysis of aggregation kinetics using the assumption of a homogeneous nucleation model. In the new model, the mechanisms of fibril assembly are governed by the relative stabilities of two types of oligomers viz., fibril-competent and fibril-incompetent oligomers, the size of the smallest fibril competent oligomer, and rates for conformational conversion within different oligomers.
Collapse
Affiliation(s)
- Andreas Vitalis
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
- Hope Center for Neurological Disorders, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| |
Collapse
|
74
|
Hagenston AM, Bading H. Calcium signaling in synapse-to-nucleus communication. Cold Spring Harb Perspect Biol 2011; 3:a004564. [PMID: 21791697 DOI: 10.1101/cshperspect.a004564] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changes in the intracellular concentration of calcium ions in neurons are involved in neurite growth, development, and remodeling, regulation of neuronal excitability, increases and decreases in the strength of synaptic connections, and the activation of survival and programmed cell death pathways. An important aspect of the signals that trigger these processes is that they are frequently initiated in the form of glutamatergic neurotransmission within dendritic trees, while their completion involves specific changes in the patterns of genes expressed within neuronal nuclei. Accordingly, two prominent aims of research concerned with calcium signaling in neurons are determination of the mechanisms governing information conveyance between synapse and nucleus, and discovery of the rules dictating translation of specific patterns of inputs into appropriate and specific transcriptional responses. In this article, we present an overview of the avenues by which glutamatergic excitation of dendrites may be communicated to the neuronal nucleus and the primary calcium-dependent signaling pathways by which synaptic activity can invoke changes in neuronal gene expression programs.
Collapse
Affiliation(s)
- Anna M Hagenston
- CellNetworks-Cluster of Excellence, Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
75
|
New striatal neurons in a mouse model of progressive striatal degeneration are generated in both the subventricular zone and the striatal parenchyma. PLoS One 2011; 6:e25088. [PMID: 21980380 PMCID: PMC3184103 DOI: 10.1371/journal.pone.0025088] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/24/2011] [Indexed: 11/19/2022] Open
Abstract
Acute striatal lesions increase proliferation in the subventricular zone (SVZ) and induce migration of SVZ neuroblasts to the striatum. However, the potential of these cells to replace acutely degenerated neurons is controversial. The possible contribution of parenchymal progenitors to striatal lesion-induced neurogenesis has been poorly explored. Here, we present a detailed investigation of neurogenesis in the striatum of a mouse model showing slow progressive neurodegeneration of striatal neurons, the Creb1Camkcre4Crem−/− mutant mice (CBCM). By using BrdU time course analyses, intraventricular injections of a cell tracker and 3D reconstructions we showed that neurodegeneration in CBCM mice stimulates the migration of SVZ neuroblasts to the striatum without altering SVZ proliferation. SVZ-neuroblasts migrate as chains through the callosal striatal border and then enter within the striatal parenchyma as individual cells. In addition, a population of clustered neuroblasts showing high turnover rates were observed in the mutant striatum that had not migrated from the SVZ. Clustered neuroblasts might originate within the striatum itself because they are specifically associated with parenchymal proliferating cells showing features of intermediate neuronal progenitors such as clustering, expression of EGF receptor and multiple glial (SOX2, SOX9, BLBP) and neuronal (Dlx, Sp8, and to some extent DCX) markers. Newborn striatal neurons had a short lifespan and did not replace projection neurons nor expressed sets of transcription factors involved in their specification. The differentiation failure of endogenous neuroblasts likely occurred cell autonomously because transplanted wild type embryonic precursors correctly differentiated into striatal projection neurons. Thus, we propose that under progressive degeneration, neither SVZ derived nor intra-striatal generated neurons have the potential to differentiate into striatal projection neurons.
Collapse
|
76
|
Bodai L, Pallos J, Thompson LM, Marsh JL. Pcaf modulates polyglutamine pathology in a Drosophila model of Huntington's disease. NEURODEGENER DIS 2011; 9:104-6. [PMID: 21912091 DOI: 10.1159/000330505] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/30/2011] [Indexed: 11/19/2022] Open
Abstract
Huntingtin peptides with elongated polyglutamine domains, the root causes of Huntington's disease, hinder histone acetylation, which leads to transcriptional dysregulation. However, the range of acetyltransferases interacting with mutant Huntingtin has not been systematically evaluated. We used genetic interaction tests in Drosophila to determine whether specific acetyltransferases belonging to distinct protein families influence polyglutamine pathology. We found that flies expressing a mutant form of the Huntingtin protein (Httex1pQ93) exhibit reduced viability, which is further decreased by partial loss of Pcaf or nejire, while the tested MYST family acetyltransferases did not affect pathology. Reduced levels of Pcaf also led to the increased degeneration of photoreceptor neurons in the retina. Overexpression of Pcaf, however, was not sufficient to ameliorate these phenotypes, and the level of soluble Pcaf is unchanged in Httex1pQ93-expressing flies. Thus, our results indicate that while Pcaf has a significant impact on Huntington's disease pathology, therapeutic strategies aimed at elevating its levels are likely to be ineffective in ameliorating Huntington's disease pathology; however, strategies that aim to increase the specific activity of Pcaf remain to be tested.
Collapse
Affiliation(s)
- Laszlo Bodai
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
| | | | | | | |
Collapse
|
77
|
Modifications of p53 and the DNA damage response in cells expressing mutant form of the protein huntingtin. J Mol Neurosci 2011; 45:256-68. [PMID: 21465263 DOI: 10.1007/s12031-011-9516-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/16/2011] [Indexed: 10/18/2022]
Abstract
Huntington's disease (HD) occurs through an expansion of the trinucleotide repeat in the HD gene resulting in the lengthening of the polyglutamine stretch within the N terminus of the protein, huntingtin (Htt). While the function of the protein is still being fully elucidated, we have shown that genomic DNA damage is associated with the expression of mutant Htt (mHtt) in a time-dependent fashion. With the accumulation of mHtt and its development into a micro-aggregated complex, the initiation of genomic damage engages a cellular stress signal that activates the DNA damage and stress response pathway. Here we explore the modifications and activation of p53 and keystone regulators of the cell stress response pathway using expression of a fragment of mHtt in HEK293T cells. We find an increase in phosphorylated p53 at serine 15 (S15), diminished acetylation at lysine 382 (K382), altered ubiquitination pattern, and oligomerization activity as a function of mHtt expression. As one might predict, upstream regulators of p53, such as CREB-binding protein/p300 and MDM2, are also seen to be affected by the expression of mHtt, albeit in different ways. These data suggest a possible relationship between p53 and the slow accumulation of DNA damage resulting from the expression of mHtt. The lack of a proper p53-mediated signaling cascade or its alteration in the presence of DNA damage may contribute to the slow progression of cellular dysfunction which is a hallmark of HD pathology.
Collapse
|
78
|
Abstract
Huntington's disease is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite the identification of the causative element, an expanded toxic polyglutamine tract in the mutant Huntingtin protein, treatment options for patients with this disease remain limited. In the following review I assess the current evidence suggesting that a family of important regulatory proteins known as histone deacetylases may be an important therapeutic target in the treatment of this disease.
Collapse
Affiliation(s)
- Steven G Gray
- Translational Cancer Research Group, Department of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, James's Street, Dublin, Ireland.
| |
Collapse
|
79
|
Targeting Huntington's disease through histone deacetylases. Clin Epigenetics 2011; 2:257-77. [PMID: 22704341 PMCID: PMC3365382 DOI: 10.1007/s13148-011-0025-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 02/06/2011] [Indexed: 12/23/2022] Open
Abstract
Huntington’s disease (HD) is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with this condition remain limited. Aberrant post-translational modification (PTM) of proteins is emerging as an important element in the pathogenesis of HD. These PTMs include acetylation, phosphorylation, methylation, sumoylation and ubiquitination. Several families of proteins are involved with the regulation of these PTMs. In this review, I discuss the current evidence linking aberrant PTMs and/or aberrant regulation of the cellular machinery regulating these PTMs to HD pathogenesis. Finally, I discuss the evidence suggesting that pharmacologically targeting one of these protein families the histone deacetylases may be of potential therapeutic benefit in the treatment of HD.
Collapse
|
80
|
Munoz-Sanjuan I, Bates GP. The importance of integrating basic and clinical research toward the development of new therapies for Huntington disease. J Clin Invest 2011; 121:476-83. [PMID: 21285520 DOI: 10.1172/jci45364] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Huntington disease (HD) is a dominantly inherited neurodegenerative disorder that results from expansion of the polyglutamine repeat in the huntingtin (HTT) gene. There are currently no effective treatments for this devastating disease. Given its monogenic nature, disease modification therapies for HD should be theoretically feasible. Currently, pharmacological therapies aimed at disease modification by altering levels of HTT protein are in late-stage preclinical development. Here, we review current efforts to develop new treatments for HD based on our current understanding of HTT function and the main pathological mechanisms. We emphasize the need to enhance translational efforts and highlight the importance of aligning the clinical and basic research communities to validate existing hypotheses in clinical studies. Human and animal therapeutic trials are presented with an emphasis on cellular and molecular mechanisms relevant to disease progression.
Collapse
Affiliation(s)
- Ignacio Munoz-Sanjuan
- CHDI Management Inc./CHDI Foundation Inc., 6080 Center Drive, Suite 100, Los Angeles, California 90046, USA.
| | | |
Collapse
|
81
|
Graham RK, Deng Y, Carroll J, Vaid K, Cowan C, Pouladi MA, Metzler M, Bissada N, Wang L, Faull RLM, Gray M, Yang XW, Raymond LA, Hayden MR. Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J Neurosci 2010; 30:15019-29. [PMID: 21068307 PMCID: PMC3074336 DOI: 10.1523/jneurosci.2071-10.2010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/05/2010] [Accepted: 08/14/2010] [Indexed: 11/21/2022] Open
Abstract
Caspase cleavage of huntingtin (htt) and nuclear htt accumulation represent early neuropathological changes in brains of patients with Huntington's disease (HD). However, the relationship between caspase cleavage of htt and caspase activation patterns in the pathogenesis of HD remains poorly understood. The lack of a phenotype in YAC mice expressing caspase-6-resistant (C6R) mutant htt (mhtt) highlights proteolysis of htt at the 586 aa caspase-6 (casp6) site as a key mechanism in the pathology of HD. The goal of this study was to investigate how proteolysis of htt at residue 586 plays a role in the pathogenesis of HD and determine whether inhibiting casp6 cleavage of mhtt alters cell-death pathways in vivo. Here we demonstrate that activation of casp6, and not caspase-3, is observed before onset of motor abnormalities in human and murine HD brain. Active casp6 levels correlate directly with CAG size and inversely with age of onset. In contrast, in vivo expression of C6R mhtt attenuates caspase activation. Increased casp6 activity and apoptotic cell death is evident in primary striatal neurons expressing caspase-cleavable, but not C6R, mhtt after NMDA application. Pretreatment with a casp6 inhibitor rescues the apoptotic cell death observed in this paradigm. These data demonstrate that activation of casp6 is an early marker of disease in HD. Furthermore, these data provide a clear link between excitotoxic pathways and proteolysis and suggest that C6R mhtt protects against neurodegeneration by influencing the activation of neuronal cell-death and excitotoxic pathways operative in HD.
Collapse
Affiliation(s)
- Rona K. Graham
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Departments of Medical Genetics and
| | - Yu Deng
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Departments of Medical Genetics and
| | - Jeffery Carroll
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Departments of Medical Genetics and
| | - Kuljeet Vaid
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Departments of Medical Genetics and
| | - Catherine Cowan
- Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Mahmoud A. Pouladi
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Departments of Medical Genetics and
| | - Martina Metzler
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Departments of Medical Genetics and
| | - Nagat Bissada
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Departments of Medical Genetics and
| | - Lili Wang
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Departments of Medical Genetics and
| | - Richard L. M. Faull
- Department of Anatomy with Radiology, University of Auckland, Auckland 1142, New Zealand, and
| | - Michelle Gray
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, 90095-1761
| | - X. William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, 90095-1761
| | - Lynn A. Raymond
- Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Michael R. Hayden
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Departments of Medical Genetics and
| |
Collapse
|
82
|
Selvi BR, Cassel JC, Kundu TK, Boutillier AL. Tuning acetylation levels with HAT activators: Therapeutic strategy in neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:840-53. [DOI: 10.1016/j.bbagrm.2010.08.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/24/2010] [Accepted: 08/27/2010] [Indexed: 10/19/2022]
|
83
|
Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 2010; 11:682-96. [PMID: 20842175 PMCID: PMC2948541 DOI: 10.1038/nrn2911] [Citation(s) in RCA: 1219] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a long-standing paradox that NMDA (N-methyl-D-aspartate) receptors (NMDARs) can both promote neuronal health and kill neurons. Recent studies show that NMDAR-induced responses depend on the receptor location: stimulation of synaptic NMDARs, acting primarily through nuclear Ca(2+) signalling, leads to the build-up of a neuroprotective 'shield', whereas stimulation of extrasynaptic NMDARs promotes cell death. These differences result from the activation of distinct genomic programmes and from opposing actions on intracellular signalling pathways. Perturbations in the balance between synaptic and extrasynaptic NMDAR activity contribute to neuronal dysfunction in acute ischaemia and Huntington's disease, and could be a common theme in the aetiology of neurodegenerative diseases. Neuroprotective therapies should aim to both enhance the effect of synaptic activity and disrupt extrasynaptic NMDAR-dependent death signalling.
Collapse
Affiliation(s)
- Giles E. Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| |
Collapse
|
84
|
Chaturvedi RK, Calingasan NY, Yang L, Hennessey T, Johri A, Beal MF. Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation. Hum Mol Genet 2010; 19:3190-205. [PMID: 20529956 DOI: 10.1093/hmg/ddq229] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the ability of AMP-activated protein kinase (AMPK) to activate PPARgamma coactivator-1alpha (PGC-1alpha) in the brain, liver and brown adipose tissue (BAT) of the NLS-N171-82Q transgenic mouse model of Huntington's disease (HD). In the striatum of the HD mice, the baseline levels of PGC-1alpha, NRF1, NRF2, Tfam, COX-II, PPARdelta, CREB and ERRalpha mRNA and mitochondrial DNA (mtDNA), were significantly reduced. Administration of the creatine analog beta guanidinopropionic acid (GPA) reduced ATP and PCr levels and increased AMPK mRNA in both the cerebral cortex and striatum. Treatment with GPA significantly increased expression of PGC-1alpha, NRF1, Tfam and downstream genes in the striatum and cerebral cortex of wild-type (WT) mice, but there was no effect on these genes in the HD mice. The striatum of the untreated HD mice showed microvacuolation in the neuropil, as well as gliosis and huntingtin aggregates, which were exacerbated by treatment with GPA. GPA treatment produced a significant increase in mtDNA in the cerebral cortex and striatum of WT mice, but not in HD mice. The HD mice treated with GPA had impaired activation of liver PGC-1alpha and developed hepatic steatosis with accumulation of lipids, degeneration of hepatocytes and impaired activation of gluconeogenesis. The BAT in the HD mice showed vacuolation due to accumulation of neutral lipids, and age-dependent impairment of UCP-1 activation and temperature regulation. Impaired activation of PGC-1alpha, therefore, plays an important role in the behavioral phenotype, metabolic disturbances and pathology of HD, which suggests the possibility that agents that enhance PGC-1alpha function will exert therapeutic benefits in HD patients.
Collapse
Affiliation(s)
- Rajnish K Chaturvedi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA. /
| | | | | | | | | | | |
Collapse
|
85
|
Partial depletion of CREB-binding protein reduces life expectancy in a mouse model of Huntington disease. J Neuropathol Exp Neurol 2010; 69:396-404. [PMID: 20448484 DOI: 10.1097/nen.0b013e3181d6c436] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Previous studies have reported that mutant huntingtin (htt) interferes with cyclic AMP response element binding protein binding protein (CBP)-mediated transcription, possibly by inhibiting the acetylation of histones. In Drosophila models that express fragments of mutant htt, histone deacetylase inhibitors reverse deficits in histone acetylation, rescue photoreceptor degeneration, and prolong their survival. These compounds also improve motor deficits in a transgenic mouse model of Huntington disease (HD). To determine whether endogenous CBP depletion contributes to HD pathogenesis, we crossed HD-N171-82Q transgenic mice with mice harboring a disrupted CBP gene and produced mice with partial (50%) depletion of CBP. This reduction of CBP levels decreased the life expectancy of the HD-N171-82Q Line 6 mouse model. The loss of CBP had no obvious impact on the severity of motor impairment, degeneration of the striatum, mutant htt inclusion formation, or global levels of acetylated histones H3 or H4 in brain. In cell models, we confirmed that mutant htt inclusions recruit human CBP but found no evidence for interactions between soluble forms of mutant htt and CBP. Although we identified no neurological explanation for the decreased life expectancy of HD-N171-82Q mice with partial depletion of CBP, the data are consistent with the notion that CBP function mitigates mutant htt toxicity by a currently unidentified mechanism.
Collapse
|
86
|
Túnez I, Tasset I, Pérez-De La Cruz V, Santamaría A. 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington's disease: past, present and future. Molecules 2010; 15:878-916. [PMID: 20335954 PMCID: PMC6263191 DOI: 10.3390/molecules15020878] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/12/2010] [Accepted: 02/01/2010] [Indexed: 11/17/2022] Open
Abstract
Huntington's disease (HD) is an inheritable autosomal-dominant disorder whose causal mechanisms remain unknown. Experimental models have begun to uncover these pathways, thus helping to understand the mechanisms implicated and allowing for the characterization of potential targets for new therapeutic strategies. 3-Nitropropionic acid is known to produce in animals behavioural, biochemical and morphologic changes similar to those occurring in HD. For this reason, this phenotypic model is gaining attention as a valuable tool to mimick this disorder and further developing new therapies. In this review, we will focus on the past and present research of this molecule, to finally bring a perspective on what will be next in this promising field of study.
Collapse
Affiliation(s)
- Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Maimónides de Investigaciones Biomédicas de Córdoba, Universidad de Córdoba, Av. Menéndez Pidal s/n, 14004 Córdoba, Spain.
| | | | | | | |
Collapse
|
87
|
HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ 2010; 17:1392-408. [DOI: 10.1038/cdd.2009.216] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
88
|
Posttranslational modification of ataxin-7 at lysine 257 prevents autophagy-mediated turnover of an N-terminal caspase-7 cleavage fragment. J Neurosci 2009; 29:15134-44. [PMID: 19955365 DOI: 10.1523/jneurosci.4720-09.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Polyglutamine (polyQ) expansion within the ataxin-7 protein, a member of the STAGA [SPT3-TAF(II)31-GCN5L acetylase] and TFTC (GCN5 and TRRAP) chromatin remodeling complexes, causes the neurodegenerative disease spinocerebellar ataxia type 7 (SCA7). Proteolytic processing of ataxin-7 by caspase-7 generates N-terminal toxic polyQ-containing fragments that accumulate with disease progression and play an important role in SCA7 pathogenesis. To elucidate the basis for the toxicity of these fragments, we evaluated which posttranslational modifications of the N-terminal fragment of ataxin-7 modulate turnover and toxicity. Here, we show that mutating lysine 257 (K257), an amino acid adjacent to the caspase-7 cleavage site of ataxin-7 regulates turnover of the truncation product in a repeat-dependent manner. Modification of ataxin-7 K257 by acetylation promotes accumulation of the fragment, while unmodified ataxin-7 is degraded. The degradation of the caspase-7 cleavage product is mediated by macroautophagy in cell culture and primary neuron models of SCA7. Consistent with this, the fragment colocalizes with autophagic vesicle markers, and enhanced fragment accumulation increases in these lysosomal structures. We suggest that the levels of fragment accumulation within the cell is a key event in SCA7 neurodegeneration, and enhancing clearance of polyQ-containing fragments may be an effective target to reduce neurotoxicity in SCA7.
Collapse
|
89
|
Abstract
Epigenetics is a rapidly growing field and holds great promise for a range of human diseases, including brain disorders such as Rett syndrome, anxiety and depressive disorders, schizophrenia, Alzheimer disease and Huntington disease. This review is concerned with the pharmacology of epigenetics to treat disorders of the epigenome whether induced developmentally or manifested/acquired later in life. In particular, we will focus on brain disorders and their treatment by drugs that modify the epigenome. While the use of DNA methyl transferase inhibitors and histone deacetylase inhibitors in in vitro and in vivo models have demonstrated improvements in disease-related deficits, clinical trials in humans have been less promising. We will address recent advances in our understanding of the complexity of the epigenome with its many molecular players, and discuss evidence for a compromised epigenome in the context of an ageing or diseased brain. We will also draw on examples of species differences that may exist between humans and model systems, emphasizing the need for more robust pre-clinical testing. Finally, we will discuss fundamental issues to be considered in study design when targeting the epigenome.
Collapse
Affiliation(s)
- Pritika Narayan
- Department of Pharmacology and the National Research Centre for Growth and Development, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
90
|
Choi YS, Lee B, Cho HY, Reyes IB, Pu XA, Saido TC, Hoyt KR, Obrietan K. CREB is a key regulator of striatal vulnerability in chemical and genetic models of Huntington's disease. Neurobiol Dis 2009; 36:259-68. [PMID: 19632326 PMCID: PMC2884277 DOI: 10.1016/j.nbd.2009.07.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/26/2009] [Accepted: 07/15/2009] [Indexed: 11/19/2022] Open
Abstract
Evidence of dysregulation of the CREB/CRE transcriptional pathway in animal models of Huntington's disease (HD) suggests that strategies designed to augment CRE-mediated transcription may be of therapeutic value. Here, we investigated the consequences of CREB activation and repression in chemical and transgenic mouse models of HD. In the 3-nitropropionic acid (3-NP) model, CREB phospho-activation in the striatum was potently repressed within the neurotoxic "core" region prior to cell death. Conversely, marked expression of phospho-CREB, as well the CREB-regulated cytoprotective gene Bcl-2, was detected in the "penumbral" region. To examine potential contributory roles for the CREB/CRE transcriptional pathway in striatal degeneration, we used both CREB loss- (A-CREB) and gain- (VP16-CREB) of-function transgenic mouse strains. 3-NP-induced striatal lesion size and motor dysfunction were significantly increased in A-CREB mice compared to controls. Conversely, striatal damage and motor deficits were diminished in VP16-CREB mice. Furthermore, transgenic A-CREB significantly accelerated motor impairment in the YAC128 mouse model of HD. Together, these results indicate that CREB functionality is lost during the early stages of striatal cell stress and that the repression of CREB-mediated transcription contributes to the pathogenic process.
Collapse
Affiliation(s)
- Yun-Sik Choi
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210 (USA)
| | - Boyoung Lee
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210 (USA)
| | - Hee-Yeon Cho
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210 (USA)
| | | | - Xin-An Pu
- Center for Molecular Neurobiology, Ohio State University, Columbus, Ohio 43210 (USA)
| | - Takaomi C. Saido
- Chemical Neuroscience Group 2-1, RIKEN Brain Science Institute, Saitama 351-0198 (Japan)
| | - Kari R. Hoyt
- Division of Pharmacology, Ohio State University, Columbus, OH 43210 (USA)
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210 (USA)
| |
Collapse
|
91
|
Vishveshwara N, Bradley ME, Liebman SW. Sequestration of essential proteins causes prion associated toxicity in yeast. Mol Microbiol 2009; 73:1101-14. [PMID: 19682262 PMCID: PMC2757070 DOI: 10.1111/j.1365-2958.2009.06836.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prions are infectious, aggregated proteins that cause diseases in mammals but are not normally toxic in fungi. Excess Sup35p, an essential yeast protein that can exist as the [PSI(+)] prion, inhibits growth of [PSI(+)] but not [psi(-)] cells. This toxicity is rescued by expressing the Sup35Cp domain of Sup35p, which is sufficient for cell viability but not prion propagation. We now show that rescue requires Sup35Cp levels to be proportional to Sup35p overexpression. Overexpression of Sup35p appeared to cause pre-existing [PSI(+)] aggregates to coalesce into larger aggregates, but these were not toxic per se because they formed even when Sup35Cp rescued growth. Overexpression of Sup45p, but not other tested essential Sup35p binding partners, caused rescue. Sup45-GFPp formed puncta that colocalized with large [PSI(+)] Sup35-RFPp aggregates in cells overexpressing Sup35p, and the frequency of the Sup45-GFPp puncta was reduced by rescuing levels of Sup35Cp. In contrast, [PSI(+)] toxicity caused by a high excess of the Sup35p prion domain (Sup35NMp) was rescued by a single copy of Sup35Cp, was not rescued by Sup45p overexpression and was not associated with the appearance of Sup45-GFPp puncta. This suggests [PSI(+)] toxicity caused by excess Sup35p verses Sup35NMp is, respectively, through sequestration/inactivation of Sup45p verses Sup35p.
Collapse
Affiliation(s)
- Namitha Vishveshwara
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois atChicago, 900 S. Ashland Avenue, Chicago, IL, 60607, USA
| | - Michael E. Bradley
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois atChicago, 900 S. Ashland Avenue, Chicago, IL, 60607, USA
| | - Susan W. Liebman
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois atChicago, 900 S. Ashland Avenue, Chicago, IL, 60607, USA
| |
Collapse
|
92
|
Abstract
Huntington's disease (HD) is a relentless neurodegenerative disease that results in profound disability through a triad of motor, cognitive and neuropsychiatric symptoms. At present, there are very few therapeutic interventions available with the exception of a limited number of drugs that offer mild symptomatic relief. Although the genetic basis of the disease has been identified, the mechanisms behind the cellular pathogenesis are still not clear and as a result no candidate drugs with the potential for disease modification have been found clinically until now. One of the major limitations in assessing the usefulness of drug treatments in HD is the lack of well-designed, double-blind, placebo-controlled clinical trials. Most studies have been open-label, using a small number of patients and tend to concentrate on the motor features of the disease, primarily the chorea. This review discusses the treatments now used for HD before evaluating the newer drugs at present being explored in both the clinic and in the laboratory in mouse models of the disease.
Collapse
Affiliation(s)
- Sarah L Mason
- Cambridge Centre for Brain Repair, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB20PY, UK.
| | | |
Collapse
|
93
|
Saha RN, Ghosh A, Palencia CA, Fung YK, Dudek SM, Pahan K. TNF-alpha preconditioning protects neurons via neuron-specific up-regulation of CREB-binding protein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:2068-78. [PMID: 19596989 PMCID: PMC2724010 DOI: 10.4049/jimmunol.0801892] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite being a proinflammatory cytokine, TNF-alpha preconditions neurons against various toxic insults. However, underlying molecular mechanisms are poorly understood. The present study identifies the importance of CREB-binding protein (CBP) in facilitating TNF-alpha-mediated preconditioning in neurons. Treatment of rat primary neurons with fibrillar amyloid beta1-42 (Abeta) resulted in the loss of CBP protein. However, this loss was compensated by TNF-alpha preconditioning as the expression of neuronal CBP was up-regulated in response to TNF-alpha treatment. The induction of CBP by TNF-alpha was observed only in neurons, but not in astroglia and microglia, and it was contingent on the activation of transcription factor NF-kappaB. Interestingly, antisense knockdown of CBP abrogated the TNF-alpha-mediated preconditioning of neurons against Abeta and glutamate toxicity. Similarly in vivo, preadministration of TNF-alpha in mouse neocortex prevented Abeta-induced apoptosis and loss of choline acetyltransferase-positive cholinergic neurons. However, coadministration of cbp antisense, but not scrambled oligonucleotides, negated the protective effect of TNF-alpha against Abeta neurotoxicity. This study illustrates a novel biological role of TNF-alpha in increasing neuron-specific expression of CBP for preconditioning that may have therapeutic potential against neurodegenerative disorders.
Collapse
Affiliation(s)
- Ramendra N. Saha
- Department of Neurological sciences, Rush University Medical Center, Chicago, IL 60612
- Section of Neuroscience, Department of Oral Biology, University of Nebraska Medical Center, 40 and Holdrege Street, Lincoln, NE 68583
- Laboratory of Neurobiology, MD: F2-04, NIEHS, NIH, 111 Alexander Drive, Research Triangle Park, NC 27709
| | - Anamitra Ghosh
- Department of Neurological sciences, Rush University Medical Center, Chicago, IL 60612
| | - Carlos A. Palencia
- Department of Neurological sciences, Rush University Medical Center, Chicago, IL 60612
| | - Yiu K. Fung
- Section of Neuroscience, Department of Oral Biology, University of Nebraska Medical Center, 40 and Holdrege Street, Lincoln, NE 68583
| | - Serena M. Dudek
- Laboratory of Neurobiology, MD: F2-04, NIEHS, NIH, 111 Alexander Drive, Research Triangle Park, NC 27709
| | - Kalipada Pahan
- Department of Neurological sciences, Rush University Medical Center, Chicago, IL 60612
- Section of Neuroscience, Department of Oral Biology, University of Nebraska Medical Center, 40 and Holdrege Street, Lincoln, NE 68583
| |
Collapse
|
94
|
Giampà C, Middei S, Patassini S, Borreca A, Marullo F, Laurenti D, Bernardi G, Ammassari-Teule M, Fusco FR. Phosphodiesterase type IV inhibition prevents sequestration of CREB binding protein, protects striatal parvalbumin interneurons and rescues motor deficits in the R6/2 mouse model of Huntington's disease. Eur J Neurosci 2009; 29:902-10. [PMID: 19291221 DOI: 10.1111/j.1460-9568.2009.06649.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The phosphodiesterase type IV inhibitor rolipram increases cAMP response element-binding protein (CREB) phosphorylation and exerts neuroprotective effects in both the quinolinic acid rat model of Huntington's disease (DeMarch et al., 2007) and the R6/2 mouse including sparing of striatal neurons, prevention of neuronal intranuclear inclusion formation and attenuation of microglial reaction (DeMarch et al., 2008). In this study, we sought to determine if rolipram has a beneficial role in the altered distribution of CREB binding protein in striatal spiny neurons and in the motor impairments shown by R6/2 mutants. Moreover, we investigated whether rolipram treatment altered the degeneration of parvalbuminergic interneurons typical of Huntington's disease (Fusco et al., 1999). Transgenic mice and their wild-type controls from a stable colony maintained in our laboratory were treated with rolipram (1.5 mg/kg) or saline daily starting from 4 weeks of age. The cellular distribution of CREB binding protein in striatal spiny neurons was assessed by immunofluorescence, whereas parvalbuminergic neuron degeneration was evaluated by cell counts of immunohistochemically labeled tissue. Motor coordination and motor activity were also examined. We found that rolipram was effective in preventing CREB binding protein sequestration into striatal neuronal intranuclear inclusions, sparing parvalbuminergic interneurons of R6/2 mice, and rescuing their motor coordination and motor activity deficits. Our findings demonstrate the possibility of reversing pharmacologically the behavioral and neuropathological abnormalities of symptomatic R6/2 mice and underline the potential therapeutic value of phosphodiesterase type IV inhibitors in Huntington's disease.
Collapse
Affiliation(s)
- Carmela Giampà
- Laboratory of Neuroanatomy, Santa Lucia Foundation at the European Center for Brain Research, Via del Fosso Fiorano 64, 00143 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Pallos J, Bodai L, Lukacsovich T, Purcell JM, Steffan JS, Thompson LM, Marsh JL. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Hum Mol Genet 2008; 17:3767-75. [PMID: 18762557 DOI: 10.1093/hmg/ddn273] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease (HD) is associated with transcriptional dysregulation, and multiple studies with histone deacetylase (HDAC) inhibitors suggest that global approaches for restoring transcriptional balance and appropriate protein acetylation are therapeutically promising. To determine whether more targeted approaches might be effective, we have tested the impact of all the HDACs in Drosophila on Huntingtin (Htt)-induced pathology. Among the zinc-dependent or 'classic' HDACs, we find that neurodegeneration is most sensitive to levels of Rpd3. We also find that among the NAD(+)-dependent class III deacetylases, genetic or pharmacological reduction of either Sir2 or Sirt2 provides neuroprotection to Htt-challenged animals and that even greater neuroprotection is achieved when Rpd3 and Sir2 are simultaneously reduced. Our experiments suggest that longevity promoting strategies may be distinct from those that protect against neurodegeneration in Drosophila challenged with mutant human Htt. These results highlight a novel therapeutic approach for HD in the form of Sir2 inhibition and possible combinatorial inhibition of Sir2 and Rpd3.
Collapse
Affiliation(s)
- Judit Pallos
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Hands S, Sinadinos C, Wyttenbach A. Polyglutamine gene function and dysfunction in the ageing brain. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:507-21. [PMID: 18582603 DOI: 10.1016/j.bbagrm.2008.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 04/29/2008] [Accepted: 05/30/2008] [Indexed: 11/23/2022]
Abstract
The coordinated regulation of gene expression and protein interactions determines how mammalian nervous systems develop and retain function and plasticity over extended periods of time such as a human life span. By studying mutations that occur in a group of genes associated with chronic neurodegeneration, the polyglutamine (polyQ) disorders, it has emerged that CAG/glutamine stretches play important roles in transcriptional regulation and protein-protein interactions. However, it is still unclear what the many structural and functional roles of CAG and other low-complexity sequences in eukaryotic genomes are, despite being the most commonly shared peptide fragments in such proteomes. In this review we examine the function of genes responsible for at least 10 polyglutamine disorders in relation to the nervous system and how expansion mutations lead to neuronal dysfunction, by particularly focusing on Huntington's disease (HD). We argue that the molecular and cellular pathways that turn out to be dysfunctional during such diseases, as a consequence of a CAG expansion, are also involved in the ageing of the central nervous system. These are pathways that control protein degradation systems (including molecular chaperones), axonal transport, redox-homeostasis and bioenergetics. CAG expansion mutations confer novel properties on proteins that lead to a slow-progressing neuronal pathology and cell death similar to that found in other age-related conditions such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Sarah Hands
- Southampton Neuroscience Group, School of Biological Sciences, University of Southampton, Southampton SO16 7PX, UK
| | | | | |
Collapse
|
97
|
|
98
|
Kazantsev AG, Hersch SM. Drug targeting of dysregulated transcription in Huntington's disease. Prog Neurobiol 2007; 83:249-59. [PMID: 17379386 PMCID: PMC2110959 DOI: 10.1016/j.pneurobio.2007.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 11/16/2006] [Accepted: 02/13/2007] [Indexed: 11/19/2022]
Abstract
Transcriptional dysregulation in Huntington's disease (HD) is a well documented and broadly studied phenomenon. Its basis appears to be in huntingtin's aberrant protein-protein interactions with a variety of transcription factors. The development of therapeutics targeting altered transcription, however, faces serious challenges. No single transcriptional regulator has emerged as a primary actor in HD. The levels of literally hundreds of RNA transcripts are altered in affected cells and it is uncertain which are most relevant. The protein-protein interactions of mutant huntingtin with transcriptional factors do not constitute conventional and easy targets for drug molecules. Nevertheless, potential therapeutic advances, targeting transcriptional deregulation in HD, have been made in recent years. In this chapter we review current progress in this area of therapeutic development. We also discuss possible drug discovery strategies targeting altered transcriptional pathways.
Collapse
Affiliation(s)
- Aleksey G Kazantsev
- Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA 02129-4404, USA.
| | | |
Collapse
|