51
|
Bello G, Dumancas G. Association of 2,4-dichlorophenol urinary concentrations and olfactory dysfunction in a national sample of middle-aged and older U.S. adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2017; 27:498-508. [PMID: 29172666 DOI: 10.1080/09603123.2017.1405245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Olfaction is a key sensory mechanism in humans. Deficits in this chemosensory function have wide-ranging impacts on overall health and quality of life. This study examines the role of environmental phenols as risk factors for olfactory dysfunction among a random sample of 839 middle-aged and older U.S. adults. Olfactory function assessment was carried out using a short 8-item test, scores on which were used to classify subjects into normal or impaired olfactory function groups. Logistic regression models were used to test for associations between olfactory impairment and creatinine-adjusted urinary levels of 8 common environmental phenols, adjusting for potentially confounding covariates. A statistically significant association between 2,4-dichlorophenol levels and olfactory impairment (OR = 1.02 [95 % CI: (1.003, 1.04)]; p = 0.02) was found. 2,4-dichlorophenol is a hazardous pollutant with widespread exposure via industrial and indoor air pollution, diet, and the use of pesticides and herbicides. This study is the first to reveal its role in olfactory impairment.
Collapse
Affiliation(s)
- Ghalib Bello
- a Icahn School of Medicine at Mount Sinai , Environmental Medicine & Public Health , New York , NY , USA
| | - Gerard Dumancas
- b Department of Mathematics and Physical Sciences , Louisiana State University at Alexandria , Alexandria , LA , USA
| |
Collapse
|
52
|
Familial manganese-induced neurotoxicity due to mutations in SLC30A10 or SLC39A14. Neurotoxicology 2017; 64:278-283. [PMID: 28789954 DOI: 10.1016/j.neuro.2017.07.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 11/21/2022]
Abstract
Over the last few years, two rare, familial diseases that lead to the onset of manganese (Mn)-induced neurotoxicity have been discovered. Loss-of-function mutations in SLC30A10, a Mn efflux transporter, or SLC39A14, a Mn influx transporter, increase Mn levels in blood and brain, and induce severe neurotoxicity. The discoveries of these genetic diseases have transformed our understanding of Mn homeostasis, detoxification, and neurotoxicity. Current knowledge about the mechanisms by which mutations in these transporters alter Mn homeostasis to induce human disease is reviewed here.
Collapse
|
53
|
Wang Y, Xiong L, Tang M. Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease. J Appl Toxicol 2017; 37:644-667. [PMID: 28299803 DOI: 10.1002/jat.3451] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 12/22/2022]
Abstract
Particulate matter (PM) combined with meteorological factors cause the haze, which brings inconvenience to people's daily life and deeply endanger people's health. Accumulating literature, to date, reported that PM are closely related to cardiopulmonary disease. Outpatient visits and admissions as a result of asthma and heart attacks gradually increase with an elevated concentration of PM. Owing to its special physicochemical property, the brain could be a potential target beyond the cardiopulmonary system. Possible routes of PM to the brain via a direct route or stimulation of pro-inflammatory cytokines have been reported in several documents concerning toxicity of engineered nanoparticles in rodents. Recent studies have demonstrated that PM have implications in oxidative stress, inflammation, dysfunction of cellular organelles, as well as the disturbance of protein homeostasis, promoting neuron loss and exaggerating the burden of central nervous system (CNS). Moreover, the smallest particles (nano-sized particles), which were involved in inflammation, reactive oxygen species (ROS), microglial activation and neuron loss, may accelerate the process of the neurodevelopmental disorder and neurodegenerative disease. Potential or other undiscovered mechanisms are not mutually exclusive but complementary aspects of each other. Epidemiology studies have shown that exposure to PM could bring about neurotoxicity and play a significant role in the etiology of CNS disease, which has been gradually corroborated by in vivo and in vitro studies. This review highlights research advances on the health effects of PM with an emphasis on neurotoxicity. With the hope of enhancing awareness in the public and calling for prevention and protective measures, it is a critical topic that requires proceeding exploration. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lilin Xiong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
54
|
Hutchens S, Liu C, Jursa T, Shawlot W, Chaffee BK, Yin W, Gore AC, Aschner M, Smith DR, Mukhopadhyay S. Deficiency in the manganese efflux transporter SLC30A10 induces severe hypothyroidism in mice. J Biol Chem 2017; 292:9760-9773. [PMID: 28461334 DOI: 10.1074/jbc.m117.783605] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/27/2017] [Indexed: 12/31/2022] Open
Abstract
Manganese is an essential metal that becomes toxic at elevated levels. Loss-of-function mutations in SLC30A10, a cell-surface-localized manganese efflux transporter, cause a heritable manganese metabolism disorder resulting in elevated manganese levels and parkinsonian-like movement deficits. The underlying disease mechanisms are unclear; therefore, treatment is challenging. To understand the consequences of loss of SLC30A10 function at the organism level, we generated Slc30a10 knock-out mice. During early development, knock-outs were indistinguishable from controls. Surprisingly, however, after weaning and compared with controls, knock-out mice failed to gain weight, were smaller, and died prematurely (by ∼6-8 weeks of age). At 6 weeks, manganese levels in the brain, blood, and liver of the knock-outs were ∼20-60-fold higher than controls. Unexpectedly, histological analyses revealed that the brain and liver of the knock-outs were largely unaffected, but their thyroid exhibited extensive alterations. Because hypothyroidism leads to growth defects and premature death in mice, we assayed for changes in thyroid and pituitary hormones. At 6 weeks and compared with controls, the knock-outs had markedly reduced thyroxine levels (∼50-80%) and profoundly increased thyroid-stimulating hormone levels (∼800-1000-fold), indicating that Slc30a10 knock-out mice develop hypothyroidism. Importantly, a low-manganese diet produced lower tissue manganese levels in the knock-outs and rescued the phenotype, suggesting that manganese toxicity was the underlying cause. Our unanticipated discovery highlights the importance of determining the role of thyroid dysfunction in the onset and progression of manganese-induced disease and identifies Slc30a10 knock-out mice as a new model for studying thyroid biology.
Collapse
Affiliation(s)
- Steven Hutchens
- From the Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience and
| | - Chunyi Liu
- From the Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience and
| | - Thomas Jursa
- the Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, California 95064
| | - William Shawlot
- the Mouse Genetic Engineering Facility, Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Beth K Chaffee
- the Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, M. D. Anderson Cancer Center, Bastrop, Texas 78602, and
| | - Weiling Yin
- From the Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience and
| | - Andrea C Gore
- From the Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience and
| | - Michael Aschner
- the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Donald R Smith
- the Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Somshuvra Mukhopadhyay
- From the Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Cellular & Molecular Biology, and Institute for Neuroscience and
| |
Collapse
|
55
|
Filippini T, Michalke B, Grill P, Malagoli C, Malavolti M, Vescovi L, Sieri S, Krogh V, Cherubini A, Maffeis G, Lucchini R, Ferrante M, Vinceti M. Determinants of serum manganese levels in an Italian population. Mol Med Rep 2017; 15:3340-3349. [PMID: 28339021 DOI: 10.3892/mmr.2017.6379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
Manganese (Mn) is both essential and toxic for humans, mainly depending on the total levels and its species. Main sources of exposure include food and air pollution, particularly motorized traffic. We sought to determine the potential influence of these sources on serum total levels of Mn and Mn species. We selected a random sample of municipality residents from an Italian urban municipality, from whom we collected detailed personal information, dietary habits and a blood sample for serum Mn determination. We also assessed outdoor air Mn exposure, by modeling levels of particulate matter ≤10 µm (PM10) from motorized traffic at the residence of geocoded subjects. Serum Mn species generally showed higher levels in males and positive correlation with age, while no such differences were found according to smoking habits or use of dietary supplements. Among nutrients, only iron intake showed a relation with Mn [an inverse correlation with Mn‑ferritin (Mn‑Fer) and a direct one with inorganic‑Mn (Inorg‑Mn)]. Meat consumption directly correlated and fish and seafood inversely correlated with total Mn, Mn‑transferrin (Mn‑Tf) and Mn-citrate (Mn-Cit). Fruits and vegetables, including legumes and nuts, generally showed a positive correlation with all Mn species, especially Mn‑Cit, and an inverse one with Inorg‑Mn. Odds ratios (ORs) of having serum Mn levels above median value increased with increasing PM10 tertiles, with an OR for highest‑to‑lowest tertile of 7.40 (1.36‑40.25) in multivariate analysis. Analyses for Mn species did not highlight a clear comparable pattern. In conclusion, our results seem to demonstrate that PM10 exposure positively influences total Mn serum levels, while single Mn species show conflicting results.
Collapse
Affiliation(s)
- Tommaso Filippini
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, I‑41125 Modena, Italy
| | - Bernhard Michalke
- Helmholtz Zentrum München, Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, D‑85764 Neuherberg, Germany
| | - Peter Grill
- Helmholtz Zentrum München, Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, D‑85764 Neuherberg, Germany
| | - Carlotta Malagoli
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, I‑41125 Modena, Italy
| | - Marcella Malavolti
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, I‑41125 Modena, Italy
| | - Luciano Vescovi
- Laboratory of Environmental Chemistry, IREN, I-42123 Reggio Emilia, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori I‑20133 Milan, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori I‑20133 Milan, Italy
| | | | | | - Roberto Lucchini
- Section of Occupational Medicine, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, I‑25125 Brescia, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies 'G.F. Ingrassia', University of Catania, I‑95123 Catania, Italy
| | - Marco Vinceti
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, I‑41125 Modena, Italy
| |
Collapse
|
56
|
Ou CY, Luo YN, He SN, Deng XF, Luo HL, Yuan ZX, Meng HY, Mo YH, Li SJ, Jiang YM. Sodium P-Aminosalicylic Acid Improved Manganese-Induced Learning and Memory Dysfunction via Restoring the Ultrastructural Alterations and γ-Aminobutyric Acid Metabolism Imbalance in the Basal Ganglia. Biol Trace Elem Res 2017; 176:143-153. [PMID: 27491492 DOI: 10.1007/s12011-016-0802-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Abstract
Excessive intake of manganese (Mn) may cause neurotoxicity. Sodium para-aminosalicylic acid (PAS-Na) has been used successfully in the treatment of Mn-induced neurotoxicity. The γ-aminobutyric acid (GABA) is related with learning and memory abilities. However, the mechanism of PAS-Na on improving Mn-induced behavioral deficits is unclear. The current study was aimed to investigate the effects of PAS-Na on Mn-induced behavioral deficits and the involvement of ultrastructural alterations and γ-aminobutyric acid (GABA) metabolism in the basal ganglia of rats. Sprague-Dawley rats received daily intraperitoneally injections of 15 mg/kg MnCl2.4H2O, 5d/week for 4 weeks, followed by a daily back subcutaneously (sc.) dose of PAS-Na (100 and 200 mg/kg), 5 days/week for another 3 or 6 weeks. Mn exposure for 4 weeks and then ceased Mn exposure for 3 or 6 weeks impaired spatial learning and memory abilities, and these effects were long-lasting. Moreover, Mn exposure caused ultrastructural alterations in the basal ganglia expressed as swollen neuronal with increasing the electron density in the protrusions structure and fuzzed the interval of neuropil, together with swollen, focal hyperplasia, and hypertrophy of astrocytes. Additionally, the results also indicated that Mn exposure increased Glu/GABA values as by feedback loops controlling GAT-1, GABAA mRNA and GABAA protein expression through decreasing GABA transporter 1(GAT-1) and GABA A receptor (GABAA) mRNA expression, and increasing GABAA protein expression in the basal ganglia. But Mn exposure had no effects on GAT-1 protein expression. PAS-Na treatment for 3 or 6 weeks effectively restored the above-mentioned adverse effects induced by Mn. In conclusion, these findings suggest the involvement of GABA metabolism and ultrastructural alterations of basal ganglia in PAS-Na's protective effects on the spatial learning and memory abilities.
Collapse
Affiliation(s)
- Chao-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd, Nanning, Guangxi, 530021, China
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin, 541004, China
| | - Yi-Ni Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd, Nanning, Guangxi, 530021, China
| | - Sheng-Nan He
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd, Nanning, Guangxi, 530021, China
| | - Xiang-Fa Deng
- Department of Anatomy, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Hai-Lan Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd, Nanning, Guangxi, 530021, China
| | - Zong-Xiang Yuan
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd, Nanning, Guangxi, 530021, China
| | - Hao-Yang Meng
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd, Nanning, Guangxi, 530021, China
| | - Yu-Huan Mo
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd, Nanning, Guangxi, 530021, China
| | - Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd, Nanning, Guangxi, 530021, China.
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd, Nanning, Guangxi, 530021, China.
| |
Collapse
|
57
|
Abstract
Manganese (Mn) is an essential metal that plays a fundamental role for brain development and functioning. Environmental exposure to Mn may lead to accumulation in the basal ganglia and development of Parkinson-like disorders. The most recent research is focusing on early-life overexposure to Mn and the potential vulnerability of younger individuals to Mn toxicity also in regard to cognitive and executive functions through the involvement of the frontal cortex.Neurodevelopmental disturbances are increasing in the society, and understanding the potential role of environmental determinants is a key for prevention. Therefore, assessing the environmental sources of Mn exposure and the mechanisms of developmental neurotoxicity and defining appropriate biomarkers of exposure and early functional alterations represent key issues to improve and address preventive strategies. These themes will be reviewed in this chapter.
Collapse
|
58
|
Casjens S, Pesch B, Robens S, Kendzia B, Behrens T, Weiss T, Ulrich N, Arendt M, Eisele L, Pundt N, Marr A, van Thriel C, Van Gelder R, Aschner M, Moebus S, Dragano N, Jöckel KH, Brüning T. Associations between former exposure to manganese and olfaction in an elderly population: Results from the Heinz Nixdorf Recall Study. Neurotoxicology 2017; 58:58-65. [DOI: 10.1016/j.neuro.2016.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
|
59
|
Abstract
While the neurotoxic effects of manganese were recognized in 1837, the first genetic disorder of manganese metabolism was described only in 2012 when homozygous mutations in SLC30A10 were reported to cause manganese-induced neurotoxicity. Two other genetic disorders of manganese metabolism have now been described - mutations in SLC39A14 cause manganese toxicity, while mutations in SLC39A8 cause manganese and zinc deficiency. Study of rare genetic disorders often provides unique insights into disease pathobiology, and the discoveries of these three inherited disorders of manganese metabolism are already transforming our understanding of manganese homeostasis, detoxification, and neurotoxicity. Here, we review the mechanisms by which mutations in SLC30A10, SLC39A14, and SLC39A8 impact manganese homeostasis to cause human disease.
Collapse
Affiliation(s)
- Charles E Zogzas
- Division of Pharmacology & Toxicology, College of Pharmacy; Institute for Cellular & Molecular Biology; and Institute for Neuroscience, The University of Texas at Austin, 3.510E BME, 107 W. Dean Keeton, Austin, TX, 78712, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy; Institute for Cellular & Molecular Biology; and Institute for Neuroscience, The University of Texas at Austin, 3.510E BME, 107 W. Dean Keeton, Austin, TX, 78712, USA.
| |
Collapse
|
60
|
Ratner MH, Fitzgerald E. Understanding of the role of manganese in parkinsonism and Parkinson disease. Neurology 2016; 88:338-339. [DOI: 10.1212/wnl.0000000000003543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
61
|
Ajmani GS, Suh HH, Pinto JM. Effects of Ambient Air Pollution Exposure on Olfaction: A Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1683-1693. [PMID: 27285588 PMCID: PMC5089874 DOI: 10.1289/ehp136] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/25/2016] [Accepted: 05/20/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Olfactory dysfunction affects millions of people worldwide. This sensory impairment is associated with neurodegenerative disease and significantly decreased quality of life. Exposure to airborne pollutants has been implicated in olfactory decline, likely due to the anatomic susceptibility of the olfactory nerve to the environment. Historically, studies have focused on occupational exposures, but more recent studies have considered effects from exposure to ambient air pollutants. OBJECTIVES To examine all relevant human data evaluating a link between ambient pollution exposure and olfaction and to review supporting animal data in order to examine potential mechanisms for pollution-associated olfactory loss. METHODS We identified and reviewed relevant articles from 1950 to 2015 using PubMed and Web of Science and focusing on human epidemiologic and pathophysiologic studies. Animal studies were included only to support pertinent data on humans. We reviewed findings from these studies evaluating a relationship between environmental pollutant exposure and olfactory function. RESULTS We identified and reviewed 17 articles, with 1 additional article added from a bibliography search, for a total of 18 human studies. There is evidence in human epidemiologic and pathologic studies that increased exposure to ambient air pollutants is associated with olfactory dysfunction. However, most studies have used proxies for pollution exposure in small samples of convenience. Human pathologic studies, with supporting animal work, have also shown that air pollution can contact the olfactory epithelium, translocate to the olfactory bulb, and migrate to the olfactory cortex. Pollutants can deposit at each location, causing direct damage and disruption of tissue morphology or inducing local inflammation and cellular stress responses. CONCLUSIONS Ambient air pollution may impact human olfactory function. Additional studies are needed to examine air pollution-related olfactory impacts on the general population using measured pollution exposures and to link pollution exposure with olfactory dysfunction and related pathology. Citation: Ajmani GS, Suh HH, Pinto JM. 2016. Effects of ambient air pollution exposure on olfaction: a review. Environ Health Perspect 124:1683-1693; http://dx.doi.org/10.1289/EHP136.
Collapse
Affiliation(s)
- Gaurav S. Ajmani
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Helen H. Suh
- Department of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Jayant M. Pinto
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Chicago, Chicago, Illinois, USA
- Address correspondence to J.M. Pinto, Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, MC103, 5841 South Maryland Ave., Chicago, IL 60647 USA. Telephone: (773) 702-6727. E-mail:
| |
Collapse
|
62
|
Ross JA, Shipp EM, Trueblood AB, Bhattacharya A. Ergonomics and Beyond: Understanding How Chemical and Heat Exposures and Physical Exertions at Work Affect Functional Ability, Injury, and Long-Term Health. HUMAN FACTORS 2016; 58:777-795. [PMID: 27125533 PMCID: PMC6894162 DOI: 10.1177/0018720816645457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/12/2016] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To honor Tom Waters's work on emerging occupational health issues, we review the literature on physical along with chemical exposures and their impact on functional outcomes. BACKGROUND Many occupations present the opportunity for exposure to multiple hazardous exposures, including both physical and chemical factors. However, little is known about how these different factors affect functional ability and injury. The goal of this review is to examine the relationships between these exposures, impairment of the neuromuscular and musculoskeletal systems, functional outcomes, and health problems with a focus on acute injury. METHOD Literature was identified using online databases, including PubMed, Ovid Medline, and Google Scholar. References from included articles were searched for additional relevant articles. RESULTS This review documented the limited existing literature that discussed cognitive impairment and functional disorders via neurotoxicity for physical exposures (heat and repetitive loading) and chemical exposures (pesticides, volatile organic compounds [VOCs], and heavy metals). CONCLUSION This review supports that workers are exposed to physical and chemical exposures that are associated with negative health effects, including functional impairment and injury. Innovation in exposure assessment with respect to quantifying the joint exposure to these different exposures is especially needed for developing risk assessment models and, ultimately, preventive measures. APPLICATION Along with physical exposures, chemical exposures need to be considered, alone and in combination, in assessing functional ability and occupationally related injuries.
Collapse
Affiliation(s)
- Jennifer A Ross
- Texas A&M University, College StationUniversity of Cincinnati, Ohio
| | - Eva M Shipp
- Texas A&M University, College StationUniversity of Cincinnati, Ohio
| | | | | |
Collapse
|
63
|
Potential Role of Epigenetic Mechanism in Manganese Induced Neurotoxicity. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2548792. [PMID: 27314012 PMCID: PMC4899583 DOI: 10.1155/2016/2548792] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/08/2016] [Indexed: 02/07/2023]
Abstract
Manganese is a vital nutrient and is maintained at an optimal level (2.5–5 mg/day) in human body. Chronic exposure to manganese is associated with neurotoxicity and correlated with the development of various neurological disorders such as Parkinson's disease. Oxidative stress mediated apoptotic cell death has been well established mechanism in manganese induced toxicity. Oxidative stress has a potential to alter the epigenetic mechanism of gene regulation. Epigenetic insight of manganese neurotoxicity in context of its correlation with the development of parkinsonism is poorly understood. Parkinson's disease is characterized by the α-synuclein aggregation in the form of Lewy bodies in neuronal cells. Recent findings illustrate that manganese can cause overexpression of α-synuclein. α-Synuclein acts epigenetically via interaction with histone proteins in regulating apoptosis. α-Synuclein also causes global DNA hypomethylation through sequestration of DNA methyltransferase in cytoplasm. An individual genetic difference may also have an influence on epigenetic susceptibility to manganese neurotoxicity and the development of Parkinson's disease. This review presents the current state of findings in relation to role of epigenetic mechanism in manganese induced neurotoxicity, with a special emphasis on the development of Parkinson's disease.
Collapse
|
64
|
Flores-Ramírez R, Pérez-Vázquez FJ, Cilia-López VG, Zuki-Orozco BA, Carrizales L, Batres-Esquivel LE, Palacios-Ramírez A, Díaz-Barriga F. Assessment of exposure to mixture pollutants in Mexican indigenous children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8577-88. [PMID: 26797947 DOI: 10.1007/s11356-016-6101-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 01/11/2016] [Indexed: 05/18/2023]
Abstract
The aim of the present work was to complete an exposure assessment in three Mexican indigenous communities using the community-based health risk assessment, which is the first step in the CHILD framework. We used 1-hydroxypyrene (1-OHP) as an exposure biomarker to polycyclic aromatic hydrocarbons (PAHs) and trans, trans-muconic acid (t,t-MA) as an exposure biomarker to benzene, persistent organic pollutants (POPs), lead, manganese, arsenic, and fluoride. Anthropometric measurements were also taken. In these communities, high percentages of children with chronic malnutrition were found (28 to 49 %) based on their weight and age. All communities showed a high percentage of children with detectable levels of four or more compounds (70 to 82 %). Additionally, our results showed that in indigenous communities, children are exposed to elevated levels of certain environmental pollutants, including manganese with 17.6, 16.8, and 7.3 μg/L from SMP, TOC, and CUA, respectively. Lead and HCB levels were similar in the indigenous communities (2.5, 3.1, and 4.2 μg/dL and 2.5, 3.1, and 3.7 ng/mL, respectively). 1-OHP and t,t-MA levels were higher in TOC (0.8 μmol/mol of creatinine, 476 μg/g of creatinine, respectively) when compared with SMP (0.1 μmol/mol of creatinine, 215.5 μg/g of creatinine, respectively) and CUA (0.1 μmol/mol of creatinine, 185.2 μg/g of creatinine, respectively). DDE levels were 30.7, 26.9, and 9.6 ng/mL in CUA, SMP, and TOC, respectively. The strength of this study is that it assesses exposure to pollutants with indications for the resultant risk before an intervention is made by the CHILD program to manage this risk in the indigenous communities. Considering the large number of people, especially children, exposed to multiple pollutants, it is important to design effective intervention programs that reduce exposure and the resultant risk in the numerous indigenous communities in Mexico.
Collapse
Affiliation(s)
- R Flores-Ramírez
- Catedrático CONACYT-Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, S.L.P., México
| | - F J Pérez-Vázquez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, S.L.P., México
| | - V G Cilia-López
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, S.L.P., México
| | - B A Zuki-Orozco
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, S.L.P., México
| | - L Carrizales
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, S.L.P., México
| | - L E Batres-Esquivel
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, S.L.P., México
| | - A Palacios-Ramírez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, S.L.P., México
| | - F Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, S.L.P., México.
| |
Collapse
|
65
|
Xia W, Zhou Y, Zheng T, Zhang B, Bassig BA, Li Y, Wise JP, Zhou A, Wan Y, Wang Y, Xiong C, Zhao J, Li Z, Yao Y, Hu J, Pan X, Xu S. Maternal urinary manganese and risk of low birth weight: a case-control study. BMC Public Health 2016; 16:142. [PMID: 26869268 PMCID: PMC4751650 DOI: 10.1186/s12889-016-2816-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 02/03/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Manganese (Mn) is an essential element for humans, but exposure to high levels has been associated with adverse developmental outcomes. Early epidemiological studies evaluating the effect of Mn on fetal growth are inconsistent. METHODS We investigated the association between maternal urinary Mn during pregnancy and the risk of low birth weight (LBW). Mn concentrations in maternal urine samples collected before delivery were measured in 816 subjects (204 LBW cases and 612 matched controls) recruited between 2012 and 2014 in Hubei Province, China. RESULTS The median Mn concentration in maternal urine was 0.69 μg/g creatinine. Compared to the medium tertile of Mn levels, an increased risk of LBW was observed for the lowest tertile (≤0.30 μg/g creatinine) [adjusted odds ratio (OR) = 1.28; 95 % confidence interval (CI) = 0.67, 2.45], and a significantly increased risk of LBW was observed for the highest tertile (≥1.16 μg/g creatinine) [adjusted OR = 2.04; 95 % CI = 1.12, 3.72]. A curvilinear relationship between maternal urinary Mn and risk of LBW was observed, showing that the concentration at 0.43 μg/g creatinine was the point of inflection. Similar associations were observed among the mothers with female infants and among the younger mothers < 28 years old. However, among the mothers with male infants or the older mothers ≥ 28 years old, only higher levels of Mn were positively associated with LBW. CONCLUSIONS Lower or higher levels of maternal urinary Mn are associated with LBW, though only the association of LBW risk and higher levels of Mn was statistically significant. The findings also show that the associations may vary by maternal age and infant sex, but require confirmation in other populations.
Collapse
Affiliation(s)
- Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Yanqiu Zhou
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tongzhang Zheng
- Department of Environmental Health Sciences, Brown School of Public Health, Providence, RI, USA
| | - Bin Zhang
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan, Hubei, People's Republic of China
| | - Bryan A Bassig
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Portland, ME, USA
| | - Aifen Zhou
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan, Hubei, People's Republic of China
| | - Yanjian Wan
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Youjie Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chao Xiong
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Women and Children Medical and Healthcare Center of Wuhan, Wuhan, Hubei, People's Republic of China
| | - Jinzhu Zhao
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan, Hubei, People's Republic of China
| | - Zhengkuan Li
- Macheng Maternal and Child Health Care Hospital, Macheng, Hubei, People's Republic of China
| | - Yuanxiang Yao
- Ezhou Maternal and Child Health Hospital, Ezhou, Hubei, People's Republic of China
| | - Jie Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xinyun Pan
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
66
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
67
|
Wahlberg K, Kippler M, Alhamdow A, Rahman SM, Smith DR, Vahter M, Lucchini RG, Broberg K. Common Polymorphisms in the Solute Carrier SLC30A10 are Associated With Blood Manganese and Neurological Function. Toxicol Sci 2015; 149:473-83. [PMID: 26628504 PMCID: PMC4725612 DOI: 10.1093/toxsci/kfv252] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Manganese (Mn) is an essential nutrient in humans, but excessive exposure to Mn may cause neurotoxicity. Despite homeostatic regulation, Mn concentrations in blood vary considerably among individuals. We evaluated if common single-nucleotide polymorphisms (SNPs) in SLC30A10, which likely encodes an Mn transporter, influence blood Mn concentrations and neurological function. We measured blood Mn concentrations by ICP-MS or atomic absorption spectroscopy and genotyped 2 SLC30A10 non-coding SNPs (rs2275707 and rs12064812) by TaqMan PCR in cohorts from Bangladesh (N = 406), the Argentinean Andes (N = 198), and Italy (N = 238). We also measured SLC30A10 expression in whole blood by TaqMan PCR in a sub-group (N = 101) from the Andean cohort, and neurological parameters (sway velocity and finger-tapping speed) in the Italian cohort. The rs2275707 variant allele was associated with increased Mn concentrations in the Andes (8%, P = .027) and Italy (10.6%, P = .012), but not as clear in Bangladesh (3.4%, P = .21; linear regression analysis adjusted for age, gender, and plasma ferritin). This allele was also associated with increased sway velocity (15%, P = .033; adjusted for age and sex) and reduced SLC30A10 expression (−24.6%, P = .029). In contrast, the rs12064812 variant homozygous genotype was associated with reduced Mn concentrations, particularly in the Italian cohort (−18.4%, P = .04), and increased finger-tapping speed (8.7%, P = .025). We show that common SNPs in SLC30A10 are associated with blood Mn concentrations in 3 unrelated cohorts and that their influence may be mediated by altered SLC30A10 expression. Moreover, the SNPs appeared to influence neurological functions independent of blood Mn concentrations, suggesting that SLC30A10 could regulate brain Mn levels.
Collapse
Affiliation(s)
- Karin Wahlberg
- *Division of Occupational and Environmental Medicine, Lund University, 221 85 Lund, Sweden;
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, 171 65 Solna, Sweden
| | - Ayman Alhamdow
- *Division of Occupational and Environmental Medicine, Lund University, 221 85 Lund, Sweden
| | - Syed Moshfiqur Rahman
- Institute of Environmental Medicine, Karolinska Institutet, 171 65 Solna, Sweden; International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Mohakhali, Dhaka 1000, Bangladesh
| | - Donald R Smith
- Microbiology and Environmental Toxicology, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Marie Vahter
- *Division of Occupational and Environmental Medicine, Lund University, 221 85 Lund, Sweden
| | - Roberto G Lucchini
- Microbiology and Environmental Toxicology, University of California, 1156 High Street, Santa Cruz, California 95064; Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, New York 10029-5674; and Occupational Health Institute, University of Brescia, Viale Europa, 11, 25123 Brescia BS, Italy
| | - Karin Broberg
- *Division of Occupational and Environmental Medicine, Lund University, 221 85 Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, 171 65 Solna, Sweden;
| |
Collapse
|
68
|
Xie Q, Li Z, Yang L, Lv J, Jobe TO, Wang Q. A Newly Identified Passive Hyperaccumulator Eucalyptus grandis × E. urophylla under Manganese Stress. PLoS One 2015; 10:e0136606. [PMID: 26327118 PMCID: PMC4556624 DOI: 10.1371/journal.pone.0136606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/06/2015] [Indexed: 12/12/2022] Open
Abstract
Manganese (Mn) is an essential micronutrient needed for plant growth and development, but can be toxic to plants in excess amounts. However, some plant species have detoxification mechanisms that allow them to accumulate Mn to levels that are normally toxic, a phenomenon known as hyperaccumulation. These species are excellent candidates for developing a cost-effective remediation strategy for Mn-polluted soils. In this study, we identified a new passive Mn-hyperaccumulator Eucalyptus grandis × E. urophylla during a field survey in southern China in July 2010. This hybrid can accumulate as much as 13,549 mg/kg DW Mn in its leaves. Our results from Scanning Electron Microscope (SEM) X-ray microanalysis indicate that Mn is distributed in the entire leaf and stem cross-section, especially in photosynthetic palisade, spongy mesophyll tissue, and stem xylem vessels. Results from size-exclusion chromatography coupled with ICP-MS (Inductively coupled plasma mass spectrometry) lead us to speculate that Mn associates with relatively high molecular weight proteins and low molecular weight organic acids, including tartaric acid, to avoid Mn toxicity. Our results provide experimental evidence that both proteins and organic acids play important roles in Mn detoxification in Eucalyptus grandis × E. urophylla. The key characteristics of Eucalyptus grandis × E. urophylla are an increased Mn translocation facilitated by transpiration through the xylem to the leaves and further distribution throughout the leaf tissues. Moreover, the Mn-speciation profile obtained for the first time in different cellular organelles of Eucalyptus grandis × E. urophylla suggested that different organelles have differential accumulating abilities and unique mechanisms for Mn-detoxification.
Collapse
Affiliation(s)
- Qingqing Xie
- Department of Chemistry, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhenji Li
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Limin Yang
- Department of Chemistry, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Lv
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Timothy O. Jobe
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, United States of America
| | - Qiuquan Wang
- Department of Chemistry, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
69
|
Betancourt Ó, Tapia M, Méndez I. Decline of General Intelligence in Children Exposed to Manganese from Mining Contamination in Puyango River Basin, Southern Ecuador. ECOHEALTH 2015; 12:453-60. [PMID: 25851196 DOI: 10.1007/s10393-015-1027-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 01/25/2015] [Accepted: 03/13/2015] [Indexed: 05/24/2023]
Abstract
Based on ecosystem approaches to health (Ecohealth), this study sought to identify neurobehavioral disorders in children exposed to several levels of toxic metal pollution from gold mining in the Puyango River Basin, Southern Ecuador. Ninety-three children born or living in the study area participated in the study. A neurobehavioral test battery consisting of 12 tests assessing various functions of the nervous system was applied as well as a questionnaire regarding events of exposure of children's mothers to contaminants during perinatal period. Hair samples were taken from children to determine manganese concentrations. Descriptive and inferential statistics were applied in order to examine possible relationships between exposure events, hair manganese, and neurobehavioral disorders. Having controlled co-variables such as age and educational level, it was found that children with elevated levels of hair manganese (over 2 μg/g) had poor performance in the test of general intelligence (Raven's Progressive Color Matrices Scale PCM). The Ecohealth approach helped to identify that children in the lower Puyango Basin with very elevated levels of manganese in the river water (970 µg/L) are the ones who have the highest levels of hair manganese and the worst performance in the intelligence test.
Collapse
Affiliation(s)
- Óscar Betancourt
- Health Environment and Development Foundation (FUNSAD), Roca E6-06 and Juan León Mera, P.O.Box 17079382, Quito, Ecuador.
| | - Marlene Tapia
- Health Environment and Development Foundation (FUNSAD), Roca E6-06 and Juan León Mera, P.O.Box 17079382, Quito, Ecuador
| | - Ignacio Méndez
- National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| |
Collapse
|
70
|
Manganese-Induced Parkinsonism and Parkinson's Disease: Shared and Distinguishable Features. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:7519-40. [PMID: 26154659 PMCID: PMC4515672 DOI: 10.3390/ijerph120707519] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/12/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
Abstract
Manganese (Mn) is an essential trace element necessary for physiological processes that support development, growth and neuronal function. Secondary to elevated exposure or decreased excretion, Mn accumulates in the basal ganglia region of the brain and may cause a parkinsonian-like syndrome, referred to as manganism. The present review discusses the advances made in understanding the essentiality and neurotoxicity of Mn. We review occupational Mn-induced parkinsonism and the dynamic modes of Mn transport in biological systems, as well as the detection and pharmacokinetic modeling of Mn trafficking. In addition, we review some of the shared similarities, pathologic and clinical distinctions between Mn-induced parkinsonism and Parkinson’s disease. Where possible, we review the influence of Mn toxicity on dopamine, gamma aminobutyric acid (GABA), and glutamate neurotransmitter levels and function. We conclude with a survey of the preventive and treatment strategies for manganism and idiopathic Parkinson’s disease (PD).
Collapse
|
71
|
Bowler RM, Kornblith ES, Gocheva VV, Colledge MA, Bollweg G, Kim Y, Beseler CL, Wright CW, Adams SW, Lobdell DT. Environmental exposure to manganese in air: Associations with cognitive functions. Neurotoxicology 2015; 49:139-48. [PMID: 26096496 DOI: 10.1016/j.neuro.2015.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/12/2015] [Accepted: 06/12/2015] [Indexed: 12/17/2022]
Abstract
Manganese (Mn), an essential element, can be neurotoxic in high doses. This cross-sectional study explored the cognitive function of adults residing in two towns (Marietta and East Liverpool, Ohio, USA) identified as having high levels of environmental airborne Mn from industrial sources. Air-Mn site surface emissions method modeling for total suspended particulate (TSP) ranged from 0.03 to 1.61 μg/m(3) in Marietta and 0.01-6.32 μg/m(3) in East Liverpool. A comprehensive screening test battery of cognitive function, including the domains of abstract thinking, attention/concentration, executive function and memory was administered. The mean age of the participants was 56 years (±10.8 years). Participants were mostly female (59.1) and primarily white (94.6%). Significant relationships (p<0.05) were found between Mn exposure and performance on working and visuospatial memory (e.g., Rey-O Immediate β=-0.19, Rey-O Delayed β=-0.16) and verbal skills (e.g., Similarities β=-0.19). Using extensive cognitive testing and computer modeling of 10-plus years of measured air monitoring data, this study suggests that long-term environmental exposure to high levels of air-Mn, the exposure metric of this paper, may result in mild deficits of cognitive function in adult populations.
Collapse
Affiliation(s)
- Rosemarie M Bowler
- San Francisco State University, Department of Psychology, 1600 Holloway Ave., San Francisco, CA 94132, USA.
| | - Erica S Kornblith
- California School of Professional Psychology at Alliant International University, 1 Beach St., Suite 100, San Francisco, CA 94133, USA
| | - Vihra V Gocheva
- San Francisco State University, Department of Psychology, 1600 Holloway Ave., San Francisco, CA 94132, USA
| | - Michelle A Colledge
- Agency for Toxic Substances and Disease Registry, Region 5, 77W. Jackson Blvd., MS ATSD-4J, Chicago, IL 60604, USA
| | - George Bollweg
- U.S. EPA Region 5, 77W. Jackson Blvd., AR 18-J, Chicago, IL 60604, USA
| | - Yangho Kim
- Ulsan University Hospital, University of Ulsan College of Medicine, Department of Occupational and Environmental Medicine, Ulsan 682-060, South Korea
| | - Cheryl L Beseler
- Colorado State University, 1879 Campus Delivery, Fort Collins, CO 80523, USA
| | - Chris W Wright
- San Francisco State University, Department of Psychology, 1600 Holloway Ave., San Francisco, CA 94132, USA
| | - Shane W Adams
- San Francisco State University, Department of Psychology, 1600 Holloway Ave., San Francisco, CA 94132, USA
| | - Danelle T Lobdell
- U.S. EPA, National Health and Environmental Effects Research Laboratory, MD 58A, Research Triangle Park, NC 27711, USA
| |
Collapse
|
72
|
Ferri R, Hashim D, Smith DR, Guazzetti S, Donna F, Ferretti E, Curatolo M, Moneta C, Beone GM, Lucchini RG. Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 518-519:507-17. [PMID: 25777956 PMCID: PMC4388796 DOI: 10.1016/j.scitotenv.2015.02.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), and aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. METHODS Home gardens (n=63) were selected in three regions of varying ferroalloy plant activity durations in Brescia province. Total soil metal concentration and extractability were measured by X-Ray Fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. RESULTS Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. CONCLUSIONS Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1+F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references. We recommend thorough washing of vegetables to minimize metal exposure.
Collapse
Affiliation(s)
| | - Dana Hashim
- Occupational and Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Donald R Smith
- Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | | | | | - Enrica Ferretti
- Department of Food Chemistry, Metal Laboratory, IZSLER, Brescia, Italy
| | - Michele Curatolo
- Department of Food Chemistry, Metal Laboratory, IZSLER, Brescia, Italy
| | - Caterina Moneta
- Department of Food Chemistry, Metal Laboratory, IZSLER, Brescia, Italy
| | - Gian Maria Beone
- Institute of Agricultural and Environmental Chemistry, Università Cattolica, Piacenza, Italy
| | - Roberto G Lucchini
- Occupational Health, University of Brescia, Italy; Occupational and Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, USA; Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
73
|
Jain RB, Choi YS. Normal reference ranges for and variability in the levels of blood manganese and selenium by gender, age, and race/ethnicity for general U.S. population. J Trace Elem Med Biol 2015; 30:142-52. [PMID: 25596656 DOI: 10.1016/j.jtemb.2014.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/28/2014] [Accepted: 12/13/2014] [Indexed: 11/18/2022]
Abstract
Data from National Health and Nutrition Examination Survey for the period 2011-2012 were used to determine normal reference ranges and percentile distributions for manganese (Mn) and selenium (Se) in blood by gender, age, race/ethnicity, socioeconomic status as determined by annual family income, and smoking status. The effect of gender, age, race/ethnicity, family income, and smoking status on the levels of Mn and Se was also determined by fitting regression models. Males had lower adjusted levels of Mn and higher adjusted levels of Se than females. Adjusted levels of Mn decreased with increase in age but adjusted levels of Se were lower in adolescents aged 12-19 years than adults aged 20-64 years. Non-Hispanic black (NHB) had the lowest levels of both Mn and Se and non-Hispanic Asians (NHAS) had the highest levels of both Mn and Se. Non-Hispanic white (NHW) and NHB had lower levels of Mn than Hispanics (HISP) and NHAS. NHB and HISP had lower levels of Se than NHW and NHAS. Low annual income (<$20,000) was associated with lower levels of Se than high annual income (≥$55,000). Smoking negatively affected the adjusted levels of Se among seniors aged ≥65 years but this was not observed in other age groups. Mn levels were not affected by smoking.
Collapse
Affiliation(s)
- Ram B Jain
- Womack Army Medical Center, Fort Bragg, NC, USA; Empiristat, Inc., Mount Airy, MD, USA.
| | | |
Collapse
|
74
|
Lucas EL, Bertrand P, Guazzetti S, Donna F, Peli M, Jursa TP, Lucchini R, Smith DR. Impact of ferromanganese alloy plants on household dust manganese levels: implications for childhood exposure. ENVIRONMENTAL RESEARCH 2015; 138:279-90. [PMID: 25747819 PMCID: PMC4385503 DOI: 10.1016/j.envres.2015.01.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/05/2015] [Accepted: 01/15/2015] [Indexed: 05/20/2023]
Abstract
Adolescents living in communities with ferromanganese alloy plant activity have been shown to exhibit deficits in olfactory and fine motor function. Household dust may serve as an important manganese (Mn) exposure pathway to children, though dust Mn concentrations have not previously been measured to assess household contamination from ferromanganese alloy plant emissions. Here we determined the association between dust concentrations and surface loadings of Mn and other metals (Al, Cd, Cr, Cu, Fe, Pb, and Zn) in indoor and outdoor household dust from three Italian communities that differ by history of ferromanganese alloy plant activity: Bagnolo Mella, with an active ferromanganese alloy plant (n=178 households); Valcamonica, with historically active plants (n=166); and Garda Lake, with no history of ferromanganese plant activity (n=99). We also evaluated Mn levels in other environmental (soil, airborne particulates) and candidate biomarker (blood, hair, saliva, fingernails) samples from children within the households. Household dust Mn concentrations and surface loadings were significantly different between the three sites, with levels highest in Bagnolo Mella (outdoor median Mn concentration=4620, range 487-183,000µg/g), intermediate in Valcamonica (median=876, range 407-8240µg/g), and lowest in Garda Lake (median=407, range 258-7240µg/g). Outdoor dust Mn concentrations in Bagnolo Mella, but not the other communities, were significantly inversely related with distance from the plant (R(2)=0.6630, P<0.0001). Moreover, outdoor dust Mn concentrations and loadings were highly predictive of but significantly higher than indoor dust Mn concentrations and loadings by ~2 to ~7-fold (Mn concentrations) and ~7 to ~20-fold (Mn loadings). Finally, both indoor and outdoor dust Mn concentrations and outdoor dust Mn loading values were highly significantly correlated with both soil and air Mn concentrations, and with children's hair and fingernail Mn concentrations, but weakly or not associated with saliva or blood Mn levels. Given the evidence associating elevated Mn exposure with neurological impairments in children, these data support that dust Mn levels should be reduced in contaminated environments to protect the health of resident children.
Collapse
Affiliation(s)
- E L Lucas
- University of California, Santa Cruz, CA 95064, USA
| | - P Bertrand
- University of California, Santa Cruz, CA 95064, USA
| | | | - F Donna
- University of Brescia, Brescia, Italy
| | - M Peli
- University of Brescia, Brescia, Italy
| | - T P Jursa
- University of California, Santa Cruz, CA 95064, USA
| | - R Lucchini
- University of California, Santa Cruz, CA 95064, USA; University of Brescia, Brescia, Italy; Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - D R Smith
- University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
75
|
Młyniec K, Gaweł M, Doboszewska U, Starowicz G, Pytka K, Davies CL, Budziszewska B. Essential elements in depression and anxiety. Part II. Pharmacol Rep 2014; 67:187-94. [PMID: 25712638 DOI: 10.1016/j.pharep.2014.09.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/21/2022]
Abstract
In this paper we continue to discuss the involvement of essential elements in depression and anxiety, and the possible mechanisms that link elements to the neurobiology underlying depression/anxiety. The present paper is focused on copper, selenium, manganese, iodine and vanadium. Different aspects of relationship between elements and depression or anxiety are reviewed, e.g. the association of the amount of an element in a diet or the serum level of an element and depressive or anxiety-like symptoms. Moreover, the relation of selected elements to the pathophysiology of depression or anxiety is discussed in the context of enzymes which require these elements as co-factors and are involved in the underlying pathophysiology of these disorders.
Collapse
Affiliation(s)
- Katarzyna Młyniec
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Kraków, Poland.
| | - Magdalena Gaweł
- Department of Radioligands, Jagiellonian University Medical College, Kraków, Poland
| | - Urszula Doboszewska
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland; Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Gabriela Starowicz
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland
| | - Karolina Pytka
- Department of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | - Claire Linzi Davies
- Neurobiology Division, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, UK
| | - Bogusława Budziszewska
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Kraków, Poland; Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
76
|
Li T, Shi T, Li X, Zeng S, Yin L, Pu Y. Effects of Nano-MnO2 on dopaminergic neurons and the spatial learning capability of rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:7918-30. [PMID: 25101772 PMCID: PMC4143840 DOI: 10.3390/ijerph110807918] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/16/2014] [Accepted: 07/25/2014] [Indexed: 01/22/2023]
Abstract
This study aimed to observe the effect of intracerebrally injected nano-MnO2 on neurobehavior and the functions of dopaminergic neurons and astrocytes. Nano-MnO2, 6-OHDA, and saline (control) were injected in the substantia nigra and the ventral tegmental area of Sprague-Dawley rat brains. The neurobehavior of rats was evaluated by Morris water maze test. Tyrosine hydroxylase (TH), inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP) expressions in rat brain were detected by immunohistochemistry. Results showed that the escape latencies of nano-MnO2 treated rat increased significantly compared with control. The number of TH-positive cells decreased, GFAP- and iNOS-positive cells increased significantly in the lesion side of the rat brains compared with the contralateral area in nano-MnO2 group. The same tendencies were observed in nano-MnO2-injected rat brains compared with control. However, in the the positive control, 6-OHDA group, escape latencies increased, TH-positive cell number decreased significantly compared with nano-MnO2 group. The alteration of spatial learning abilities of rats induced by nano-MnO2 may be associated with dopaminergic neuronal dysfunction and astrocyte activation.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Tingting Shi
- Institute of Neurobiology, Southeast University, Nanjing 210009, China.
| | - Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Shuilin Zeng
- Institute of Neurobiology, Southeast University, Nanjing 210009, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|