51
|
Sacchini S, Díaz-Delgado J, Espinosa de Los Monteros A, Paz Y, Bernaldo de Quirós Y, Sierra E, Arbelo M, Herráez P, Fernández A. Amyloid-beta peptide and phosphorylated tau in the frontopolar cerebral cortex and in the cerebellum of toothed whales: aging versus hypoxia. Biol Open 2020; 9:bio054734. [PMID: 33037014 PMCID: PMC7657478 DOI: 10.1242/bio.054734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/24/2020] [Indexed: 11/26/2022] Open
Abstract
Hypoxia could be a possible risk factor for neurodegenerative alterations in cetaceans' brain. Among toothed whales, the beaked whales are particularly cryptic and routinely dive deeper than 1000 m for about 1 h in order to hunt squids and fishes. Samples of frontal cerebral and cerebellar cortex were collected from nine animals, representing six different species of the suborder Odontoceti. Immunohistochemical analysis employed anti-β-amyloid (Aβ) and anti-neurofibrillary tangle (NFT) antibodies. Six of nine (67%) animals showed positive immunolabeling for Aβ and/or NFT. The most striking findings were intranuclear Aβ immunopositivity in cerebral cortical neurons and NFT immunopositivity in cerebellar Purkinje neurons with granulovacuolar degeneration. Aβ plaques were also observed in one elderly animal. Herein, we present immunohistopathological findings classic of Alzheimer's and other neurodegenerative diseases in humans. Our findings could be linked to hypoxic phenomena, as they were more extensive in beaked whales. Despite their adaptations, cetaceans could be vulnerable to sustained and repetitive brain hypoxia.
Collapse
Affiliation(s)
- Simona Sacchini
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, c/Transmontaña s/n, 35416 Arucas
| | - Josué Díaz-Delgado
- Laboratory of Wildlife Comparative Pathology (LAPCOM), School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-270 SP, Brazil
- Texas A&M Veterinary Medical Diagnostic Laboratory, Pathology Division, College Station, TX 77843, USA
| | - Antonio Espinosa de Los Monteros
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, c/Transmontaña s/n, 35416 Arucas
| | - Yania Paz
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, c/Transmontaña s/n, 35416 Arucas
| | - Yara Bernaldo de Quirós
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, c/Transmontaña s/n, 35416 Arucas
| | - Eva Sierra
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, c/Transmontaña s/n, 35416 Arucas
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, c/Transmontaña s/n, 35416 Arucas
| | - Pedro Herráez
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, c/Transmontaña s/n, 35416 Arucas
| | - Antonio Fernández
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, c/Transmontaña s/n, 35416 Arucas
| |
Collapse
|
52
|
Zlokovic BV, Gottesman RF, Bernstein KE, Seshadri S, McKee A, Snyder H, Greenberg SM, Yaffe K, Schaffer CB, Yuan C, Hughes TM, Daemen MJ, Williamson JD, González HM, Schneider J, Wellington CL, Katusic ZS, Stoeckel L, Koenig JI, Corriveau RA, Fine L, Galis ZS, Reis J, Wright JD, Chen J. Vascular contributions to cognitive impairment and dementia (VCID): A report from the 2018 National Heart, Lung, and Blood Institute and National Institute of Neurological Disorders and Stroke Workshop. Alzheimers Dement 2020; 16:1714-1733. [PMID: 33030307 DOI: 10.1002/alz.12157] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) are characterized by the aging neurovascular unit being confronted with and failing to cope with biological insults due to systemic and cerebral vascular disease, proteinopathy including Alzheimer's biology, metabolic disease, or immune response, resulting in cognitive decline. This report summarizes the discussion and recommendations from a working group convened by the National Heart, Lung, and Blood Institute and the National Institute of Neurological Disorders and Stroke to evaluate the state of the field in VCID research, identify research priorities, and foster collaborations. As discussed in this report, advances in understanding the biological mechanisms of VCID across the wide spectrum of pathologies, chronic systemic comorbidities, and other risk factors may lead to potential prevention and new treatment strategies to decrease the burden of dementia. Better understanding of the social determinants of health that affect risks for both vascular disease and VCID could provide insight into strategies to reduce racial and ethnic disparities in VCID.
Collapse
Affiliation(s)
| | | | | | - Sudha Seshadri
- University of Texas Health Science Center, San Antonio and Boston University, San Antonio, Texas, USA
| | - Ann McKee
- VA Boston Healthcare System and Boston University, Boston, Massachusetts, USA
| | | | - Steven M Greenberg
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kristine Yaffe
- University of California, San Francisco, San Francisco, California, USA
| | | | - Chun Yuan
- University of Washington, Seattle, Washington, USA
| | - Timothy M Hughes
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mat J Daemen
- Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | - Luke Stoeckel
- National Institute on Aging, Bethesda, Maryland, USA
| | - James I Koenig
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Roderick A Corriveau
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Lawrence Fine
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Zorina S Galis
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Jared Reis
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | | | - Jue Chen
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
53
|
André C, Chételat G, Rauchs G. [Sleep-disordered breathing and Alzheimer's disease biomarkers in older adults]. Med Sci (Paris) 2020; 36:833-835. [PMID: 33026319 DOI: 10.1051/medsci/2020147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Claire André
- Normandie Univ, UNICAEN, Inserm, U1237, Physiopathologie et imagerie des maladies neurologiques (PhIND Physiopathology and imaging of neurological disorders), Institut « Sang et Cerveau » (Institute Blood and brain) @ Caen-Normandie, Cyceron, 14000 Caen, France. - Normandie Univ, UNICAEN, PSL Université, EPHE, Inserm, U1077, CHU de Caen, GIP Cyceron, NIMH, Boulevard Henri Becquerel, BP 5229, 14074 Caen Cedex 5, France
| | - Gaël Chételat
- Normandie Univ, UNICAEN, Inserm, U1237, Physiopathologie et imagerie des maladies neurologiques (PhIND Physiopathology and imaging of neurological disorders), Institut « Sang et Cerveau » (Institute Blood and brain) @ Caen-Normandie, Cyceron, 14000 Caen, France
| | - Géraldine Rauchs
- Normandie Univ, UNICAEN, PSL Université, EPHE, Inserm, U1077, CHU de Caen, GIP Cyceron, NIMH, Boulevard Henri Becquerel, BP 5229, 14074 Caen Cedex 5, France
| |
Collapse
|
54
|
Chen S, Zhou Q, Ni Y, Le W. Autophagy and Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:3-19. [PMID: 32671736 DOI: 10.1007/978-981-15-4272-5_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and is characterized by progressive cognitive decline. Increasing evidence has demonstrated that the autophagic process plays an important role in AD. In this chapter, we will discuss the role of autophagy in the pathogenesis of AD and other types of dementia, including dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), vascular dementia (VD) and prion diseases. In addition, we will discuss autophagy-targeted therapies as future treatments for AD.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - You Ni
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
55
|
Derrig H, Lavrencic LM, Broe GA, Draper B, Cumming RG, Garvey G, Hill TY, Daylight G, Chalkley S, Mack H, Lasschuit D, Delbaere K, Radford K. Mild cognitive impairment in Aboriginal Australians. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12054. [PMID: 32864414 PMCID: PMC7443744 DOI: 10.1002/trc2.12054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/01/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Aboriginal Australians have among the highest rates of dementia worldwide, yet no study has investigated the subtypes, risk factors, or longer term outcomes of mild cognitive impairment (MCI) in this population. METHODS A total of 336 community-dwelling Aboriginal Australians aged ≥60 years participated in a longitudinal study, completing a structured interview at baseline. MCI (amnestic subtype, aMCI; non-amnestic subtype, naMCI) and dementia were diagnosed via cognitive screening, medical assessment, and clinical consensus. Associations between life-course factors and baseline MCI subtypes were examined using logistic regression. Conversion to dementia was assessed at 6-year follow-up. RESULTS Prevalent aMCI (n = 24) was associated with older age (odds ratio [OR] = 1.68, 95% confidence interval [CI]: 1.12 to 2.53), head injury (OR = 3.19, 95% CI: 1.35 to 7.56), symptoms of depression (OR = 1.52, 95% CI: 1.04 to 2.24), and lower blood pressure (OR = 0.53, 95% CI: 0.33 to 0.86). Prevalent naMCI (n = 29) was associated with low education (OR = 4.46, 95% CI: 1.53 to 13.05), unskilled work history (OR = 5.62, 95% CI: 2.07 to 13.90), higher body mass index (OR = 1.99, 95% CI: 1.30 to 3.04), and moderate to severe hearing loss (OR = 2.82, 95% CI: 1.06 to 7.55). A small proportion of MCI cases reverted to intact at follow-up (15%), but most remained stable (44%), developed dementia and/or died (41%). DISCUSSION Sociodemographic and clinical factors both contributed to baseline MCI and were distinct for MCI subtypes, with similar patterns of conversion to dementia for amnestic and non-amnestic MCI.
Collapse
Affiliation(s)
- Hannah Derrig
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
| | - Louise M. Lavrencic
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- UNSW Ageing Futures InstituteUniversity of New South WalesSydneyAustralia
- School of Public health and Community MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Gerald A. Broe
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- UNSW Ageing Futures InstituteUniversity of New South WalesSydneyAustralia
- School of Public health and Community MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Brian Draper
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- UNSW Ageing Futures InstituteUniversity of New South WalesSydneyAustralia
- Prince of Wales HospitalRandwickNew South WalesAustralia
| | - Robert G Cumming
- School of Public healthUniversity of SydneySydneyNew South WalesAustralia
| | - Gail Garvey
- Menzies School of Health ResearchBrisbaneQueenslandAustralia
| | - Thi Yen Hill
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- Prince of Wales HospitalRandwickNew South WalesAustralia
| | - Gail Daylight
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
| | - Simon Chalkley
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
| | - Holly Mack
- University of Technology SydneySydneyNew South WalesAustralia
| | - Danielle Lasschuit
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- Prince of Wales HospitalRandwickNew South WalesAustralia
| | - Kim Delbaere
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- UNSW Ageing Futures InstituteUniversity of New South WalesSydneyAustralia
- School of Public health and Community MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Kylie Radford
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- UNSW Ageing Futures InstituteUniversity of New South WalesSydneyAustralia
- School of Medical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
56
|
Simões-Pires EN, Ferreira ST, Linden R. Roles of glutamate receptors in a novel in vitro model of early, comorbid cerebrovascular, and Alzheimer's diseases. J Neurochem 2020; 156:539-552. [PMID: 32683713 DOI: 10.1111/jnc.15129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/28/2022]
Abstract
Systemic multimorbidity is highly prevalent in the elderly and, remarkably, coexisting neuropathological markers of Alzheimer's (AD) and cerebrovascular (CVD) diseases are found at autopsy in most brains of patients clinically diagnosed as AD. Little is known on neurodegeneration peculiar to comorbidities, especially at early stages when pathogenesis may propagate at subclinical levels. We developed a novel in vitro model of comorbid CVD/AD in organotypic hippocampal cultures, by combining oxygen-glucose deprivation (OGD) and exposure to amyloid-Aβ oligomers (AβOs), both applied at levels subtoxic to neurons when used in isolation. We focused on synaptic proteins and the roles of glutamate receptors, which have been implicated in many basic and clinical approaches to either CVD or AD. Subtoxic insults by OGD and AβOs synergized to reduce levels of synaptophysin (SYP) and PSD-95 without cell death, while effects of antagonists of either metabotropic or ionotropic glutamate receptors were distinct from reports in models of isolated CVD or AD. In particular, modulation of glutamate receptors differentially impacted SYP and PSD-95, and antagonists of a single receptor subtype had distinct effects when either isolated or combined. Our findings highlight the complexity of CVD/AD comorbidity, help understand variable responses to glutamate receptor antagonists in patients diagnosed with AD and may contribute to future development of therapeutics based on investigation of the pattern of progressive comorbidity.
Collapse
Affiliation(s)
| | - Sergio T Ferreira
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil.,Instituto de Bioquímica Médica Leopoldo de Meis, UFRJ, Rio de Janeiro, Brazil
| | - Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
57
|
Eglit GML, Weigand AJ, Nation DA, Bondi MW, Bangen KJ. Hypertension and Alzheimer's disease: indirect effects through circle of Willis atherosclerosis. Brain Commun 2020; 2:fcaa114. [PMID: 33543127 PMCID: PMC7846096 DOI: 10.1093/braincomms/fcaa114] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Hypertension is common among older adults and is believed to increase susceptibility to Alzheimer's disease, but mechanisms underlying this relationship are unclear. Hypertension also promotes circle of Willis atherosclerosis, which contributes to cerebral hypoperfusion and arterial wall stiffening, two potential mechanisms linking hypertension to Alzheimer's disease. To examine the role of circle of Willis atherosclerosis in the association between hypertension and Alzheimer's disease neuropathology, we analysed post-mortem neuropathological data on 2198 decedents from the National Alzheimer's Coordinating Center database [mean (standard deviation) age at last visit 80.51 (1.95) and 47.1% female] using joint simultaneous (i.e. mediation) modelling. Within the overall sample and among Alzheimer's dementia decedents, hypertension was indirectly associated with increased neuritic plaques and neurofibrillary tangles through its association with circle of Willis atherosclerosis. Similar indirect effects were observed for continuous measures of systolic and diastolic blood pressure. These results suggest that hypertension may promote Alzheimer's disease pathology indirectly through intracranial atherosclerosis by limiting cerebral blood flow and/or dampening perivascular clearance. Circle of Willis atherosclerosis may be an important point of convergence between vascular risk factors, cerebrovascular changes and Alzheimer's disease neuropathology.
Collapse
Affiliation(s)
- Graham M L Eglit
- Veteran Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | - Alexandra J Weigand
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120, USA
| | - Daniel A Nation
- Department of Psychological Science, University of California, Irvine, Irvine, CA 92697, USA
- Institute for Memory Disorders and Neurological Impairments, University of California, Irvine, Irvine, CA 92697, USA
| | - Mark W Bondi
- Veteran Affairs San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine J Bangen
- Veteran Affairs San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
58
|
Krokidis MG, D’Errico M, Pascucci B, Parlanti E, Masi A, Ferreri C, Chatgilialoglu C. Oxygen-Dependent Accumulation of Purine DNA Lesions in Cockayne Syndrome Cells. Cells 2020; 9:cells9071671. [PMID: 32664519 PMCID: PMC7407219 DOI: 10.3390/cells9071671] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cockayne Syndrome (CS) is an autosomal recessive neurodegenerative premature aging disorder associated with defects in nucleotide excision repair (NER). Cells from CS patients, with mutations in CSA or CSB genes, present elevated levels of reactive oxygen species (ROS) and are defective in the repair of a variety of oxidatively generated DNA lesions. In this study, six purine lesions were ascertained in wild type (wt) CSA, defective CSA, wtCSB and defective CSB-transformed fibroblasts under different oxygen tensions (hyperoxic 21%, physioxic 5% and hypoxic 1%). In particular, the four 5′,8-cyclopurine (cPu) and the two 8-oxo-purine (8-oxo-Pu) lesions were accurately quantified by LC-MS/MS analysis using isotopomeric internal standards after an enzymatic digestion procedure. cPu levels were found comparable to 8-oxo-Pu in all cases (3–6 lesions/106 nucleotides), slightly increasing on going from hyperoxia to physioxia to hypoxia. Moreover, higher levels of four cPu were observed under hypoxia in both CSA and CSB-defective cells as compared to normal counterparts, along with a significant enhancement of 8-oxo-Pu. These findings revealed that exposure to different oxygen tensions induced oxidative DNA damage in CS cells, repairable by NER or base excision repair (BER) pathways. In NER-defective CS patients, these results support the hypothesis that the clinical neurological features might be connected to the accumulation of cPu. Moreover, the elimination of dysfunctional mitochondria in CS cells is associated with a reduction in the oxidative DNA damage.
Collapse
Affiliation(s)
- Marios G. Krokidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.)
- Institute of Nanoscience and Nanotechnology, N.C.S.R. “Demokritos”, 15310 Agia Paraskevi Attikis, Athens, Greece
| | - Mariarosaria D’Errico
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.D.); (B.P.); (E.P.)
| | - Barbara Pascucci
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.D.); (B.P.); (E.P.)
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00015 Rome, Italy
| | - Eleonora Parlanti
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.D.); (B.P.); (E.P.)
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.)
- Institute of Crystallography, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00015 Rome, Italy
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.)
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; (M.G.K.); (A.M.); (C.F.)
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznań, Poland
- Correspondence: ; Tel.: +39-051-639-8309
| |
Collapse
|
59
|
Fülöp T, Munawara U, Larbi A, Desroches M, Rodrigues S, Catanzaro M, Guidolin A, Khalil A, Bernier F, Barron AE, Hirokawa K, Beauregard PB, Dumoulin D, Bellenger JP, Witkowski JM, Frost E. Targeting Infectious Agents as a Therapeutic Strategy in Alzheimer's Disease. CNS Drugs 2020; 34:673-695. [PMID: 32458360 PMCID: PMC9020372 DOI: 10.1007/s40263-020-00737-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia in the world. Its cause(s) are presently largely unknown. The most common explanation for AD, now, is the amyloid cascade hypothesis, which states that the cause of AD is senile plaque formation by the amyloid β peptide, and the formation of neurofibrillary tangles by hyperphosphorylated tau. A second, burgeoning theory by which to explain AD is based on the infection hypothesis. Much experimental and epidemiological data support the involvement of infections in the development of dementia. According to this mechanism, the infection either directly or via microbial virulence factors precedes the formation of amyloid β plaques. The amyloid β peptide, possessing antimicrobial properties, may be beneficial at an early stage of AD, but becomes detrimental with the progression of the disease, concomitantly with alterations to the innate immune system at both the peripheral and central levels. Infection results in neuroinflammation, leading to, and sustained by, systemic inflammation, causing eventual neurodegeneration, and the senescence of the immune cells. The sources of AD-involved microbes are various body microbiome communities from the gut, mouth, nose, and skin. The infection hypothesis of AD opens a vista to new therapeutic approaches, either by treating the infection itself or modulating the immune system, its senescence, or the body's metabolism, either separately, in parallel, or in a multi-step way.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| | - Usma Munawara
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore
- Department of Biology, Faculty of Science, University Tunis El Manar, Tunis, Tunisia
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Valbonne, France
- Université Côte d'Azur, Nice, France
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Michele Catanzaro
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Andrea Guidolin
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Abdelouahed Khalil
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - François Bernier
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Katsuiku Hirokawa
- Department of Pathology, Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Tokyo Med. Dent. University, Tokyo, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - David Dumoulin
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Bellenger
- Department of Chemistry, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Eric Frost
- Department of Microbiology and Infectious diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
60
|
Chen J, Zhang F, Zhao L, Cheng C, Zhong R, Dong C, Le W. Hyperbaric oxygen ameliorates cognitive impairment in patients with Alzheimer's disease and amnestic mild cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12030. [PMID: 32548235 PMCID: PMC7293997 DOI: 10.1002/trc2.12030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION It has been reported that environmental factors such as hypoxia could contribute to the pathogenesis of Alzheimer's disease (AD). Therapeutics like hyperbaric oxygen treatment, which improves tissue oxygen supply and ameliorates hypoxic conditions in the brain, may be an alternative therapy for AD and amnestic mild cognitive impairment (aMCI). The present work aims to investigate the potential therapeutic effect of hyperbaric oxygen treatment for AD and aMCI. METHODS We recruited 42 AD, 11 aMCI, and 30 control AD patients in this study. AD and aMCI patients were treated with 40 minutes of hyperbaric oxygen once a day for 20 days and assessed by neuropsychiatric assessments including Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Activities of Daily Living (ADL) scale before and at 1-, 3-, and 6-month follow-up after treatment. Control AD patients who were not given hyperbaric oxygen treatment had similar clinical profile as hyperbaric oxygen treated AD. We examined 10 of the AD/aMCI patients with fluorodeoxyglucose positron emission tomography. RESULTS In self-comparison study, one course of hyperbaric oxygen treatment significantly improved the cognitive function assessed by MMSE and MoCA in AD patients after 1-month follow-up; such treatment also significantly improved MMSE score at 3-month follow-up and MoCA score at 1- and 3-month follow-up in aMCI patients. The ADL scale was significantly improved in AD patients after 1- and 3-month follow-up. Compared to the control AD patients, the MMSE and MoCA in hyperbaric oxygen treated AD patients were significantly improved after 1-month follow-up. Hyperbaric oxygen treatment also ameliorated the reduced brain glucose metabolism in some of the AD and aMCI patients. CONCLUSION Based on previous studies and our recent findings, we propose that hyperbaric oxygen treatment may be a promising alternative therapy for AD and aMCI.
Collapse
Affiliation(s)
- Jianwen Chen
- Department of Neurologythe First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Feng Zhang
- Center for Clinical Research on Neurological Diseasesthe First Affiliated HospitalDalian Medical UniversityDalianChina
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseasesthe First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Li Zhao
- Department of Neurologythe First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Cheng Cheng
- Center for Clinical Research on Neurological Diseasesthe First Affiliated HospitalDalian Medical UniversityDalianChina
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseasesthe First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Rujia Zhong
- Center for Clinical Research on Neurological Diseasesthe First Affiliated HospitalDalian Medical UniversityDalianChina
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseasesthe First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Chunbo Dong
- Department of Neurologythe First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Weidong Le
- Center for Clinical Research on Neurological Diseasesthe First Affiliated HospitalDalian Medical UniversityDalianChina
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseasesthe First Affiliated HospitalDalian Medical UniversityDalianChina
| |
Collapse
|
61
|
Ashrafizadeh M, Zarrabi A, Najafi M, Samarghandian S, Mohammadinejad R, Ahn KS. Resveratrol targeting tau proteins, amyloid-beta aggregations, and their adverse effects: An updated review. Phytother Res 2020; 34:2867-2888. [PMID: 32491273 DOI: 10.1002/ptr.6732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Resveratrol (Res) is a non-flavonoid compound with pharmacological actions such as antioxidant, antiinflammatory, hepatoprotective, antidiabetes, and antitumor. This plant-derived chemical has a long history usage in treatment of diseases. The excellent therapeutic impacts of Res and its capability in penetration into blood-brain barrier have made it an appropriate candidate in the treatment of neurological disorders (NDs). Tau protein aggregations and amyloid-beta (Aβ) deposits are responsible for the induction of NDs. A variety of studies have elucidated the role of these aggregations in NDs and the underlying molecular pathways in their development. In the present review, based on the recently published articles, we describe that how Res administration could inhibit amyloidogenic pathway and stimulate processes such as autophagy to degrade Aβ aggregations. Besides, we demonstrate that Res supplementation is beneficial in dephosphorylation of tau proteins and suppressing their aggregations. Then, we discuss molecular pathways and relate them to the treatment of NDs.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Turkey
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
62
|
Yu X, Ji C, Shao A. Neurovascular Unit Dysfunction and Neurodegenerative Disorders. Front Neurosci 2020; 14:334. [PMID: 32410936 PMCID: PMC7201055 DOI: 10.3389/fnins.2020.00334] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
The neurovascular unit (NVU), composed of vascular cells, glial cells, and neurons, is the minimal functional unit of the brain. The NVU maintains integrity of the blood–brain barrier (BBB) and regulates supply of the cerebral blood flow (CBF), both of which are keys to maintaining normal brain function. BBB dysfunction and a decreased CBF are early pathophysiological changes in neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). In this review, we primarily focus on the NVU in AD as much research has been performed on the connection between NVU dysfunction and AD. We also discuss the role of NVU dysfunction in the pathophysiological mechanisms of PD and ALS. As most neurodegenerative diseases are difficult to treat, we discuss several potential drug targets that focus on the NVU that may inform novel vascular-targeted therapies for AD, PD, and ALS.
Collapse
Affiliation(s)
- Xing Yu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caihong Ji
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
63
|
Kong W, Zheng Y, Xu W, Gu H, Wu J. Biomarkers of Alzheimer's disease in severe obstructive sleep apnea-hypopnea syndrome in the Chinese population. Eur Arch Otorhinolaryngol 2020; 278:865-872. [PMID: 32303882 DOI: 10.1007/s00405-020-05948-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/26/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE Patients with severe obstructive sleep apnea-hypopnea syndrome are often accompanied by symptoms such as decreased cognitive function and daytime sleepiness, while cognitive function is often associated with biomarkers of Alzheimer's disease. Therefore, this study aims to explore the level of Alzheimer's disease biomarkers in the plasma of obstructive sleep apnea-hypopnea syndrome patients as well as the relationship between cognitive function and daytime sleepiness. METHODS Between May and July 2019, 35 patients requiring hospitalization for severe obstructive sleep apnea-hypopnea syndrome and 16 normal control patients were selected from West China Hospital. Alzheimer's disease biomarkers (Aβ40, Aβ42, t-tau, p-tau) in plasma were detected by ELISA in all 51 subjects. The differences in Alzheimer's disease biomarkers between the two groups were compared. In addition, a correlation analysis of disease-related indicators and univariate analysis of the risk factors of obstructive sleep apnea-hypopnea syndrome was conducted using the logistic regression model. RESULTS The plasma levels of Alzheimer's disease biomarkers (Aβ40, t-tau, p-tau) in patients with severe obstructive sleep apnea-hypopnea syndrome were significantly higher than those in the control group (29.24 ± 32.52, 13.18 ± 10.78, p = 0.049; 11.88 ± 7.05, 7.64 ± 4.17, p = 0.037; 26.31 ± 14.41, 17.34 ± 9.12, p = 0.027). Aβ42, Aβ40, t-tau, and p-tau were significantly negatively correlated with mean oxygen saturation, low oxygen saturation and Mini-Mental State examination scale scores, and positively correlated with oxygen desaturation index and Epworth Sleepiness Scale scores. T-tau and p-tau can be used as new risk factors for obstructive sleep apnea-hypopnea syndrome. CONCLUSION Alzheimer's disease biomarkers in the plasma of obstructive sleep apnea-hypopnea syndrome patients are higher than those in the control group, and the mechanism of action may be related to sleep disorders and night hypoxia. The Alzheimer's disease biomarkers deposited in plasma may also cause the decline of patients' cognitive function, increased daytime sleepiness and accelerate the progression of obstructive sleep apnea-hypopnea syndrome.
Collapse
Affiliation(s)
- Weili Kong
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, 37 Guo Xue Lane, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, 37 Guo Xue Lane, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre and Dalla Lana School of Public Health, University of Toronto, Toronto, ON, M5G2M9, Canada.
| | - Hailing Gu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, 37 Guo Xue Lane, Chengdu, 610041, Sichuan, People's Republic of China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, 37 Guo Xue Lane, Chengdu, 610041, Sichuan, People's Republic of China
| |
Collapse
|
64
|
Xie B, Shi X, Xing Y, Tang Y. Association between atherosclerosis and Alzheimer's disease: A systematic review and meta-analysis. Brain Behav 2020; 10:e01601. [PMID: 32162494 PMCID: PMC7177569 DOI: 10.1002/brb3.1601] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To evaluate the relationship between atherosclerosis and Alzheimer's disease (AD), we conducted a systematic review and meta-analysis to study the difference of carotid intima-media thickness (CIMT) and the prevalence of atherosclerosis between AD patients and non-AD controls. METHODS The studies on the association between atherosclerosis and AD were manually searched in PubMed, Embase, Cochrane Library, and CNKI (China National Knowledge Infrastructure) spanned to September 2018 according to PRISMA (the Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. RESULTS Thirteen studies were included in the final analysis, seven studies with data on the mean CIMT (610 cases and 417 controls) and ten studies reporting on the prevalence of atherosclerosis (1,698 cases and 6,452 controls). Compared with controls, AD group showed a significantly higher CIMT (overall standard mean difference = 0.94; 95% CI, 0.48-1.40; p < .0001) and an increased prevalence of atherosclerosis (OR = 1.46; 95% CI, 1.26-1.68; p < .0001). CONCLUSIONS Atherosclerosis is significantly associated with AD. CIMT might be a useful marker to predict the risk of AD and assess the vascular burden. The finding is also important for possible prevention and treatment of AD in the future.
Collapse
Affiliation(s)
- Beijia Xie
- Department of NeurologyInnovation Center for Neurological DisordersXuanwu HospitalNational Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Xinrui Shi
- Department of NeurologyInnovation Center for Neurological DisordersXuanwu HospitalNational Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Yi Xing
- Department of NeurologyInnovation Center for Neurological DisordersXuanwu HospitalNational Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
| | - Yi Tang
- Department of NeurologyInnovation Center for Neurological DisordersXuanwu HospitalNational Clinical Research Center for Geriatric DiseasesCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Geriatric Cognitive DisordersNeurodegenerative Laboratory of Ministry of Education of the People's Republic of ChinaBeijingChina
| |
Collapse
|
65
|
Jung S, Hyun J, Nah J, Han J, Kim SH, Park J, Oh Y, Gwon Y, Moon S, Jo DG, Jung YK. SERP1 is an assembly regulator of γ-secretase in metabolic stress conditions. Sci Signal 2020; 13:13/623/eaax8949. [PMID: 32184288 DOI: 10.1126/scisignal.aax8949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The enzyme γ-secretase generates β-amyloid (Aβ) peptides by cleaving amyloid protein precursor (APP); the aggregation of these peptides is associated with Alzheimer's disease (AD). Despite the development of various γ-secretase regulators, their clinical use is limited by coincident disruption of other γ-secretase-regulated substrates, such as Notch. Using a genome-wide functional screen of γ-secretase activity in cells and a complementary DNA expression library, we found that SERP1 is a previously unknown γ-secretase activator that stimulates Aβ generation in cells experiencing endoplasmic reticulum (ER) stress, such as is seen with diabetes. SERP1 interacted with a subcomplex of γ-secretase (APH1A/NCT) through its carboxyl terminus to enhance the assembly and, consequently, the activity of the γ-secretase holoenzyme complex. In response to ER stress, SERP1 preferentially recruited APP rather than Notch into the γ-secretase complex and enhanced the subcellular localization of the complex into lipid rafts, increasing Aβ production. Moreover, SERP1 abundance, γ-secretase assembly, and Aβ production were increased both in cells exposed to high amounts of glucose and in diabetic AD model mice. Conversely, Aβ production was decreased by knocking down SERP1 in cells or in the hippocampi of mice. Compared to postmortem samples from control individuals, those from patients with AD showed increased SERP1 expression in the hippocampus and parietal lobe. Together, our findings suggest that SERP1 is an APP-biased regulator of γ-secretase function in the context of cell stress, providing a possible molecular explanation for the link between diabetes and sporadic AD.
Collapse
Affiliation(s)
- Sunmin Jung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Junho Hyun
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jihoon Nah
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jonghee Han
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Seo-Hyun Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jaesang Park
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yoonseo Oh
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Youngdae Gwon
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Seowon Moon
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
66
|
Liu Y, Huang X, Chen W, Chen Y, Wang N, Wu X. The Effects of Yuan-Zhi Decoction and Its Active Ingredients in Both In Vivo and In Vitro Models of Chronic Cerebral Hypoperfusion by Regulating the Levels of A β and Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:6807879. [PMID: 32184897 PMCID: PMC7060441 DOI: 10.1155/2020/6807879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) is closely related to the occurrence of Alzheimer's disease (AD) in the elderly. CCH can induce overactivation of autophagy, which increases the deposition of amyloid-β (Aβ) plaques in the brain, eventually impairing the cognitive function. Yuan-Zhi decoction (YZD) is a traditional Chinese medicine (TCM) formulation that is used to treat cognitive dysfunction in the elderly, but the specific mechanism is still unclear. In this study, we simulated CCH in a rat model through bilateral common carotid artery occlusion (BCCAO) and treated the animals with YZD. Standard neurological tests indicated that YZD significantly restored the impaired cognitive function after BCCAO in a dose-dependent manner. Furthermore, YZD also decreased the levels of Aβ aggregates and the autophagy-related proteins ATG5 and ATG12 in their hippocampus. An in vitro model of CCH was also established by exposing primary rat hippocampal neurons to hypoxia and hypoglycemia (H-H). YZD and its active ingredients increased the survival of these neurons and decreased the levels of Aβ1-40 and Aβ1-42, autophagy-related proteins Beclin-1 and LC3-II, and the APP secretases BACE1 and PS-1. Finally, both Aβ aggregates showed a positive statistical correlation with the expression levels of the above proteins. Taken together, YZD targets Aβ, autophagy, and APP-related secretases to protect the neurons from hypoxic-ischemic injury and restore cognitive function.
Collapse
Affiliation(s)
- Yan Liu
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaobo Huang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wenqiang Chen
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yujing Chen
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ningqun Wang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiling Wu
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
67
|
Peng Z, Luo Y, Xiao ZY. Angiopoietin-1 accelerates Alzheimer's disease via FOXA2/PEN2/APP pathway in APP/PS1 mice. Life Sci 2020; 246:117430. [PMID: 32061671 DOI: 10.1016/j.lfs.2020.117430] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 11/17/2022]
Abstract
Angiopoietin-1 (Ang-1), a regulatory angiogenesis protein and it has been found to be involved in the occurrence and progression of Alzheimer's disease. However, it was still to be addressed the distinctly role and the molecular mechanisms of Ang-1 affects Alzheimer's disease. Our data suggest that Ang-1 aggravated the accumulation of Aβ42 and cognitive decline in APP/PS1 mice. The upregulation of APPβ is essential for Aβ42 production in N2a cells overexpressing the mutational human APP gene (N2a/APP695 cells), while downregulation of PEN2 could reduce APP expression. Silencing of FOXA2 lead to inhibition of APP expression, as well as decrease of Aβ42 contents. In conclusion, Ang-1 has an accelerative effect on Alzheimer's disease by increasing the secretion of Aβ42 via FOXA2/PEN2/APP pathway.
Collapse
Affiliation(s)
- Zhe Peng
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Yan Luo
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, China.
| | - Zhi-Yong Xiao
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
68
|
Mixed dementia: Neglected clinical entity or nosographic artifice? J Neurol Sci 2019; 410:116662. [PMID: 31911281 DOI: 10.1016/j.jns.2019.116662] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/27/2019] [Indexed: 11/20/2022]
Abstract
Clinical and pathological data show that Alzheimer's disease (AD) and vascular dementia (VaD) are the most prevalent types of dementia in the elderly. Medically speaking, mixed dementia (MxD) is a heterogenous disorder mostly referred to the coexistence of AD and VaD. The weight of vascular contribution to AD phenotype is nowadays matter of debate. Despite great efforts in the field of neurodegeneration and cerebrovascular disease, controversy over the exact nature of their relation still remains, hampering progress in the specialty and raising doubts about the MxD concept validity. Is MxD a neglected clinical entity or a nosographic artifice? Starting from the assumption that recent advances in dementia classification and diagnostic criteria make this a propitious time to set up preventive and therapeutic strategies, this narrative review and opinion paper summarizes the literature concerning the questioned etiopathogenic overlap between AD and VaD and challenges the traditional view of MxD as the mere co-occurrence of different pure forms of dementia.
Collapse
|
69
|
Ward SA, Pase MP. Advances in pathophysiology and neuroimaging: Implications for sleep and dementia. Respirology 2019; 25:580-592. [DOI: 10.1111/resp.13728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/02/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Stephanie A. Ward
- School of Public Health and Preventive MedicineMonash University Melbourne VIC Australia
- Department of Geriatric MedicinePrince of Wales Hospital Sydney NSW Australia
- Centre for Healthy Brain Ageing (CHeBA), School of PsychiatryUniversity of New South Wales Sydney NSW Australia
| | - Matthew P. Pase
- Melbourne Dementia Research CentreThe Florey Institute of Neuroscience and Mental Health Melbourne VIC Australia
- Faculty of Medicine, Dentistry and Health ScienceThe University of Melbourne Melbourne VIC Australia
- Centre for Human PsychopharmacologySwinburne University of Technology Melbourne VIC Australia
| |
Collapse
|
70
|
Lin SY, Chen W, Harnod T, Lin CL, Hsu WH, Lin CC, Chang YL, Wang IK, Kao CH. Sleep apnea and risk of traumatic brain injury and associated mortality and healthcare costs: a population-based cohort study. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:644. [PMID: 31930045 DOI: 10.21037/atm.2019.10.88] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background The objective of this study was aimed to investigate whether sleep apnea patients had a higher risk of traumatic brain injury. Methods Data were collected from the Taiwan Longitudinal Health Insurance Database during the period of 2000-2012. The study cohort comprised 6,456 patients aged ≥20 years with a first diagnosis of sleep apnea. The primary outcome was the incidence of traumatic brain injury. Kaplan-Meier survival analysis and Cox proportional-hazards modeling were used. Results After adjustments for associated comorbidities and hypnotic medications, sleep apnea patients were associated with a 1.19-fold higher risk of traumatic brain injury (95% CI, 1.07-1.33) compared with patients without sleep apnea. Sleep apnea patients who took benzodiazepine (BZD) had a 1.30-fold increased risk of traumatic brain injury compared with patients without sleep apnea (95% CI, 1.14-1.49). However, this risk was not statistically significant, with a 1.03-fold risk of traumatic brain injury in sleep apnea patients without BZD use (95% CI, 0.84-1.25) compared with patients without sleep apnea. Compared with patients without sleep apnea, the risk of traumatic brain injury in sleep apnea patients aged 65-79 years old was higher (adjusted hazard ratio, 1.36; 95% CI, 1.06-1.74). Conclusions Sleep apnea patients, regardless of hypnotic use, had a higher risk of traumatic brain injury compared with patients without sleep apnea.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung.,Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung
| | - Weishan Chen
- Management Office for Health Data, China Medical University Hospital, Taichung.,College of Medicine, China Medical University, Taichung
| | - Tomor Harnod
- Department of Neurosurgery, Hualien Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien.,College of Medicine, Tzu Chi University, Hualien
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung.,College of Medicine, China Medical University, Taichung
| | - Wu-Huei Hsu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung.,Division of Pulmonary and Critical Care Medicine, China Medical University Hospital, China Medical University, Taichung
| | - Cheng-Chieh Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung.,Department of Family Medicine, Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung
| | - Yun-Lun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung.,Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung
| | - I-Kuan Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung.,Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung.,Department of Nuclear Medicine and PET Center, Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung.,Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung
| |
Collapse
|
71
|
Spira AP, An Y, Wu MN, Owusu JT, Simonsick EM, Bilgel M, Ferrucci L, Wong DF, Resnick SM. Excessive daytime sleepiness and napping in cognitively normal adults: associations with subsequent amyloid deposition measured by PiB PET. Sleep 2019; 41:5088807. [PMID: 30192978 DOI: 10.1093/sleep/zsy152] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 11/14/2022] Open
Abstract
Study Objectives To determine the association of excessive daytime sleepiness (EDS) and napping with subsequent brain β-amyloid (Aβ) deposition in cognitively normal persons. Methods We studied 124 community-dwelling participants in the Baltimore Longitudinal Study of Aging Neuroimaging Substudy who completed self-report measures of EDS and napping at our study baseline and underwent [11C] Pittsburgh compound B positron emission tomography (PiB PET) scans of the brain, an average ±standard deviation of 15.7 ± 3.4 years later (range 6.9 to 24.6). Scans with a cortical distribution volume ratio of >1.06 were considered Aβ-positive. Results Participants were aged 60.1 ± 9.8 years (range 36.2 to 82.7) at study baseline; 24.4% had EDS and 28.5% napped. In unadjusted analyses, compared with participants without EDS, those with EDS had more than 3 times the odds of being Aβ+ at follow-up (odds ratio [OR] = 3.37, 95% confidence interval [CI]: 1.44, 7.90, p = 0.005), and 2.75 times the odds after adjustment for age, age2, sex, education, and body mass index (OR = 2.75, 95% CI: 1.09, 6.95, p = 0.033). There was a trend-level unadjusted association between napping and Aβ status (OR = 2.01, 95% CI: 0.90, 4.50, p = 0.091) that became nonsignificant after adjustment (OR = 1.86, 95% CI: 0.73, 4.75, p = 0.194). Conclusions EDS is associated with more than 2.5 times the odds of Aβ deposition an average of 15.7 years later. If common EDS causes (e.g., sleep-disordered breathing, insufficient sleep) are associated with temporally distal AD biomarkers, this could have important implications for AD prevention.
Collapse
Affiliation(s)
- Adam P Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
- Johns Hopkins Center on Aging and Health, Baltimore, MD
| | - Yang An
- National Institute on Aging Intramural Research Program, Baltimore, MD
| | - Mark N Wu
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
- Solomon Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
| | - Jocelynn T Owusu
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - Murat Bilgel
- National Institute on Aging Intramural Research Program, Baltimore, MD
| | - Luigi Ferrucci
- National Institute on Aging Intramural Research Program, Baltimore, MD
| | - Dean F Wong
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
- Solomon Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
- Russell H Morgan Department of Radiology, Division of Nuclear Medicine and Molecular Imaging/High Resolution Brain PET, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Susan M Resnick
- National Institute on Aging Intramural Research Program, Baltimore, MD
| |
Collapse
|
72
|
Han AR, Yang JW, Na JM, Choi SY, Cho SW. Protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride on hypoxia-induced β-amyloid production in SH-SY5Y cells. BMB Rep 2019. [PMID: 30355438 PMCID: PMC6675249 DOI: 10.5483/bmbrep.2019.52.7.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Although hypoxic/ischemic injury is thought to contribute to the incidence of Alzheimer’s disease (AD), the molecular mechanism that determines the relationship between hypoxia-induced β-amyloid (Aβ) generation and development of AD is not yet known. We have now investigated the protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride (KHG26702), a novel thiazole derivative, on oxygen-glucose deprivation (OGD)-reoxygenation (OGD-R)-induced Aβ production in SH-SY5Y human neuroblastoma cells. Pretreatment of these cells with KHG26702 significantly attenuated OGD-R-induced production of reactive oxygen species and elevation of levels of malondialdehyde, prostaglandin E2, interleukin 6 and glutathione, as well as superoxide dismutase activity. KHG26702 also reduced OGD-R-induced expression of the apoptotic protein caspase-3, the apoptosis regulator Bcl-2, and the autophagy protein becn-1. Finally, KHG26702 reduced OGD-R-induced Aβ production and cleavage of amyloid precursor protein, by inhibiting secretase activity and suppressing the autophagic pathway. Although supporting data from in vivo studies are required, our results indicate that KHG26702 may prevent neuronal cell damage from OGD-R-induced toxicity.
Collapse
Affiliation(s)
- A Reum Han
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ji Woong Yang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jung-Min Na
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
73
|
Zhang F, Niu L, Li S, Le W. Pathological Impacts of Chronic Hypoxia on Alzheimer's Disease. ACS Chem Neurosci 2019; 10:902-909. [PMID: 30412668 DOI: 10.1021/acschemneuro.8b00442] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic hypoxia is considered as one of the important environmental factors contributing to the pathogenesis of Alzheimer's disease (AD). Many chronic hypoxia-causing comorbidities, such as obstructive sleep apnea syndrome (OSAS) and chronic obstructive pulmonary disease (COPD), have been reported to be closely associated with AD. Increasing evidence has documented that chronic hypoxia may affect many pathological aspects of AD including amyloid β (Aβ) metabolism, tau phosphorylation, autophagy, neuroinflammation, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial and synaptic dysfunction, which may collectively result in neurodegeneration in the brain. In this Review, we briefly summarize the effects of chronic hypoxia on AD pathogenesis and discuss the underlying mechanisms. Since chronic hypoxia is common in the elderly and may contribute to the pathogenesis of AD, prospective prevention and treatment targeting hypoxia may be helpful to delay or alleviate AD.
Collapse
Affiliation(s)
- Feng Zhang
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Long Niu
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| |
Collapse
|
74
|
Resveratrol Abrogates Hypoxia-Induced Up-Regulation of Exosomal Amyloid-β Partially by Inhibiting CD147. Neurochem Res 2019; 44:1113-1126. [DOI: 10.1007/s11064-019-02742-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
|
75
|
Rubin LH, Sundermann EE, Moore DJ. The current understanding of overlap between characteristics of HIV-associated neurocognitive disorders and Alzheimer's disease. J Neurovirol 2019; 25:661-672. [PMID: 30671777 DOI: 10.1007/s13365-018-0702-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/04/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
The advent of effective antiretroviral medications (ARVs) has led to an aging of the HIV population with approximately 50% of people with HIV (PWH) being over the age of 50 years. Neurocognitive complications, typically known as HIV-associated neurocognitive disorders (HAND), persist in the era of ARVs and, in addition to risk of HAND, older PWH are also at risk for age-associated, neurodegenerative disorders including Alzheimer's disease (AD). It has been postulated that risk for AD may be greater among PWH due to potential compounding effects of HIV and aging on mechanisms of neural insult. We are now faced with the challenge of disentangling AD from HAND, which has important prognostic and treatment implications given the more rapidly debilitating trajectory of AD. Herein, we review the evidence to date demonstrating both parallels and differences in the profiles of HAND and AD. We specifically address similarities and difference of AD and HAND as it relates to (1) neuropsychological profiles (cross-sectional/longitudinal), (2) AD-associated neuropathological features as evidenced from neuropathological, cerebrospinal fluid and neuroimaging assessments, (3) biological mechanisms underlying cortical amyloid deposition, (4) parallels in mechanisms of neural insult, and (5) common risk factors. Our current understanding of the similarities and dissimilarities of AD and HAND should be further delineated and leveraged in the development of differential diagnostic methods that will allow for the early identification of AD and more suitable and effective treatment interventions among graying PWH.
Collapse
Affiliation(s)
- Leah H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Erin E Sundermann
- Department of Psychiatry, University of California, San Diego (UCSD) School of Medicine, La Jolla, CA, USA.
| | - David J Moore
- Department of Psychiatry, University of California, San Diego (UCSD) School of Medicine, La Jolla, CA, USA
| |
Collapse
|
76
|
Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019; 15:73-88. [DOI: 10.1038/s41582-018-0116-6] [Citation(s) in RCA: 459] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
77
|
Azarpazhooh MR, Hachinski V. Vascular cognitive impairment: A preventable component of dementia. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:377-391. [PMID: 31753144 DOI: 10.1016/b978-0-12-804766-8.00020-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For many decades during the 20th century, the common belief was that the slow strangulation of the brains' blood supply from hardening of the brain arteries led to chronic brain ischemia and neuronal death. Not surprisingly, to counter this, vasodilators rapidly became one of the most commonly used and profitable medications worldwide; however, no clinical benefits were ever proven. In the 1970s and early 1980s cerebral blood flow studies strongly disproved the idea of brain failure due to chronic ischemia. It was also shown that infarcts and not chronic ischemia caused dementia, leading to the concept of multiinfarct dementia. In addition to infarcts, it was then realized that other vascular lesions can also cause cognitive decline. Gradually, as "atherosclerotic dementia" lost ground, Alzheimer's disease (AD) that once had been considered a presenile dementia and rare, became almost synonymous with dementia. Subsequent memory-based definitions and evaluations of dementia led to a bias in favor of diagnosing AD, overshadowing vascular contributions. The widespread use of brain imaging in the 1980s and 1990s contributed to the resurgence of evidence of cerebrovascular diseases. Moreover, it was shown that most cognitive impairment of the elderly results from mixed pathologies, emphasizing the need for a change in the traditional categorical diagnosis of dementia, e.g., AD vs vascular dementia. The alternative diagnostic method was named the vascular cognitive impairment approach, meaning identifying any impairment caused by or associated with vascular factors. The importance of this approach is that vascular lesions are currently the most important treatable and preventable components of dementia, even before any symptoms manifest, i.e., at the brain at risk stage. This chapter provides a summary of the vascular cognitive impairment approach to diagnosis, treatment, and prevention of cognitive decline.
Collapse
Affiliation(s)
- Mahmoud Reza Azarpazhooh
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Neurology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vladimir Hachinski
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada.
| |
Collapse
|
78
|
Macheda T, Roberts K, Lyons DN, Higgins E, Ritter KJ, Lin AL, Alilain WJ, Bachstetter AD. Chronic Intermittent Hypoxia Induces Robust Astrogliosis in an Alzheimer's Disease-Relevant Mouse Model. Neuroscience 2018; 398:55-63. [PMID: 30529693 DOI: 10.1016/j.neuroscience.2018.11.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022]
Abstract
Sleep disturbances are a common early symptom of neurodegenerative diseases, including Alzheimer's disease (AD) and other age-related dementias, and emerging evidence suggests that poor sleep may be an important contributor to development of amyloid pathology. Of the causes of sleep disturbances, it is estimated that 10-20% of adults in the United States have sleep-disordered breathing (SDB) disorder, with obstructive sleep apnea accounting for the majority of the SBD cases. The clinical and epidemiological data clearly support a link between sleep apnea and AD; yet, almost no experimental research is available exploring the mechanisms associated with this correlative link. Therefore, we exposed an AD-relevant mouse model (APP/PS1 KI) to chronic intermittent hypoxia (IH) (an experimental model of sleep apnea) to begin to describe one of the potential mechanisms by which SDB could increase the risk of dementia. Previous studies have found that astrogliosis is a contributor to neuropathology in models of chronic IH and AD; therefore, we hypothesized that a reactive astrocyte response might be a contributing mechanism in the neuroinflammation associated with sleep apnea. To test this hypothesis, 10-11-month-old wild-type (WT) and APP/PS1 KI mice were exposed to 10 hours of IH, daily for four weeks. At the end of four weeks brains were analyzed from amyloid burden and astrogliosis. No effect was found for chronic IH exposure on amyloid-beta levels or plaque load in the APP/PS1 KI mice. A significant increase in GFAP staining was found in the APP/PS1 KI mice following chronic IH exposure, but not in the WT mice. Profiling of genes associated with different phenotypes of astrocyte activation identified GFAP, CXCL10, and Ggta1 as significant responses activated in the APP/PS1 KI mice exposed to chronic IH.
Collapse
Affiliation(s)
- Teresa Macheda
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Kelly Roberts
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Danielle N Lyons
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Emma Higgins
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Kyle J Ritter
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Ai-Ling Lin
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States; Department of Nutrition and Pharmacology, University of Kentucky, Lexington, KY, United States
| | - Warren J Alilain
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Adam D Bachstetter
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States; Department of Neuroscience, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
79
|
Rowland HA, Hooper NM, Kellett KAB. Modelling Sporadic Alzheimer's Disease Using Induced Pluripotent Stem Cells. Neurochem Res 2018; 43:2179-2198. [PMID: 30387070 PMCID: PMC6267251 DOI: 10.1007/s11064-018-2663-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022]
Abstract
Developing cellular models of sporadic Alzheimer's disease (sAD) is challenging due to the unknown initiator of disease onset and the slow disease progression that takes many years to develop in vivo. The use of human induced pluripotent stem cells (iPSCs) has revolutionised the opportunities to model AD pathology, investigate disease mechanisms and screen potential drugs. The majority of this work has, however, used cells derived from patients with familial AD (fAD) where specific genetic mutations drive disease onset. While these provide excellent models to investigate the downstream pathways involved in neuronal toxicity and ultimately neuronal death that leads to AD, they provide little insight into the causes and mechanisms driving the development of sAD. In this review we compare the data obtained from fAD and sAD iPSC-derived cell lines, identify the inconsistencies that exist in sAD models and highlight the potential role of Aβ clearance mechanisms, a relatively under-investigated area in iPSC-derived models, in the study of AD. We discuss the development of more physiologically relevant models using co-culture and three-dimensional culture of iPSC-derived neurons with glial cells. Finally, we evaluate whether we can develop better, more consistent models for sAD research using genetic stratification of iPSCs and identification of genetic and environmental risk factors that could be used to initiate disease onset for modelling sAD. These considerations provide exciting opportunities to develop more relevant iPSC models of sAD which can help drive our understanding of disease mechanisms and identify new therapeutic targets.
Collapse
Affiliation(s)
- Helen A Rowland
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Nigel M Hooper
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Katherine A B Kellett
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
80
|
Granger MW, Liu H, Fowler CF, Blanchard AP, Taylor MW, Sherman SPM, Xu H, Le W, Bennett SAL. Distinct disruptions in Land's cycle remodeling of glycerophosphocholines in murine cortex mark symptomatic onset and progression in two Alzheimer's disease mouse models. J Neurochem 2018; 149:499-517. [PMID: 30040874 DOI: 10.1111/jnc.14560] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/04/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022]
Abstract
Changes in glycerophosphocholine metabolism are observed in Alzheimer's disease; however, it is not known whether these metabolic disruptions are linked to cognitive decline. Here, using unbiased lipidomic approaches and direct biochemical assessments, we profiled Land's cycle lipid remodeling in the hippocampus, frontal cortex, and temporal-parietal-entorhinal cortices of human amyloid beta precursor protein (ΑβPP) over-expressing mice. We identified a cortex-specific hypo-metabolic signature at symptomatic onset and a cortex-specific hyper-metabolic signature of Land's cycle glycerophosphocholine remodeling over the course of progressive behavioral decline. When N5 TgCRND8 and ΑβPPS we /PSIdE9 mice first exhibited deficits in the Morris Water Maze, levels of lyso-phosphatidylcholines, LPC(18:0/0:0), LPC(16:0/0:0), LPC(24:6/0:0), LPC(25:6/0:0), the lyso-platelet-activating factor (PAF), LPC(O-18:0/0:0), and the PAF, PC(O-22:6/2:0), declined as a result of reduced calcium-dependent cytosolic phospholipase A2 α (cPLA2 α) activity in all cortices but not hippocampus. Chronic intermittent hypoxia, an environmental risk factor that triggers earlier learning memory impairment in ΑβPPS we /PSIdE9 mice, elicited these same metabolic changes in younger animals. Thus, this lipidomic signature of phenoconversion appears age-independent. By contrast, in symptomatic N5 TgCRND8 mice, cPLA2 α activity progressively increased; overall Lyso-phosphatidylcholines (LPC) and LPC(O) and PC(O-18:1/2:0) levels progressively rose. Enhanced cPLA2 α activity was only detected in transgenic mice; however, age-dependent increases in the PAF acetylhydrolase 1b α1 to α2 expression ratio, evident in both transgenic and non-transgenic mice, reduced PAF hydrolysis thereby contributing to PAF accumulation. Taken together, these data identify distinct age-independent and age-dependent disruptions in Land's cycle metabolism linked to symptomatic onset and progressive behavioral decline in animals with pre-existing Αβ pathology. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Matthew W Granger
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Hui Liu
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Caitlin F Fowler
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Alexandre P Blanchard
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Matthew W Taylor
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Samantha P M Sherman
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Hongbin Xu
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Weidong Le
- Department of Neurology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Clinical Research on Neurological Diseases, the 1st Affiliated Hospital, Dailan Medical University, Dailan, China
| | - Steffany A L Bennett
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Centre for Catalysis Research and Innovation, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
81
|
Sleep disturbances increase the risk of dementia: A systematic review and meta-analysis. Sleep Med Rev 2018; 40:4-16. [PMID: 28890168 DOI: 10.1016/j.smrv.2017.06.010] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/29/2017] [Accepted: 06/28/2017] [Indexed: 11/23/2022]
|
82
|
Holingue C, Wennberg A, Berger S, Polotsky VY, Spira AP. Disturbed sleep and diabetes: A potential nexus of dementia risk. Metabolism 2018; 84:85-93. [PMID: 29409842 PMCID: PMC5995651 DOI: 10.1016/j.metabol.2018.01.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/19/2018] [Accepted: 01/26/2018] [Indexed: 12/28/2022]
Abstract
Type 2 diabetes (T2D) and sleep disturbance (e.g., insomnia, sleep-disordered breathing) are prevalent conditions among older adults that are associated with cognitive decline and dementia, including Alzheimer's disease (AD). Importantly, disturbed sleep is associated with alterations in insulin sensitivity and glucose metabolism, and may increase the risk of T2D, and T2D-related complications (e.g., pain, nocturia) can negatively affect sleep. Despite these associations, little is known about how interactions between T2D and sleep disturbance might alter cognitive trajectories or the pathological changes that underlie dementia. Here, we review links among T2D, sleep disturbance, cognitive decline and dementia-including preclinical and clinical AD-and identify gaps in the literature, that if addressed, could have significant implications for the prevention of poor cognitive outcomes.
Collapse
Affiliation(s)
- Calliope Holingue
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, United States.
| | - Alexandra Wennberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States.
| | - Slava Berger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, United States.
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, United States.
| | - Adam P Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, United States; Johns Hopkins Center on Aging and Health, United States.
| |
Collapse
|
83
|
Chronic intermittent hypoxia induces changes on the expression and activity of neprilysin (EC 3.4.24.11) in the brain of rats. Neurosci Lett 2018; 678:43-47. [PMID: 29702204 DOI: 10.1016/j.neulet.2018.04.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 11/22/2022]
Abstract
Obstructive sleep apnea (OSA) is a frequent sleeping breathing disorder associated with cognitive impairments. Neprilysin (NEP) is responsible for degrading several substrates related to cognition; however, the effect of chronic intermittent hypoxia (CIH) on NEP is still unknown. This study aimed to evaluate the expression and activity of NEP in cognitive-related brain structures of rats submitted to CIH. Western blot, qRT-PCR and enzyme activity assay, demonstrated that a six-week intermittent hypoxia increased NEP expression and activity, selectively in temporal cortex, but not in the hippocampus and frontal cortex. The increase in NEP activity and expression was reverted followed by two weeks recovery in normoxia. These data show that CIH protocol increases the expression and activity of NEP selectively in the temporal cortex. Additional mechanisms must be investigated to elucidate the effects of CIH in cognition.
Collapse
|
84
|
Zhang F, Zhong R, Qi H, Li S, Cheng C, Liu X, Liu Y, Le W. Impacts of Acute Hypoxia on Alzheimer's Disease-Like Pathologies in APP swe/PS1 dE9 Mice and Their Wild Type Littermates. Front Neurosci 2018; 12:314. [PMID: 29867325 PMCID: PMC5954115 DOI: 10.3389/fnins.2018.00314] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and pathologically featured by β-amyloid (Aβ) plaque deposition and hyper-phosphorylated tau aggregation in the brain. Environmental factors are believed to contribute to the pathogenesis and progression of AD. In the present study, we investigated the impacts of acute hypoxia on Aβ and tau pathologies, neuroinflammation, mitochondrial function, and autophagy in APPswe/PS1dE9 AD mouse model. Male APPswe/PS1dE9 transgenic (Tg) mice and their age-matched wild type (Wt) littermates were exposed to one single acute hypoxic episode (oxygen 7%) for 24 h. We found that acute hypoxia exposure increased the expressions of amyloid precursor protein (APP), anterior pharynx-defective 1 (APH1) and cyclin-dependent kinase 5 (CDK5), and promoted tau phosphorylation at T181 and T231 residues in both Tg and Wt mice. In addition, acute hypoxia also induced autophagy through the mammalian target of rapamycin (mTOR) signaling, elicited abnormal mitochondrial function and neuroinflammation in both Tg and Wt mice. In summary, all these findings suggest that acute hypoxia could induce the AD-like pathological damages in the brain of APPswe/PS1dE9 mice and Wt mice to some extent.
Collapse
Affiliation(s)
- Feng Zhang
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Rujia Zhong
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hongqian Qi
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Cheng Cheng
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xinyao Liu
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yufei Liu
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Collaborative Innovation Center for Brain Science, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
85
|
Rhynchophylline suppresses soluble Aβ 1-42-induced impairment of spatial cognition function via inhibiting excessive activation of extrasynaptic NR2B-containing NMDA receptors. Neuropharmacology 2018; 135:100-112. [PMID: 29510187 DOI: 10.1016/j.neuropharm.2018.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/15/2018] [Accepted: 03/03/2018] [Indexed: 01/06/2023]
Abstract
Rhynchophylline (RIN) is a significant active component isolated from the Chinese herbal medicine Uncaria rhynchophylla. The overproduction of soluble amyloid β protein (Aβ) oligomers in the hippocampus is closely involved in impairments in cognitive function at the early stage of Alzheimer's disease (AD). Growing evidences show that RIN possesses neuroprotective effects against Aβ-induced neurotoxicity. However, whether RIN can prevent soluble Aβ1-42-induced impairments in spatial cognitive function and synaptic plasticity is still unclear. Using the combined methods of behavioral tests, immunofluorescence and electrophysiological recordings, we characterized the key neuroprotective properties of RIN and its possible cellular and molecular mechanisms against soluble Aβ1-42-related impairments in rats. Our findings are as follows: (1) RIN efficiently rescued the soluble Aβ1-42-induced spatial learning and memory deficits in the Morris water maze test and prevented soluble Aβ1-42-induced suppression in long term potentiation (LTP) in the entorhinal cortex (EC)-dentate gyrus (DG) circuit. (2) Excessive activation of extrasynaptic GluN2B-NMDAR and subsequent Ca2+ overload contributed to the soluble Aβ1-42-induced impairments in spatial cognitive function and synaptic plasticity. (3) RIN prevented Aβ1-42-induced excessive activation of extrasynaptic NMDARs by reducing extrasynaptic NMDARs -mediated excitatory postsynaptic currents and down regulating GluN2B-NMDAR expression in the DG region, which inhibited Aβ1-42-induced Ca2+ overload mediated by extrasynanptic NMDARs. The results suggest that RIN could be an effective therapeutic candidate for cognitive impairment in AD.
Collapse
|
86
|
Shapira R, Efrati S, Ashery U. Hyperbaric oxygen therapy as a new treatment approach for Alzheimer's disease. Neural Regen Res 2018; 13:817-818. [PMID: 29863011 PMCID: PMC5998622 DOI: 10.4103/1673-5374.232475] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ronit Shapira
- Department of Neurobiology, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Shai Efrati
- Sackler School of Medicine, Tel Aviv University; Sagol Center for Hyperbaric Medicine & Research, Assaf Harofeh Medical Center, Israel
| | - Uri Ashery
- Department of Neurobiology, the George S. Wise Faculty of Life Sciences; Sagol School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
87
|
Sun MK. Potential Therapeutics for Vascular Cognitive Impairment and Dementia. Curr Neuropharmacol 2018; 16:1036-1044. [PMID: 29046153 PMCID: PMC6120112 DOI: 10.2174/1570159x15666171016164734] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND As the human lifespan increases, the number of people affected by agerelated dementia is growing at an epidemic pace. Vascular pathology dramatically affects cognitive profiles, resulting in dementia and cognitive impairment. While vascular dementia itself constitutes a medical challenge, hypo-perfusion/vascular risk factors enhance amyloid toxicity and other memory- damaging factors and hasten Alzheimer's disease (AD) and other memory disorders' progression, as well as negatively affect treatment outcome. METHODS Research and online content related to vascular cognitive impairment and dementia is reviewed, specifically focusing on the potential treatment of the disorder. RESULTS Few therapeutic options are currently available to improve the prognosis of patients with vascular dementia and cognitive impairment, mixed AD dementia with vascular pathology, or other memory disorders. Emerging evidence, however, indicates that, like AD and other memory disorders, synaptic impairment underlies much of the memory impairment in the cognitive decline of vascular cognitive impairment and vascular dementia. CONCLUSION Effective rescues of the memory functions might be achieved through synaptic and memory therapeutics, targeting distinct molecular signaling pathways that support the formation of new synapses and maintaining their connections. Potential therapeutic agents include: 1) memory therapeutic agents that rescue synaptic and memory functions after the brain insults; 2) antipathologic therapeutics and an effective management of vascular risk factors; and 3) preventative therapeutic agents that achieve memory therapy through functional enhancement. These therapeutic agents are also likely to benefit patients with AD and/or other types of memory disorders.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, 8 Medical Center Drive, Morgantown, West Virginia26505, USA
| |
Collapse
|
88
|
Melkonyan MM, Hunanyan L, Lourhmati A, Layer N, Beer-Hammer S, Yenkoyan K, Schwab M, Danielyan L. Neuroprotective, Neurogenic, and Amyloid Beta Reducing Effect of a Novel Alpha 2-Adrenoblocker, Mesedin, on Astroglia and Neuronal Progenitors upon Hypoxia and Glutamate Exposure. Int J Mol Sci 2017; 19:ijms19010009. [PMID: 29267189 PMCID: PMC5795961 DOI: 10.3390/ijms19010009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
Locus coeruleus-noradrenergic system dysfunction is known to contribute to the progression of Alzheimer’s disease (AD). Besides a variety of reports showing the involvement of norepinephrine and its receptor systems in cognition, amyloid β (Aβ) metabolism, neuroinflammation, and neurogenesis, little is known about the contribution of the specific receptors to these actions. Here, we investigated the neurogenic and neuroprotective properties of a new α2 adrenoblocker, mesedin, in astroglial primary cultures (APC) from C57BL/6 and 3×Tg-AD mice. Our results demonstrate that mesedin rescues neuronal precursors and young neurons, and reduces the lactate dehydrogenase (LDH) release from astroglia under hypoxic and normoxic conditions. Mesedin also increased choline acetyltransferase, postsynaptic density marker 95 (PSD95), and Aβ-degrading enzyme neprilysin in the wild type APC, while in the 3×Tg-AD APC exposed to glutamate, it decreased the intracellular content of Aβ and enhanced the survival of synaptophysin-positive astroglia and neurons. These effects in APC can at least partially be attributed to the mesedin’s ability of increasing the expression of Interleukine(IL)-10, which is a potent anti-inflammatory, neuroprotective neurogenic, and Aβ metabolism enhancing factor. In summary, our data identify the neurogenic, neuroprotective, and anti-amyloidogenic action of mesedin in APC. Further in vivo studies are needed to estimate the therapeutic value of mesedin for AD.
Collapse
Affiliation(s)
- Magda M Melkonyan
- Department of Medical Chemistry, Yerevan state Medical University after M. Heratsi, 2 Koryun St., Yerevan 0025, Armenia.
| | - Lilit Hunanyan
- Department of Medical Chemistry, Yerevan state Medical University after M. Heratsi, 2 Koryun St., Yerevan 0025, Armenia.
| | - Ali Lourhmati
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany.
| | - Nikolas Layer
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany.
| | - Sandra Beer-Hammer
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology and ICePhA, University of Tuebingen, Wilhelmstr. 56, D-72076 Tübingen, Germany.
| | - Konstantin Yenkoyan
- Biochemistry Department, Yerevan state Medical University after M. Heratsi, 2 Koryun St., Yerevan 0025, Armenia.
| | - Matthias Schwab
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, Stuttgart, Auerbachstr. 112, D-70376 Stuttgart, Germany.
- Department of Pharmacy and Biochemistry, University of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany.
| | - Lusine Danielyan
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany.
| |
Collapse
|
89
|
Bubu OM, Brannick M, Mortimer J, Umasabor-Bubu O, Sebastião YV, Wen Y, Schwartz S, Borenstein AR, Wu Y, Morgan D, Anderson WM. Sleep, Cognitive impairment, and Alzheimer's disease: A Systematic Review and Meta-Analysis. Sleep 2017; 40:2661823. [PMID: 28364458 DOI: 10.1093/sleep/zsw032] [Citation(s) in RCA: 377] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2016] [Indexed: 12/24/2022] Open
Abstract
Study Objectives Mounting evidence implicates disturbed sleep or lack of sleep as one of the risk factors for Alzheimer's disease (AD), but the extent of the risk is uncertain. We conducted a broad systematic review and meta-analysis to quantify the effect of sleep problems/disorders on cognitive impairment and AD. Methods Original published literature assessing any association of sleep problems or disorders with cognitive impairment or AD was identified by searching PubMed, Embase, Web of Science, and the Cochrane library. Effect estimates of individual studies were pooled and relative risks (RR) and 95% confidence intervals (CI) were calculated using random effects models. We also estimated the population attributable risk. Results Twenty-seven observational studies (n = 69216 participants) that provided 52 RR estimates were included in the meta-analysis. Individuals with sleep problems had a 1.55 (95% CI: 1.25-1.93), 1.65 (95% CI: 1.45-1.86), and 3.78 (95% CI: 2.27-6.30) times higher risk of AD, cognitive impairment, and preclinical AD than individuals without sleep problems, respectively. The overall meta-analysis revealed that individuals with sleep problems had a 1.68 (95% CI: 1.51-1.87) times higher risk for the combined outcome of cognitive impairment and/or AD. Approximately 15% of AD in the population may be attributed to sleep problems. Conclusion This meta-analysis confirmed the association between sleep and cognitive impairment or AD and, for the first time, consolidated the evidence to provide an "average" magnitude of effect. As sleep problems are of a growing concern in the population, these findings are of interest for potential prevention of AD.
Collapse
Affiliation(s)
- Omonigho M Bubu
- Department of Epidemiology & Biostatistics, College of Public Health, University of South Florida, Tampa, FL
| | - Michael Brannick
- Psychology Department, College of Arts and Sciences, University of South Florida, Tampa, FL
| | - James Mortimer
- Department of Epidemiology & Biostatistics, College of Public Health, University of South Florida, Tampa, FL
| | - Ogie Umasabor-Bubu
- Department of Epidemiology & Biostatistics, College of Public Health, University of South Florida, Tampa, FL
| | - Yuri V Sebastião
- Department of Epidemiology & Biostatistics, College of Public Health, University of South Florida, Tampa, FL
| | - Yi Wen
- Department of Chemical and Biomedical Engineering, College of Engineering, University of South Florida, Tampa, FL
| | - Skai Schwartz
- Department of Epidemiology & Biostatistics, College of Public Health, University of South Florida, Tampa, FL
| | - Amy R Borenstein
- Department of Epidemiology & Biostatistics, College of Public Health, University of South Florida, Tampa, FL
| | - Yougui Wu
- Department of Epidemiology & Biostatistics, College of Public Health, University of South Florida, Tampa, FL
| | - David Morgan
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL.,Byrd Alzheimer Institute, Tampa, FL
| | - William M Anderson
- Sleep Medicine and Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
90
|
Buratti L, Viticchi G, Baldinelli S, Falsetti L, Luzzi S, Pulcini A, Petrelli C, Provinciali L, Silvestrini M. Sleep Apnea, Cognitive Profile, and Vascular Changes: An Intriguing Relationship. J Alzheimers Dis 2017; 60:1195-1203. [DOI: 10.3233/jad-170445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Laura Buratti
- Neurological Clinic, Marche Polytechnic University, Ancona, Italy
| | | | - Sara Baldinelli
- Neurological Clinic, Marche Polytechnic University, Ancona, Italy
| | - Lorenzo Falsetti
- Internal and Subintensive Medicine, Ospedali Riuniti, Ancona, Italy
| | - Simona Luzzi
- Neurological Clinic, Marche Polytechnic University, Ancona, Italy
| | | | | | | | | |
Collapse
|
91
|
Iraji A, Firuzi O, Khoshneviszadeh M, Tavakkoli M, Mahdavi M, Nadri H, Edraki N, Miri R. Multifunctional iminochromene-2H-carboxamide derivatives containing different aminomethylene triazole with BACE1 inhibitory, neuroprotective and metal chelating properties targeting Alzheimer's disease. Eur J Med Chem 2017; 141:690-702. [PMID: 29107423 DOI: 10.1016/j.ejmech.2017.09.057] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 01/26/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder known for the presence of amyloid beta plaques resulting from the sequential action of β-secretase and γ-secretase on amyloid precursor protein. We developed and synthesized, through click reactions, a new family of iminochromene carboxamides containing different aminomethylene triazole. The BACE1 inhibition, neuroprotective capacity and metal chelation of these derivatives make them ideal candidates against AD. Most of the synthesized compounds were shown to have potent BACE1 inhibitory activity in a FRET assay, with an IC50 value of 2.2 μM for the most potent compound. Moreover, molecular modeling evaluation of these BACE1 inhibitors demonstrates the vital role of the amine and amide linkers through hydrogen bond interactions with key amino acids in the BACE1 active site. Our in vitro neuroprotective evaluations in PC12 neuronal cells of Aβ-induced neuroprotection demonstrated promising activity for most of the compounds as neuroprotective agents. Based on our findings, we propose that introduction of a phthalimide substitute on the triazole ring shown to be interesting multifunctional lead compound worthy of further study.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Tavakkoli
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
92
|
Role of hypoxia‑mediated cellular prion protein functional change in stem cells and potential application in angiogenesis (Review). Mol Med Rep 2017; 16:5747-5751. [PMID: 28901450 PMCID: PMC5865755 DOI: 10.3892/mmr.2017.7387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
Cellular prion protein (PrPC) can replace other pivotal molecules due to its interaction with several partners in performing a variety of important biological functions that may differ between embryonic and mature stem cells. Recent studies have revealed major advances in elucidating the putative role of PrPC in the regulation of stem cells and its application in stem cell therapy. What is special about PrPC is that its expression may be regulated by hypoxia-inducible factor (HIF)-1α, which is the transcriptional factor of cellular response to hypoxia. Hypoxic conditions have been known to drive cellular responses that can enhance cell survival, differentiation and angiogenesis through adaptive processes. Our group recently reported hypoxia-enhanced vascular repair of endothelial colony-forming cells on ischemic injury. Hypoxia-induced AKT/signal transducer and activator of transcription 3 phosphorylation eventually increases neovasculogenesis. In stem cell biology, hypoxia promotes the expression of growth factors. According to other studies, aspects of tissue regeneration and cell function are influenced by hypoxia, which serves an essential role in stem cell HIF-1α signaling. All these data suggest the possibility that hypoxia-mediated PrPC serves an important role in angiogenesis. Therefore, the present review summarizes the characteristics of PrPC, which is produced by HIF-1α in hypoxia, as it relates to angiogenesis.
Collapse
|
93
|
Zhang F, Zhong R, Li S, Fu Z, Cheng C, Cai H, Le W. Acute Hypoxia Induced an Imbalanced M1/M2 Activation of Microglia through NF-κB Signaling in Alzheimer's Disease Mice and Wild-Type Littermates. Front Aging Neurosci 2017; 9:282. [PMID: 28890695 PMCID: PMC5574879 DOI: 10.3389/fnagi.2017.00282] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/14/2017] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease mainly caused by abnormal tau phosphorylation, amyloid β (Aβ) deposition and neuroinflammation. As an important environmental factor, hypoxia has been reported to aggravate AD via exacerbating Aβ and tau pathologies. However, the link between hypoxia and neuroinflammation, especially the changes of pro-inflammatory M1 or anti-inflammation M2 microglia phenotypes in AD, is still far from being clearly investigated. Here, we evaluated the activation of microglia in the brains of APPswe/PS1dE9 transgenic (Tg) mice and their wild type (Wt) littermates, after a single episode of acute hypoxia (24 h) exposure. We found that acute hypoxia activated M1 microglia in both Tg and Wt mice as evidenced by the elevated M1 markers including cluster of differentiation 86 (CD86), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2) and CCL3. In addition, the markers of M2 microglia phenotype (arginase-1 (Arg-1), CD206, IL-4 and IL-10) were decreased after acute hypoxia exposure, suggesting an attenuated M2 phenotype of microglia. Moreover, the activation of microglia and the release of cytokines and chemokines were associated with Nuclear factor-κB (NF-κB) induction through toll-like receptor 4 (TLR4). In summary, our findings revealed that acute hypoxia modulated microglia M1/M2 subgroup profile, indicating the pathological role of hypoxia in the neuroinflammation of AD.
Collapse
Affiliation(s)
- Feng Zhang
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Rujia Zhong
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Song Li
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Zhenfa Fu
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Cheng Cheng
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Huaibin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of HealthBethesda, MD, United States
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical UniversityDalian, China.,Collaborative Innovation Center for Brain Science, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| |
Collapse
|
94
|
Wennberg AMV, Wu MN, Rosenberg PB, Spira AP. Sleep Disturbance, Cognitive Decline, and Dementia: A Review. Semin Neurol 2017; 37:395-406. [PMID: 28837986 DOI: 10.1055/s-0037-1604351] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractApproximately half of older people report sleep disturbances, which are associated with various health conditions, including neurodegenerative disease and dementia. Indeed, 60 to 70% of people with cognitive impairment or dementia have sleep disturbances, which are linked to poorer disease prognosis. Sleep disturbances in people with dementia have long been recognized and studied; however, in the past 10 years, researchers have begun to study disturbed sleep, including sleep fragmentation, abnormal sleep duration, and sleep disorders, as risk factors for dementia. In this review the authors summarize evidence linking sleep disturbance and dementia. They describe how specific aspects of sleep (e.g., quality, duration) and the prevalence of clinical sleep disorders (e.g., sleep-disordered breathing, rapid eye movement sleep behavior disorder) change with age; how sleep parameters and sleep disorders are associated with the risk of dementia; how sleep can be disturbed in dementia; and how disturbed sleep affects dementia prognosis. These findings highlight the potential importance of identifying and treating sleep problems and disorders in middle-aged and older adults as a strategy to prevent cognitive decline and dementia. The authors also review recent evidence linking sleep disturbances to the pathophysiology underlying dementing conditions, and briefly summarize available treatments for sleep disorders in people with dementia.
Collapse
Affiliation(s)
| | - Mark N Wu
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Adam P Spira
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Johns Hopkins Center on Aging and Health, Baltimore, Maryland
| |
Collapse
|
95
|
Walker KA, Power MC, Gottesman RF. Defining the Relationship Between Hypertension, Cognitive Decline, and Dementia: a Review. Curr Hypertens Rep 2017; 19:24. [PMID: 28299725 DOI: 10.1007/s11906-017-0724-3] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypertension is a highly prevalent condition which has been established as a risk factor for cardiovascular and cerebrovascular disease. Although the understanding of the relationship between cardiocirculatory dysfunction and brain health has improved significantly over the last several decades, it is still unclear whether hypertension constitutes a potentially treatable risk factor for cognitive decline and dementia. While it is clear that hypertension can affect brain structure and function, recent findings suggest that the associations between blood pressure and brain health are complex and, in many cases, dependent on factors such as age, hypertension chronicity, and antihypertensive medication use. Whereas large epidemiological studies have demonstrated a consistent association between high midlife BP and late-life cognitive decline and incident dementia, associations between late-life blood pressure and cognition have been less consistent. Recent evidence suggests that hypertension may promote alterations in brain structure and function through a process of cerebral vessel remodeling, which can lead to disruptions in cerebral autoregulation, reductions in cerebral perfusion, and limit the brain's ability to clear potentially harmful proteins such as β-amyloid. The purpose of the current review is to synthesize recent findings from epidemiological, neuroimaging, physiological, genetic, and translational research to provide an overview of what is currently known about the association between blood pressure and cognitive function across the lifespan. In doing so, the current review also discusses the results of recent randomized controlled trials of antihypertensive therapy to reduce cognitive decline, highlights several methodological limitations, and provides recommendations for future clinical trial design.
Collapse
Affiliation(s)
- Keenan A Walker
- Department of Neurology, Johns Hopkins University School of Medicine, Phipps 446D 600 North Wolfe St., Baltimore, MD, 21287, USA
| | - Melinda C Power
- Department of Epidemiology and Biostatistics, George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Rebecca F Gottesman
- Department of Neurology, Johns Hopkins University School of Medicine, Phipps 446D 600 North Wolfe St., Baltimore, MD, 21287, USA. .,Department of Epidemiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
96
|
Xiong Z, Lu W, Zhu L, Zeng L, Shi C, Jing Z, Xiang Y, Li W, Tsang CK, Ruan Y, Huang L. Dl-3-n-Butylphthalide Treatment Enhances Hemodynamics and Ameliorates Memory Deficits in Rats with Chronic Cerebral Hypoperfusion. Front Aging Neurosci 2017; 9:238. [PMID: 28798681 PMCID: PMC5526838 DOI: 10.3389/fnagi.2017.00238] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/07/2017] [Indexed: 12/19/2022] Open
Abstract
Our previous study has revealed that chronic cerebral hypoperfusion (CCH) activates a compensatory vascular mechanism attempting to maintain an optimal cerebral blood flow (CBF). However, this compensation fails to prevent neuronal death and cognitive impairment because neurons die prior to the restoration of normal CBF. Therefore, pharmacological invention may be critical to enhance the CBF for reducing neurodegeneration and memory deficit. Dl-3-n-butylphthalide (NBP) is a compound isolated from the seeds of Chinese celery and has been proven to be able to prevent neuronal loss, reduce inflammation and ameliorate memory deficits in acute ischemic animal models and stroke patients. In the present study, we used magnetic resonance imaging (MRI) techniques, immunohistochemistry and Morris water maze (MWM) to investigate whether NBP can accelerate CBF recovery, reduce neuronal death and improve cognitive deficits in CCH rats after permanent bilateral common carotid artery occlusion (BCCAO). Rats were intravenously injected with NBP (5 mg/kg) daily for 14 days beginning the first day after BCCAO. The results showed that NBP shortened recovery time of CBF to pre-occlusion levels at 2 weeks following BCCAO, compared to 4 weeks in the vehicle group, and enhanced hemodynamic compensation through dilation of the vertebral arteries (VAs) and increase in angiogenesis. NBP treatment also markedly reduced reactive astrogliosis and cell apoptosis and protected hippocampal neurons against ischemic injury. The escape latency of CCH rats in the MWM was also reduced in response to NBP treatment. These findings demonstrate that NBP can accelerate the recovery of CBF and improve cognitive function in a rat model of CCH, suggesting that NBP is a promising therapy for CCH patients or vascular dementia.
Collapse
Affiliation(s)
- Zhilin Xiong
- Department of Neurology, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Weibiao Lu
- Department of Neurology, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Lihui Zhu
- GHM Institute of CNS Regeneration (GHMICR), Jinan UniversityGuangzhou, China
| | - Ling Zeng
- GHM Institute of CNS Regeneration (GHMICR), Jinan UniversityGuangzhou, China
| | - Changzheng Shi
- Department of Radiology, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Zhen Jing
- Department of Neurology, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Yonghui Xiang
- GHM Institute of CNS Regeneration (GHMICR), Jinan UniversityGuangzhou, China
| | - Wenxian Li
- Department of Neurology, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| | - Yiwen Ruan
- GHM Institute of CNS Regeneration (GHMICR), Jinan UniversityGuangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China.,Ministry of Education, CNS Regeneration International Collaborative Laboratory, Jinan UniversityGuangzhou, China.,Department of Anatomy, Jinan University School of MedicineGuangzhou, China
| | - Li'an Huang
- Department of Neurology, The First Affiliated Hospital, Jinan UniversityGuangzhou, China
| |
Collapse
|
97
|
Minhas G, Mathur D, Ragavendrasamy B, Sharma NK, Paanu V, Anand A. Hypoxia in CNS Pathologies: Emerging Role of miRNA-Based Neurotherapeutics and Yoga Based Alternative Therapies. Front Neurosci 2017; 11:386. [PMID: 28744190 PMCID: PMC5504619 DOI: 10.3389/fnins.2017.00386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 06/20/2017] [Indexed: 12/14/2022] Open
Abstract
Cellular respiration is a vital process for the existence of life. Any condition that results in deprivation of oxygen (also termed as hypoxia) may eventually lead to deleterious effects on the functioning of tissues. Brain being the highest consumer of oxygen is prone to increased risk of hypoxia-induced neurological insults. This in turn has been associated with many diseases of central nervous system (CNS) such as stroke, Alzheimer's, encephalopathy etc. Although several studies have investigated the pathophysiological mechanisms underlying ischemic/hypoxic CNS diseases, the knowledge about protective therapeutic strategies to ameliorate the affected neuronal cells is meager. This has augmented the need to improve our understanding of the hypoxic and ischemic events occurring in the brain and identify novel and alternate treatment modalities for such insults. MicroRNA (miRNAs), small non-coding RNA molecules, have recently emerged as potential neuroprotective agents as well as targets, under hypoxic conditions. These 18-22 nucleotide long RNA molecules are profusely present in brain and other organs and function as gene regulators by cleaving and silencing the gene expression. In brain, these are known to be involved in neuronal differentiation and plasticity. Therefore, targeting miRNA expression represents a novel therapeutic approach to intercede against hypoxic and ischemic brain injury. In the first part of this review, we will discuss the neurophysiological changes caused as a result of hypoxia, followed by the contribution of hypoxia in the neurodegenerative diseases. Secondly, we will provide recent updates and insights into the roles of miRNA in the regulation of genes in oxygen and glucose deprived brain in association with circadian rhythms and how these can be targeted as neuroprotective agents for CNS injuries. Finally, we will emphasize on alternate breathing or yogic interventions to overcome the hypoxia associated anomalies that could ultimately lead to improvement in cerebral perfusion.
Collapse
Affiliation(s)
- Gillipsie Minhas
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and ResearchChandigarh, India
| | - Deepali Mathur
- Faculty of Biological Sciences, University of ValenciaValencia, Spain
| | | | - Neel K. Sharma
- Armed Forces Radiobiology Research InstituteBethesda, MD, United States
| | - Viraaj Paanu
- Government Medical College and HospitalChandigarh, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and ResearchChandigarh, India
| |
Collapse
|
98
|
Yun CH, Lee HY, Lee SK, Kim H, Seo HS, Bang SA, Kim SE, Greve DN, Au R, Shin C, Thomas RJ. Amyloid Burden in Obstructive Sleep Apnea. J Alzheimers Dis 2017; 59:21-29. [DOI: 10.3233/jad-161047] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Chang-Ho Yun
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seung Ku Lee
- Institute of Human Genomic Study, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Hyun Kim
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Hyung Suk Seo
- Department of Radiology, Korea University Ansan Hospital, Ansan, Republic ofKorea
| | - Seong Ae Bang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, and Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea
| | - Douglas N. Greve
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rhoda Au
- Departments of Anatomy and Neurobiology, Neurology and Epidemiology, Schools of Medicine and Public Health, Boston University, Boston, MA, USA
| | - Chol Shin
- Institute of Human Genomic Study, Korea University Ansan Hospital, Ansan, Republic of Korea
- Department of Internal Medicine, Division of Pulmonary, Sleep and Critical Care Medicine, Korea University Ansan Hospital, Ansan, Republic ofKorea
| | - Robert J. Thomas
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, USA
| |
Collapse
|
99
|
Macedo AC, Balouch S, Tabet N. Is Sleep Disruption a Risk Factor for Alzheimer’s Disease? J Alzheimers Dis 2017; 58:993-1002. [DOI: 10.3233/jad-161287] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Sara Balouch
- Centre for Dementia Studies, Brighton and Sussex Medical School, Brighton, England, UK
| | - Naji Tabet
- Centre for Dementia Studies, Brighton and Sussex Medical School, Brighton, England, UK
| |
Collapse
|
100
|
Yang T, Sun Y, Lu Z, Leak RK, Zhang F. The impact of cerebrovascular aging on vascular cognitive impairment and dementia. Ageing Res Rev 2017; 34:15-29. [PMID: 27693240 DOI: 10.1016/j.arr.2016.09.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/09/2016] [Accepted: 09/26/2016] [Indexed: 02/07/2023]
Abstract
As human life expectancy rises, the aged population will increase. Aging is accompanied by changes in tissue structure, often resulting in functional decline. For example, aging within blood vessels contributes to a decrease in blood flow to important organs, potentially leading to organ atrophy and loss of function. In the central nervous system, cerebral vascular aging can lead to loss of the integrity of the blood-brain barrier, eventually resulting in cognitive and sensorimotor decline. One of the major of types of cognitive dysfunction due to chronic cerebral hypoperfusion is vascular cognitive impairment and dementia (VCID). In spite of recent progress in clinical and experimental VCID research, our understanding of vascular contributions to the pathogenesis of VCID is still very limited. In this review, we summarize recent findings on VCID, with a focus on vascular age-related pathologies and their contribution to the development of this condition.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yang Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Zhengyu Lu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese, Shanghai 200437, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong, 271000, China.
| |
Collapse
|