51
|
miRNA expression profiling in a human stem cell-based model as a tool for developmental neurotoxicity testing. Cell Biol Toxicol 2013; 29:239-57. [PMID: 23903816 DOI: 10.1007/s10565-013-9250-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
The main aim of this study was to evaluate whether microRNA (miRNA) profiling could be a useful tool for in vitro developmental neurotoxicity (DNT) testing. Therefore, to identify the possible DNT biomarkers among miRNAs, we have studied the changes in miRNA expressions in a mixed neuronal/glial culture derived from carcinoma pluripotent stem cells (NT2 cell line) after exposure to methyl mercury chloride (MeHgCl) during the process of neuronal differentiation (2-36 days in vitro (DIV1)). The neuronal differentiation triggered by exposure to retinoic acid (RA) was characterized in the control culture by mRNA expression analysis of neuronal specific markers such as MAP2, NF-200, Tubulin βIII, MAPT-tau, synaptophysin as well as excitatory (NMDA, AMPA) and inhibitory (GABA) receptors. The results obtained from the miRNA expression analysis have identified the presence of a miRNA signature which is specific for neural differentiation in the control culture and another for the response to MeHgCl-induced toxicity. In differentiated neuronal control cultures, we observed the downregulation of the stemness phenotype-linked miR-302 cluster and the overexpression of several miRNAs specific for neuronal differentiation (e.g. let-7, miR-125b and miR-132). In the cultures exposed to MeHgCl (400 nM), we observed an overexpression of a signature composed of five miRNAs (miR-302b, miR-367, miR-372, miR-196b and miR-141) that are known to be involved in the regulation of developmental processes and cellular stress response mechanisms. Using gene ontology term and pathway enrichment analysis of the validated targets of the miRNAs deregulated by the toxic treatment, the possible effect of MeHgCl exposure on signalling pathways involved in axon guidance and learning and memory processes was revealed. The obtained data suggest that miRNA profiling could provide simplified functional evaluation of the toxicity pathways involved in developmental neurotoxicity in comparison with the transcriptomics studies.
Collapse
|
52
|
Coutinho-Budd J, Freeman MR. Probing the enigma: unraveling glial cell biology in invertebrates. Curr Opin Neurobiol 2013; 23:1073-9. [PMID: 23896311 DOI: 10.1016/j.conb.2013.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 12/11/2022]
Abstract
Despite their predominance in the nervous system, the precise ways in which glial cells develop and contribute to overall neural function remain poorly defined in any organism. Investigations in simple model organisms have identified remarkable morphological, molecular, and functional similarities between invertebrate and vertebrate glial subtypes. Invertebrates like Drosophila and Caenorhabditis elegans offer an abundance of tools for in vivo genetic manipulation of single cells or whole populations of glia, ease of access to neural tissues throughout development, and the opportunity for forward genetic analysis of fundamental aspects of glial cell biology. These features suggest that invertebrate model systems have high potential for vastly improving the understanding of glial biology. This review highlights recent work in Drosophila and other invertebrates that reveal new insights into basic mechanisms involved in glial development.
Collapse
Affiliation(s)
- Jaeda Coutinho-Budd
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | | |
Collapse
|
53
|
Southall TD, Gold KS, Egger B, Davidson CM, Caygill EE, Marshall OJ, Brand AH. Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA Pol II occupancy in neural stem cells. Dev Cell 2013; 26:101-12. [PMID: 23792147 PMCID: PMC3714590 DOI: 10.1016/j.devcel.2013.05.020] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/20/2013] [Accepted: 05/24/2013] [Indexed: 12/20/2022]
Abstract
Cell-type-specific transcriptional profiling often requires the isolation of specific cell types from complex tissues. We have developed “TaDa,” a technique that enables cell-specific profiling without cell isolation. TaDa permits genome-wide profiling of DNA- or chromatin-binding proteins without cell sorting, fixation, or affinity purification. The method is simple, sensitive, highly reproducible, and transferable to any model system. We show that TaDa can be used to identify transcribed genes in a cell-type-specific manner with considerable temporal precision, enabling the identification of differential gene expression between neuroblasts and the neuroepithelial cells from which they derive. We profile the genome-wide binding of RNA polymerase II in these adjacent, clonally related stem cells within intact Drosophila brains. Our data reveal expression of specific metabolic genes in neuroepithelial cells, but not in neuroblasts, and highlight gene regulatory networks that may pattern neural stem cell fates. TaDa is a method for cell-type-specific profiling of chromatin binding proteins TaDa does not require cell sorting, fixation, or affinity purification This is a highly sensitive and robust technique for transcriptional profiling We report differential RNA Pol II binding in clonally related stem cells
Collapse
Affiliation(s)
- Tony D Southall
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | | | | | | | | | |
Collapse
|
54
|
Laneve P, Delaporte C, Trebuchet G, Komonyi O, Flici H, Popkova A, D'Agostino G, Taglini F, Kerekes I, Giangrande A. The Gcm/Glide molecular and cellular pathway: new actors and new lineages. Dev Biol 2012; 375:65-78. [PMID: 23276603 DOI: 10.1016/j.ydbio.2012.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/18/2012] [Accepted: 12/14/2012] [Indexed: 12/21/2022]
Abstract
In Drosophila, the transcription factor Gcm/Glide plays a key role in cell fate determination and cellular differentiation. In light of its crucial biological impact, major efforts have been put for analyzing its properties as master regulator, from both structural and functional points of view. However, the lack of efficient antibodies specific to the Gcm/Glide protein precluded thorough analyses of its regulation and activity in vivo. In order to relieve such restraints, we designed an epitope-tagging approach to "FLAG"-recognize and analyze the functional protein both in vitro (exogenous Gcm/Glide) and in vivo (endogenous protein). We here (i) reveal a tight interconnection between the small RNA and the Gcm/Glide pathways. AGO1 and miR-1 are Gcm/Glide targets whereas miR-279 negatively controls Gcm/Glide expression (ii) identify a novel cell population, peritracheal cells, expressing and requiring Gcm/Glide. Peritracheal cells are non-neuronal neurosecretory cells that are essential in ecdysis. In addition to emphasizing the importance of following the distribution and the activity of endogenous proteins in vivo, this study provides new insights and a novel frame to understand the Gcm/Glide biology.
Collapse
Affiliation(s)
- Pietro Laneve
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Popkova A, Bernardoni R, Diebold C, Van de Bor V, Schuettengruber B, González I, Busturia A, Cavalli G, Giangrande A. Polycomb controls gliogenesis by regulating the transient expression of the Gcm/Glide fate determinant. PLoS Genet 2012; 8:e1003159. [PMID: 23300465 PMCID: PMC3531469 DOI: 10.1371/journal.pgen.1003159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 10/26/2012] [Indexed: 11/19/2022] Open
Abstract
The Gcm/Glide transcription factor is transiently expressed and required in the Drosophila nervous system. Threshold Gcm/Glide levels control the glial versus neuronal fate choice, and its perdurance triggers excessive gliogenesis, showing that its tight and dynamic regulation ensures the proper balance between neurons and glia. Here, we present a genetic screen for potential gcm/glide interactors and identify genes encoding chromatin factors of the Trithorax and of the Polycomb groups. These proteins maintain the heritable epigenetic state, among others, of HOX genes throughout development, but their regulatory role on transiently expressed genes remains elusive. Here we show that Polycomb negatively affects Gcm/Glide autoregulation, a positive feedback loop that allows timely accumulation of Gcm/Glide threshold levels. Such temporal fine-tuning of gene expression tightly controls gliogenesis. This work performed at the levels of individual cells reveals an undescribed mode of Polycomb action in the modulation of transiently expressed fate determinants and hence in the acquisition of specific cell identity in the nervous system.
Collapse
Affiliation(s)
- Anna Popkova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Timofeev K, Joly W, Hadjieconomou D, Salecker I. Localized netrins act as positional cues to control layer-specific targeting of photoreceptor axons in Drosophila. Neuron 2012; 75:80-93. [PMID: 22794263 PMCID: PMC3398394 DOI: 10.1016/j.neuron.2012.04.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2012] [Indexed: 02/01/2023]
Abstract
A shared feature of many neural circuits is their organization into synaptic layers. However, the mechanisms that direct neurites to distinct layers remain poorly understood. We identified a central role for Netrins and their receptor Frazzled in mediating layer-specific axon targeting in the Drosophila visual system. Frazzled is expressed and cell autonomously required in R8 photoreceptors for directing their axons to the medulla-neuropil layer M3. Netrin-B is specifically localized in this layer owing to axonal release by lamina neurons L3 and capture by target neuron-associated Frazzled. Ligand expression in L3 is sufficient to rescue R8 axon-targeting defects of Netrin mutants. R8 axons target normally despite replacement of diffusible Netrin-B by membrane-tethered ligands. Finally, Netrin localization is instructive because expression in ectopic layers can retarget R8 axons. We propose that provision of localized chemoattractants by intermediate target neurons represents a highly precise strategy to direct axons to a positionally defined layer.
Collapse
Affiliation(s)
- Katarina Timofeev
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, UK
| | | | | | | |
Collapse
|
57
|
Wang CW, Sun YH. Segregation of eye and antenna fates maintained by mutual antagonism in Drosophila. Development 2012; 139:3413-21. [DOI: 10.1242/dev.078857] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A general question in development is how do adjacent primordia adopt different developmental fates and stably maintain their distinct fates? In Drosophila melanogaster, the adult eye and antenna originate from the embryonic eye-antenna primordium. These cells proliferate in the larval stage to form the eye-antenna disc. The eye or antenna differs at mid second instar with the restricted expression of Cut (Ct), a homeodomain transcriptional repressor, in the antenna disc and Eyeless (Ey), a Pax6 transcriptional activator, in the eye disc. In this study, we show that ey transcription in the antenna disc is repressed by two homeodomain proteins, Ct and Homothorax (Hth). Loss of Ct and Hth in the antenna disc resulted in ectopic eye development in the antenna. Conversely, the Ct and Hth expression in the eye disc was suppressed by the homeodomain transcription factor Sine oculis (So), a direct target of Ey. Loss of So in the eye disc caused ectopic antenna development in the eye. Therefore, the segregation of eye and antenna fates is stably maintained by mutual repression of the other pathway.
Collapse
Affiliation(s)
- Cheng-Wei Wang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | - Y. Henry Sun
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| |
Collapse
|
58
|
Avet-Rochex A, Kaul AK, Gatt AP, McNeill H, Bateman JM. Concerted control of gliogenesis by InR/TOR and FGF signalling in the Drosophila post-embryonic brain. Development 2012; 139:2763-72. [PMID: 22745312 PMCID: PMC3392704 DOI: 10.1242/dev.074179] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2012] [Indexed: 12/19/2022]
Abstract
Glial cells are essential for the development and function of the nervous system. In the mammalian brain, vast numbers of glia of several different functional types are generated during late embryonic and early foetal development. However, the molecular cues that instruct gliogenesis and determine glial cell type are poorly understood. During post-embryonic development, the number of glia in the Drosophila larval brain increases dramatically, potentially providing a powerful model for understanding gliogenesis. Using glial-specific clonal analysis we find that perineural glia and cortex glia proliferate extensively through symmetric cell division in the post-embryonic brain. Using pan-glial inhibition and loss-of-function clonal analysis we find that Insulin-like receptor (InR)/Target of rapamycin (TOR) signalling is required for the proliferation of perineural glia. Fibroblast growth factor (FGF) signalling is also required for perineural glia proliferation and acts synergistically with the InR/TOR pathway. Cortex glia require InR in part, but not downstream components of the TOR pathway, for proliferation. Moreover, cortex glia absolutely require FGF signalling, such that inhibition of the FGF pathway almost completely blocks the generation of cortex glia. Neuronal expression of the FGF receptor ligand Pyramus is also required for the generation of cortex glia, suggesting a mechanism whereby neuronal FGF expression coordinates neurogenesis and cortex gliogenesis. In summary, we have identified two major pathways that control perineural and cortex gliogenesis in the post-embryonic brain and have shown that the molecular circuitry required is lineage specific.
Collapse
Affiliation(s)
- Amélie Avet-Rochex
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Aamna K. Kaul
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Ariana P. Gatt
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Helen McNeill
- Samuel Lunenfeld Research Institute, Toronto, Ontario M5G 1X5, Canada
| | - Joseph M. Bateman
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
59
|
Mao H, Lv Z, Ho MS. Gcm proteins function in the developing nervous system. Dev Biol 2012; 370:63-70. [PMID: 22842100 DOI: 10.1016/j.ydbio.2012.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 07/02/2012] [Accepted: 07/10/2012] [Indexed: 11/17/2022]
Abstract
A fundamental issue during nervous system development is how individual cells are formed from the undefined precursors. Differentiated neurons and glia, two major cell types mediating neuronal function, are acquired from immature precursors via a series of explicit controls exerted by transcription factors such as proteins in the family of Glial cells missing (Gcm). In mammals, Gcm proteins are involved in placenta and parathyroid gland development, whereas in the invertebrate organism Drosophila, Gcm proteins act as fate determinants for glial cell fate, regulate neural stem cell (NSC) induction and conversion, and promote glial proliferation. In particular, Gcm protein levels are carefully tuned for Drosophila gliogenesis and their stability is under precise control via the ubiquitin-proteasome system (UPS). Here we summarize recent advances on Gcm proteins function. In addition to describe various features of Gcm protein family, the significance of their functions in the developing nervous system is also discussed.
Collapse
Affiliation(s)
- Haian Mao
- Department of Nuclear Medicine, Shanghai Tenth Hospital, Tongji University, Shanghai 200072, China
| | | | | |
Collapse
|
60
|
Edwards TN, Nuschke AC, Nern A, Meinertzhagen IA. Organization and metamorphosis of glia in the Drosophila visual system. J Comp Neurol 2012; 520:2067-85. [DOI: 10.1002/cne.23071] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
61
|
Haberman A, Williamson WR, Epstein D, Wang D, Rina S, Meinertzhagen IA, Hiesinger PR. The synaptic vesicle SNARE neuronal Synaptobrevin promotes endolysosomal degradation and prevents neurodegeneration. ACTA ACUST UNITED AC 2012; 196:261-76. [PMID: 22270918 PMCID: PMC3265959 DOI: 10.1083/jcb.201108088] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The synaptic v-SNARE n-Syb functions not only in synaptic vesicle exocytosis but also in delivery of protein-degrading enzymes to endosomes that are necessary to prevent protein aggregation and neurodegeneration. Soluble NSF attachment protein receptors (SNAREs) are the core proteins in membrane fusion. The neuron-specific synaptic v-SNARE n-syb (neuronal Synaptobrevin) plays a key role during synaptic vesicle exocytosis. In this paper, we report that loss of n-syb caused slow neurodegeneration independent of its role in neurotransmitter release in adult Drosophila melanogaster photoreceptor neurons. In addition to synaptic vesicles, n-Syb localized to endosomal vesicles. Loss of n-syb lead to endosomal accumulations, transmembrane protein degradation defects, and a secondary increase in autophagy. Our evidence suggests a primary defect of impaired delivery of vesicles that contain degradation proteins, including the acidification-activated Cathepsin proteases and the neuron-specific proton pump and V0 adenosine triphosphatase component V100. Overexpressing V100 partially rescued n-syb–dependent degeneration through an acidification-independent endosomal sorting mechanism. Collectively, these findings reveal a role for n-Syb in a neuron-specific sort-and-degrade mechanism that protects neurons from degeneration. Our findings further shed light on which intraneuronal compartments exhibit increased or decreased neurotoxicity.
Collapse
Affiliation(s)
- Adam Haberman
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
Both insect and vertebrate visual circuits are organized into orderly arrays of columnar and layered synaptic units that correspond to the array of photoreceptors in the eye. Recent genetic studies in Drosophila have yielded insights into the molecular and cellular mechanisms that pattern the layers and columns and establish specific connections within the synaptic units. A sequence of inductive events and complex cellular interactions coordinates the assembly of visual circuits. Photoreceptor-derived ligands, such as hedgehog and Jelly-Belly, induce target development and expression of specific adhesion molecules, which in turn serve as guidance cues for photoreceptor axons. Afferents are directed to specific layers by adhesive afferent-target interactions mediated by leucine-rich repeat proteins and cadherins, which are restricted spatially and/or modulated dynamically. Afferents are restricted to their topographically appropriate columns by repulsive interactions between afferents and by autocrine activin signaling. Finally, Dscam-mediated repulsive interactions between target neuron dendrites ensure appropriate combinations of postsynaptic elements at synapses. Essentially, all these Drosophila molecules have vertebrate homologs, some of which are known to carry out analogous functions. Thus, the studies of Drosophila visual circuit development would shed light on neural circuit assembly in general.
Collapse
Affiliation(s)
- Krishna V Melnattur
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
63
|
Chan CC, Epstein D, Hiesinger PR. Intracellular trafficking in Drosophila visual system development: a basis for pattern formation through simple mechanisms. Dev Neurobiol 2012; 71:1227-45. [PMID: 21714102 DOI: 10.1002/dneu.20940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intracellular trafficking underlies cellular functions ranging from membrane remodeling to receptor activation. During multicellular organ development, these basic cell biological functions are required as both passive machinery and active signaling regulators. Exocytosis, endocytosis, and recycling of several key signaling receptors have long been known to actively regulate morphogenesis and pattern formation during Drosophila eye development. Hence, intracellular membrane trafficking not only sets the cell biological stage for receptor-mediated signaling but also actively controls signaling through spatiotemporally regulated receptor localization. In contrast to eye development, the role of intracellular trafficking for the establishment of the eye-to-brain connectivity map has only recently received more attention. It is still poorly understood how guidance receptors are spatiotemporally regulated to serve as meaningful synapse formation signals. Yet, the Drosophila visual system provides some of the most striking examples for the regulatory role of intracellular trafficking during multicellular organ development. In this review we will first highlight the experimental and conceptual advances that motivate the study of intracellular trafficking during Drosophila visual system development. We will then illuminate the development of the eye, the eye-to-brain connectivity map and the optic lobe from the perspective of cell biological dynamics. Finally, we provide a conceptual framework that seeks to explain how the interplay of simple genetically encoded intracellular trafficking events governs the seemingly complex cellular behaviors, which in turn determine the developmental product.
Collapse
Affiliation(s)
- Chih-Chiang Chan
- Department of Physiology and Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | | |
Collapse
|
64
|
Li Y, Padgett RW. bantam is required for optic lobe development and glial cell proliferation. PLoS One 2012; 7:e32910. [PMID: 22412948 PMCID: PMC3297604 DOI: 10.1371/journal.pone.0032910] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 02/06/2012] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are small, conserved, non-coding RNAs that contribute to the control of many different cellular processes, including cell fate specification and growth control. Drosophila bantam, a conserved miRNA, is involved in several functions, such as stimulating proliferation and inhibiting apoptosis in the wing disc. Here, we reported the detailed expression pattern of bantam in the developing optic lobe, and demonstrated a new, essential role in promoting proliferation of mitotic cells in the optic lobe, including stem cells and differentiated glial cells. Changes in bantam levels autonomously affected glial cell number and distribution, and non-autonomously affected photoreceptor neuron axon projection patterns. Furthermore, we showed that bantam promotes the proliferation of mitotically active glial cells and affects their distribution, largely through down regulation of the T-box transcription factor, optomotor-blind (omb, Flybase, bifid). Expression of omb can rescue the bantam phenotype, and restore the normal glial cell number and proper glial cell positioning in most Drosophila brains. These results suggest that bantam is critical for maintaining the stem cell pools in the outer proliferation center and glial precursor cell regions of the optic lobe, and that its expression in glial cells is crucial for their proliferation and distribution.
Collapse
Affiliation(s)
- Ying Li
- Department of Molecular Biology and Biochemistry, Waksman Institute, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
| | - Richard W. Padgett
- Department of Molecular Biology and Biochemistry, Waksman Institute, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
65
|
Stork T, Bernardos R, Freeman MR. Analysis of glial cell development and function in Drosophila. Cold Spring Harb Protoc 2012; 2012:1-17. [PMID: 22194269 DOI: 10.1101/pdb.top067587] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glial cells are the most abundant cell type in our brains, yet we understand very little about their development and function. An accumulating body of work over the last decade has revealed that glia are critical regulators of nervous system development, function, and health. Based on morphological and molecular criteria, glia in Drosophila melanogaster are very similar to their mammalian counterparts, suggesting that a detailed investigation of fly glia has the potential to add greatly to our understanding of fundamental aspects of glial cell biology. In this article, we provide an overview of the subtypes of glial cells found in Drosophila and discuss our current understanding of their functions, the development of a subset of well-defined glial lineages, and the molecular-genetic tools available for manipulating glial subtypes in vivo.
Collapse
|
66
|
Smibert P, Bejarano F, Wang D, Garaulet DL, Yang JS, Martin R, Bortolamiol-Becet D, Robine N, Hiesinger PR, Lai EC. A Drosophila genetic screen yields allelic series of core microRNA biogenesis factors and reveals post-developmental roles for microRNAs. RNA (NEW YORK, N.Y.) 2011; 17:1997-2010. [PMID: 21947201 PMCID: PMC3198593 DOI: 10.1261/rna.2983511] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Canonical animal microRNAs (miRNAs) are ∼22-nt regulatory RNAs generated by stepwise cleavage of primary hairpin transcripts by the Drosha and Dicer RNase III enzymes. We performed a genetic screen using an miRNA-repressed reporter in the Drosophila eye and recovered the first reported alleles of fly drosha, an allelic series of its dsRBD partner pasha, and novel alleles of dicer-1. Analysis of drosha mutants provided direct confirmation that mirtrons are independent of this nuclease, as inferred earlier from pasha knockouts. We further used these mutants to demonstrate in vivo cross-regulation of Drosha and Pasha in the intact animal, confirming remarkable conservation of a homeostatic mechanism that aligns their respective levels. Although the loss of core miRNA pathway components is universally lethal in animals, we unexpectedly recovered hypomorphic alleles that gave adult escapers with overtly normal development. However, the mutant photoreceptor neurons exhibited reduced synaptic transmission, without accompanying defects in neuronal development or maintenance. These findings indicate that synaptic function is especially sensitive to optimal miRNA pathway function. These allelic series of miRNA pathway mutants should find broad usage in studies of miRNA biogenesis and biology in the Drosophila system.
Collapse
Affiliation(s)
- Peter Smibert
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Fernando Bejarano
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Dong Wang
- Department of Physiology and Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Daniel L. Garaulet
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Jr-Shiuan Yang
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Raquel Martin
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Diane Bortolamiol-Becet
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Nicolas Robine
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
| | - P. Robin Hiesinger
- Department of Physiology and Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Eric C. Lai
- Department of Developmental Biology, Sloan-Kettering Institute, New York, New York 10065, USA
- Corresponding author.E-mail .
| |
Collapse
|
67
|
Tong C, Ohyama T, Tien AC, Rajan A, Haueter CM, Bellen HJ. Rich regulates target specificity of photoreceptor cells and N-cadherin trafficking in the Drosophila visual system via Rab6. Neuron 2011; 71:447-59. [PMID: 21835342 DOI: 10.1016/j.neuron.2011.06.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2011] [Indexed: 12/25/2022]
Abstract
Neurons establish specific synaptic connections with their targets, a process that is highly regulated. Numerous cell adhesion molecules have been implicated in target recognition, but how these proteins are precisely trafficked and targeted is poorly understood. To identify components that affect synaptic specificity, we carried out a forward genetic screen in the Drosophila eye. We identified a gene, named ric1 homologue (rich), whose loss leads to synaptic specificity defects. Loss of rich leads to reduction of N-Cadherin in the photoreceptor cell synapses but not of other proteins implicated in target recognition, including Sec15, DLAR, Jelly belly, and PTP69D. The Rich protein binds to Rab6, and Rab6 mutants display very similar phenotypes as the rich mutants. The active form of Rab6 strongly suppresses the rich synaptic specificity defect, indicating that Rab6 is regulated by Rich. We propose that Rich activates Rab6 to regulate N-Cadherin trafficking and affects synaptic specificity.
Collapse
Affiliation(s)
- Chao Tong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
68
|
Gontang AC, Hwa JJ, Mast JD, Schwabe T, Clandinin TR. The cytoskeletal regulator Genghis khan is required for columnar target specificity in the Drosophila visual system. Development 2011; 138:4899-909. [PMID: 22007130 DOI: 10.1242/dev.069930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A defining characteristic of neuronal cell type is the growth of axons and dendrites into specific layers and columns of the brain. Although differences in cell surface receptors and adhesion molecules are known to cause differences in synaptic specificity, differences in downstream signaling mechanisms that determine cell type-appropriate targeting patterns are unknown. Using a forward genetic screen in Drosophila, we identify the GTPase effector Genghis khan (Gek) as playing a crucial role in the ability of a subset of photoreceptor (R cell) axons to innervate appropriate target columns. In particular, single-cell mosaic analyses demonstrate that R cell growth cones lacking Gek function grow to the appropriate ganglion, but frequently fail to innervate the correct target column. Further studies reveal that R cell axons lacking the activity of the small GTPase Cdc42 display similar defects, providing evidence that these proteins regulate a common set of processes. Gek is expressed in all R cells, and a detailed structure-function analysis reveals a set of regulatory domains with activities that restrict Gek function to the growth cone. Although Gek does not normally regulate layer-specific targeting, ectopic expression of Gek is sufficient to alter the targeting choices made by another R cell type, the targeting of which is normally Gek independent. Thus, specific regulation of cytoskeletal responses to targeting cues is necessary for cell type-appropriate synaptic specificity.
Collapse
Affiliation(s)
- Allison C Gontang
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
69
|
Stephan R, Gohl C, Fleige A, Klämbt C, Bogdan S. Membrane-targeted WAVE mediates photoreceptor axon targeting in the absence of the WAVE complex in Drosophila. Mol Biol Cell 2011; 22:4079-92. [PMID: 21900504 PMCID: PMC3204070 DOI: 10.1091/mbc.e11-02-0121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A tight spatial-temporal coordination of F-actin dynamics is crucial for a large variety of cellular processes that shape cells. The Abelson interactor (Abi) has a conserved role in Arp2/3-dependent actin polymerization, regulating Wiskott-Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE). In this paper, we report that Abi exerts nonautonomous control of photoreceptor axon targeting in the Drosophila visual system through WAVE. In abi mutants, WAVE is unstable but restored by reexpression of Abi, confirming that Abi controls the integrity of the WAVE complex in vivo. Remarkably, expression of a membrane-tethered WAVE protein rescues the axonal projection defects of abi mutants in the absence of the other subunits of the WAVE complex, whereas cytoplasmic WAVE only slightly affects the abi mutant phenotype. Thus complex formation not only stabilizes WAVE, but also provides further membrane-recruiting signals, resulting in an activation of WAVE.
Collapse
Affiliation(s)
- Raiko Stephan
- Institut für Neurobiologie, Universität Münster, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
70
|
Read RD. Drosophila melanogaster as a model system for human brain cancers. Glia 2011; 59:1364-76. [PMID: 21538561 PMCID: PMC3221733 DOI: 10.1002/glia.21148] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 12/23/2010] [Indexed: 11/09/2022]
Abstract
Glioblastomas (GBM), the most common primary brain tumors, infiltrate the brain, grow rapidly, and are refractory to current therapies. Signature genetic lesions in glioblastomas include mutation of the epidermal growth factor receptor tyrosine kinase (EGFR) receptor tyrosine kinase and activating mutations in components of the PI-3 kinase (PI3K) pathway. Despite years of study, how these pathways specifically regulate glial pathogenesis is unclear. To address the genetic and cellular origins of this disease, a novel Drosophila GBM model has been developed in which glial progenitor cells give rise to proliferative and invasive neoplastic cells that create transplantable tumors in response to constitutive co-activation of the EGFR-Ras and PI3K pathways. Standing with a rich literature demonstrating the direct relevance of Drosophila to studies on human cancer, neurological disease, and neurodevelopment, this model represents a robust cell-type specific Drosophila neurological disease model in which malignant cells are created by mutations in genetic pathways thought to be driving forces in a homologous human disease. Using lineage analysis and cell-type specific markers, neoplastic glial cells were found to originate from committed glial progenitor cells, rather than from multipotent neuroblasts. Genetic analyses demonstrated that EGFR-Ras and PI3K induce fly glial neoplasia through activation of a combinatorial genetic network composed, in part, of other genetic pathways also commonly mutated in human glioblastomas. In the future, large-scale forward genetic screens with this model may reveal new insights into the origins and treatments of human glioblastoma.
Collapse
Affiliation(s)
- Renee D Read
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| |
Collapse
|
71
|
Hartenstein V. Morphological diversity and development of glia in Drosophila. Glia 2011; 59:1237-52. [PMID: 21438012 DOI: 10.1002/glia.21162] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 01/25/2011] [Indexed: 12/31/2022]
Abstract
Insect glia represents a conspicuous and diverse population of cells and plays a role in controlling neuronal progenitor proliferation, axonal growth, neuronal differentiation and maintenance, and neuronal function. Genetic studies in Drosophila have elucidated many aspects of glial structure, function, and development. Just as in vertebrates, it appears as if different classes of glial cells are specialized for different functions. On the basis of topology and cell shape, glial cells of the central nervous system fall into three classes (Fig. 1A-C): (i) surface glia that extend sheath-like processes to wrap around the entire brain; (ii) cortex glia (also called cell body-associated glia) that encapsulate neuronal somata and neuroblasts which form the outer layer (cortex) of the central nervous system; (iii) neuropile glia that are located at the interface between the cortex and the neuropile, the central domain of the nervous system formed by the highly branched neuronal processes and their synaptic contacts. Surface glia is further subdivided into an outer, perineurial layer, and an inner, subperineurial layer. Likewise, neuropile glia comprises a class of cells that remain at the surface of the neuropile (ensheathing glia), and a second class that forms profuse lamellar processes around nerve fibers within the neuropile (astrocyte-like or reticular glia). Glia also surrounds the peripheral nerves and sensory organs; here, one also recognizes perineurial and subperineurial glia, and a third type called "wrapping glia" that most likely corresponds to the ensheathing glia of the central nervous system. Much more experimental work is needed to determine how fundamental these differences between classes of glial cells are, or how and when during development they are specified. To aid in this work the following review will briefly summarize our knowledge of the classes of glial cells encountered in the Drosophila nervous system, and then survey their development from the embryo to adult.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
72
|
Awasaki T, Lee T. New tools for the analysis of glial cell biology in Drosophila. Glia 2011; 59:1377-86. [PMID: 21305614 DOI: 10.1002/glia.21133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 12/02/2010] [Indexed: 11/07/2022]
Abstract
Because of its genetic, molecular, and behavioral tractability, Drosophila has emerged as a powerful model system for studying molecular and cellular mechanisms underlying the development and function of nervous systems. The Drosophila nervous system has fewer neurons and exhibits a lower glia:neuron ratio than is seen in vertebrate nervous systems. Despite the simplicity of the Drosophila nervous system, glial organization in flies is as sophisticated as it is in vertebrates. Furthermore, fly glial cells play vital roles in neural development and behavior. In addition, powerful genetic tools are continuously being created to explore cell function in vivo. In taking advantage of these features, the fly nervous system serves as an excellent model system to study general aspects of glial cell development and function in vivo. In this article, we review and discuss advanced genetic tools that are potentially useful for understanding glial cell biology in Drosophila.
Collapse
Affiliation(s)
- Takeshi Awasaki
- Department of Neurobiology, University of Massachusetts, Worcester, Massachusetts, USA. awasakit@ janelia.hhmi.org
| | | |
Collapse
|
73
|
Hadjieconomou D, Timofeev K, Salecker I. A step-by-step guide to visual circuit assembly in Drosophila. Curr Opin Neurobiol 2011; 21:76-84. [PMID: 20800474 DOI: 10.1016/j.conb.2010.07.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 07/27/2010] [Indexed: 01/03/2023]
Affiliation(s)
- Dafni Hadjieconomou
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, NW7 1AA London, United Kingdom
| | | | | |
Collapse
|
74
|
Schmidt I, Franzdóttir SR, Edenfeld G, Rodrigues F, Zierau A, Klämbt C. Transcriptional regulation of peripheral glial cell differentiation in the embryonic nervous system of drosophila. Glia 2011; 59:1264-72. [DOI: 10.1002/glia.21123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/18/2010] [Indexed: 11/07/2022]
|
75
|
Williamson WR, Yang T, Terman JR, Hiesinger PR. Guidance receptor degradation is required for neuronal connectivity in the Drosophila nervous system. PLoS Biol 2010; 8:e1000553. [PMID: 21151882 PMCID: PMC2998435 DOI: 10.1371/journal.pbio.1000553] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/21/2010] [Indexed: 12/23/2022] Open
Abstract
Axon pathfinding and synapse formation rely on precise spatiotemporal localization of guidance receptors. However, little is known about the neuron-specific intracellular trafficking mechanisms that underlie the sorting and activity of these receptors. Here we show that loss of the neuron-specific v-ATPase subunit a1 leads to progressive endosomal guidance receptor accumulations after neuronal differentiation. In the embryo and in adult photoreceptors, these accumulations occur after axon pathfinding and synapse formation is complete. In contrast, receptor missorting occurs sufficiently early in neurons of the adult central nervous system to cause connectivity defects. An increase of guidance receptors, but not of membrane proteins without signaling function, causes specific gain-of-function phenotypes. A point mutant that promotes sorting but prevents degradation reveals spatiotemporally specific guidance receptor turnover and accelerates developmental defects in photoreceptors and embryonic motor neurons. Our findings indicate that a neuron-specific endolysosomal degradation mechanism is part of the cell biological machinery that regulates guidance receptor turnover and signaling.
Collapse
Affiliation(s)
- W. Ryan Williamson
- Department of Physiology and Green Center for Systems Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Taehong Yang
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Jonathan R. Terman
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - P. Robin Hiesinger
- Department of Physiology and Green Center for Systems Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
76
|
Chou YH, Zheng X, Beachy PA, Luo L. Patterning axon targeting of olfactory receptor neurons by coupled hedgehog signaling at two distinct steps. Cell 2010; 142:954-66. [PMID: 20850015 DOI: 10.1016/j.cell.2010.08.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 05/23/2010] [Accepted: 07/26/2010] [Indexed: 02/04/2023]
Abstract
We present evidence for a coupled two-step action of Hedgehog signaling in patterning axon targeting of Drosophila olfactory receptor neurons (ORNs). In the first step, differential Hedgehog pathway activity in peripheral sensory organ precursors creates ORN populations with different levels of the Patched receptor. Different Patched levels in ORNs then determine axonal responsiveness to target-derived Hedgehog in the brain: only ORN axons that do not express high levels of Patched are responsive to and require a second step of Hedgehog signaling for target selection. Hedgehog signaling in the imaginal sensory organ precursors thus confers differential ORN responsiveness to Hedgehog-mediated axon targeting in the brain. This mechanism contributes to the spatial coordination of ORN cell bodies in the periphery and their glomerular targets in the brain. Such coupled two-step signaling may be more generally used to coordinate other spatially and temporally segregated developmental events.
Collapse
Affiliation(s)
- Ya-Hui Chou
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
77
|
Astigarraga S, Hofmeyer K, Treisman JE. Missed connections: photoreceptor axon seeks target neuron for synaptogenesis. Curr Opin Genet Dev 2010; 20:400-7. [PMID: 20434326 DOI: 10.1016/j.gde.2010.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 02/06/2023]
Abstract
Extending axons must choose the appropriate synaptic target cells in order to assemble functional neural circuitry. The axons of the Drosophila color-sensitive photoreceptors R7 and R8 project as a single fascicle from each ommatidium, but their terminals are segregated into distinct layers within their target region. Recent studies have begun to reveal the molecular mechanisms that establish this projection pattern. Both homophilic adhesion molecules and specific ligand-receptor interactions make important contributions to stabilizing R7 and R8 terminals in the appropriate target layers. These cell recognition molecules are regulated by the same transcription factors that control R7 and R8 cell fates. Autocrine and repulsive signaling mechanisms prevent photoreceptor terminals from encroaching on their neighbors, preserving the spatial resolution of visual information.
Collapse
Affiliation(s)
- Sergio Astigarraga
- Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
78
|
Regulating neural proliferation in the Drosophila CNS. Curr Opin Neurobiol 2010; 20:50-7. [DOI: 10.1016/j.conb.2009.12.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 01/04/2023]
|
79
|
Edwards TN, Meinertzhagen IA. The functional organisation of glia in the adult brain of Drosophila and other insects. Prog Neurobiol 2010; 90:471-97. [PMID: 20109517 DOI: 10.1016/j.pneurobio.2010.01.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 12/24/2022]
Abstract
This review annotates and categorises the glia of adult Drosophila and other model insects and analyses the developmental origins of these in the Drosophila optic lobe. The functions of glia in the adult vary depending upon their sub-type and location in the brain. The task of annotating glia is essentially complete only for the glia of the fly's lamina, which comprise: two types of surface glia-the pseudocartridge and fenestrated glia; two types of cortex glia-the distal and proximal satellite glia; and two types of neuropile glia-the epithelial and marginal glia. We advocate that the term subretinal glia, as used to refer to both pseudocartridge and fenestrated glia, be abandoned. Other neuropiles contain similar glial subtypes, but other than the antennal lobes these have not been described in detail. Surface glia form the blood brain barrier, regulating the flow of substances into and out of the nervous system, both for the brain as a whole and the optic neuropiles in particular. Cortex glia provide a second level of barrier, wrapping axon fascicles and isolating neuronal cell bodies both from neighbouring brain regions and from their underlying neuropiles. Neuropile glia can be generated in the adult and a subtype, ensheathing glia, are responsible for cleaning up cellular debris during Wallerian degeneration. Both the neuropile ensheathing and astrocyte-like glia may be involved in clearing neurotransmitters from the extracellular space, thus modifying the levels of histamine, glutamate and possibly dopamine at the synapse to ultimately affect behaviour.
Collapse
Affiliation(s)
- Tara N Edwards
- Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, NS, Canada, B3H 4J1.
| | | |
Collapse
|
80
|
Abstract
In the developing nervous system, building a functional neuronal network relies on coordinating the formation, specification and survival to diverse neuronal and glial cell subtypes. The establishment of neuronal connections further depends on sequential neuron-neuron and neuron-glia interactions that regulate cell-migration patterns and axon guidance. The visual system of Drosophila has a highly regular, retinotopic organization into reiterated interconnected synaptic circuits. It is therefore an excellent invertebrate model to investigate basic cellular strategies and molecular determinants regulating the different developmental processes that lead to network formation. Studies in the visual system have provided important insights into the mechanisms by which photoreceptor axons connect with their synaptic partners within the optic lobe. In this review, we highlight that this system is also well suited for uncovering general principles that underlie glial cell biology. We describe the glial cell subtypes in the visual system and discuss recent findings about their development and migration. Finally, we outline the pivotal roles of glial cells in mediating neural circuit assembly, boundary formation, neural proliferation and survival, as well as synaptic function.
Collapse
|
81
|
Abstract
Restriction of adjacent same-type axons/dendrites to separate single columns for specific neuronal connections is commonly observed in vertebrates and invertebrates, and is necessary for proper processing of sensory information. Columnar restriction is conceptually similar to tiling, a phenomenon referring to the avoidance of neurites from adjacent same-type neurons. The molecular mechanism underlying the establishment of columnar restriction or axonal/dendritic tiling remains largely undefined. Here, we identify Turtle (Tutl), a member of the conserved Tutl/Dasm1/IgSF9 subfamily of the Ig superfamily, as a key player in regulating the tiling pattern of R7 photoreceptor terminals in Drosophila. Tutl functions to prevent fusion between two adjacent R7 terminals, and acts in parallel to the Activin pathway. Tutl mediates homophilic cell-cell interactions. We propose that extrinsic terminal-terminal recognition mediated by Tutl, acts in concert with intrinsic Activin-dependent control of terminal growth, to restrict the connection made by each R7 axon to a single column.
Collapse
|
82
|
Roignant JY, Treisman JE. Pattern formation in the Drosophila eye disc. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:795-804. [PMID: 19557685 DOI: 10.1387/ijdb.072483jr] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Differentiation of the Drosophila compound eye from the eye imaginal disc is a progressive process: columns of cells successively differentiate in a posterior to anterior sequence, clusters of cells form at regularly spaced intervals within each column, and individual photoreceptors differentiate in a defined order within each cluster. The progression of differentiation across the eye disc is driven by a positive autoregulatory loop of expression of the secreted molecule Hedgehog, which is temporally delayed by the intercalation of a second signal, Spitz. Hedgehog refines the spatial position at which each column initiates its differentiation by inducing secondary signals that act over different ranges to control the expression of positive and negative regulators. The position of clusters within each column is controlled by secreted inhibitory signals from clusters in the preceding column, and a single founder neuron, R8, is singled out within each cluster by Notch-mediated lateral inhibition. R8 then sequentially recruits surrounding cells to differentiate by producing a short-range signal, Spitz, which induces a secondary short-range signal, Delta. Intrinsic transcription factors act in combination with these two signals to produce cell-type diversity within the ommatidium. The Hedgehog and Spitz signals are transported along the photoreceptor axons and reused within the brain as long-range and local cues to trigger the differentiation and assembly of target neurons.
Collapse
Affiliation(s)
- Jean-Yves Roignant
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, Department of Cell Biology, New York, 10016, USA
| | | |
Collapse
|
83
|
Read RD, Cavenee WK, Furnari FB, Thomas JB. A drosophila model for EGFR-Ras and PI3K-dependent human glioma. PLoS Genet 2009; 5:e1000374. [PMID: 19214224 PMCID: PMC2636203 DOI: 10.1371/journal.pgen.1000374] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 01/09/2009] [Indexed: 11/19/2022] Open
Abstract
Gliomas, the most common malignant tumors of the nervous system, frequently harbor mutations that activate the epidermal growth factor receptor (EGFR) and phosphatidylinositol-3 kinase (PI3K) signaling pathways. To investigate the genetic basis of this disease, we developed a glioma model in Drosophila. We found that constitutive coactivation of EGFR-Ras and PI3K pathways in Drosophila glia and glial precursors gives rise to neoplastic, invasive glial cells that create transplantable tumor-like growths, mimicking human glioma. Our model represents a robust organotypic and cell-type-specific Drosophila cancer model in which malignant cells are created by mutations in signature genes and pathways thought to be driving forces in a homologous human cancer. Genetic analyses demonstrated that EGFR and PI3K initiate malignant neoplastic transformation via a combinatorial genetic network composed primarily of other pathways commonly mutated or activated in human glioma, including the Tor, Myc, G1 Cyclins-Cdks, and Rb-E2F pathways. This network acts synergistically to coordinately stimulate cell cycle entry and progression, protein translation, and inappropriate cellular growth and migration. In particular, we found that the fly orthologs of CyclinE, Cdc25, and Myc are key rate-limiting genes required for glial neoplasia. Moreover, orthologs of Sin1, Rictor, and Cdk4 are genes required only for abnormal neoplastic glial proliferation but not for glial development. These and other genes within this network may represent important therapeutic targets in human glioma. Malignant gliomas, tumors composed of glial cells and their precursors, are the most common and deadly human brain tumors. These tumors infiltrate the brain and proliferate rapidly, properties that render them largely incurable even with current therapies. Mutations in genes within the EGFR-Ras and PI3K signaling pathways are common in malignant gliomas, although how these genes specifically control glial pathogenesis is unclear. To investigate the genetic basis of this disease, we developed a glioma model in the fruit fly, Drosophila melanogaster. We found that constitutive coactivation of the EGFR-Ras and PI3K pathways in Drosophila glia gives rise to highly proliferative and invasive neoplastic cells that create transplantable tumor-like growths, mimicking human glioma. This represents a robust cell-type-specific Drosophila cancer model in which malignant cells are created by mutations in genetic pathways thought to be driving forces in a homologous human cancer. Genetic analyses demonstrated that EGFR-Ras and PI3K induce fly glial neoplasia through activation of a combinatorial genetic network composed, in part, of other genetic pathways also commonly mutated in human glioma. This network acts synergistically to coordinately stimulate cellular proliferation, protein translation, and inappropriate migration. Rate-limiting genes within this network may represent important therapeutic targets in human glioma.
Collapse
Affiliation(s)
- Renee D. Read
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (RDR); (JBT)
| | - Webster K. Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Center for Molecular Genetics, University of California San Diego, La Jolla, California, United States of America
| | - Frank B. Furnari
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - John B. Thomas
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (RDR); (JBT)
| |
Collapse
|
84
|
Abstract
The optic lobes comprise approximately half of the fly's brain. In four major synaptic ganglia, or neuropils, the visual input from the compound eyes is received and processed for higher order visual functions like motion detection and color vision. A common characteristic of vertebrate and invertebrate visual systems is the point-to-point mapping of the visual world to synaptic layers in the brain, referred to as visuotopy. Vision requires the parallel extraction of numerous parameters in a visuotopic manner. Consequently, the optic neuropils are arranged in columns and perpendicularly oriented synaptic layers that allow for the selective establishment of synapses between columnar neurons. How this exquisite synaptic specificity is established during approximately 100 hours of brain development is still poorly understood. However, the optic lobe contains one of the best characterized brain structures in any organism-both anatomically and developmentally. Moreover, numerous molecules and their function illuminate some of the basic mechanisms involved in brain wiring. The emerging picture is that the development of the visual system of Drosophila is (epi-)genetically hard-wired; it supplies the emerging fly with vision without requiring neuronal activity for fine tuning of neuronal connectivity. Elucidating the genetic and cellular principles by which gene activity directs the assembly of the optic lobe is therefore a fascinating task and the focus of this chapter.
Collapse
|
85
|
Awasaki T, Lai SL, Ito K, Lee T. Organization and postembryonic development of glial cells in the adult central brain of Drosophila. J Neurosci 2008; 28:13742-53. [PMID: 19091965 PMCID: PMC6671902 DOI: 10.1523/jneurosci.4844-08.2008] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 10/28/2008] [Accepted: 11/01/2008] [Indexed: 11/21/2022] Open
Abstract
Glial cells exist throughout the nervous system, and play essential roles in various aspects of neural development and function. Distinct types of glia may govern diverse glial functions. To determine the roles of glia requires systematic characterization of glia diversity and development. In the adult Drosophila central brain, we identify five different types of glia based on its location, morphology, marker expression, and development. Perineurial and subperineurial glia reside in two separate single-cell layers on the brain surface, cortex glia form a glial mesh in the brain cortex where neuronal cell bodies reside, while ensheathing and astrocyte-like glia enwrap and infiltrate into neuropils, respectively. Clonal analysis reveals that distinct glial types derive from different precursors, and that most adult perineurial, ensheathing, and astrocyte-like glia are produced after embryogenesis. Notably, perineurial glial cells are made locally on the brain surface without the involvement of gcm (glial cell missing). In contrast, the widespread ensheathing and astrocyte-like glia derive from specific brain regions in a gcm-dependent manner. This study documents glia diversity in the adult fly brain and demonstrates involvement of different developmental programs in the derivation of distinct types of glia. It lays an essential foundation for studying glia development and function in the Drosophila brain.
Collapse
Affiliation(s)
- Takeshi Awasaki
- Department of Neurobiology, University of Massachusetts, Worcester, Massachusetts 01605, and
| | - Sen-Lin Lai
- Department of Neurobiology, University of Massachusetts, Worcester, Massachusetts 01605, and
| | - Kei Ito
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Tzumin Lee
- Department of Neurobiology, University of Massachusetts, Worcester, Massachusetts 01605, and
| |
Collapse
|
86
|
Temporal identity in axonal target layer recognition. Nature 2008; 456:800-3. [PMID: 18978776 DOI: 10.1038/nature07407] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 09/09/2008] [Indexed: 11/08/2022]
Abstract
The segregation of axon and dendrite projections into distinct synaptic layers is a fundamental principle of nervous system organization and the structural basis for information processing in the brain. Layer-specific recognition molecules that allow projecting neurons to stabilize transient contacts and initiate synaptogenesis have been identified. However, most of the neuronal cell-surface molecules critical for layer organization are expressed broadly in the developing nervous system, raising the question of how these so-called permissive adhesion molecules support synaptic specificity. Here we show that the temporal expression dynamics of the zinc-finger protein sequoia is the major determinant of Drosophila photoreceptor connectivity into distinct synaptic layers. Neighbouring R8 and R7 photoreceptors show consecutive peaks of elevated sequoia expression, which correspond to their sequential target-layer innervation. Loss of sequoia in R7 leads to a projection switch into the R8 recipient layer, whereas a prolonged expression in R8 induces a redirection of their axons into the R7 layer. The sequoia-induced axon targeting is mediated through the ubiquitously expressed Cadherin-N cell adhesion molecule. Our data support a model in which recognition specificity during synaptic layer formation is generated through a temporally restricted axonal competence to respond to broadly expressed adhesion molecules. Because developing neurons innervating the same target area often project in a distinct, birth-order-dependent sequence, temporal identity seems to contain crucial information in generating not only cell type diversity during neuronal division but also connection diversity of projecting neurons.
Collapse
|
87
|
Mast JD, Tomalty KM, Vogel H, Clandinin TR. Reactive oxygen species act remotely to cause synapse loss in a Drosophila model of developmental mitochondrial encephalopathy. Development 2008; 135:2669-79. [PMID: 18599508 PMCID: PMC2892278 DOI: 10.1242/dev.020644] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mitochondrial dysfunction is a hallmark of many neurodegenerative diseases, yet its precise role in disease pathology remains unclear. To examine this link directly, we subtly perturbed electron transport chain function in the Drosophila retina, creating a model of Leigh Syndrome, an early-onset neurodegenerative disorder. Using mutations that affect mitochondrial complex II, we demonstrate that mild disruptions of mitochondrial function have no effect on the initial stages of photoreceptor development, but cause degeneration of their synapses and cell bodies in late pupal and adult animals. In this model, synapse loss is caused by reactive oxygen species (ROS) production, not energy depletion, as ATP levels are normal in mutant photoreceptors, and both pharmacological and targeted genetic manipulations that reduce ROS levels prevent synapse degeneration. Intriguingly, these manipulations of ROS uncouple synaptic effects from degenerative changes in the cell body, suggesting that mitochondrial dysfunction activates two genetically separable processes, one that induces morphological changes in the cell body, and another that causes synapse loss. Finally, by blocking mitochondrial trafficking into the axon using a mutation affecting a mitochondrial transport complex, we find that ROS action restricted to the cell body is sufficient to cause synaptic degeneration, demonstrating that ROS need not act locally at the synapse. Thus, alterations in electron transport chain function explain many of the neurodegenerative changes seen in both early- and late-onset disorders.
Collapse
Affiliation(s)
- Joshua D. Mast
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA 94305, USA
| | - Katharine M.H. Tomalty
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA 94305, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Thomas R. Clandinin
- Department of Neurobiology, 299 W. Campus Drive, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
88
|
Abstract
The ensheathment of neurons and their axons creates an ion-sensitive microenvironment that allows rapid conduction of nerve impulses. One of the fundamental questions about axonal ensheathment is how insulating glial cells wrap around axons. The mechanisms that underlie insulation of axons in invertebrates and vertebrates are not fully understood. In the present article we address cellular aspects of axonal ensheathment in Drosophila by taking advantage of glial mutants that illustrate a range of phenotypic defects including ensheathment of axons. From the findings of these mutant studies, we summarize that loss of glial cells, defects in glial membrane wrapping, failure of glial migration, and loss of specialized ladderlike septate junctions between ensheathing glial membranes result in axon-glial functional defects. These studies provide a broad perspective on glial ensheathment of axons in Drosophila and key insights into the anatomical and cellular aspects of axonal insulation. Given the powerful genetic approaches available in Drosophila, the axonal ensheathment process can be dissected in great detail to reveal the fundamental principles of ensheathment. These observations will be relevant to understanding the very similar processes in vertebrates, where defects in glial cell functions lead to devastating neurological diseases.
Collapse
Affiliation(s)
- Swati Banerjee
- Department of Cell and Molecular Physiology, Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7545, USA
| | | |
Collapse
|
89
|
Regulation of glia number in Drosophila by Rap/Fzr, an activator of the anaphase-promoting complex, and Loco, an RGS protein. Genetics 2008; 178:2003-16. [PMID: 18430931 DOI: 10.1534/genetics.107.086397] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glia mediate a vast array of cellular processes and are critical for nervous system development and function. Despite their immense importance in neurobiology, glia remain understudied and the molecular mechanisms that direct their differentiation are poorly understood. Rap/Fzr is the Drosophila homolog of the mammalian Cdh1, a regulatory subunit of the anaphase-promoting complex/cyclosome (APC/C). APC/C is an E3 ubiquitin ligase complex well characterized for its role in cell cycle progression. In this study, we have uncovered a novel cellular role for Rap/Fzr. Loss of rap/fzr function leads to a marked increase in the number of glia in the nervous system of third instar larvae. Conversely, ectopic expression of UAS-rap/fzr, driven by repo-GAL4, results in the drastic reduction of glia. Data from clonal analyses using the MARCM technique show that Rap/Fzr regulates the differentiation of surface glia in the developing larval nervous system. Our genetic and biochemical data further indicate that Rap/Fzr regulates glial differentiation through its interaction with Loco, a regulator of G-protein signaling (RGS) protein and a known effector of glia specification. We propose that Rap/Fzr targets Loco for ubiquitination, thereby regulating glial differentiation in the developing nervous system.
Collapse
|
90
|
Systematic identification of genes that regulate neuronal wiring in the Drosophila visual system. PLoS Genet 2008; 4:e1000085. [PMID: 18516287 PMCID: PMC2377342 DOI: 10.1371/journal.pgen.1000085] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 04/30/2008] [Indexed: 11/19/2022] Open
Abstract
Forward genetic screens in model organisms are an attractive means to identify those genes involved in any complex biological process, including neural circuit assembly. Although mutagenesis screens are readily performed to saturation, gene identification rarely is, being limited by the considerable effort generally required for positional cloning. Here, we apply a systematic positional cloning strategy to identify many of the genes required for neuronal wiring in the Drosophila visual system. From a large-scale forward genetic screen selecting for visual system wiring defects with a normal retinal pattern, we recovered 122 mutations in 42 genetic loci. For 6 of these loci, the underlying genetic lesions were previously identified using traditional methods. Using SNP-based mapping approaches, we have now identified 30 additional genes. Neuronal phenotypes have not previously been reported for 20 of these genes, and no mutant phenotype has been previously described for 5 genes. The genes encode a variety of proteins implicated in cellular processes such as gene regulation, cytoskeletal dynamics, axonal transport, and cell signalling. We conducted a comprehensive phenotypic analysis of 35 genes, scoring wiring defects according to 33 criteria. This work demonstrates the feasibility of combining large-scale gene identification with large-scale mutagenesis in Drosophila, and provides a comprehensive overview of the molecular mechanisms that regulate visual system wiring.
Collapse
|
91
|
Ly CV, Yao CK, Verstreken P, Ohyama T, Bellen HJ. straightjacket is required for the synaptic stabilization of cacophony, a voltage-gated calcium channel alpha1 subunit. ACTA ACUST UNITED AC 2008; 181:157-70. [PMID: 18391075 PMCID: PMC2287295 DOI: 10.1083/jcb.200712152] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In a screen to identify genes involved in synaptic function, we isolated mutations in Drosophila melanogaster straightjacket (stj), an α2δ subunit of the voltage-gated calcium channel. stj mutant photoreceptors develop normal synaptic connections but display reduced “on–off” transients in electroretinogram recordings, indicating a failure to evoke postsynaptic responses and, thus, a defect in neurotransmission. stj is expressed in neurons but excluded from glia. Mutants exhibit endogenous seizure-like activity, indicating altered neuronal excitability. However, at the synaptic level, stj larval neuromuscular junctions exhibit approximately fourfold reduction in synaptic release compared with controls stemming from a reduced release probability at these synapses. These defects likely stem from destabilization of Cacophony (Cac), the primary presynaptic α1 subunit in D. melanogaster. Interestingly, neuronal overexpression of cac partially rescues the viability and physiological defects in stj mutants, indicating a role for the α2δ Ca2+ channel subunit in mediating the proper localization of an α1 subunit at synapses.
Collapse
Affiliation(s)
- Cindy V Ly
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
92
|
Schubert SW, Lamoureux N, Kilian K, Klein-Hitpass L, Hashemolhosseini S. Identification of Integrin-α4, Rb1, and Syncytin A as Murine Placental Target Genes of the Transcription Factor GCMa/Gcm1. J Biol Chem 2008; 283:5460-5. [DOI: 10.1074/jbc.m710110200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
93
|
The tumor suppressor, vitamin D3 up-regulated protein 1 (VDUP1), functions downstream of REPO during Drosophila gliogenesis. Dev Biol 2008; 315:489-504. [PMID: 18262515 DOI: 10.1016/j.ydbio.2008.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 11/02/2007] [Accepted: 01/09/2008] [Indexed: 11/24/2022]
Abstract
The tumor suppressor, vitamin D(3) up-regulated protein 1 (VDUP1), regulates cell cycle progression by suppressing AP-1-dependent transcription. Loss of VDUP1 activity is associated with tumorigenesis but little is known about VDUP1 regulatory controls or developmental roles. Here we show that the Drosophila homolog of human VDUP1 (dVDUP1) is expressed throughout the nervous system at all stages of development, the first in vivo analysis of VDUP1 expression patterns in the brain. During neurogenesis dVDUP1 expression is transiently down-regulated coincident with neuroblast delamination. Subsequent to expression of the neuronal marker elav, dVDUP1 is up-regulated to varying degrees in developing neurons. In contrast, dVDUP1 expression is both robust and sustained during gliogenesis, and the cis-regulatory region of the dvdup1 gene contains consensus binding sites for the glial fate gene reversed polarity (repo). Expression of dVDUP1 in presumptive glia is lost in embryos deficient for the glial fate genes glial cells missing (gcm) and repo. Conversely, ectopic expression of gcm or repo was sufficient to induce dVDUP1 expression in the nervous system. Taken together, these data suggest a novel role for the dVDUP1 tumor suppressor during nervous system development as a regulatory target for REPO during gliogenesis.
Collapse
|
94
|
Weake VM, Lee KK, Guelman S, Lin CH, Seidel C, Abmayr SM, Workman JL. SAGA-mediated H2B deubiquitination controls the development of neuronal connectivity in the Drosophila visual system. EMBO J 2008; 27:394-405. [PMID: 18188155 DOI: 10.1038/sj.emboj.7601966] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 11/30/2007] [Indexed: 11/09/2022] Open
Abstract
Nonstop, which has previously been shown to have homology to ubiquitin proteases, is required for proper termination of axons R1-R6 in the optic lobe of the developing Drosophila eye. Herein, we establish that Nonstop actually functions as an ubiquitin protease to control the levels of ubiquitinated histone H2B in flies. We further establish that Nonstop is the functional homolog of yeast Ubp8, and can substitute for Ubp8 function in yeast cells. In yeast, Ubp8 activity requires Sgf11. We show that in Drosophila, loss of Sgf11 function causes similar photoreceptor axon-targeting defects as loss of Nonstop. Ubp8 and Sgf11 are components of the yeast SAGA complex, suggesting that Nonstop function might be mediated through the Drosophila SAGA complex. Indeed, we find that Nonstop does associate with SAGA components in flies, and mutants in other SAGA subunits display nonstop phenotypes, indicating that SAGA complex is required for accurate axon guidance in the optic lobe. Candidate genes regulated by SAGA that may be required for correct axon targeting were identified by microarray analysis of gene expression in SAGA mutants.
Collapse
Affiliation(s)
- Vikki M Weake
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Soustelle L, Giangrande A. Novel gcm-dependent lineages in the postembryonic nervous system of Drosophila melanogaster. Dev Dyn 2007; 236:2101-8. [PMID: 17654713 DOI: 10.1002/dvdy.21232] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
glial cells missing genes (gcm and gcm2) act as the glial fate determinants in the Drosophila embryo. However, their requirement in the adult central nervous system (CNS) is at present not known, except for their role in lamina glia. This is particularly important with respect to two recent sets of data. Adult glial subpopulations differentiate through embryonic glia proliferation. Also, gcm-gcm2 are required for the differentiation of specific adult neurons. We here show that gcm is expressed in precursors and postmitotic, migrating, cells of the medulla neuropile glia (mng) lineage. It is also expressed in a thoracic glial lineage and in neurons of the ventral nerve cord (VNC). Finally, while gcm is required for gliogenesis in medulla and VNC, it does not seem to be required for the generation of VNC neurons.
Collapse
Affiliation(s)
- Laurent Soustelle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
| | | |
Collapse
|
96
|
Colonques J, Ceron J, Tejedor FJ. Segregation of postembryonic neuronal and glial lineages inferred from a mosaic analysis of the Drosophila larval brain. Mech Dev 2007; 124:327-40. [PMID: 17344035 DOI: 10.1016/j.mod.2007.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 01/12/2007] [Accepted: 01/16/2007] [Indexed: 01/06/2023]
Abstract
Due to its intermediate complexity and its sophisticated genetic tools, the larval brain of Drosophila is a useful experimental system to study the mechanisms that control the generation of cell diversity in the CNS. In order to gain insight into the neuronal and glial lineage specificity of neural progenitor cells during postembryonic brain development, we have carried an extensive mosaic analysis throughout larval brain development. In contrast to embryonic CNS development, we have found that most postembryonic neurons and glial cells of the optic lobe and central brain originate from segregated progenitors. Our analysis also provides relevant information about the origin and proliferation patterns of several postembryonic lineages such as the superficial glia and the medial-anterior Medulla neuropile glia. Additionally, we have studied the spatio-temporal relationship between gcm expression and gliogenesis. We found that gcm expression is restricted to the post-mitotic cells of a few neuronal and glial lineages and it is mostly absent from postembryonic progenitors. Thus, in contrast to its major gliogenic role in the embryo, the function of gcm during postembryonic brain development seems to have evolved to the specification and differentiation of certain neuronal and glial lineages.
Collapse
Affiliation(s)
- J Colonques
- Instituto de Neurociencias, CSIC--Universidad Miguel Hernandez, Campus de San Juan, 03550 San Juan (Alicante), Spain
| | | | | |
Collapse
|
97
|
Bazigou E, Apitz H, Johansson J, Lorén CE, Hirst EMA, Chen PL, Palmer RH, Salecker I. Anterograde Jelly belly and Alk receptor tyrosine kinase signaling mediates retinal axon targeting in Drosophila. Cell 2007; 128:961-75. [PMID: 17350579 DOI: 10.1016/j.cell.2007.02.024] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 10/20/2006] [Accepted: 02/16/2007] [Indexed: 10/23/2022]
Abstract
Anaplastic lymphoma kinase (Alk) has been proposed to regulate neuronal development based on its expression pattern in vertebrates and invertebrates; however, its function in vivo is unknown. We demonstrate that Alk and its ligand Jelly belly (Jeb) play a central role as an anterograde signaling pathway mediating neuronal circuit assembly in the Drosophila visual system. Alk is expressed and required in target neurons in the optic lobe, whereas Jeb is primarily generated by photoreceptor axons and functions in the eye to control target selection of R1-R6 axons in the lamina and R8 axons in the medulla. Impaired Jeb/Alk function affects layer-specific expression of three cell-adhesion molecules, Dumbfounded/Kirre, Roughest/IrreC, and Flamingo, in the medulla. Moreover, loss of flamingo in target neurons causes some R8-axon targeting errors observed in Jeb and Alk mosaic animals. Together, these findings suggest that Jeb/Alk signaling helps R-cell axons to shape their environment for target recognition.
Collapse
Affiliation(s)
- Eleni Bazigou
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Soustelle L, Trousse F, Jacques C, Ceron J, Cochard P, Soula C, Giangrande A. Neurogenic role of Gcm transcription factors is conserved in chicken spinal cord. Development 2007; 134:625-34. [PMID: 17215311 DOI: 10.1242/dev.02750] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although glial cells missing (gcm) genes are known as glial determinants in the fly embryo, the role of vertebrate orthologs in the central nervous system is still under debate. Here we show for the first time that the chicken ortholog of fly gcm (herein referred to as c-Gcm1), is expressed in early neuronal lineages of the developing spinal cord and is required for neural progenitors to differentiate as neurons. Moreover, c-Gcm1 overexpression is sufficient to trigger cell cycle exit and neuronal differentiation in neural progenitors. Thus, c-Gcm1 expression constitutes a crucial step in the developmental cascade that prompts progenitors to generate neurons: c-Gcm1 acts downstream of proneural (neurogenin) and progenitor (Sox1-3) factors and upstream of NeuroM neuronal differentiation factor. Strikingly, this neurogenic role is not specific to the vertebrate gene, as fly gcmand gcm2 are also sufficient to induce the expression of neuronal markers. Interestingly, the neurogenic role is restricted to post-embryonic stages and we identify two novel brain neuronal lineages expressing and requiring gcm genes. Finally, we show that fly gcm and the chick and mouse orthologs induce expression of neural markers in HeLa cells. These data, which demonstrate a conserved neurogenic role for Gcm transcription factors, call for a re-evaluation of the mode of action of these genes during evolution.
Collapse
Affiliation(s)
- Laurent Soustelle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
99
|
Yonekura S, Xu L, Ting CY, Lee CH. Adhesive but not signaling activity of Drosophila N-cadherin is essential for target selection of photoreceptor afferents. Dev Biol 2007; 304:759-70. [PMID: 17320070 PMCID: PMC1959568 DOI: 10.1016/j.ydbio.2007.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 01/12/2007] [Accepted: 01/19/2007] [Indexed: 12/28/2022]
Abstract
Drosophila N-cadherin (CadN) is an evolutionarily conserved, atypical classical cadherin, which has a large complex extracellular domain and a catenin-binding cytoplasmic domain. We have previously shown that CadN regulates target selection of R7 photoreceptor axons. To determine the functional domains of CadN, we conducted a structure-function analysis focusing on its in vitro adhesive activity and in vivo function in R7 growth cones. We found that the cytoplasmic domain of CadN is largely dispensable for the targeting of R7 growth cones, and it is not essential for mediating homophilic interaction in cultured cells. Instead, the cytoplasmic domain of CadN is required for maintaining proper growth cone morphology. Domain swapping with the extracellular domain of CadN2, a related but non-adhesive cadherin, revealed that the CadN extracellular domain is required for both adhesive activity and R7 targeting. Using a target-mosaic system, we generated CadN mutant clones in the optic lobe and examined the target-selection of genetically wild-type R7 growth cones to CadN mutant target neurons. We found that CadN, but neither LAR nor Liprin-alpha, is required in the medulla neurons for R7 growth cones to select the correct medulla layer. Together, these data suggest that CadN mediates homophilic adhesive interactions between R7 growth cones and medulla neurons to regulate layer-specific target selection.
Collapse
Affiliation(s)
| | | | | | - Chi-Hon Lee
- * To whom correspondence should be addressed: Chi-Hon Lee, M.D., Ph.D., Unit of Neuronal Connectivity, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Building 18T, Room 106, MSC 5431, Bethesda, MD 20892, Tel: 301-435-1940, Fax: 301-496-4491, e-mail:
| |
Collapse
|
100
|
Ting CY, Lee CH. Visual circuit development in Drosophila. Curr Opin Neurobiol 2007; 17:65-72. [PMID: 17204415 DOI: 10.1016/j.conb.2006.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
Fly visual circuits are organized into lattice-like arrays and layers. Recent genetic studies have provided insights into how these reiterated structures are assembled through stepwise processes and how precise connections are established during development. Afferent-derived morphogens, such as Hedgehog, play a key role in organizing the overall structure by inducing and recruiting target neurons and glia. In turn, the target-derived ligand DWnt4 guides Frizzled2-expressing photoreceptor afferents to their proper destination. Photoreceptor afferents select specific synaptic targets by forming adhesive interactions and regulating actin cytoskeleton in growth cones. Target specificity is probably achieved by restricting the expression of adhesive molecules, such as Capricious, to appropriate presynaptic and postsynaptic partners, and by differentially regulating the function of broadly expressed adhesive molecules such as N-cadherin.
Collapse
Affiliation(s)
- Chun-Yuan Ting
- Unit on Neuronal Connectivity, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20817, USA
| | | |
Collapse
|