51
|
Molecular layers underlying cytoskeletal remodelling during cortical development. Trends Neurosci 2010; 33:38-47. [DOI: 10.1016/j.tins.2009.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/16/2009] [Accepted: 09/28/2009] [Indexed: 11/24/2022]
|
52
|
Animal models for schizophrenia via in utero gene transfer: understanding roles for genetic susceptibility factors in brain development. PROGRESS IN BRAIN RESEARCH 2009; 179:9-15. [PMID: 20302813 DOI: 10.1016/s0079-6123(09)17902-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Genetic disturbances of brain development may underlie the pathophysiology of schizophrenia. Recent advances in molecular neurobiology suggest that some genetic risk factors for schizophrenia have multiple roles in various brain regions depending on the developmental stage. Furthermore, these factors are likely to act synergistically or epistatically in common molecular pathways, possibly contributing to disease pathology. Thus, a technique that can manipulate the expression of more than one gene simultaneously in animal models is necessary to address such molecular pathways. To produce such animal models, in utero gene transfer technique is one useful method. Given that plasmid-based cell-type-specific and inducible gene expression systems are now available, combining these technologies and in utero gene transfer opens a new window to examine the functional role of genetic risk factors for schizophrenia by conducting multiple-gene targeting in a spatial and temporal manner. The utility of animal models produced by in utero gene transfer will also be expected to be evaluated in terms of functional and behavioral outcomes after puberty, which may be associated with schizophrenia pathology.
Collapse
|
53
|
Weimer JM, Yokota Y, Stanco A, Stumpo DJ, Blackshear PJ, Anton ES. MARCKS modulates radial progenitor placement, proliferation and organization in the developing cerebral cortex. Development 2009; 136:2965-75. [PMID: 19666823 DOI: 10.1242/dev.036616] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The radial glial cells serve as neural progenitors and as a migratory guide for newborn neurons in the developing cerebral cortex. These functions require appropriate organization and proliferation of the polarized radial glial scaffold. Here, we demonstrate in mice that the myristoylated alanine-rich C-kinase substrate protein (MARCKS), a prominent cellular substrate for PKC, modulates radial glial placement and expansion. Loss of MARCKS results in ectopic collection of mitotically active radial progenitors away from the ventricular zone (VZ) in the upper cerebral wall. Apical restriction of key polarity complexes [CDC42, beta-catenin (CTNNB1), N-cadherin (CDH2), myosin IIB (MYOIIB), aPKCzeta, LGL, PAR3, pericentrin, PROM1] is lost. Furthermore, the radial glial scaffold in Marcks null cortex is compromised, with discontinuous, non-radial processes apparent throughout the cerebral wall and deformed, bulbous, unbranched end-feet at the basal ends. Further, the density of radial processes within the cerebral cortex is reduced. These deficits in radial glial development culminate in aberrant positioning of neurons and disrupted cortical lamination. Genetic rescue experiments demonstrate, surprisingly, that phosphorylation of MARCKS by PKC is not essential for the role of MARCKS in radial glial cell development. By contrast, the myristoylation domain of MARCKS needed for membrane association is essential for MARCKS function in radial glia. The membrane-associated targeting of MARCKS and the resultant polarized distribution of signaling complexes essential for apicobasal polarity may constitute a critical event in the appropriate placement, proliferation and organization of polarized radial glial scaffold in the developing cerebral cortex.
Collapse
Affiliation(s)
- Jill M Weimer
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
54
|
Demyanenko GP, Halberstadt AI, Rao RS, Maness PF. CHL1 cooperates with PAK1-3 to regulate morphological differentiation of embryonic cortical neurons. Neuroscience 2009; 165:107-15. [PMID: 19819308 DOI: 10.1016/j.neuroscience.2009.09.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/04/2009] [Accepted: 09/27/2009] [Indexed: 01/27/2023]
Abstract
The cell adhesion molecule close homologue of L1 (CHL1) is important for apical dendritic projection and laminar positioning of pyramidal neurons in caudal regions of the cerebral cortex. The p21-activated kinase (PAK1-3) subfamily of serine/threonine kinases has also been implicated in regulating cell adhesion, migration, and morphology. Immunofluorescence staining in mouse embryonic brain showed that PAK1-3 was expressed in embryonic cortex and colocalized with CHL1 during neuronal migration and differentiation. To investigate a cooperative function for CHL1 and PAK in pyramidal cell differentiation or migration, a dominant-negative PAK mutant (PAK1 AID) that inhibits PAK1-3 kinase activity while coexpressing a green fluorescent protein (GFP) reporter was electroporated into the lateral ventricles of wild type (WT) and CHL1 null mutant mouse embryos (E14.5), then brain slices were cultured and neurons analyzed for laminar positioning and morphology by confocal microscopy after 3 days in vitro. Expression of PAK1 AID in CHL1 mutant cortex inactivated PAK and caused embryonic cortical neurons to branch profusely in the intermediate zone (IZ) and cortical plate (CP). The number of nodes, terminals and length of leading processes/apical dendrites of CHL1 mutant embryos expressing PAK1 AID increased dramatically, compared to CHL1 mutants without PAK1 AID, or WT embryos with or without PAK1 AID. These findings suggest that CHL1 and PAK1-3 kinase cooperate, most likely in independent pathways, in regulating morphological development of the leading process/apical dendrite of embryonic cortical neurons.
Collapse
Affiliation(s)
- G P Demyanenko
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine at Chapel Hill, 27599, USA
| | | | | | | |
Collapse
|
55
|
Organization of F-actin via concerted regulation of Kette by PTP61F and dAbl. Mol Cell Biol 2009; 29:3623-32. [PMID: 19398577 DOI: 10.1128/mcb.00229-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identify Kette, a key regulator of actin polymerization, as a substrate for Drosophila protein tyrosine phosphatase PTP61F, as well as for dAbl tyrosine kinase. We further show that dAbl is a direct substrate for PTP61F. Therefore, Kette phosphotyrosine levels are regulated both directly and indirectly by PTP61F. Kette and PTP61F genetically interact in the regulation of F-actin organization in pupal eye discs, suggesting that tyrosine phosphorylation is essential for the proper regulation of Kette-mediated actin dynamics. This hypothesis was confirmed by demonstrating the loss of Kette-mediated F-actin organization and lamella formation in S2 cells in a Kette Y482F mutant in which the dAbl phosphorylation site was eliminated. Our results establish for the first time that PTP61F and dAbl ensure proper actin organization through the coordinated and reversible tyrosine phosphorylation of Kette.
Collapse
|
56
|
Netrin-1-alpha3beta1 integrin interactions regulate the migration of interneurons through the cortical marginal zone. Proc Natl Acad Sci U S A 2009; 106:7595-600. [PMID: 19383784 DOI: 10.1073/pnas.0811343106] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cortical GABAergic interneurons, most of which originate in the ganglionic eminences, take distinct tangential migratory trajectories into the developing cerebral cortex. However, the ligand-receptor systems that modulate the tangential migration of distinct groups of interneurons into the emerging cerebral wall remain unclear. Here, we show that netrin-1, a diffusible guidance cue expressed along the migratory routes traversed by GABAergic interneurons, interacts with alpha3beta1 integrin to promote interneuronal migration. In vivo analysis of interneuron-specific alpha3beta1 integrin, netrin-1-deficient mice (alpha3(lox/-)Dlx5/6-CIE, netrin-1(-/-)) reveals specific deficits in the patterns of interneuronal migration along the top of the developing cortical plate, resulting in aberrant interneuronal positioning throughout the cerebral cortex and hippocampus of conditional alpha3(lox/-)Dlx5/6-CIE, netrin-1(-/-) mice. These results indicate that specific guidance mechanisms, such as netrin-1-alpha3beta1 integrin interactions, modulate distinct routes of interneuronal migration and the consequent positioning of groups of cortical interneurons in the developing cerebral cortex.
Collapse
|
57
|
Mérot Y, Rétaux S, Heng JIT. Molecular mechanisms of projection neuron production and maturation in the developing cerebral cortex. Semin Cell Dev Biol 2009; 20:726-34. [PMID: 19442543 DOI: 10.1016/j.semcdb.2009.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/18/2009] [Accepted: 04/01/2009] [Indexed: 12/20/2022]
Abstract
The cerebral cortex is a brain structure unique to mammals and highly adapted to process complex information. Through multiple developmental steps, the cerebral cortex is assembled as a huge diversity of neurons comprising a complex laminar structure, and with both local and long-distance connectivity within the nervous system. Key processes must take place during its construction, including: (i) regulation of the correct number of neurons produced by progenitor cells, (ii) temporal and spatial generation of neuronal diversity, and (iii) control of neuron migration and laminar positioning as well as terminal differentiation within the mature cortex. Here, we seek to highlight recent cellular and molecular findings underlying these sequential steps of neurogenesis, cell fate specification and migration during cortical development, with particular emphasis on cortical projection neurons.
Collapse
Affiliation(s)
- Yohann Mérot
- DECA Group, DEPSN UPR2197 CNRS, Avenue de la terrasse 91198 Gif sur Yvette, France.
| | | | | |
Collapse
|
58
|
Creppe C, Malinouskaya L, Volvert ML, Gillard M, Close P, Malaise O, Laguesse S, Cornez I, Rahmouni S, Ormenese S, Belachew S, Malgrange B, Chapelle JP, Siebenlist U, Moonen G, Chariot A, Nguyen L. Elongator Controls the Migration and Differentiation of Cortical Neurons through Acetylation of α-Tubulin. Cell 2009; 136:551-64. [DOI: 10.1016/j.cell.2008.11.043] [Citation(s) in RCA: 382] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 09/12/2008] [Accepted: 11/25/2008] [Indexed: 12/18/2022]
|
59
|
Yokota Y, Kim WY, Chen Y, Wang X, Stanco A, Komuro Y, Snider W, Anton ES. The adenomatous polyposis coli protein is an essential regulator of radial glial polarity and construction of the cerebral cortex. Neuron 2009; 61:42-56. [PMID: 19146812 PMCID: PMC2804250 DOI: 10.1016/j.neuron.2008.10.053] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 09/30/2008] [Accepted: 10/31/2008] [Indexed: 11/23/2022]
Abstract
Radial glia are highly polarized cells that serve as neuronal progenitors and as scaffolds for neuronal migration during construction of the cerebral cortex. How radial glial cells establish and maintain their morphological polarity is unknown. Using conditional gene targeting in mice, we demonstrate that adenomatous polyposis coli (APC) serves an essential function in the maintenance of polarized radial glial scaffold during brain development. In the absence of APC, radial glial cells lose their polarity and responsiveness to the extracellular polarity maintenance cues, such as neuregulin-1. Elimination of APC further leads to marked instability of the radial glial microtubule cytoskeleton. The resultant changes in radial glial function and loss of APC in radial glial progeny lead to defective generation and migration of cortical neurons, severely disrupted cortical layer formation, and aberrant axonal tract development. Thus, APC is an essential regulator of radial glial polarity and is critical for the construction of cerebral cortex in mammals.
Collapse
Affiliation(s)
- Yukako Yokota
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Woo- Yang Kim
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Yojun Chen
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Xinshuo Wang
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Amelia Stanco
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Yutaro Komuro
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - William Snider
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - E. S. Anton
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
60
|
Park H, Staehling-Hampton K, Appleby MW, Brunkow ME, Habib T, Zhang Y, Ramsdell F, Liggitt HD, Freie B, Tsang M, Carlson G, Friend S, Frevert C, Iritani BM. A point mutation in the murine Hem1 gene reveals an essential role for Hematopoietic protein 1 in lymphopoiesis and innate immunity. J Exp Med 2008; 205:2899-913. [PMID: 19015308 PMCID: PMC2585840 DOI: 10.1084/jem.20080340] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 10/20/2008] [Indexed: 12/24/2022] Open
Abstract
Hem1 (Hematopoietic protein 1) is a hematopoietic cell-specific member of the Hem family of cytoplasmic adaptor proteins. Orthologues of Hem1 in Dictyostelium discoideum, Drosophila melanogaster, and Caenorhabditis elegans are essential for cytoskeletal reorganization, embryonic cell migration, and morphogenesis. However, the in vivo functions of mammalian Hem1 are not known. Using a chemical mutagenesis strategy in mice to identify novel genes involved in immune cell functions, we positionally cloned a nonsense mutation in the Hem1 gene. Hem1 deficiency results in defective F-actin polymerization and actin capping in lymphocytes and neutrophils caused by loss of the Rac-controlled actin-regulatory WAVE protein complex. T cell development is disrupted in Hem1-deficient mice at the CD4(-)CD8(-) (double negative) to CD4(+)CD8(+) (double positive) cell stages, whereas T cell activation and adhesion are impaired. Hem1-deficient neutrophils fail to migrate in response to chemotactic agents and are deficient in their ability to phagocytose bacteria. Remarkably, some Rac-dependent functions, such as Th1 differentiation and nuclear factor kappaB (NF-kappaB)-dependent transcription of proinflammatory cytokines proceed normally in Hem1-deficient mice, whereas the production of Th17 cells are enhanced. These results demonstrate that Hem1 is essential for hematopoietic cell development, function, and homeostasis by controlling a distinct pathway leading to cytoskeletal reorganization, whereas NF-kappaB-dependent transcription proceeds independently of Hem1 and F-actin polymerization.
Collapse
Affiliation(s)
- Heon Park
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
The role of the cytoskeleton during neuronal polarization. Curr Opin Neurobiol 2008; 18:479-87. [DOI: 10.1016/j.conb.2008.09.019] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/17/2008] [Accepted: 09/26/2008] [Indexed: 11/20/2022]
|
62
|
Heng JIT, Nguyen L, Castro DS, Zimmer C, Wildner H, Armant O, Skowronska-Krawczyk D, Bedogni F, Matter JM, Hevner R, Guillemot F. Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature 2008; 455:114-8. [PMID: 18690213 DOI: 10.1038/nature07198] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 06/23/2008] [Indexed: 11/09/2022]
Abstract
Motility is a universal property of newly generated neurons. How cell migration is coordinately regulated with other aspects of neuron production is not well understood. Here we show that the proneural protein neurogenin 2 (Neurog2), which controls neurogenesis in the embryonic cerebral cortex, directly induces the expression of the small GTP-binding protein Rnd2 (ref. 3) in newly generated mouse cortical neurons before they initiate migration. Rnd2 silencing leads to a defect in radial migration of cortical neurons similar to that observed when the Neurog2 gene is deleted. Remarkably, restoring Rnd2 expression in Neurog2-mutant neurons is sufficient to rescue their ability to migrate. Our results identify Rnd2 as a novel essential regulator of neuronal migration in the cerebral cortex and demonstrate that Rnd2 is a major effector of Neurog2 function in the promotion of migration. Thus, a proneural protein controls the complex cellular behaviour of cell migration through a remarkably direct pathway involving the transcriptional activation of a small GTP-binding protein.
Collapse
Affiliation(s)
- Julian Ik-Tsen Heng
- Division of Molecular Neurobiology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Nakao S, Platek A, Hirano S, Takeichi M. Contact-dependent promotion of cell migration by the OL-protocadherin-Nap1 interaction. ACTA ACUST UNITED AC 2008; 182:395-410. [PMID: 18644894 PMCID: PMC2483522 DOI: 10.1083/jcb.200802069] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OL-protocadherin (OL-pc) is a transmembrane protein belonging to the cadherin superfamily, which has been shown to accumulate at cell–cell contacts via its homophilic interaction, but its molecular roles remain elusive. In this study, we show that OL-pc bound Nck-associated protein 1 (Nap1), a protein that regulates WAVE-mediated actin assembly. In astrocytoma U251 cells not expressing OL-pc, Nap1 was localized only along the lamellipodia. However, exogenous expression of OL-pc in these cells recruited Nap1 as well as WAVE1 to cell–cell contact sites. Although OL-pc expression had no effect on the motility of solitary U251 cells, it accelerated their movement when they were in contact with one another, causing concomitant reorganization of F-actin and N-cadherin at cell junctions. OL-pc mutants lacking the Nap1-binding site exhibited no such effect. N-cadherin knockdown mimicked OL-pc expression in enhancing cell movement. These results suggest that OL-pc remodels the motility and adhesion machinery at cell junctions by recruiting the Nap1–WAVE1 complex to these sites and, in turn, promotes the migration of cells.
Collapse
Affiliation(s)
- Shinsuke Nakao
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
64
|
Yamaguchi S, Fujii-Taira I, Murakami A, Hirose N, Aoki N, Izawa EI, Fujimoto Y, Takano T, Matsushima T, Homma KJ. Up-regulation of microtubule-associated protein 2 accompanying the filial imprinting of domestic chicks (Gallus gallus domesticus). Brain Res Bull 2008; 76:282-8. [DOI: 10.1016/j.brainresbull.2008.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 12/06/2007] [Accepted: 02/06/2008] [Indexed: 12/28/2022]
|
65
|
Gene expression profile in cerebrum in the filial imprinting of domestic chicks (Gallus gallus domesticus). Brain Res Bull 2008; 76:275-81. [PMID: 18498941 DOI: 10.1016/j.brainresbull.2008.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 12/06/2007] [Accepted: 02/06/2008] [Indexed: 12/21/2022]
Abstract
In newly hatched chicks, gene expression in the brain has previously been shown to be up-regulated following filial imprinting. By applying cDNA microarrays containing 13,007 expressed sequence tags, we examined the comprehensive gene expression profiling of the intermediate medial mesopallium in the chick cerebrum, which has been shown to play a key role in filial imprinting. We found 52 up-regulated genes and 6 down-regulated genes of at least 2.0-fold changes 3h after the training of filial imprinting, compared to the gene expression of the dark-reared chick brain. The up-regulated genes are known to be involved in a variety of pathways, including signal transduction, cytoskeletal organization, nuclear function, cell metabolism, RNA binding, endoplasmic reticulum or Golgi function, synaptic function, ion channel, and transporter. In contrast, fewer genes were down-regulated in the imprinting, coinciding with the previous data that the total RNA synthesis increased associated with filial imprinting. Our data suggests that the filial imprinting involves the modulation of multiple signaling pathways.
Collapse
|