51
|
Kirischuk S, Sinning A, Blanquie O, Yang JW, Luhmann HJ, Kilb W. Modulation of Neocortical Development by Early Neuronal Activity: Physiology and Pathophysiology. Front Cell Neurosci 2017; 11:379. [PMID: 29238291 PMCID: PMC5712676 DOI: 10.3389/fncel.2017.00379] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
Animal and human studies revealed that patterned neuronal activity is an inherent feature of developing nervous systems. This review summarizes our current knowledge about the mechanisms generating early electrical activity patterns and their impact on structural and functional development of the cerebral cortex. All neocortical areas display distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, intermittent spontaneous activity is synchronized within small neuronal networks, becoming more complex with further development. This transition is accompanied by a gradual shift from electrical to chemical synaptic transmission, with a particular role of non-synaptic tonic currents before the onset of phasic synaptic activity. In this review article we first describe functional impacts of classical neurotransmitters (GABA, glutamate) and modulatory systems (e.g., acetylcholine, ACh) on early neuronal activities in the neocortex with special emphasis on electrical synapses, nonsynaptic and synaptic currents. Early neuronal activity influences probably all developmental processes and is crucial for the proper formation of neuronal circuits. In the second part of our review, we illustrate how specific activity patterns might interfere with distinct neurodevelopmental processes like proliferation, migration, axonal and dendritic sprouting, synapse formation and neurotransmitter specification. Finally, we present evidence that transient alterations in neuronal activity during restricted perinatal periods can lead to persistent changes in functional connectivity and therefore might underlie the manifestation of neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oriane Blanquie
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
52
|
Abstract
Motor neurons of the spinal cord are responsible for the assembly of neuromuscular connections indispensable for basic locomotion and skilled movements. A precise spatial relationship exists between the position of motor neuron cell bodies in the spinal cord and the course of their axonal projections to peripheral muscle targets. Motor neuron innervation of the vertebrate limb is a prime example of this topographic organization and by virtue of its accessibility and predictability has provided access to fundamental principles of motor system development and neuronal guidance. The seemingly basic binary map established by genetically defined motor neuron subtypes that target muscles in the limb is directed by a surprisingly large number of directional cues. Rather than being simply redundant, these converging signaling pathways are hierarchically linked and cooperate to increase the fidelity of axon pathfinding decisions. A current priority is to determine how multiple guidance signals are integrated by individual growth cones and how they synergize to delineate class-specific axonal trajectories.
Collapse
Affiliation(s)
- Dario Bonanomi
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
53
|
Dombert B, Balk S, Lüningschrör P, Moradi M, Sivadasan R, Saal-Bauernschubert L, Jablonka S. BDNF/trkB Induction of Calcium Transients through Ca v2.2 Calcium Channels in Motoneurons Corresponds to F-actin Assembly and Growth Cone Formation on β2-Chain Laminin (221). Front Mol Neurosci 2017; 10:346. [PMID: 29163025 PMCID: PMC5670157 DOI: 10.3389/fnmol.2017.00346] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Spontaneous Ca2+ transients and actin dynamics in primary motoneurons correspond to cellular differentiation such as axon elongation and growth cone formation. Brain-derived neurotrophic factor (BDNF) and its receptor trkB support both motoneuron survival and synaptic differentiation. However, in motoneurons effects of BDNF/trkB signaling on spontaneous Ca2+ influx and actin dynamics at axonal growth cones are not fully unraveled. In our study we addressed the question how neurotrophic factor signaling corresponds to cell autonomous excitability and growth cone formation. Primary motoneurons from mouse embryos were cultured on the synapse specific, β2-chain containing laminin isoform (221) regulating axon elongation through spontaneous Ca2+ transients that are in turn induced by enhanced clustering of N-type specific voltage-gated Ca2+ channels (Cav2.2) in axonal growth cones. TrkB-deficient (trkBTK-/-) mouse motoneurons which express no full-length trkB receptor and wildtype motoneurons cultured without BDNF exhibited reduced spontaneous Ca2+ transients that corresponded to altered axon elongation and defects in growth cone morphology which was accompanied by changes in the local actin cytoskeleton. Vice versa, the acute application of BDNF resulted in the induction of spontaneous Ca2+ transients and Cav2.2 clustering in motor growth cones, as well as the activation of trkB downstream signaling cascades which promoted the stabilization of β-actin via the LIM kinase pathway and phosphorylation of profilin at Tyr129. Finally, we identified a mutual regulation of neuronal excitability and actin dynamics in axonal growth cones of embryonic motoneurons cultured on laminin-221/211. Impaired excitability resulted in dysregulated axon extension and local actin cytoskeleton, whereas upon β-actin knockdown Cav2.2 clustering was affected. We conclude from our data that in embryonic motoneurons BDNF/trkB signaling contributes to axon elongation and growth cone formation through changes in the local actin cytoskeleton accompanied by increased Cav2.2 clustering and local calcium transients. These findings may help to explore cellular mechanisms which might be dysregulated during maturation of embryonic motoneurons leading to motoneuron disease.
Collapse
Affiliation(s)
- Benjamin Dombert
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Stefanie Balk
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Mehri Moradi
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Rajeeve Sivadasan
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
54
|
Jean-Xavier C, Sharples SA, Mayr KA, Lognon AP, Whelan PJ. Retracing your footsteps: developmental insights to spinal network plasticity following injury. J Neurophysiol 2017; 119:521-536. [PMID: 29070632 DOI: 10.1152/jn.00575.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During development of the spinal cord, a precise interaction occurs between descending projections and sensory afferents, with spinal networks that lead to expression of coordinated motor output. In the rodent, during the last embryonic week, motor output first occurs as regular bursts of spontaneous activity, progressing to stochastic patterns of episodes that express bouts of coordinated rhythmic activity perinatally. Locomotor activity becomes functionally mature in the 2nd postnatal wk and is heralded by the onset of weight-bearing locomotion on the 8th and 9th postnatal day. Concomitantly, there is a maturation of intrinsic properties and key conductances mediating plateau potentials. In this review, we discuss spinal neuronal excitability, descending modulation, and afferent modulation in the developing rodent spinal cord. In the adult, plastic mechanisms are much more constrained but become more permissive following neurotrauma, such as spinal cord injury. We discuss parallel mechanisms that contribute to maturation of network function during development to mechanisms of pathological plasticity that contribute to aberrant motor patterns, such as spasticity and clonus, which emerge following central injury.
Collapse
Affiliation(s)
- C Jean-Xavier
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - S A Sharples
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - K A Mayr
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - A P Lognon
- Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - P J Whelan
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
55
|
Herrera-Rincon C, Pai VP, Moran KM, Lemire JM, Levin M. The brain is required for normal muscle and nerve patterning during early Xenopus development. Nat Commun 2017; 8:587. [PMID: 28943634 PMCID: PMC5610959 DOI: 10.1038/s41467-017-00597-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/10/2017] [Indexed: 01/20/2023] Open
Abstract
Possible roles of brain-derived signals in the regulation of embryogenesis are unknown. Here we use an amputation assay in Xenopus laevis to show that absence of brain alters subsequent muscle and peripheral nerve patterning during early development. The muscle phenotype can be rescued by an antagonist of muscarinic acetylcholine receptors. The observed defects occur at considerable distances from the head, suggesting that the brain provides long-range cues for other tissue systems during development. The presence of brain also protects embryos from otherwise-teratogenic agents. Overexpression of a hyperpolarization-activated cyclic nucleotide-gated ion channel rescues the muscle phenotype and the neural mispatterning that occur in brainless embryos, even when expressed far from the muscle or neural cells that mispattern. We identify a previously undescribed developmental role for the brain and reveal a non-local input into the control of early morphogenesis that is mediated by neurotransmitters and ion channel activity.Functions of the embryonic brain prior to regulating behavior are unclear. Here, the authors use an amputation assay in Xenopus laevis to demonstrate that removal of the brain early in development alters muscle and peripheral nerve patterning, which can be rescued by modulating bioelectric signals.
Collapse
Affiliation(s)
- Celia Herrera-Rincon
- Biology Department and Allen Discovery Center, Tufts University, 200 Boston Avenue, suite 4600, Medford, MA, 02155-4243, USA
| | - Vaibhav P Pai
- Biology Department and Allen Discovery Center, Tufts University, 200 Boston Avenue, suite 4600, Medford, MA, 02155-4243, USA
| | - Kristine M Moran
- Biology Department and Allen Discovery Center, Tufts University, 200 Boston Avenue, suite 4600, Medford, MA, 02155-4243, USA
| | - Joan M Lemire
- Biology Department and Allen Discovery Center, Tufts University, 200 Boston Avenue, suite 4600, Medford, MA, 02155-4243, USA
| | - Michael Levin
- Biology Department and Allen Discovery Center, Tufts University, 200 Boston Avenue, suite 4600, Medford, MA, 02155-4243, USA.
| |
Collapse
|
56
|
Momose-Sato Y, Sato K. Developmental roles of the spontaneous depolarization wave in synaptic network formation in the embryonic brainstem. Neuroscience 2017; 365:33-47. [PMID: 28951326 DOI: 10.1016/j.neuroscience.2017.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/29/2017] [Accepted: 09/18/2017] [Indexed: 01/25/2023]
Abstract
One of the earliest activities expressed within the developing central nervous system is a widely propagating wave-like activity, which we referred to as the depolarization wave. Despite considerable consensus concerning the global features of the activity, its physiological role is yet to be clarified. The depolarization wave is expressed during a specific period of functional synaptogenesis, and this developmental profile has led to the hypothesis that the wave plays some roles in synaptic network organization. In the present study, we tested this hypothesis by inhibiting the depolarization wave in ovo and examining its effects on the development of functional synapses in vagus nerve-related brainstem nuclei of the chick embryo. Chronic inhibition of the depolarization wave had no significant effect on the developmental time course, amplitude, and spatial distribution of monosynaptic excitatory postsynaptic potentials in the first-order nuclei of the vagal sensory pathway (the nucleus of the tractus solitarius (NTS) and the contralateral non-NTS region), but reduced polysynaptic responses in the higher-order nucleus (the parabrachial nucleus). These results suggest that the depolarization wave plays an important role in the initial process of functional synaptic expression in the brainstem, especially in the higher-order nucleus of the cranial sensory pathway.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Kanazawa-ku, Yokohama 236-8503, Japan.
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University, Inagi-shi, Tokyo 206-8511, Japan
| |
Collapse
|
57
|
Doll CA, Vita DJ, Broadie K. Fragile X Mental Retardation Protein Requirements in Activity-Dependent Critical Period Neural Circuit Refinement. Curr Biol 2017; 27:2318-2330.e3. [PMID: 28756946 PMCID: PMC5572839 DOI: 10.1016/j.cub.2017.06.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/30/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022]
Abstract
Activity-dependent synaptic remodeling occurs during early-use critical periods, when naive juveniles experience sensory input. Fragile X mental retardation protein (FMRP) sculpts synaptic refinement in an activity sensor mechanism based on sensory cues, with FMRP loss causing the most common heritable autism spectrum disorder (ASD), fragile X syndrome (FXS). In the well-mapped Drosophila olfactory circuitry, projection neurons (PNs) relay peripheral sensory information to the central brain mushroom body (MB) learning/memory center. FMRP-null PNs reduce synaptic branching and enlarge boutons, with ultrastructural and synaptic reconstitution MB connectivity defects. Critical period activity modulation via odorant stimuli, optogenetics, and transgenic tetanus toxin neurotransmission block show that elevated PN activity phenocopies FMRP-null defects, whereas PN silencing causes opposing changes. FMRP-null PNs lose activity-dependent synaptic modulation, with impairments restricted to the critical period. We conclude that FMRP is absolutely required for experience-dependent changes in synaptic connectivity during the developmental critical period of neural circuit optimization for sensory input.
Collapse
Affiliation(s)
- Caleb A Doll
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
| | - Dominic J Vita
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37203, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37203, USA; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37203, USA.
| |
Collapse
|
58
|
Spontaneous Release Regulates Synaptic Scaling in the Embryonic Spinal Network In Vivo. J Neurosci 2017; 36:7268-82. [PMID: 27383600 DOI: 10.1523/jneurosci.4066-15.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Homeostatic plasticity mechanisms maintain cellular or network spiking activity within a physiologically functional range through compensatory changes in synaptic strength or intrinsic cellular excitability. Synaptic scaling is one form of homeostatic plasticity that is triggered after blockade of spiking or neurotransmission in which the strengths of all synaptic inputs to a cell are multiplicatively scaled upward or downward in a compensatory fashion. We have shown previously that synaptic upscaling could be triggered in chick embryo spinal motoneurons by complete blockade of spiking or GABAA receptor (GABAAR) activation for 2 d in vivo Here, we alter GABAAR activation in a more physiologically relevant manner by chronically adjusting presynaptic GABA release in vivo using nicotinic modulators or an mGluR2 agonist. Manipulating GABAAR activation in this way triggered scaling in a mechanistically similar manner to scaling induced by complete blockade of GABAARs. Remarkably, we find that altering action-potential (AP)-independent spontaneous release was able to fully account for the observed bidirectional scaling, whereas dramatic changes in spiking activity associated with spontaneous network activity had little effect on quantal amplitude. The reliance of scaling on an AP-independent process challenges the plasticity's relatedness to spiking in the living embryonic spinal network. Our findings have implications for the trigger and function of synaptic scaling and suggest that spontaneous release functions to regulate synaptic strength homeostatically in vivo SIGNIFICANCE STATEMENT Homeostatic synaptic scaling is thought to prevent inappropriate levels of spiking activity through compensatory adjustments in the strength of synaptic inputs. Therefore, it is thought that perturbations in spike rate trigger scaling. Here, we find that dramatic changes in spiking activity in the embryonic spinal cord have little effect on synaptic scaling; conversely, alterations in GABAA receptor activation due to action-potential-independent GABA vesicle release can trigger scaling. The findings suggest that scaling in the living embryonic spinal cord functions to maintain synaptic strength and challenge the view that scaling acts to regulate spiking activity homeostatically. Finally, the results indicate that fetal exposure to drugs that influence GABA spontaneous release, such as nicotine, could profoundly affect synaptic maturation.
Collapse
|
59
|
In Vivo Calcium Signaling during Synaptic Refinement at the Drosophila Neuromuscular Junction. J Neurosci 2017; 37:5511-5526. [PMID: 28476946 DOI: 10.1523/jneurosci.2922-16.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/21/2022] Open
Abstract
Neural activity plays a key role in pruning aberrant synapses in various neural systems, including the mammalian cortex, where low-frequency (0.01 Hz) calcium oscillations refine topographic maps. However, the activity-dependent molecular mechanisms remain incompletely understood. Activity-dependent pruning also occurs at embryonic Drosophila neuromuscular junctions (NMJs), where low-frequency Ca2+ oscillations are required for synaptic refinement and the response to the muscle-derived chemorepellant Sema2a. We examined embryonic growth cone filopodia in vivo to directly observe their exploration and to analyze the episodic Ca2+ oscillations involved in refinement. Motoneuron filopodia repeatedly contacted off-target muscle fibers over several hours during late embryogenesis, with episodic Ca2+ signals present in both motile filopodia as well as in later-stabilized synaptic boutons. The Ca2+ transients matured over several hours into regular low-frequency (0.03 Hz) oscillations. In vivo imaging of intact embryos of both sexes revealed that the formation of ectopic filopodia is increased in Sema2a heterozygotes. We provide genetic evidence suggesting a complex presynaptic Ca2+-dependent signaling network underlying refinement that involves the phosphatases calcineurin and protein phosphatase-1, as well the serine/threonine kinases CaMKII and PKA. Significantly, this network influenced the neuron's response to the muscle's Sema2a chemorepellant, critical for the removal of off-target contacts.SIGNIFICANCE STATEMENT To address the question of how synaptic connectivity is established during development, we examined the behavior of growth cone filopodia during the exploration of both correct and off-target muscle fibers in Drosophila embryos. We demonstrate that filopodia repeatedly contact off-target muscles over several hours, until they ultimately retract. We show that intracellular signals are observed in motile and stabilized "ectopic" contacts. Several genetic experiments provide insight in the molecular pathway underlying network refinement, which includes oscillatory calcium signals via voltage-gated calcium channels as a key component. Calcium orchestrates the activity of several kinases and phosphatases, which interact in a coordinated fashion to regulate chemorepulsion exerted by the muscle.
Collapse
|
60
|
K + Channel Kv3.4 Is Essential for Axon Growth by Limiting the Influx of Ca 2+ into Growth Cones. J Neurosci 2017; 37:4433-4449. [PMID: 28320840 DOI: 10.1523/jneurosci.1076-16.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 11/21/2022] Open
Abstract
Membrane excitability in the axonal growth cones of embryonic neurons influences axon growth. Voltage-gated K+ (Kv) channels are key factors in controlling membrane excitability, but whether they regulate axon growth remains unclear. Here, we report that Kv3.4 is expressed in the axonal growth cones of embryonic spinal commissural neurons, motoneurons, dorsal root ganglion neurons, retinal ganglion cells, and callosal projection neurons during axon growth. Our in vitro (cultured dorsal spinal neurons of chick embryos) and in vivo (developing chick spinal commissural axons and rat callosal axons) findings demonstrate that knockdown of Kv3.4 by a specific shRNA impedes axon initiation, elongation, pathfinding, and fasciculation. In cultured dorsal spinal neurons, blockade of Kv3.4 by blood depressing substance II suppresses axon growth via an increase in the amplitude and frequency of Ca2+ influx through T-type and L-type Ca2+ channels. Electrophysiological results show that Kv3.4, the major Kv channel in the axonal growth cones of embryonic dorsal spinal neurons, is activated at more hyperpolarized potentials and inactivated more slowly than it is in postnatal and adult neurons. The opening of Kv3.4 channels effectively reduces growth cone membrane excitability, thereby limiting excessive Ca2+ influx at subthreshold potentials or during Ca2+-dependent action potentials. Furthermore, excessive Ca2+ influx induced by an optogenetic approach also inhibits axon growth. Our findings suggest that Kv3.4 reduces growth cone membrane excitability and maintains [Ca2+]i at an optimal concentration for normal axon growth.SIGNIFICANCE STATEMENT Accumulating evidence supports the idea that impairments in axon growth contribute to many clinical disorders, such as autism spectrum disorders, corpus callosum agenesis, Joubert syndrome, Kallmann syndrome, and horizontal gaze palsy with progressive scoliosis. Membrane excitability in the growth cone, which is mainly controlled by voltage-gated Ca2+ (Cav) and K+ (Kv) channels, modulates axon growth. The role of Cav channels during axon growth is well understood, but it is unclear whether Kv channels control axon outgrowth by regulating Ca2+ influx. This report shows that Kv3.4, which is transiently expressed in the axonal growth cones of many types of embryonic neurons, acts to reduce excessive Ca2+ influx through Cav channels and thus permits normal axon outgrowth.
Collapse
|
61
|
The Drosophila Postsynaptic DEG/ENaC Channel ppk29 Contributes to Excitatory Neurotransmission. J Neurosci 2017; 37:3171-3180. [PMID: 28213447 DOI: 10.1523/jneurosci.3850-16.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/30/2017] [Accepted: 02/12/2017] [Indexed: 11/21/2022] Open
Abstract
The protein family of degenerin/epithelial sodium channels (DEG/ENaCs) is composed of diverse animal-specific, non-voltage-gated ion channels that play important roles in regulating cationic gradients across epithelial barriers. Some family members are also enriched in neural tissues in both vertebrates and invertebrates. However, the specific neurophysiological functions of most DEG/ENaC-encoding genes remain poorly understood. The fruit fly Drosophila melanogaster is an excellent model for deciphering the functions of DEG/ENaC genes because its genome encodes an exceptionally large number of DEG/ENaC subunits termed pickpocket (ppk) 1-31 Here we demonstrate that ppk29 contributes specifically to the postsynaptic modulation of excitatory synaptic transmission at the larval neuromuscular junction. Electrophysiological data indicate that the function of ppk29 in muscle is necessary for normal postsynaptic responsivity to neurotransmitter release and for normal coordinated larval movement. The ppk29 mutation does not affect gross synaptic morphology and ultrastructure, which indicates that the observed phenotypes are likely due to defects in glutamate receptor function. Together, our data indicate that DEG/ENaC ion channels play a fundamental role in the postsynaptic regulation of excitatory neurotransmission.SIGNIFICANCE STATEMENT Members of the degenerin/epithelial sodium channel (DEG/ENaC) family are broadly expressed in epithelial and neuronal tissues. To date, the neurophysiological functions of most family members remain unknown. Here, by using the power of Drosophila genetics in combination with electrophysiological and behavioral approaches, we demonstrate that the DEG/ENaC-encoding gene pickpocket 29 contributes to baseline neurotransmission, possibly via the modulation of postsynaptic glutamate receptor functionality.
Collapse
|
62
|
Magown P, Rafuse VF, Brownstone RM. Microcircuit formation following transplantation of mouse embryonic stem cell-derived neurons in peripheral nerve. J Neurophysiol 2017; 117:1683-1689. [PMID: 28148646 DOI: 10.1152/jn.00943.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 11/22/2022] Open
Abstract
Motoneurons derived from embryonic stem cells can be transplanted in the tibial nerve, where they extend axons to functionally innervate target muscle. Here, we studied spontaneous muscle contractions in these grafts 3 mo following transplantation. One-half of the transplanted grafts generated rhythmic muscle contractions of variable patterns, either spontaneously or in response to brief electrical stimulation. Activity generated by transplanted embryonic stem cell-derived neurons was driven by glutamate and was modulated by muscarinic and GABAergic/glycinergic transmission. Furthermore, rhythmicity was promoted by the same transmitter combination that evokes rhythmic locomotor activity in spinal cord circuits. These results demonstrate that there is a degree of self-assembly of microcircuits in these peripheral grafts involving embryonic stem cell-derived motoneurons and interneurons. Such spontaneous activity is reminiscent of embryonic circuit development in which spontaneous activity is essential for proper connectivity and function and may be necessary for the grafts to form functional connections with muscle.NEW & NOTEWORTHY This manuscript demonstrates that, following peripheral transplantation of neurons derived from embryonic stem cells, the grafts are spontaneously active. The activity is produced and modulated by a number of transmitter systems, indicating that there is a degree of self-assembly of circuits in the grafts.
Collapse
Affiliation(s)
- Philippe Magown
- Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Victor F Rafuse
- Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Medicine (Neurology), Dalhousie University, Halifax, Nova Scotia, Canada; and
| | - Robert M Brownstone
- Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; .,Department of Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada.,Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
63
|
Abu Bakar N, Mohd Sata NSA, Ramlan NF, Wan Ibrahim WN, Zulkifli SZ, Che Abdullah CA, Ahmad S, Amal MNA. Evaluation of the neurotoxic effects of chronic embryonic exposure with inorganic mercury on motor and anxiety-like responses in zebrafish (Danio rerio) larvae. Neurotoxicol Teratol 2017; 59:53-61. [DOI: 10.1016/j.ntt.2016.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 01/12/2023]
|
64
|
Bourin PF, Puech M, Woisard V. Pediatric Aspect of Dysphagia. Dysphagia 2017. [DOI: 10.1007/174_2017_138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
65
|
The Many Hats of Sonic Hedgehog Signaling in Nervous System Development and Disease. J Dev Biol 2016; 4:jdb4040035. [PMID: 29615598 PMCID: PMC5831807 DOI: 10.3390/jdb4040035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/17/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023] Open
Abstract
Sonic hedgehog (Shh) signaling occurs concurrently with the many processes that constitute nervous system development. Although Shh is mostly known for its proliferative and morphogenic action through its effects on neural stem cells and progenitors, it also contributes to neuronal differentiation, axonal pathfinding and synapse formation and function. To participate in these diverse events, Shh signaling manifests differently depending on the maturational state of the responsive cell, on the other signaling pathways regulating neural cell function and the environmental cues that surround target cells. Shh signaling is particularly dynamic in the nervous system, ranging from canonical transcription-dependent, to non-canonical and localized to axonal growth cones. Here, we review the variety of Shh functions in the developing nervous system and their consequences for neurodevelopmental diseases and neural regeneration, with particular emphasis on the signaling mechanisms underlying Shh action.
Collapse
|
66
|
Calcium-induced apoptosis of developing cerebellar granule neurons depends causally on NGFI-B. Int J Dev Neurosci 2016; 55:82-90. [PMID: 27769911 DOI: 10.1016/j.ijdevneu.2016.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 11/23/2022] Open
Abstract
Immediate early gene nerve growth factor-induced clone B (NGFI-B), a nuclear receptor important for differentiation and apoptosis, is expressed in mice and rat cerebellum from an early stage of postnatal development. Following apoptotic stimuli NGFI-B translocates to mitochondria to initiate cell death processes. Controlled cell death is critical for correct cerebellar development. Immunohistochemical analysis of NGFI-B in sections of mice cerebella showed NGFI-B to be expressed in granule neurons in vivo at a time (P8-11) when apoptosis is known to occur. The importance of NGFI-B for apoptosis of cultured rat cerebellar granule neurons was investigated by inducing apoptosis with calcium ionophore A23187 (CaI, 0.1μM). Imaging studies of gfp-tagged NGFI-B confirmed that mitochondrial translocation of NGFI-B occurred following treatment with CaI and was reduced by addition of 9-cis-retinoic acid (1μM), a retinoid X receptor (RXR) agonist that prevents dimerization of RXR and NGFI-B that is known to occur before translocation. Consequently, 9-cis-retinoic acid partly reduced cell death. To address the causality of NGFI-B in apoptosis further, knock-down by siRNA was performed and it removed 85% of the NGFI-B protein. This resulted in a complete inhibition of apoptosis after CaI exposure. Together these findings suggest that NGFI-B plays a role in controlling correct cerebellar development.
Collapse
|
67
|
Momose-Sato Y, Sato K. Development of Spontaneous Activity in the Avian Hindbrain. Front Neural Circuits 2016; 10:63. [PMID: 27570506 PMCID: PMC4981603 DOI: 10.3389/fncir.2016.00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 07/29/2016] [Indexed: 11/13/2022] Open
Abstract
Spontaneous activity in the developing central nervous system occurs before the brain responds to external sensory inputs, and appears in the hindbrain and spinal cord as rhythmic electrical discharges of cranial and spinal nerves. This spontaneous activity recruits a large population of neurons and propagates like a wave over a wide region of the central nervous system. Here, we review spontaneous activity in the chick hindbrain by focusing on this large-scale synchronized activity. Asynchronous activity that is expressed earlier than the above mentioned synchronized activity and activity originating in midline serotonergic neurons are also briefly mentioned.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University Yokohama, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University Tokyo, Japan
| |
Collapse
|
68
|
Gafarov FM, Gafarova VR. The effect of the neural activity on topological properties of growing neural networks. J Integr Neurosci 2016; 15:305-319. [PMID: 27507003 DOI: 10.1142/s0219635216500187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.
Collapse
Affiliation(s)
- F M Gafarov
- 1 Institute of Computational Mathematics and Information Technologies, Laboratory of Neurobiology, Kazan Federal University, Kremlevskaya 35, Kazan, 420008, Russia
| | - V R Gafarova
- 2 Institute of Philology and Intercultural Communication, Kazan Federal University, Kremlevskaya 35, Kazan, 420008, Russia
| |
Collapse
|
69
|
Abstract
AbstractMore than 35 years ago, Meltzoff and Moore (1977) published their famous article, “Imitation of facial and manual gestures by human neonates.” Their central conclusion, that neonates can imitate, was and continues to be controversial. Here, we focus on an often-neglected aspect of this debate, namely, neonatal spontaneous behaviors themselves. We present a case study of a paradigmatic orofacial “gesture,” namely tongue protrusion and retraction (TP/R). Against the background of new research on mammalian aerodigestive development, we ask: How does the human aerodigestive system develop, and what role does TP/R play in the neonate's emerging system of aerodigestion? We show that mammalian aerodigestion develops in two phases: (1) from the onset of isolated orofacial movementsin uteroto the postnatal mastery of suckling at 4 months after birth; and (2) thereafter, from preparation to the mastery of mastication and deglutition of solid foods. Like other orofacial stereotypies, TP/R emerges in the first phase and vanishes prior to the second. Based upon recent advances in activity-driven early neural development, we suggest a sequence of three developmental events in which TP/R might participate: the acquisition of tongue control, the integration of the central pattern generator (CPG) for TP/R with other aerodigestive CPGs, and the formation of connections within the cortical maps of S1 and M1. If correct, orofacial stereotypies are crucial to the maturation of aerodigestion in the neonatal period but also unlikely to co-occur with imitative behavior.
Collapse
|
70
|
Vonhoff F, Keshishian H. Cyclic nucleotide signaling is required during synaptic refinement at the Drosophila neuromuscular junction. Dev Neurobiol 2016; 77:39-60. [PMID: 27281494 DOI: 10.1002/dneu.22407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/01/2023]
Abstract
The removal of miswired synapses is a fundamental prerequisite for normal circuit development, leading to clinical problems when aberrant. However, the underlying activity-dependent molecular mechanisms involved in synaptic pruning remain incompletely resolved. Here the dynamic properties of intracellular calcium oscillations and a role for cAMP signaling during synaptic refinement in intact Drosophila embryos were examined using optogenetic tools. We provide In vivo evidence at the single gene level that the calcium-dependent adenylyl cyclase rutabaga, the phosphodiesterase dunce, the kinase PKA, and Protein Phosphatase 1 (PP1) all operate within a functional signaling pathway to modulate Sema2a-dependent chemorepulsion. It was found that presynaptic cAMP levels were required to be dynamically maintained at an optimal level to suppress connectivity defects. It was also proposed that PP1 may serve as a molecular link between cAMP signaling and CaMKII in the pathway underlying refinement. The results introduced an in vivo model where presynaptic cAMP levels, downstream of electrical activity and calcium influx, act via PKA and PP1 to modulate the neuron's response to chemorepulsion involved in the withdrawal of off-target synaptic contacts. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 39-60, 2017.
Collapse
Affiliation(s)
- Fernando Vonhoff
- Molecular, Cellular, and Developmental Biology Department, Yale University, POB 208103, New Haven, Connecticut, 06520
| | - Haig Keshishian
- Molecular, Cellular, and Developmental Biology Department, Yale University, POB 208103, New Haven, Connecticut, 06520
| |
Collapse
|
71
|
Luhmann HJ, Sinning A, Yang JW, Reyes-Puerta V, Stüttgen MC, Kirischuk S, Kilb W. Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions. Front Neural Circuits 2016; 10:40. [PMID: 27252626 PMCID: PMC4877528 DOI: 10.3389/fncir.2016.00040] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/06/2016] [Indexed: 11/13/2022] Open
Abstract
Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity patterns become more complex, involve larger networks and propagate over several neocortical areas. The developmental shift from local to large-scale network activity is accompanied by a gradual shift from electrical to chemical synaptic transmission with an initial excitatory action of chloride-gated channels activated by GABA, glycine and taurine. Transient neuronal populations in the subplate (SP) support temporary circuits that play an important role in tuning early neocortical activity and the formation of mature neuronal networks. Thus, early spontaneous activity patterns control the formation of developing networks in sensory cortices, and disturbances of these activity patterns may lead to long-lasting neuronal deficits.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Vicente Reyes-Puerta
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Maik C Stüttgen
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| |
Collapse
|
72
|
Normal Molecular Specification and Neurodegenerative Disease-Like Death of Spinal Neurons Lacking the SNARE-Associated Synaptic Protein Munc18-1. J Neurosci 2016; 36:561-76. [PMID: 26758845 DOI: 10.1523/jneurosci.1964-15.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The role of synaptic activity during early formation of neural circuits is a topic of some debate; genetic ablation of neurotransmitter release by deletion of the Munc18-1 gene provides an excellent model to answer the question of whether such activity is required for early circuit formation. Previous analysis of Munc18-1(-/-) mouse mutants documented their grossly normal nervous system, but its molecular differentiation has not been assessed. Munc18-1 deletion in mice also results in widespread neurodegeneration that remains poorly characterized. In this study, we demonstrate that the early stages of spinal motor circuit formation, including motor neuron specification, axon growth and pathfinding, and mRNA expression, are unaffected in Munc18-1(-/-) mice, demonstrating that synaptic activity is dispensable for early nervous system development. Furthermore, we show that the neurodegeneration caused by Munc18-1 loss is cell autonomous, consistent with apparently normal expression of several neurotrophic factors and normal GDNF signaling. Consistent with cell-autonomous degeneration, we demonstrate defects in the trafficking of the synaptic proteins Syntaxin1a and PSD-95 and the TrkB and DCC receptors in Munc18-1(-/-) neurons; these defects do not appear to cause ER stress, suggesting other mechanisms for degeneration. Finally, we demonstrate pathological similarities to Alzheimer's disease, such as altered Tau phosphorylation, neurofibrillary tangles, and accumulation of insoluble protein plaques. Together, our results shed new light upon the neurodegeneration observed in Munc18-1(-/-) mice and argue that this phenomenon shares parallels with neurodegenerative diseases. SIGNIFICANCE STATEMENT In this work, we demonstrate the absence of a requirement for regulated neurotransmitter release in the assembly of early neuronal circuits by assaying transcriptional identity, axon growth and guidance, and mRNA expression in Munc18-1-null mice. Furthermore, we characterize the neurodegeneration observed in Munc18-1 mutants and demonstrate that this cell-autonomous process does not appear to be a result of defects in growth factor signaling or ER stress caused by protein trafficking defects. However, we find the presence of various pathological hallmarks of Alzheimer's disease that suggest parallels between the degeneration in these mutants and neurodegenerative conditions.
Collapse
|
73
|
Developmental plasticity of phrenic motoneuron and diaphragm properties with the inception of inspiratory drive transmission in utero. Exp Neurol 2016; 287:137-143. [PMID: 27181410 DOI: 10.1016/j.expneurol.2016.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 11/23/2022]
Abstract
The review outlines data consistent with the hypothesis that inspiratory drive transmission that generates fetal breathing movements (FBMs) is essential for the developmental plasticity of phrenic motoneurons (PMNs) and diaphragm musculature prior to birth. A systematic examination during the perinatal period demonstrated a very marked transformation of PMN and diaphragm properties coinciding with the onset and strengthening of inspiratory drive and FBMs in utero. This included studies of age-dependent changes of: i) morphology, neuronal coupling, passive and electrophysiological properties of PMNs; ii) rhythmic inspiratory activity in vitro; iii) FBMs generated in vivo detected by ultrasonography; iv) contractile and end-plate potential properties of diaphragm musculature. We also propose how the hypothesis can be further evaluated with studies of perinatal hypoglossal motoneuron-tongue musculature and the use of Dbx1 null mice that provide an experimental model lacking descending inspiratory drive transmission in utero.
Collapse
|
74
|
Gjorgjieva J, Evers JF, Eglen SJ. Homeostatic Activity-Dependent Tuning of Recurrent Networks for Robust Propagation of Activity. J Neurosci 2016; 36:3722-34. [PMID: 27030758 PMCID: PMC4812132 DOI: 10.1523/jneurosci.2511-15.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 01/31/2016] [Accepted: 02/09/2016] [Indexed: 11/21/2022] Open
Abstract
Developing neuronal networks display spontaneous bursts of action potentials that are necessary for circuit organization and tuning. While spontaneous activity has been shown to instruct map formation in sensory circuits, it is unknown whether it plays a role in the organization of motor networks that produce rhythmic output. Using computational modeling, we investigate how recurrent networks of excitatory and inhibitory neuronal populations assemble to produce robust patterns of unidirectional and precisely timed propagating activity during organism locomotion. One example is provided by the motor network inDrosophilalarvae, which generates propagating peristaltic waves of muscle contractions during crawling. We examine two activity-dependent models, which tune weak network connectivity based on spontaneous activity patterns: a Hebbian model, where coincident activity in neighboring populations strengthens connections between them; and a homeostatic model, where connections are homeostatically regulated to maintain a constant level of excitatory activity based on spontaneous input. The homeostatic model successfully tunes network connectivity to generate robust activity patterns with appropriate timing relationships between neighboring populations. These timing relationships can be modulated by the properties of spontaneous activity, suggesting its instructive role for generating functional variability in network output. In contrast, the Hebbian model fails to produce the tight timing relationships between neighboring populations required for unidirectional activity propagation, even when additional assumptions are imposed to constrain synaptic growth. These results argue that homeostatic mechanisms are more likely than Hebbian mechanisms to tune weak connectivity based on spontaneous input in a recurrent network for rhythm generation and robust activity propagation. SIGNIFICANCE STATEMENT How are neural circuits organized and tuned to maintain stable function and produce robust output? This task is especially difficult during development, when circuit properties change in response to variable environments and internal states. Many developing circuits exhibit spontaneous activity, but its role in the synaptic organization of motor networks that produce rhythmic output is unknown. We studied a model motor network, that when appropriately tuned, generates propagating activity as during crawling inDrosophilalarvae. Based on experimental evidence of activity-dependent tuning of connectivity, we examined plausible mechanisms by which appropriate connectivity emerges. Our results suggest that activity-dependent homeostatic mechanisms are better suited than Hebbian mechanisms for organizing motor network connectivity, and highlight an important difference from sensory areas.
Collapse
Affiliation(s)
- Julijana Gjorgjieva
- Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom,
| | - Jan Felix Evers
- Heidelberg University, Centre for Organismal Studies, Heidelberg D-69120, Germany, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, and
| | - Stephen J Eglen
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom, Cambridge Computational Biology Institute, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
75
|
Toth AB, Shum AK, Prakriya M. Regulation of neurogenesis by calcium signaling. Cell Calcium 2016; 59:124-34. [PMID: 27020657 DOI: 10.1016/j.ceca.2016.02.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/22/2022]
Abstract
Calcium (Ca(2+)) signaling has essential roles in the development of the nervous system from neural induction to the proliferation, migration, and differentiation of neural cells. Ca(2+) signaling pathways are shaped by interactions among metabotropic signaling cascades, intracellular Ca(2+) stores, ion channels, and a multitude of downstream effector proteins that activate specific genetic programs. The temporal and spatial dynamics of Ca(2+) signals are widely presumed to control the highly diverse yet specific genetic programs that establish the complex structures of the adult nervous system. Progress in the last two decades has led to significant advances in our understanding of the functional architecture of Ca(2+) signaling networks involved in neurogenesis. In this review, we assess the literature on the molecular and functional organization of Ca(2+) signaling networks in the developing nervous system and its impact on neural induction, gene expression, proliferation, migration, and differentiation. Particular emphasis is placed on the growing evidence for the involvement of store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels in these processes.
Collapse
Affiliation(s)
- Anna B Toth
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Andrew K Shum
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States.
| |
Collapse
|
76
|
Depolarizing GABA/glycine synaptic events switch from excitation to inhibition during frequency increases. Sci Rep 2016; 6:21753. [PMID: 26912194 PMCID: PMC4766471 DOI: 10.1038/srep21753] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/27/2016] [Indexed: 01/04/2023] Open
Abstract
By acting on their ionotropic chloride channel receptors, GABA and glycine represent the major inhibitory transmitters of the central nervous system. Nevertheless, in various brain structures, depolarizing GABAergic/glycinergic postsynaptic potentials (dGPSPs) lead to dual inhibitory (shunting) and excitatory components, the functional consequences of which remain poorly acknowledged. Indeed, the extent to which each component prevails during dGPSP is unclear. Understanding the mechanisms predicting the dGPSP outcome on neural network activity is therefore a major issue in neurobiology. By combining electrophysiological recordings of spinal embryonic mouse motoneurons and modelling study, we demonstrate that increasing the chloride conductance (gCl) favors inhibition either during a single dGPSP or during trains in which gCl summates. Finally, based on this summation mechanism, the excitatory effect of EPSPs is overcome by dGPSPs in a frequency-dependent manner. These results reveal an important mechanism by which dGPSPs protect against the overexcitation of neural excitatory circuits.
Collapse
|
77
|
A Serotonin Circuit Acts as an Environmental Sensor to Mediate Midline Axon Crossing through EphrinB2. J Neurosci 2016; 35:14794-808. [PMID: 26538650 DOI: 10.1523/jneurosci.1295-15.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Modulation of connectivity formation in the developing brain in response to external stimuli is poorly understood. Here, we show that the raphe nucleus and its serotonergic projections regulate pathfinding of commissural axons in zebrafish. We found that the raphe neurons extend projections toward midline-crossing axons and that when serotonergic signaling is blocked by pharmacological inhibition or by raphe neuron ablation, commissural pathfinding is disrupted. We demonstrate that the serotonin receptor htr2a is expressed on these commissural axons and that genetic knock-down of htr2a disrupts crossing. We further show that knock-down of htr2a or ablation of the raphe neurons increases ephrinB2a protein levels in commissural axons. An ephrinB2a mutant can rescue midline crossing when serotonergic signaling is blocked. Furthermore, we found that regulation of serotonin expression in the raphe neurons is modulated in response to the developmental environment. Hypoxia causes the raphe to decrease serotonin levels, leading to a reduction in midline crossing. Increasing serotonin in the setting of hypoxia restored midline crossing. Our findings demonstrate an instructive role for serotonin in axon guidance acting through ephrinB2a and reveal a novel mechanism for developmental interpretation of the environmental milieu in the generation of mature neural circuitry. SIGNIFICANCE STATEMENT We show here that serotonin has a novel role in regulating connectivity in response to the developmental environment. We demonstrate that serotonergic projections from raphe neurons regulate pathfinding of crossing axons. The neurons modulate their serotonin levels, and thus alter crossing, in response to the developmental environment including hypoxia. The findings suggest that modification of the serotonergic system by early exposures may contribute to permanent CNS connectivity alterations. This has important ramifications because of the association between premature birth and accompanying hypoxia, and increased risk of autism and evidence associating in utero exposure to some antidepressants and neurodevelopmental disorders. Finally, this work demonstrates that the vertebrate CNS can modulate its connectivity in response to the external environment.
Collapse
|
78
|
Cartocci V, Segatto M, Di Tunno I, Leone S, Pfrieger FW, Pallottini V. Modulation of the Isoprenoid/Cholesterol Biosynthetic Pathway During Neuronal Differentiation In Vitro. J Cell Biochem 2016; 117:2036-44. [PMID: 27392312 DOI: 10.1002/jcb.25500] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/27/2022]
Abstract
During differentiation, neurons acquire their typical shape and functional properties. At present, it is unclear, whether this important developmental step involves metabolic changes. Here, we studied the contribution of the mevalonate (MVA) pathway to neuronal differentiation using the mouse neuroblastoma cell line N1E-115 as experimental model. Our results show that during differentiation, the activity of 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR), a key enzyme of MVA pathway, and the level of Low Density Lipoprotein receptor (LDLr) decrease, whereas the level of LDLr-related protein-1 (LRP1) and the dimerization of Scavanger Receptor B1 (SRB-1) rise. Pharmacologic inhibition of HMGR by simvastatin accelerated neuronal differentiation by modulating geranylated proteins. Collectively, our data suggest that during neuronal differentiation, the activity of the MVA pathway decreases and we postulate that any interference with this process impacts neuronal morphology and function. Therefore, the MVA pathway appears as an attractive pharmacological target to modulate neurological and metabolic symptoms of developmental neuropathologies. J. Cell. Biochem. 117: 2036-2044, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Veronica Cartocci
- Department of Science, Biomedical and Technology Science Section, University Roma Tre, Viale Marconi, 446, 00146, Rome, Italy
| | - Marco Segatto
- Department of Biosciences, University of Milan, Via Giovanni Celoria, 26, 20133, Milan, Italy
| | - Ilenia Di Tunno
- Department of Science, Biomedical and Technology Science Section, University Roma Tre, Viale Marconi, 446, 00146, Rome, Italy
| | - Stefano Leone
- Department of Science, Biomedical and Technology Science Section, University Roma Tre, Viale Marconi, 446, 00146, Rome, Italy
| | - Frank W Pfrieger
- Institute of Cellular and Integrative Neurosciences (INCI) CNRS UPR 3212, University of Strasbourg, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | - Valentina Pallottini
- Department of Science, Biomedical and Technology Science Section, University Roma Tre, Viale Marconi, 446, 00146, Rome, Italy
| |
Collapse
|
79
|
Estes S, Zhong L, Artinian L, Rehder V. Regulation of electrical activity and neuronal excitability in Helisoma trivolvis by carbon monoxide. Neuroscience 2015; 311:453-63. [DOI: 10.1016/j.neuroscience.2015.10.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022]
|
80
|
Heidemann M, Streit J, Tscherter A. Investigating Functional Regeneration in Organotypic Spinal Cord Co-cultures Grown on Multi-electrode Arrays. J Vis Exp 2015. [PMID: 26436646 PMCID: PMC4692611 DOI: 10.3791/53121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Adult higher vertebrates have a limited potential to recover from spinal cord injury. Recently, evidence emerged that propriospinal connections are a promising target for intervention to improve functional regeneration. So far, no in vitro model exists that grants the possibility to examine functional recovery of propriospinal fibers. Therefore, a representative model that is based on two organotypic spinal cord sections of embryonic rat, cultured next to each other on multi-electrode arrays (MEAs) was developed. These slices grow and, within a few days in vitro, fuse along the sides facing each other. The design of the used MEAs permits the performance of lesions with a scalpel blade through this fusion site without inflicting damage on the MEAs. The slices show spontaneous activity, usually organized in network activity bursts, and spatial and temporal activity parameters such as the location of burst origins, speed and direction of their propagation and latencies between bursts can be characterized. Using these features, it is also possible to assess functional connection of the slices by calculating the amount of synchronized bursts between the two sides. Furthermore, the slices can be morphologically analyzed by performing immunohistochemical stainings after the recordings. Several advantages of the used techniques are combined in this model: the slices largely preserve the original tissue architecture with intact local synaptic circuitry, the tissue is easily and repeatedly accessible and neuronal activity can be detected simultaneously and non-invasively in a large number of spots at high temporal resolution. These features allow the investigation of functional regeneration of intraspinal connections in isolation in vitro in a sophisticated and efficient way.
Collapse
Affiliation(s)
| | - Jürg Streit
- Department of Physiology, University of Bern
| | | |
Collapse
|
81
|
DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 2015; 302:174-203. [PMID: 25242643 PMCID: PMC4366367 DOI: 10.1016/j.neuroscience.2014.09.027] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/25/2022]
Abstract
Peripheral nerves regenerate following injury due to the effective activation of the intrinsic growth capacity of the neurons and the formation of a permissive pathway for outgrowth due to Wallerian degeneration (WD). WD and subsequent regeneration are significantly influenced by various immune cells and the cytokines they secrete. Although macrophages have long been known to play a vital role in the degenerative process, recent work has pointed to their importance in influencing the regenerative capacity of peripheral neurons. In this review, we focus on the various immune cells, cytokines, and chemokines that make regeneration possible in the peripheral nervous system, with specific attention placed on the role macrophages play in this process.
Collapse
Affiliation(s)
| | - J A Lindborg
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - J P Niemi
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - R E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| |
Collapse
|
82
|
Glycine plays a crucial role as a co-agonist of NMDA receptors in the neuronal circuit generating body movements in rat fetuses. Neurosci Res 2015; 97:13-9. [DOI: 10.1016/j.neures.2015.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/01/2015] [Accepted: 03/10/2015] [Indexed: 12/15/2022]
|
83
|
Abbott CW, Kozanian OO, Huffman KJ. The effects of lifelong blindness on murine neuroanatomy and gene expression. Front Aging Neurosci 2015; 7:144. [PMID: 26257648 PMCID: PMC4513570 DOI: 10.3389/fnagi.2015.00144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/13/2015] [Indexed: 12/31/2022] Open
Abstract
Mammalian neocortical development is regulated by neural patterning mechanisms, with distinct sensory and motor areas arising through the process of arealization. This development occurs alongside developing central or peripheral sensory systems. Specifically, the parcellation of neocortex into specific areas of distinct cytoarchitecture, connectivity and function during development is reliant upon both cortically intrinsic mechanisms, such as gene expression, and extrinsic processes, such as input from the sensory receptors. This developmental program shifts from patterning to maintenance as the animal ages and is believed to be active throughout life, where the brain’s organization is stable yet plastic. In this study, we characterize the long-term effects of early removal of visual input via bilateral enucleation at birth. To understand the long-term effects of early blindness we conducted anatomical and molecular assays 18 months after enucleation, near the end of lifespan in the mouse. Bilateral enucleation early in life leads to long-term, stable size reductions of the thalamic lateral geniculate nucleus (LGN) and the primary visual cortex (V1) alongside a increase in individual whisker barrel size. Neocortical gene expression in the aging brain has not been previously identified; we document cortical expression of multiple regionalization genes. Expression patterns of Ephrin A5, COUP-TFI, and RZRβ and patterns of intraneocortical connectivity (INC) are altered in the neocortices of aging blind mice. Sensory inputs from different modalities during development likely play a major role in the development of cortical areal and thalamic nuclear boundaries. We suggest that early patterning by prenatal retinal activity combined with persistent gene expression within the thalamus and cortex is sufficient to establish and preserve a small but present LGN and V1 into late adulthood.
Collapse
Affiliation(s)
- Charles W Abbott
- Interdisciplinary Neuroscience Graduate Program, University of California, Riverside Riverside, CA, USA
| | - Olga O Kozanian
- Department of Psychology, University of California, Riverside Riverside, CA, USA
| | - Kelly J Huffman
- Interdisciplinary Neuroscience Graduate Program, University of California, Riverside Riverside, CA, USA ; Department of Psychology, University of California, Riverside Riverside, CA, USA
| |
Collapse
|
84
|
Hjorth JJJ, Dawitz J, Kroon T, Pires J, Dassen VJ, Berkhout JA, Emperador Melero J, Nadadhur AG, Alevra M, Toonen RF, Heine VM, Mansvelder HD, Meredith RM. Detection of silent cells, synchronization and modulatory activity in developing cellular networks. Dev Neurobiol 2015; 76:357-74. [PMID: 26097169 DOI: 10.1002/dneu.22319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 11/12/2022]
Abstract
Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers.
Collapse
Affiliation(s)
- Johannes J J Hjorth
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Julia Dawitz
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Tim Kroon
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Johny Pires
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Valerie J Dassen
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Janna A Berkhout
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Javier Emperador Melero
- Department of Functional Genomics, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Aish G Nadadhur
- Department of Functional Genomics, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Mihai Alevra
- Department of Neurophysiology and Cellular Biophysics, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Vivi M Heine
- Department of Functional Genomics, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands.,Department of Pediatrics/Child Neurology, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Rhiannon M Meredith
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| |
Collapse
|
85
|
Gonzalez-Islas C, Garcia-Bereguiain MA, O'Flaherty B, Wenner P. Tonic nicotinic transmission enhances spinal GABAergic presynaptic release and the frequency of spontaneous network activity. Dev Neurobiol 2015; 76:298-312. [PMID: 26061781 DOI: 10.1002/dneu.22315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/26/2015] [Accepted: 06/05/2015] [Indexed: 01/16/2023]
Abstract
Synaptically driven spontaneous network activity (SNA) is observed in virtually all developing networks. Recurrently connected spinal circuits express SNA, which drives fetal movements during a period of development when GABA is depolarizing and excitatory. Blockade of nicotinic acetylcholine receptor (nAChR) activation impairs the expression of SNA and the development of the motor system. It is mechanistically unclear how nicotinic transmission influences SNA, and in this study we tested several mechanisms that could underlie the regulation of SNA by nAChRs. We find evidence that is consistent with our previous work suggesting that cholinergically driven Renshaw cells can initiate episodes of SNA. While Renshaw cells receive strong nicotinic synaptic input, we see very little evidence suggesting other spinal interneurons or motoneurons receive nicotinic input. Rather, we found that nAChR activation tonically enhanced evoked and spontaneous presynaptic release of GABA in the embryonic spinal cord. Enhanced spontaneous and/or evoked release could contribute to increased SNA frequency. Finally, our study suggests that blockade of nAChRs can reduce the frequency of SNA by reducing probability of GABAergic release. This result suggests that the baseline frequency of SNA is maintained through elevated GABA release driven by tonically active nAChRs. Nicotinic receptors regulate GABAergic transmission and SNA, which are critically important for the proper development of the embryonic network. Therefore, our results provide a better mechanistic framework for understanding the motor consequences of fetal nicotine exposure.
Collapse
Affiliation(s)
- Carlos Gonzalez-Islas
- Department of Physiology, Emory University, School of Medicine, Whitehead Bldg, Room 601, Atlanta, Georgia, 30322
| | | | - Brendan O'Flaherty
- Department of Physiology, Emory University, School of Medicine, Whitehead Bldg, Room 601, Atlanta, Georgia, 30322
| | - Peter Wenner
- Department of Physiology, Emory University, School of Medicine, Whitehead Bldg, Room 601, Atlanta, Georgia, 30322
| |
Collapse
|
86
|
Lu DC, Niu T, Alaynick WA. Molecular and cellular development of spinal cord locomotor circuitry. Front Mol Neurosci 2015; 8:25. [PMID: 26136656 PMCID: PMC4468382 DOI: 10.3389/fnmol.2015.00025] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/30/2015] [Indexed: 01/20/2023] Open
Abstract
The spinal cord of vertebrate animals is comprised of intrinsic circuits that are capable of sensing the environment and generating complex motor behaviors. There are two major perspectives for understanding the biology of this complicated structure. The first approaches the spinal cord from the point of view of function and is based on classic and ongoing research in electrophysiology, adult behavior, and spinal cord injury. The second view considers the spinal cord from a developmental perspective and is founded mostly on gene expression and gain-of-function and loss-of-function genetic experiments. Together these studies have uncovered functional classes of neurons and their lineage relationships. In this review, we summarize our knowledge of developmental classes, with an eye toward understanding the functional roles of each group.
Collapse
Affiliation(s)
- Daniel C Lu
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Tianyi Niu
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - William A Alaynick
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| |
Collapse
|
87
|
Gartz Hanson M, Niswander LA. Rectification of muscle and nerve deficits in paralyzed ryanodine receptor type 1 mutant embryos. Dev Biol 2015; 404:76-87. [PMID: 26025922 DOI: 10.1016/j.ydbio.2015.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 02/05/2023]
Abstract
Locomotion and respiration require motor axon connectivity and activation of the neuromuscular junction (NMJ). Through a forward genetic screen for muscle weakness, we recently reported an allele of ryanodine receptor type 1 (Ryr1(AG)). Here we reveal a role for functional RyR1 during acetylcholine receptor (AChR) cluster formation and embryonic synaptic transmission. Ryr1(AG) homozygous embryos are non-motile. Motor axons extend past AChR clusters and enlarged AChR clusters are found under fasciculated nerves. Using physiological and pharmacological methods, we show that contractility can be resumed through the masking of a potassium leak, and evoked vesicular release can be resumed via bypassing the defect in RyR1 induced calcium release. Moreover, we show the involvement of ryanodine receptors in presynaptic release at the NMJ. This data provides evidence of a role for RyR1 on both the pre- and postsynaptic sides of the NMJ.
Collapse
Affiliation(s)
- M Gartz Hanson
- Department of Pediatrics University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, United States.
| | - Lee A Niswander
- Department of Pediatrics University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, United States
| |
Collapse
|
88
|
Castillo-Paterna M, Moreno-Juan V, Filipchuk A, Rodríguez-Malmierca L, Susín R, López-Bendito G. DCC functions as an accelerator of thalamocortical axonal growth downstream of spontaneous thalamic activity. EMBO Rep 2015; 16:851-62. [PMID: 25947198 DOI: 10.15252/embr.201439882] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/13/2015] [Indexed: 01/17/2023] Open
Abstract
Controlling the axon growth rate is fundamental when establishing brain connections. Using the thalamocortical system as a model, we previously showed that spontaneous calcium activity influences the growth rate of thalamocortical axons by regulating the transcription of Robo1 through an NF-κB-binding site in its promoter. Robo1 acts as a brake on the growth of thalamocortical axons in vivo. Here, we have identified the Netrin-1 receptor DCC as an accelerator for thalamic axon growth. Dcc transcription is regulated by spontaneous calcium activity in thalamocortical neurons and activating DCC signaling restores normal axon growth in electrically silenced neurons. Moreover, we identified an AP-1-binding site in the Dcc promoter that is crucial for the activity-dependent regulation of this gene. In summary, we have identified the Dcc gene as a novel downstream target of spontaneous calcium activity involved in axon growth. Together with our previous data, we demonstrate a mechanism to control axon growth that relies on the activity-dependent regulation of two functionally opposed receptors, Robo1 and DCC. These two proteins establish a tight and efficient means to regulate activity-guided axon growth in order to correctly establish neuronal connections during development.
Collapse
Affiliation(s)
- Mar Castillo-Paterna
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Joan d'Alacant, Spain
| | - Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Joan d'Alacant, Spain
| | - Anton Filipchuk
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Joan d'Alacant, Spain
| | - Luis Rodríguez-Malmierca
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Joan d'Alacant, Spain
| | - Rafael Susín
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Joan d'Alacant, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), San Joan d'Alacant, Spain
| |
Collapse
|
89
|
Shim Y, Husbands P. Incremental Embodied Chaotic Exploration of Self-Organized Motor Behaviors with Proprioceptor Adaptation. Front Robot AI 2015. [DOI: 10.3389/frobt.2015.00007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
90
|
Menelaou E, Paul LT, Perera SN, Svoboda KR. Motoneuron axon pathfinding errors in zebrafish: differential effects related to concentration and timing of nicotine exposure. Toxicol Appl Pharmacol 2015; 284:65-78. [PMID: 25668718 PMCID: PMC4567840 DOI: 10.1016/j.taap.2015.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 12/12/2022]
Abstract
Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15-30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Latoya T Paul
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Surangi N Perera
- Joseph J. Zilber School of Public Health, University of Wisconsin - Milwaukee, Milwaukee, WI 53205, USA
| | - Kurt R Svoboda
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Joseph J. Zilber School of Public Health, University of Wisconsin - Milwaukee, Milwaukee, WI 53205, USA.
| |
Collapse
|
91
|
Borodinsky LN, Belgacem YH, Swapna I, Visina O, Balashova OA, Sequerra EB, Tu MK, Levin JB, Spencer KA, Castro PA, Hamilton AM, Shim S. Spatiotemporal integration of developmental cues in neural development. Dev Neurobiol 2014; 75:349-59. [PMID: 25484201 DOI: 10.1002/dneu.22254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 12/13/2022]
Abstract
Nervous system development relies on the generation of neurons, their differentiation and establishment of synaptic connections. These events exhibit remarkable plasticity and are regulated by many developmental cues. Here, we review the mechanisms of three classes of these cues: morphogenetic proteins, electrical activity, and the environment. We focus on second messenger dynamics and their role as integrators of the action of diverse cues, enabling plasticity in the process of neural development.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, University of California Davis School of Medicine, Sacramento, California, 95817
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Vesprini ND, Dawson TF, Yuan Y, Bruce D, Spencer GE. Retinoic acid affects calcium signaling in adult molluscan neurons. J Neurophysiol 2014; 113:172-81. [PMID: 25343782 DOI: 10.1152/jn.00458.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinoic acid, the active metabolite of vitamin A, is important for nervous system development, regeneration, as well as cognitive functions of the adult central nervous system. These central nervous system functions are all highly dependent on neuronal activity. Retinoic acid has previously been shown to induce changes in the firing properties and action potential waveforms of adult molluscan neurons in a dose- and isomer-dependent manner. In this study, we aimed to determine the cellular pathways by which retinoic acid might exert such effects, by testing the involvement of pathways previously shown to be affected by retinoic acid. We demonstrated that the ability of all-trans retinoic acid (atRA) to induce electrophysiological changes in cultured molluscan neurons was not prevented by inhibitors of protein synthesis, protein kinase A or phospholipase C. However, we showed that atRA was capable of rapidly reducing intracellular calcium levels in the same dose- and isomer-dependent manner as shown previously for changes in neuronal firing. Moreover, we also demonstrated that the transmembrane ion flux through voltage-gated calcium channels was rapidly modulated by retinoic acid. In particular, the peak current density was reduced and the inactivation rate was increased in the presence of atRA, over a similar time course as the changes in cell firing and reductions in intracellular calcium. These studies provide further evidence for the ability of atRA to induce rapid effects in mature neurons.
Collapse
Affiliation(s)
- Nicholas D Vesprini
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Taylor F Dawson
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Ye Yuan
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Doug Bruce
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
93
|
Estes S, Zhong LR, Artinian L, Tornieri K, Rehder V. The role of action potentials in determining neuron-type-specific responses to nitric oxide. Dev Neurobiol 2014; 75:435-51. [DOI: 10.1002/dneu.22233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/22/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Stephen Estes
- Department of Biology; Georgia State University; Atlanta Georgia 30302
| | - Lei Ray Zhong
- Department of Biology; Georgia State University; Atlanta Georgia 30302
| | - Liana Artinian
- Department of Biology; Georgia State University; Atlanta Georgia 30302
| | - Karine Tornieri
- Department of Biology; Georgia State University; Atlanta Georgia 30302
| | - Vincent Rehder
- Department of Biology; Georgia State University; Atlanta Georgia 30302
| |
Collapse
|
94
|
Darabid H, Perez-Gonzalez AP, Robitaille R. Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nat Rev Neurosci 2014; 15:630-1. [DOI: 10.1038/nrn3821] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
95
|
Hanson MG, Niswander LA. An explant muscle model to examine the refinement of the synaptic landscape. J Neurosci Methods 2014; 238:95-104. [PMID: 25251554 DOI: 10.1016/j.jneumeth.2014.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/27/2014] [Accepted: 09/12/2014] [Indexed: 01/14/2023]
Abstract
Signals from nerve and muscle regulate the formation of synapses. Transgenic mouse models and muscle cell cultures have elucidated the molecular mechanisms required for aggregation and stabilization of synaptic structures. However, far less is known about the molecular pathways involved in redistribution of muscle synaptic components. Here we established a physiologically viable whole-muscle embryonic explant system, in the presence or absence of the nerve, which demonstrates the synaptic landscape is dynamic and malleable. Manipulations of factors intrinsic to the muscle or extrinsically provided by the nerve illustrate vital functions during formation, redistribution and elimination of acetylcholine receptor (AChR) clusters. In particular, RyR1 activity is an important mediator of these functions. This physiologically relevant and readily accessible explant system provides a new approach to genetically uncouple nerve-derived signals and for manipulation via signaling molecules, drugs, and electrical stimulation to examine early formation of the neuromuscular circuit.
Collapse
Affiliation(s)
- Martin Gartz Hanson
- Howard Hughes Medical Institute, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, United States.
| | - Lee A Niswander
- Howard Hughes Medical Institute, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, United States
| |
Collapse
|
96
|
Suárez R, Fenlon LR, Marek R, Avitan L, Sah P, Goodhill GJ, Richards LJ. Balanced interhemispheric cortical activity is required for correct targeting of the corpus callosum. Neuron 2014; 82:1289-98. [PMID: 24945772 DOI: 10.1016/j.neuron.2014.04.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Bilateral integration of sensory and associative brain processing is achieved by precise connections between homologous regions in the two hemispheres via the corpus callosum. These connections form postnatally, and unilateral deprivation of sensory or spontaneous cortical activity during a critical period severely disrupts callosal wiring. However, little is known about how this early activity affects precise circuit formation. Here, using in utero electroporation of reporter genes, optogenetic constructs, and direct disruption of activity in callosal neurons combined with whisker ablations, we show that balanced interhemispheric activity, and not simply intact cortical activity in either hemisphere, is required for functional callosal targeting. Moreover, bilateral ablation of whiskers in symmetric or asymmetric configurations shows that spatially symmetric interhemispheric activity is required for appropriate callosal targeting. Our findings reveal a principle governing axon targeting, where spatially balanced activity between regions is required to establish their appropriate connectivity.
Collapse
Affiliation(s)
- Rodrigo Suárez
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laura R Fenlon
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Roger Marek
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lilach Avitan
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
97
|
Clause A, Kim G, Sonntag M, Weisz CJC, Vetter DE, Rűbsamen R, Kandler K. The precise temporal pattern of prehearing spontaneous activity is necessary for tonotopic map refinement. Neuron 2014; 82:822-35. [PMID: 24853941 DOI: 10.1016/j.neuron.2014.04.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Patterned spontaneous activity is a hallmark of developing sensory systems. In the auditory system, rhythmic bursts of spontaneous activity are generated in cochlear hair cells and propagated along central auditory pathways. The role of these activity patterns in the development of central auditory circuits has remained speculative. Here we demonstrate that blocking efferent cholinergic neurotransmission to developing hair cells in mice that lack the α9 subunit of nicotinic acetylcholine receptors (α9 KO mice) altered the temporal fine structure of spontaneous activity without changing activity levels. KO mice showed a severe impairment in the functional and structural sharpening of an inhibitory tonotopic map, as evidenced by deficits in synaptic strengthening and silencing of connections and an absence in axonal pruning. These results provide evidence that the precise temporal pattern of spontaneous activity before hearing onset is crucial for the establishment of precise tonotopy, the major organizing principle of central auditory pathways.
Collapse
Affiliation(s)
- Amanda Clause
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Gunsoo Kim
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Mandy Sonntag
- Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany
| | - Catherine J C Weisz
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Douglas E Vetter
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Rudolf Rűbsamen
- Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany
| | - Karl Kandler
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
98
|
Sillar KT, Combes D, Simmers J. Neuromodulation in developing motor microcircuits. Curr Opin Neurobiol 2014; 29:73-81. [PMID: 24967995 DOI: 10.1016/j.conb.2014.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/23/2014] [Accepted: 05/24/2014] [Indexed: 01/14/2023]
Abstract
Neuromodulation confers operational flexibility on motor network output and resulting behaviour. Furthermore, neuromodulators play crucial long-term roles in the assembly and maturational shaping of the same networks as they develop. Although previous studies have identified such modulator-dependent contributions to microcircuit ontogeny, some of the underlying mechanisms are only now being elucidated. Deciphering the role of neuromodulatory systems in motor network development has potentially important implications for post-lesional regenerative strategies in adults.
Collapse
Affiliation(s)
- Keith T Sillar
- School of Psychology and Neuroscience, University of St Andrews, Westburn Lane, St Andrews, Fife KY16 9JP, Scotland, UK.
| | - Denis Combes
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS Unité Mixte de Recherche 5287, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - John Simmers
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS Unité Mixte de Recherche 5287, 146 rue Léo Saignat, 33076 Bordeaux, France
| |
Collapse
|
99
|
Lu ZG, Li MH, Wang JS, Wei DD, Liu QW, Kong LY. Developmental toxicity and neurotoxicity of two matrine-type alkaloids, matrine and sophocarpine, in zebrafish (Danio rerio) embryos/larvae. Reprod Toxicol 2014; 47:33-41. [PMID: 24911943 DOI: 10.1016/j.reprotox.2014.05.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 04/11/2014] [Accepted: 05/24/2014] [Indexed: 02/07/2023]
Abstract
Matrine and sophocarpine are two major matrine-type alkaloids included in the traditional Chinese medicine (TCM) Kushen (the root of Sophora flavescens Ait.). They have been widely used clinically in China, however with few reports concerning their potential toxicities. This study investigated the developmental toxicity and neurotoxicity of matrine and sophocarpine on zebrafish embryos/larvae from 0 to 96/120h post fertilization (hpf). Both drugs displayed teratogenic and lethal effects with the EC50 and LC50 values at 145 and 240mg/L for matrine and 87.1 and 166mg/L for sophocarpine, respectively. Exposure of matrine and sophocarpine significantly altered spontaneous movement and inhibited swimming performance at concentrations below those causing lethality and malformations, indicating a neurotoxic potential of both drugs. The results are in agreement with most mammalian studies and clinical observations.
Collapse
Affiliation(s)
- Zhao-Guang Lu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Ming-Hui Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science & Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Dan-Dan Wei
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Qing-Wang Liu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
100
|
Abstract
In the developing nervous system, ordered neuronal activity patterns can occur even in the absence of sensory input and to investigate how these arise, we have used the model system of the embryonic chicken spinal motor circuit, focusing on motor neurons of the lateral motor column (LMC). At the earliest stages of their molecular differentiation, we can detect differences between medial and lateral LMC neurons in terms of expression of neurotransmitter receptor subunits, including CHRNA5, CHRNA7, GRIN2A, GRIK1, HTR1A and HTR1B, as well as the KCC2 transporter. Using patch-clamp recordings we also demonstrate that medial and lateral LMC motor neurons have subtly different activity patterns that reflect the differential expression of neurotransmitter receptor subunits. Using a combination of patch-clamp recordings in single neurons and calcium-imaging of motor neuron populations, we demonstrate that inhibition of nicotinic, muscarinic or GABA-ergic activity, has profound effects of motor circuit activity during the initial stages of neuromuscular junction formation. Finally, by analysing the activity of large populations of motor neurons at different developmental stages, we show that the asynchronous, disordered neuronal activity that occurs at early stages of circuit formation develops into organised, synchronous activity evident at the stage of LMC neuron muscle innervation. In light of the considerable diversity of neurotransmitter receptor expression, activity patterns in the LMC are surprisingly similar between neuronal types, however the emergence of patterned activity, in conjunction with the differential expression of transmitter systems likely leads to the development of near-mature patterns of locomotor activity by perinatal ages.
Collapse
Affiliation(s)
- Chris Law
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Canada
| | - Michel Paquet
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Canada
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Canada
- Departments of Anatomy and Cell Biology, and Biology, Division of Experimental Medicine, McGill University Montréal, Montréal, Canada, and Faculté de Médecine, Université de Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|