51
|
Yoo H, Yang SH, Kim JY, Yang E, Park HS, Lee SJ, Rhyu IJ, Turecki G, Lee HW, Kim H. Down-regulation of habenular calcium-dependent secretion activator 2 induces despair-like behavior. Sci Rep 2021; 11:3700. [PMID: 33580180 PMCID: PMC7881199 DOI: 10.1038/s41598-021-83310-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/29/2021] [Indexed: 01/07/2023] Open
Abstract
Calcium-dependent secretion activator 2 (CAPS2) regulates the trafficking and exocytosis of neuropeptide-containing dense-core vesicles (DCVs). CAPS2 is prominently expressed in the medial habenula (MHb), which is related to depressive behavior; however, how MHb neurons cause depressive symptoms and the role of CAPS2 remains unclear. We hypothesized that dysfunction of MHb CAPS neurons might cause defects in neuropeptide secretion and the activity of monoaminergic centers, resulting in depressive-like behaviors. In this study, we examined (1) CAPS2 expression in the habenula of depression animal models and major depressive disorder patients and (2) the effects of down-regulation of MHb CAPS2 on the animal behaviors, synaptic transmission in the interpeduncular nucleus (IPN), and neuronal activity of monoamine centers. Habenular CAPS2 expression was decreased in the rat chronic restraint stress model, mouse learned helplessness model, and showed tendency to decrease in depression patients who died by suicide. Knockdown of CAPS2 in the mouse habenula evoked despair-like behavior and a reduction of the release of DCVs in the IPN. Neuronal activity of IPN and monoaminergic centers was also reduced. These results implicate MHb CAPS2 as playing a pivotal role in depressive behavior through the regulation of neuropeptide secretion of the MHb-IPN pathway and the activity of monoaminergic centers.
Collapse
Affiliation(s)
- Hyeijung Yoo
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
- Department of Biomedical Sciences, Brain Korea 21 FOUR, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Soo Hyun Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
- Department of Biomedical Sciences, Brain Korea 21 FOUR, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Jin Yong Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
- Department of Biomedical Sciences, Brain Korea 21 FOUR, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Hyung Sun Park
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Se Jeong Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
- Department of Biomedical Sciences, Brain Korea 21 FOUR, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Gustavo Turecki
- Department of Psychiatry, McGill University, Douglas, Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
| | - Hyun Woo Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea.
- Department of Biomedical Sciences, Brain Korea 21 FOUR, College of Medicine, Korea University, Seoul, 02841, Korea.
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea.
- Department of Biomedical Sciences, Brain Korea 21 FOUR, College of Medicine, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
52
|
Moreno A, Kowalik G, Mendelowitz D, Kay MW. Optogenetic Control of Cardiac Autonomic Neurons in Transgenic Mice. Methods Mol Biol 2021; 2191:309-321. [PMID: 32865752 DOI: 10.1007/978-1-0716-0830-2_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optogenetic technology has enabled unparalleled insights into cellular and organ physiology by providing exquisite temporal and spatial control of biological pathways. Here, an optogenetic approach is presented for selective activation of the intrinsic cardiac nervous system in excised perfused mouse hearts. The breeding of transgenic mice that have selective expression of channelrhodopsin in either catecholaminergic or cholinergic neurons is described. An approach for perfusing hearts excised from those animals, recording the ECG to measure heart rate changes, and an illumination technique using a custom micro-LED light source to activate channelrhodopsin is explained. We have used these methods in ongoing studies of the kinetics of autonomic control of cardiac electrophysiology and contractility, demonstrating the proven utility of optogenetic technology to enable unparalleled spatiotemporal anatomic-functional probing of the intrinsic cardiac nervous system.
Collapse
Affiliation(s)
- Angel Moreno
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Grant Kowalik
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.
| |
Collapse
|
53
|
Przybyłowska M, Dzierzbicka K, Kowalski S, Chmielewska K, Inkielewicz-Stepniak I. Therapeutic Potential of Multifunctional Derivatives of Cholinesterase Inhibitors. Curr Neuropharmacol 2021; 19:1323-1344. [PMID: 33342413 PMCID: PMC8719290 DOI: 10.2174/1570159x19666201218103434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/07/2020] [Accepted: 11/29/2020] [Indexed: 11/22/2022] Open
Abstract
The aim of this work is to review tacrine analogues from the last three years, which were not included in the latest review work, donepezil and galantamine hybrids from 2015 and rivastigmine derivatives from 2014. In this account, we summarize the efforts toward the development and characterization of non-toxic inhibitors of cholinesterases based on mentioned drugs with various interesting additional properties such as antioxidant, decreasing β-amyloid plaque aggregation, nitric oxide production, pro-inflammatory cytokines release, monoamine oxidase-B activity, cytotoxicity and oxidative stress in vitro and in animal model that classify these hybrids as potential multifunctional therapeutic agents for Alzheimer's disease. Moreover, herein, we have described the cholinergic hypothesis, mechanisms of neurodegeneration and current pharmacotherapy of Alzheimer's disease based on the restoration of cholinergic function through blocking enzymes that break down acetylcholine.
Collapse
Affiliation(s)
- Maja Przybyłowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Szymon Kowalski
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Klaudia Chmielewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
54
|
Kebschull JM, Richman EB, Ringach N, Friedmann D, Albarran E, Kolluru SS, Jones RC, Allen WE, Wang Y, Cho SW, Zhou H, Ding JB, Chang HY, Deisseroth K, Quake SR, Luo L. Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science 2020; 370:eabd5059. [PMID: 33335034 PMCID: PMC8510508 DOI: 10.1126/science.abd5059] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/26/2020] [Indexed: 11/02/2022]
Abstract
How have complex brains evolved from simple circuits? Here we investigated brain region evolution at cell-type resolution in the cerebellar nuclei, the output structures of the cerebellum. Using single-nucleus RNA sequencing in mice, chickens, and humans, as well as STARmap spatial transcriptomic analysis and whole-central nervous system projection tracing, we identified a conserved cell-type set containing two region-specific excitatory neuron classes and three region-invariant inhibitory neuron classes. This set constitutes an archetypal cerebellar nucleus that was repeatedly duplicated to form new regions. The excitatory cell class that preferentially funnels information to lateral frontal cortices in mice becomes predominant in the massively expanded human lateral nucleus. Our data suggest a model of brain region evolution by duplication and divergence of entire cell-type sets.
Collapse
Affiliation(s)
| | - Ethan B Richman
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Neurosciences Program, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Noam Ringach
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Drew Friedmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Eddy Albarran
- Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Sai Saroja Kolluru
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | - Robert C Jones
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - William E Allen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Neurosciences Program, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Society of Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Ying Wang
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Seung Woo Cho
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
55
|
Scholze P, Huck S. The α5 Nicotinic Acetylcholine Receptor Subunit Differentially Modulates α4β2 * and α3β4 * Receptors. Front Synaptic Neurosci 2020; 12:607959. [PMID: 33343327 PMCID: PMC7744819 DOI: 10.3389/fnsyn.2020.607959] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 11/30/2022] Open
Abstract
Nicotine, the principal reinforcing compound in tobacco, acts in the brain by activating neuronal nicotinic acetylcholine receptors (nAChRs). This review summarizes our current knowledge regarding how the α5 accessory nAChR subunit, encoded by the CHRNA5 gene, differentially modulates α4β2* and α3β4* receptors at the cellular level. Genome-wide association studies have linked a gene cluster in chromosomal region 15q25 to increased susceptibility to nicotine addiction, lung cancer, chronic obstructive pulmonary disease, and peripheral arterial disease. Interestingly, this gene cluster contains a non-synonymous single-nucleotide polymorphism (SNP) in the human CHRNA5 gene, causing an aspartic acid (D) to asparagine (N) substitution at amino acid position 398 in the α5 nAChR subunit. Although other SNPs have been associated with tobacco smoking behavior, efforts have focused predominantly on the D398 and N398 variants in the α5 subunit. In recent years, significant progress has been made toward understanding the role that the α5 nAChR subunit—and the role of the D398 and N398 variants—plays on nAChR function at the cellular level. These insights stem primarily from a wide range of experimental models, including receptors expressed heterologously in Xenopus oocytes, various cell lines, and neurons derived from human induced pluripotent stem cells (iPSCs), as well as endogenous receptors in genetically engineered mice and—more recently—rats. Despite providing a wealth of available data, however, these studies have yielded conflicting results, and our understanding of the modulatory role that the α5 subunit plays remains incomplete. Here, we review these reports and the various techniques used for expression and analysis in order to examine how the α5 subunit modulates key functions in α4β2* and α3β4* receptors, including receptor trafficking, sensitivity, efficacy, and desensitization. In addition, we highlight the strikingly different role that the α5 subunit plays in Ca2+ signaling between α4β2* and α3β4* receptors, and we discuss whether the N398 α5 subunit variant can partially replace the D398 variant.
Collapse
Affiliation(s)
- Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Sigismund Huck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
56
|
London E, Wester JC, Bloyd M, Bettencourt S, McBain CJ, Stratakis CA. Loss of habenular Prkar2a reduces hedonic eating and increases exercise motivation. JCI Insight 2020; 5:141670. [PMID: 33141766 PMCID: PMC7714411 DOI: 10.1172/jci.insight.141670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023] Open
Abstract
The habenula (Hb) is a bilateral, evolutionarily conserved epithalamic structure connecting forebrain and midbrain structures that has gained attention for its roles in depression, addiction, rewards processing, and motivation. Of its 2 major subdivisions, the medial Hb (MHb) and lateral Hb (LHb), MHb circuitry and function are poorly understood relative to those of the LHb. Prkar2a codes for cAMP-dependent protein kinase (PKA) regulatory subunit IIα (RIIα), a component of the PKA holoenzyme at the center of one of the major cell-signaling pathways conserved across systems and species. Type 2 regulatory subunits (RIIα, RIIβ) determine the subcellular localization of PKA, and unlike other PKA subunits, Prkar2a has minimal brain expression except in the MHb. We previously showed that RIIα-knockout (RIIα-KO) mice resist diet-induced obesity. In the present study, we report that RIIα-KO mice have decreased consumption of palatable, “rewarding” foods and increased motivation for voluntary exercise. Prkar2a deficiency led to decreased habenular PKA enzymatic activity and impaired dendritic localization of PKA catalytic subunits in MHb neurons. Reexpression of Prkar2a in the Hb rescued this phenotype, confirming differential roles for Prkar2a in regulating the drives for palatable foods and voluntary exercise. Our findings show that in the MHb decreased PKA signaling and dendritic PKA activity decrease motivation for palatable foods, while enhancing the motivation for exercise, a desirable combination of behaviors. Decreased habenular PKA signaling and altered localization of PKA catalytic subunits in medial habenula dendrites caused by Prkar2a deletion led to increased voluntary running and decreased sucrose solution intake in mice.
Collapse
Affiliation(s)
| | - Jason C Wester
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver, National Institute for Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | | | | | - Chris J McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver, National Institute for Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
57
|
DeGroot SR, Zhao-Shea R, Chung L, Klenowski PM, Sun F, Molas S, Gardner PD, Li Y, Tapper AR. Midbrain Dopamine Controls Anxiety-like Behavior by Engaging Unique Interpeduncular Nucleus Microcircuitry. Biol Psychiatry 2020; 88:855-866. [PMID: 32800629 PMCID: PMC8043246 DOI: 10.1016/j.biopsych.2020.06.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Dopamine (DA) is hypothesized to modulate anxiety-like behavior, although the precise role of DA in anxiety behaviors and the complete anxiety network in the brain have yet to be elucidated. Recent data indicate that dopaminergic projections from the ventral tegmental area (VTA) innervate the interpeduncular nucleus (IPN), but how the IPN responds to DA and what role this circuit plays in anxiety-like behavior are unknown. METHODS We expressed a genetically encoded G protein-coupled receptor activation-based DA sensor in mouse midbrain to detect DA in IPN slices using fluorescence imaging combined with pharmacology. Next, we selectively inhibited or activated VTA→IPN DAergic inputs via optogenetics during anxiety-like behavior. We used a biophysical approach to characterize DA effects on neural IPN circuits. Site-directed pharmacology was used to test if DA receptors in the IPN can regulate anxiety-like behavior. RESULTS DA was detected in mouse IPN slices. Silencing/activating VTA→IPN DAergic inputs oppositely modulated anxiety-like behavior. Two neuronal populations in the ventral IPN (vIPN) responded to DA via D1 receptors (D1Rs). vIPN neurons were controlled by a small population of D1R neurons in the caudal IPN that directly respond to VTA DAergic terminal stimulation and innervate the vIPN. IPN infusion of a D1R agonist and antagonist bidirectionally controlled anxiety-like behavior. CONCLUSIONS VTA DA engages D1R-expressing neurons in the caudal IPN that innervate vIPN, thereby amplifying the VTA DA signal to modulate anxiety-like behavior. These data identify a DAergic circuit that mediates anxiety-like behavior through unique IPN microcircuitry.
Collapse
Affiliation(s)
- Steven R. DeGroot
- Brudnick Neuropsychiatric Research Institute, Dept, of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA,Graduate Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Rubing Zhao-Shea
- Brudnick Neuropsychiatric Research Institute, Dept, of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Leeyup Chung
- Brudnick Neuropsychiatric Research Institute, Dept, of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Paul M. Klenowski
- Brudnick Neuropsychiatric Research Institute, Dept, of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Fangmiao Sun
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871 Beijing, China,PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China
| | - Susanna Molas
- Brudnick Neuropsychiatric Research Institute, Dept, of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Paul D. Gardner
- Brudnick Neuropsychiatric Research Institute, Dept, of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871 Beijing, China,PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China,Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
| | - Andrew R. Tapper
- Brudnick Neuropsychiatric Research Institute, Dept, of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA,Lead Contact, Correspondence to:
| |
Collapse
|
58
|
Aroniadou-Anderjaska V, Apland JP, Figueiredo TH, De Araujo Furtado M, Braga MF. Acetylcholinesterase inhibitors (nerve agents) as weapons of mass destruction: History, mechanisms of action, and medical countermeasures. Neuropharmacology 2020; 181:108298. [DOI: 10.1016/j.neuropharm.2020.108298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
|
59
|
Wittenberg RE, Wolfman SL, De Biasi M, Dani JA. Nicotinic acetylcholine receptors and nicotine addiction: A brief introduction. Neuropharmacology 2020; 177:108256. [PMID: 32738308 PMCID: PMC7554201 DOI: 10.1016/j.neuropharm.2020.108256] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
Abstract
Nicotine is a highly addictive drug found in tobacco that drives its continued use despite the harmful consequences. The initiation of nicotine abuse involves the mesolimbic dopamine system, which contributes to the rewarding sensory stimuli and associative learning processes in the beginning stages of addiction. Nicotine binds to neuronal nicotinic acetylcholine receptors (nAChRs), which come in a diverse collection of subtypes. The nAChRs that contain the α4 and β2 subunits, often in combination with the α6 subunit, are particularly important for nicotine's ability to increase midbrain dopamine neuron firing rates and phasic burst firing. Chronic nicotine exposure results in numerous neuroadaptations, including the upregulation of particular nAChR subtypes associated with long-term desensitization of the receptors. When nicotine is no longer present, for example during attempts to quit smoking, a withdrawal syndrome develops. The expression of physical withdrawal symptoms depends mainly on the α2, α3, α5, and β4 nicotinic subunits in the epithalamic habenular complex and its target regions. Thus, nicotine affects diverse neural systems and an array of nAChR subtypes to mediate the overall addiction process. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Ruthie E Wittenberg
- Departments of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shannon L Wolfman
- Departments of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariella De Biasi
- Departments of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John A Dani
- Departments of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
60
|
Jin XT, Tucker BR, Drenan RM. Nicotine Self-Administration Induces Plastic Changes to Nicotinic Receptors in Medial Habenula. eNeuro 2020; 7:ENEURO.0197-20.2020. [PMID: 32675176 PMCID: PMC7405075 DOI: 10.1523/eneuro.0197-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 11/21/2022] Open
Abstract
Chronic nicotine upregulates nicotinic acetylcholine receptors (nAChRs) throughout the brain, and reducing their activity may promote somatic and affective states that lead to nicotine seeking. nAChRs are functionally upregulated in animal models using passive nicotine administration, but whether/how it occurs in response to volitional nicotine intake is unknown. The distinction is critical, as drug self-administration (SA) can induce neurotransmission and cellular excitability changes that passive drug administration does not. In this study, we probed the question of whether medial habenula (MHb) nAChRs are functionally augmented by nicotine SA. Male rats were implanted with an indwelling jugular catheter and trained to nose poke for nicotine infusions. A saline SA group controlled for non-specific responding and nicotine-associated visual cues. Using patch-clamp whole-cell recordings and local application of acetylcholine, we observed robust functional enhancement of nAChRs in MHb neurons from rats with a history of nicotine SA. To determine whether upregulated receptors are generally enhanced or directed to specific cellular compartments, we imaged neurons during recordings using two-photon laser scanning microscopy (2PLSM). nAChR activity at the cell soma and on proximal and distal dendrites was examined by local nicotine uncaging using a photoactivatable nicotine (PA-Nic) probe and focal laser flash photolysis. Results from this experiment revealed strong nAChR enhancement at all examined cellular locations. Our study demonstrates nAChR functional enhancement by nicotine SA, confirming that volitional nicotine intake sensitizes cholinergic systems in the brain. This may be a critical plasticity change supporting nicotine addiction.
Collapse
Affiliation(s)
- Xiao-Tao Jin
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Brenton R Tucker
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Ryan M Drenan
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
61
|
Parajuli LK, Wako K, Maruo S, Kakuta S, Koike M. Unique synaptic topography of crest-type synapses in the interpeduncular nucleus. Biochem Biophys Res Commun 2020; 530:130-135. [PMID: 32828274 DOI: 10.1016/j.bbrc.2020.06.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022]
Abstract
Neurons in the central nervous system display a great diversity of synaptic architecture. While much of our knowledge on the excitatory synapse morphology derives from the prototypical asymmetric synapses, little has been studied about the atypical crest-type synapse that exists in the restricted brain regions. Here, we used focused ion beam scanning electron microscopy (FIB/SEM) to image a neuropil volume of interpeduncular nucleus (IPN) and manually reconstructed several dendrites to obtain an insight about the topography and quantitative features of crest synapses. Three-dimensional reconstruction showed numerous U-shaped structures protruding from the IPN dendrites. On either faces of the U-shaped structure, a pair of crest synapses are aligned in parallel such that there exists a positive correlation between the postsynaptic density (PSD) area of synapses that participate in pair formation. Interestingly, mitochondria are excluded from the site of crest synapses. Several presynaptic axons run through the hollow, cylindrical space of the U-shape grooves such that the plasma membrane of the axon and the dendrite are organized in a tight opposition without any intervening glial membrane. Unlike the peculiar dendritic morphology, IPN neurons possess typical somatic morphology with an oval, centrally located nucleus. In conclusion, our data reveals a hitherto unknown unique topographical feature of crest synapses in the IPN.
Collapse
Affiliation(s)
- Laxmi Kumar Parajuli
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| | - Ken Wako
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Suiki Maruo
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Soichiro Kakuta
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan; Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan; Advanced Research Institute for Health Science, Juntendo University, Tokyo, 113-8421, Japan.
| |
Collapse
|
62
|
Jin T, Chen R, Shao M, Yang X, Ma L, Wang F. Dorsal hippocampus- and ACC-projecting medial septum neurons differentially contribute to the recollection of episodic-like memory. FASEB J 2020; 34:11741-11753. [PMID: 32652689 DOI: 10.1096/fj.202000398r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 11/11/2022]
Abstract
Episodic memory refers to the recollection of previous experiences containing specific temporal, spatial, and emotional information. The ability to recollect episodic memory requires coordination of multiple brain regions, including the hippocampus (HPC) and the cingulate cortex. While the afferents into HPC and cingulate cortex that orchestrate the episodic memory remain unclear. The medial septum (MS), one of the anatomical location of cholinergic centers, innervates not only the dorsal HPC (dHPC), but also the cingulate and entorhinal cortices. By using "What-Where-When" episodic-like memory (ELM) behavioral model and viral tracing, we found that MS neurons projected to dHPC and anterior cingulate cortex (ACC), which exerted distinct impacts on ELM recollection. Chemogenetic inhibition of the dHPC-projecting MS neurons disrupted "What-Where-When" ELM recollection as well as object location, object-in-place, and recency recognition memories recollection, while chemogenetic inhibition of the ACC-projecting MS neurons only disrupted "What-Where-When" ELM recollection. Moreover, neither dHPC- nor ACC-projecting MS neurons were involved in novel object recognition memory recollection or locomotor activity. Immunostaining showed that ACC- and dHPC-projecting MS neurons are partially overlapped populations. These findings reveal an unsuspected division of ELM processing and provide the potential mechanism that the recollection of episodic memory need the coordination of MS neurons projecting to dHPC and ACC.
Collapse
Affiliation(s)
- Tao Jin
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ruyan Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mingshuo Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiao Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lan Ma
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Feifei Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
63
|
Böhm E, Brunert D, Rothermel M. Input dependent modulation of olfactory bulb activity by HDB GABAergic projections. Sci Rep 2020; 10:10696. [PMID: 32612119 PMCID: PMC7329849 DOI: 10.1038/s41598-020-67276-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
Basal forebrain modulation of central circuits is associated with active sensation, attention, and learning. While cholinergic modulations have been studied extensively the effect of non-cholinergic basal forebrain subpopulations on sensory processing remains largely unclear. Here, we directly compare optogenetic manipulation effects of two major basal forebrain subpopulations on principal neuron activity in an early sensory processing area, i.e. mitral/tufted cells (MTCs) in the olfactory bulb. In contrast to cholinergic projections, which consistently increased MTC firing, activation of GABAergic fibers from basal forebrain to the olfactory bulb leads to differential modulation effects: while spontaneous MTC activity is mainly inhibited, odor-evoked firing is predominantly enhanced. Moreover, sniff-triggered averages revealed an enhancement of maximal sniff evoked firing amplitude and an inhibition of firing rates outside the maximal sniff phase. These findings demonstrate that GABAergic neuromodulation affects MTC firing in a bimodal, sensory-input dependent way, suggesting that GABAergic basal forebrain modulation could be an important factor in attention mediated filtering of sensory information to the brain.
Collapse
Affiliation(s)
- Erik Böhm
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany
| | - Daniela Brunert
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany.
| |
Collapse
|
64
|
Zhang Y, Zhu Y, Cao SX, Sun P, Yang JM, Xia YF, Xie SZ, Yu XD, Fu JY, Shen CJ, He HY, Pan HQ, Chen XJ, Wang H, Li XM. MeCP2 in cholinergic interneurons of nucleus accumbens regulates fear learning. eLife 2020; 9:55342. [PMID: 32420873 PMCID: PMC7259956 DOI: 10.7554/elife.55342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/18/2020] [Indexed: 11/25/2022] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) encoded by the MECP2 gene is a transcriptional regulator whose mutations cause Rett syndrome (RTT). Mecp2-deficient mice show fear regulation impairment; however, the cellular and molecular mechanisms underlying this abnormal behavior are largely uncharacterized. Here, we showed that Mecp2 gene deficiency in cholinergic interneurons of the nucleus accumbens (NAc) dramatically impaired fear learning. We further found that spontaneous activity of cholinergic interneurons in Mecp2-deficient mice decreased, mediated by enhanced inhibitory transmission via α2-containing GABAA receptors. With MeCP2 restoration, opto- and chemo-genetic activation, and RNA interference in ChAT-expressing interneurons of the NAc, impaired fear retrieval was rescued. Taken together, these results reveal a previously unknown role of MeCP2 in NAc cholinergic interneurons in fear regulation, suggesting that modulation of neurons in the NAc may ameliorate fear-related disorders.
Collapse
Affiliation(s)
- Ying Zhang
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Zhu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu-Xia Cao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Sun
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Ming Yang
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Fang Xia
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shi-Ze Xie
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Dan Yu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Yu Fu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen-Jie Shen
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Yang He
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao-Qi Pan
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Juan Chen
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wang
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Ming Li
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Toronto, Canada
| |
Collapse
|
65
|
Hashikawa Y, Hashikawa K, Rossi MA, Basiri ML, Liu Y, Johnston NL, Ahmad OR, Stuber GD. Transcriptional and Spatial Resolution of Cell Types in the Mammalian Habenula. Neuron 2020; 106:743-758.e5. [PMID: 32272058 DOI: 10.1016/j.neuron.2020.03.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/13/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
Abstract
The habenula complex is appreciated as a critical regulator of motivated and pathological behavioral states via its output to midbrain nuclei. Despite this, transcriptional definition of cell populations that comprise both the medial habenular (MHb) and lateral habenular (LHb) subregions in mammals remain undefined. To resolve this, we performed single-cell transcriptional profiling and highly multiplexed in situ hybridization experiments of the mouse habenula complex in naive mice and those exposed to an acute aversive stimulus. Transcriptionally distinct neuronal cell types identified within the MHb and LHb, were spatially defined, differentially engaged by aversive stimuli, and had distinct electrophysiological properties. Cell types identified in mice also displayed a high degree of transcriptional similarity to those previously described in zebrafish, highlighting the well-conserved nature of habenular cell types across the phylum. These data identify key molecular targets within habenular cell types and provide a critical resource for future studies.
Collapse
Affiliation(s)
- Yoshiko Hashikawa
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Koichi Hashikawa
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Mark A Rossi
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Marcus L Basiri
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Neuroscience Curriculum, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuejia Liu
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Nathan L Johnston
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Omar R Ahmad
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
66
|
The habenular G-protein-coupled receptor 151 regulates synaptic plasticity and nicotine intake. Proc Natl Acad Sci U S A 2020; 117:5502-5509. [PMID: 32098843 DOI: 10.1073/pnas.1916132117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The habenula, an ancient small brain area in the epithalamus, densely expresses nicotinic acetylcholine receptors and is critical for nicotine intake and aversion. As such, identification of strategies to manipulate habenular activity may yield approaches to treat nicotine addiction. Here we show that GPR151, an orphan G-protein-coupled receptor (GPCR) highly enriched in the habenula of humans and rodents, is expressed at presynaptic membranes and synaptic vesicles and associates with synaptic components controlling vesicle release and ion transport. Deletion of Gpr151 inhibits evoked neurotransmission but enhances spontaneous miniature synaptic currents and eliminates short-term plasticity induced by nicotine. We find that GPR151 couples to the G-alpha inhibitory protein Gαo1 to reduce cyclic adenosine monophosphate (cAMP) levels in mice and in GPR151-expressing cell lines that are amenable to ligand screens. Gpr151- knockout (KO) mice show diminished behavioral responses to nicotine and self-administer greater quantities of the drug, phenotypes rescued by viral reexpression of Gpr151 in the habenula. These data identify GPR151 as a critical modulator of habenular function that controls nicotine addiction vulnerability.
Collapse
|
67
|
Wallace ML, Huang KW, Hochbaum D, Hyun M, Radeljic G, Sabatini BL. Anatomical and single-cell transcriptional profiling of the murine habenular complex. eLife 2020; 9:e51271. [PMID: 32043968 PMCID: PMC7012610 DOI: 10.7554/elife.51271] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/21/2020] [Indexed: 11/23/2022] Open
Abstract
The lateral habenula (LHb) is an epithalamic brain structure critical for processing and adapting to negative action outcomes. However, despite the importance of LHb to behavior and the clear anatomical and molecular diversity of LHb neurons, the neuron types of the habenula remain unknown. Here, we use high-throughput single-cell transcriptional profiling, monosynaptic retrograde tracing, and multiplexed FISH to characterize the cells of the mouse habenula. We find five subtypes of neurons in the medial habenula (MHb) that are organized into anatomical subregions. In the LHb, we describe four neuronal subtypes and show that they differentially target dopaminergic and GABAergic cells in the ventral tegmental area (VTA). These data provide a valuable resource for future study of habenular function and dysfunction and demonstrate neuronal subtype specificity in the LHb-VTA circuit.
Collapse
Affiliation(s)
- Michael L Wallace
- Department of NeurobiologyHoward Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Kee Wui Huang
- Department of NeurobiologyHoward Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Daniel Hochbaum
- Department of NeurobiologyHoward Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Minsuk Hyun
- Department of NeurobiologyHoward Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Gianna Radeljic
- Department of NeurobiologyHoward Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| | - Bernardo L Sabatini
- Department of NeurobiologyHoward Hughes Medical Institute, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
68
|
Cui LJ, Chen WH, Liu AL, Han X, Jiang SX, Yuan F, Zhong YM, Yang XL, Weng SJ. nGnG Amacrine Cells and Brn3b-negative M1 ipRGCs are Specifically Labeled in the ChAT-ChR2-EYFP Mouse. Invest Ophthalmol Vis Sci 2020; 61:14. [PMID: 32049344 PMCID: PMC7326507 DOI: 10.1167/iovs.61.2.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Experimental access to specific cell subtypes is essential for deciphering the complexity of retinal networks. Here, we characterized the selective labeling, caused by ectopic transgene expression, of two atypical retinal neurons in the ChAT-Channelrhodopsin-2 (ChR2)-EYFP mouse. Methods Retinal sections and flat-mounts were prepared for double-staining immunohistochemistry with antibodies against EYFP and various neuronal markers. Sagittal/coronal brain slices were made to visualize EYFP signals in central nuclei. Whole-cell recordings were conducted to test the functionality of ChR2. Results Two populations of EYFP-positive retinal cells were observed. The inner nuclear layer (INL)-located one (type I cell) distributed regularly throughout the entire retina, whereas the ganglion cell layer (GCL)-residing one (type II cell) was restricted ventrally. None of them was cholinergic, as evidenced by the complete absence of ChAT immunoreactivity. Type I cells were immunolabeled by the amacrine marker syntaxin. However, the vast majority of them were neither positive to GABA/GAD65, nor to GlyT1/glycine, suggesting that they were non-GABAergic non-glycinergic amacrine cells (nGnG ACs), which was confirmed by double-labeling with the nGnG AC marker PPP1R17. Type II cells were immunopositive to melanopsin, but not to Brn3a or Brn3b. They possessed dendrites stratifying in the outermost inner plexiform layer (IPL) and axons projecting to the suprachiasmatic nucleus (SCN) rather than the olivary pretectal nucleus (OPN), suggesting that they belonged to a Brn3b-negative subset of M1-type intrinsically photosensitive retinal ganglion cells (ipRGCs). Glutamatergic transmission-independent photocurrents were elicited in EYFP-positive cells, indicating the functional expression of ChR2. Conclusions The ChAT-ChR2-EYFP retina exhibits ectopic, but functional, transgene expression in nGnG ACs and SCN-innervating M1 ipRGCs, thus providing an ideal tool to achieve efficient labeling and optogenetic manipulation of these cells.
Collapse
|
69
|
Andersen PL, Vermette P, Khalil A, Witkowski JM, Fülöp T. Characterization of three-dimensional rat central nervous system culture maturation, with applications to monitor cholinergic integrity. Biotechnol Prog 2020; 36:e2976. [PMID: 32012477 DOI: 10.1002/btpr.2976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 11/11/2022]
Abstract
Studying age-related neuropathologies in vitro requires a three-dimensional (3D) culture system presenting mature phenotypes. In this study, we aimed to determine whether aged reaggregate cultures physiologically represent mature brain tissue. Results support that embryo-derived rat central nervous system (CNS) reaggregate cultures develop into mature-like tissues, comparable to in vivo maturation, including the following characteristics: (a) progressive reduction in cell proliferation (reduced anti-Ki-67 immunoreactivity), (b) progressive restriction of long neurite growth potential (as explant cultures), and (c) increased and sustained synaptic enzyme (acetylcholine esterase, AChE) activity. The acquisition of mature-like reaggregate cultures has allowed us to pursue the hypothesis that the physiological integrity of 3D CNS cultures may be monitored by synaptic enzyme activity. To assess this hypothesis, mature-like reaggregates were exposed to H2 O2 , glutamate, or amyloid β(1-42); each resulted in diminished AChE activity. H2 O2 exposure resulted in nuclear fragmentation. Glutamate and amyloid β(1-42) exposure resulted in acetylcholine content reduction. Simultaneous reduction of AChE activity and acetylcholine content verified diminished cholinergic integrity. This scheme exploiting synapse enzyme activity of mature-like 3D CNS tissue is therefore applicable to age-related neuropathology research including in vitro screening of conditions potentially affecting synapse integrity, including the promotion of dementia.
Collapse
Affiliation(s)
- Parker L Andersen
- Department of Medicine, Faculté de médecine et des sciences de la santé, Centre de recherche sur le vieillissement, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Abdelouahed Khalil
- Department of Medicine, Faculté de médecine et des sciences de la santé, Centre de recherche sur le vieillissement, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdańsk, Poland
| | - Tamas Fülöp
- Department of Medicine, Faculté de médecine et des sciences de la santé, Centre de recherche sur le vieillissement, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
70
|
Leyva-Díaz E, Masoudi N, Serrano-Saiz E, Glenwinkel L, Hobert O. Brn3/POU-IV-type POU homeobox genes-Paradigmatic regulators of neuronal identity across phylogeny. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e374. [PMID: 32012462 DOI: 10.1002/wdev.374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
One approach to understand the construction of complex systems is to investigate whether there are simple design principles that are commonly used in building such a system. In the context of nervous system development, one may ask whether the generation of its highly diverse sets of constituents, that is, distinct neuronal cell types, relies on genetic mechanisms that share specific common features. Specifically, are there common patterns in the function of regulatory genes across different neuron types and are those regulatory mechanisms not only used in different parts of one nervous system, but are they conserved across animal phylogeny? We address these questions here by focusing on one specific, highly conserved and well-studied regulatory factor, the POU homeodomain transcription factor UNC-86. Work over the last 30 years has revealed a common and paradigmatic theme of unc-86 function throughout most of the neuron types in which Caenorhabditis elegans unc-86 is expressed. Apart from its role in preventing lineage reiterations during development, UNC-86 operates in combination with distinct partner proteins to initiate and maintain terminal differentiation programs, by coregulating a vast array of functionally distinct identity determinants of specific neuron types. Mouse orthologs of unc-86, the Brn3 genes, have been shown to fulfill a similar function in initiating and maintaining neuronal identity in specific parts of the mouse brain and similar functions appear to be carried out by the sole Drosophila ortholog, Acj6. The terminal selector function of UNC-86 in many different neuron types provides a paradigm for neuronal identity regulation across phylogeny. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Invertebrate Organogenesis > Worms Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Eduardo Leyva-Díaz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | - Neda Masoudi
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | | | - Lori Glenwinkel
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| |
Collapse
|
71
|
Nasirova N, Quina LA, Agosto-Marlin IM, Ramirez JM, Lambe EK, Turner EE. Dual recombinase fate mapping reveals a transient cholinergic phenotype in multiple populations of developing glutamatergic neurons. J Comp Neurol 2020; 528:283-307. [PMID: 31396962 PMCID: PMC6889053 DOI: 10.1002/cne.24753] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 08/02/2019] [Indexed: 01/13/2023]
Abstract
Cholinergic transmission shapes the maturation of glutamatergic circuits, yet the developmental sources of acetylcholine have not been systematically explored. Here, we have used Cre-recombinase-mediated genetic labeling to identify and map both mature and developing CNS neurons that express choline acetyltransferase (ChAT). Correction of a significant problem with a widely used ChatCre transgenic line ensures that this map does not contain expression artifacts. ChatCre marks all known cholinergic systems in the adult brain, but also identifies several brain areas not usually regarded as cholinergic, including specific thalamic and hypothalamic neurons, the subiculum, the lateral parabrachial nucleus, the cuneate/gracilis nuclei, and the pontocerebellar system. This ChatCre fate map suggests transient developmental expression of a cholinergic phenotype in areas important for cognition, motor control, and respiration. We therefore examined expression of ChAT and the vesicular acetylcholine transporter in the embryonic and early postnatal brain to determine the developmental timing of this transient cholinergic phenotype, and found that it mirrored the establishment of relevant glutamatergic projection pathways. We then used an intersectional genetic strategy combining ChatCre with Vglut2Flp to show that these neurons adopt a glutamatergic fate in the adult brain. The transient cholinergic phenotype of these glutamatergic neurons suggests a homosynaptic source of acetylcholine for the maturation of developing glutamatergic synapses. These findings thus define critical windows during which specific glutamatergic circuits may be vulnerable to disruption by nicotine in utero, and suggest new mechanisms for pediatric disorders associated with maternal smoking, such as sudden infant death syndrome.
Collapse
Affiliation(s)
- Nailyam Nasirova
- Center for Integrative Brain Research, Seattle Children’s Research Institute
| | - Lely A. Quina
- Center for Integrative Brain Research, Seattle Children’s Research Institute
| | | | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute
| | - Evelyn K. Lambe
- Departments of Physiology, Obstetrics and Gynecology, and Psychiatry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Eric E. Turner
- Center for Integrative Brain Research, Seattle Children’s Research Institute
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle WA, 98101
| |
Collapse
|
72
|
Sherer LM, Catudio Garrett E, Morgan HR, Brewer ED, Sirrs LA, Shearin HK, Williams JL, McCabe BD, Stowers RS, Certel SJ. Octopamine neuron dependent aggression requires dVGLUT from dual-transmitting neurons. PLoS Genet 2020; 16:e1008609. [PMID: 32097408 PMCID: PMC7059954 DOI: 10.1371/journal.pgen.1008609] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/06/2020] [Accepted: 01/14/2020] [Indexed: 12/02/2022] Open
Abstract
Neuromodulators such as monoamines are often expressed in neurons that also release at least one fast-acting neurotransmitter. The release of a combination of transmitters provides both "classical" and "modulatory" signals that could produce diverse and/or complementary effects in associated circuits. Here, we establish that the majority of Drosophila octopamine (OA) neurons are also glutamatergic and identify the individual contributions of each neurotransmitter on sex-specific behaviors. Males without OA display low levels of aggression and high levels of inter-male courtship. Males deficient for dVGLUT solely in OA-glutamate neurons (OGNs) also exhibit a reduction in aggression, but without a concurrent increase in inter-male courtship. Within OGNs, a portion of VMAT and dVGLUT puncta differ in localization suggesting spatial differences in OA signaling. Our findings establish a previously undetermined role for dVGLUT in OA neurons and suggests that glutamate uncouples aggression from OA-dependent courtship-related behavior. These results indicate that dual neurotransmission can increase the efficacy of individual neurotransmitters while maintaining unique functions within a multi-functional social behavior neuronal network.
Collapse
Affiliation(s)
- Lewis M. Sherer
- Cellular, Molecular and Microbial Biology Graduate Program, University of Montana, Missoula, Montana, United States of America
| | - Elizabeth Catudio Garrett
- Cellular, Molecular and Microbial Biology Graduate Program, University of Montana, Missoula, Montana, United States of America
| | - Hannah R. Morgan
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| | - Edmond D. Brewer
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| | - Lucy A. Sirrs
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| | - Harold K. Shearin
- Cell Biology and Neuroscience Department, Montana State University, Bozeman, Montana, United States of America
| | - Jessica L. Williams
- Cell Biology and Neuroscience Department, Montana State University, Bozeman, Montana, United States of America
| | - Brian D. McCabe
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - R. Steven Stowers
- Cell Biology and Neuroscience Department, Montana State University, Bozeman, Montana, United States of America
| | - Sarah J. Certel
- Cellular, Molecular and Microbial Biology Graduate Program, University of Montana, Missoula, Montana, United States of America
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
73
|
Neural circuits and nicotinic acetylcholine receptors mediate the cholinergic regulation of midbrain dopaminergic neurons and nicotine dependence. Acta Pharmacol Sin 2020; 41:1-9. [PMID: 31554960 PMCID: PMC7468330 DOI: 10.1038/s41401-019-0299-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022]
Abstract
Midbrain dopaminergic (DA) neurons are governed by an endogenous cholinergic system, originated in the mesopontine nuclei. Nicotine hijacks nicotinic acetylcholine receptors (nAChRs) and interferes with physiological function of the cholinergic system. In this review, we describe the anatomical organization of the cholinergic system and the key nAChR subtypes mediating cholinergic regulation of DA transmission and nicotine reward and dependence, in an effort to identify potential targets for smoking intervention. Cholinergic modulation of midbrain DA systems relies on topographic organization of mesopontine cholinergic projections, and activation of nAChRs in midbrain DA neurons. Previous studies have revealed that α4, α6, and β2 subunit-containing nAChRs expressed in midbrain DA neurons and their terminals in the striatum regulate firings of midbrain DA neurons and activity-dependent dopamine release in the striatum. These nAChRs undergo modification upon chronic nicotine exposure. Clinical investigation has demonstrated that partial agonists of these receptors elevate the success rate of smoking cessation relative to placebo. However, further investigations are required to refine the drug targets to mitigate unpleasant side-effects.
Collapse
|
74
|
Metzger M, Souza R, Lima LB, Bueno D, Gonçalves L, Sego C, Donato J, Shammah-Lagnado SJ. Habenular connections with the dopaminergic and serotonergic system and their role in stress-related psychiatric disorders. Eur J Neurosci 2019; 53:65-88. [PMID: 31833616 DOI: 10.1111/ejn.14647] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
The habenula (Hb) is a phylogenetically old epithalamic structure differentiated into two nuclear complexes, the medial (MHb) and lateral habenula (LHb). After decades of search for a great unifying function, interest in the Hb resurged when it was demonstrated that LHb plays a major role in the encoding of aversive stimuli ranging from noxious stimuli to the loss of predicted rewards. Consistent with a role as an anti-reward center, aberrant LHb activity has now been identified as a key factor in the pathogenesis of major depressive disorder. Moreover, both MHb and LHb emerged as new players in the reward circuitry by primarily mediating the aversive properties of distinct drugs of abuse. Anatomically, the Hb serves as a bridge that links basal forebrain structures with monoaminergic nuclei in the mid- and hindbrain. So far, research on Hb has focused on the role of the LHb in regulating midbrain dopamine release. However, LHb/MHb are also interconnected with the dorsal (DR) and median (MnR) raphe nucleus. Hence, it is conceivable that some of the habenular functions are at least partly mediated by the complex network that links MHb/LHb with pontomesencephalic monoaminergic nuclei. Here, we summarize research about the topography and transmitter phenotype of the reciprocal connections between the LHb and ventral tegmental area-nigra complex, as well as those between the LHb and DR/MnR. Indirect MHb outputs via interpeduncular nucleus to state-setting neuromodulatory networks will also be commented. Finally, we discuss the role of specific LHb-VTA and LHb/MHb-raphe circuits in anxiety and depression.
Collapse
Affiliation(s)
- Martin Metzger
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rudieri Souza
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leandro B Lima
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Debora Bueno
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luciano Gonçalves
- Department of Human Anatomy, Federal University of the Triângulo Mineiro, Uberaba, Brazil
| | - Chemutai Sego
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jose Donato
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sara J Shammah-Lagnado
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
75
|
A Role for The P2Y1 Receptor in Nonsynaptic Cross-depolarization in the Rat Dorsal Root Ganglia. Neuroscience 2019; 423:98-108. [PMID: 31689490 DOI: 10.1016/j.neuroscience.2019.09.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
Non-synaptic transmission is pervasive throughout the nervous system. It appears especially prevalent in peripheral ganglia, where non-synaptic interactions between neighboring cell bodies have been described in both physiological and pathological conditions, a phenomenon referred to as cross-depolarization (CD) and thought to play a role in sensory processing and chronic pain. CD has been proposed to be mediated by a chemical agent, but its identity has remained elusive. Here, we report that in the rat dorsal root ganglion (DRG), the P2Y1 purinergic receptor (P2RY1) plays an important role in regulating CD. The effect of P2RY1 is cell-type specific: pharmacological blockade of P2RY1 inhibited CD in A-type neurons while enhancing it in C-type neurons. In the nodose ganglion of the vagus, CD requires extracellular calcium in a large percentage of cells. In contrast, we show that in the DRG extracellular calcium appears to play no major role, pointing to a mechanistic difference between the two peripheral ganglia. Furthermore, we show that DRG glial cells also play a cell-type specific role in CD regulation. Fluorocitrate-induced glial inactivation had no effect on A-cells but enhanced CD in C-cells. These findings shed light on the mechanism of CD in the DRG and pave the way for further analysis of non-synaptic neuronal communication in sensory ganglia.
Collapse
|
76
|
Mathis V, Kenny PJ. From controlled to compulsive drug-taking: The role of the habenula in addiction. Neurosci Biobehav Rev 2019; 106:102-111. [PMID: 29936111 PMCID: PMC9871871 DOI: 10.1016/j.neubiorev.2018.06.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/15/2018] [Accepted: 06/20/2018] [Indexed: 01/27/2023]
Abstract
Addiction is now recognized as a neurobiological and cognitive brain disorder and is generally viewed as a switch from recreational or voluntary to compulsive substance use despite aversive consequences. The habenula, composed of medial (MHb) and lateral (LHb) domains, has been implicated in regulating behavioral flexibility and anxiety-related behaviors and is considered a core component of the brain "anti-reward" system. These functions position the habenula to influence voluntary behaviors. Consistent with this view, emerging evidence points to alterations in habenula activity as important factors to contributing the loss of control over the use of drugs of abuse and the emergence of compulsive drug seeking behaviors. In this review, we will discuss the general functions of the MHb and LHb and describe how these functional properties allow this brain region to promote or suppress volitional behaviors. Then, we highlight mechanisms by which drugs of abuse may alter habenular activity, precipitating the emergence of addiction-relevant behavioral abnormalities.
Collapse
Affiliation(s)
- Victor Mathis
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029-6574, USA.
| | - Paul J Kenny
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York 10029-6574, USA.
| |
Collapse
|
77
|
Lu NN, Tan C, Sun NH, Shao LX, Liu XX, Gao YP, Tao RR, Jiang Q, Wang CK, Huang JY, Zhao K, Wang GF, Liu ZR, Fukunaga K, Lu YM, Han F. Cholinergic Grb2-Associated-Binding Protein 1 Regulates Cognitive Function. Cereb Cortex 2019; 28:2391-2404. [PMID: 28591834 DOI: 10.1093/cercor/bhx141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 05/21/2017] [Indexed: 12/21/2022] Open
Abstract
Grb2-associated-binding protein 1 (Gab1) is a docking/scaffolding molecule known to play an important role in cell growth and survival. Here, we report that Gab1 is decreased in cholinergic neurons in Alzheimer's disease (AD) patients and in a mouse model of AD. In mice, selective ablation of Gab1 in cholinergic neurons in the medial septum impaired learning and memory and hippocampal long-term potentiation. Gab1 ablation also inhibited SK channels, leading to an increase in firing in septal cholinergic neurons. Gab1 overexpression, on the other hand, improved cognitive function and restored hippocampal CaMKII autorphosphorylation in AD mice. These results suggest that Gab1 plays an important role in the pathophysiology of AD and may represent a novel therapeutic target for diseases involving cholinergic dysfunction.
Collapse
Affiliation(s)
- Nan-Nan Lu
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Tan
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ning-He Sun
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ling-Xiao Shao
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiu-Xiu Liu
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Yin-Ping Gao
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Rong-Rong Tao
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Quan Jiang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng-Kun Wang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ji-Yun Huang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kui Zhao
- Department of PET Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guang-Fa Wang
- Department of PET Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhi-Rong Liu
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | - Ying-Mei Lu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China.,Key Laboratory of Medical Neurobiology of Ministry of Health of China, Department of Neurobiology,Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feng Han
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
78
|
Abstract
Diabetes is far more prevalent in smokers than non-smokers, but the underlying mechanisms of vulnerability are unknown. Here we show that the diabetes-associated gene Tcf7l2 is densely expressed in the medial habenula (mHb) region of the rodent brain, where it regulates the function of nicotinic acetylcholine receptors. Inhibition of TCF7L2 signalling in the mHb increases nicotine intake in mice and rats. Nicotine increases levels of blood glucose by TCF7L2-dependent stimulation of the mHb. Virus-tracing experiments identify a polysynaptic connection from the mHb to the pancreas, and wild-type rats with a history of nicotine consumption show increased circulating levels of glucagon and insulin, and diabetes-like dysregulation of blood glucose homeostasis. By contrast, mutant Tcf7l2 rats are resistant to these actions of nicotine. Our findings suggest that TCF7L2 regulates the stimulatory actions of nicotine on a habenula-pancreas axis that links the addictive properties of nicotine to its diabetes-promoting actions.
Collapse
|
79
|
Melani R, Von Itter R, Jing D, Koppensteiner P, Ninan I. Opposing effects of an atypical glycinergic and substance P transmission on interpeduncular nucleus plasticity. Neuropsychopharmacology 2019; 44:1828-1836. [PMID: 31005058 PMCID: PMC6785085 DOI: 10.1038/s41386-019-0396-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Abstract
The medial habenula-interpeduncular nucleus (MHb-IPN) pathway has recently been implicated in the suppression of fear memory. A notable feature of this pathway is the corelease of neurotransmitters and neuropeptides from MHb neurons. Our studies in mice reveal that an activation of substance P-positive dorsomedial habenula (dMHb) neurons results in simultaneous release of glutamate and glycine in the lateral interpeduncular nucleus (LIPN). This glycine receptor activity inhibits an activity-dependent long-lasting potentiation of glutamatergic synapses in LIPN neurons, while substance P enhances this plasticity. An endocannabinoid CB1 receptor-mediated suppression of GABAB receptor activity allows substance P to induce a long-lasting increase in glutamate release in LIPN neurons. Consistent with the substance P-dependent synaptic potentiation in the LIPN, the NK1R in the IPN is involved in fear extinction but not fear conditioning. Thus, our study describes a novel plasticity mechanism in the LIPN and a region-specific role of substance P in fear extinction.
Collapse
Affiliation(s)
- Riccardo Melani
- 0000 0001 2109 4251grid.240324.3Department of Psychiatry and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY USA
| | - Richard Von Itter
- 0000 0001 2109 4251grid.240324.3Department of Psychiatry and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY USA
| | - Deqiang Jing
- 000000041936877Xgrid.5386.8Department of Psychiatry, Weill Cornell Medical College, New York, NY USA
| | - Peter Koppensteiner
- 0000 0001 2109 4251grid.240324.3Department of Psychiatry and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY USA
| | - Ipe Ninan
- Department of Psychiatry and NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
80
|
Steinkellner T, Yoo JH, Hnasko TS. Differential Expression of VGLUT2 in Mouse Mesopontine Cholinergic Neurons. eNeuro 2019; 6:ENEURO.0161-19.2019. [PMID: 31366590 PMCID: PMC6709236 DOI: 10.1523/eneuro.0161-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 11/21/2022] Open
Abstract
Vesicular glutamate transporters (VGLUTs) mediate the synaptic uptake of glutamate from the cytosol into synaptic vesicles and are considered unambiguous neurochemical markers of glutamate neurons. However, many neurons not classically thought of as glutamatergic also express a VGLUT and co-release glutamate. Using a genetic fate-mapping strategy we found that most cholinergic neurons in the mouse mesopontine tegmentum express VGLUT2 at some point during development, including the pedunculopontine tegmental nucleus (PPTg), laterodorsal tegmental nucleus, and parabigeminal nucleus (PBG), but not the oculomotor nucleus. In contrast, very few of these cholinergic neurons displayed evidence of vesicular GABA transporter expression. Using multiplex fluorescent in situ hybridization, we determined that only PBG cholinergic neurons are also predominantly positive for VGLUT2 mRNA in the adult, with only small numbers of PPTg cholinergic neurons overlapping with VGLUT2 mRNA. Using Cre-dependent viral vectors we confirm these in situ hybridization data, and demonstrate projection patterns of cholinergic and glutamatergic populations. These results demonstrate that most mesopontine cholinergic neurons may transiently express VGLUT2, but that a large majority of PBG neurons retain VGLUT2 expression throughout adulthood, and support a growing body of literature indicating that distinct cholinergic populations have differing potential for GABA or glutamate co-release.
Collapse
Affiliation(s)
- Thomas Steinkellner
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Ji Hoon Yoo
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
- Veterans Affairs San Diego Healthcare System, Research Service, San Diego, California 92161
| |
Collapse
|
81
|
Pharmacological Profiling of Purified Human Stem Cell-Derived and Primary Mouse Motor Neurons. Sci Rep 2019; 9:10835. [PMID: 31346219 PMCID: PMC6658502 DOI: 10.1038/s41598-019-47203-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/07/2019] [Indexed: 12/13/2022] Open
Abstract
Directed differentiation of human pluripotent stem cells (hPSCs) has enabled the generation of specific neuronal subtypes that approximate the intended primary mammalian cells on both the RNA and protein levels. These cells offer unique opportunities, including insights into mechanistic understanding of the early driving events in neurodegenerative disease, replacement of degenerating cell populations, and compound identification and evaluation in the context of precision medicine. However, whether the derived neurons indeed recapitulate the physiological features of the desired bona fide neuronal subgroups remains an unanswered question and one important for validating stem cell models as accurate functional representations of the primary cell types. Here, we purified both hPSC-derived and primary mouse spinal motor neurons in parallel and used extracellular multi-electrode array (MEA) recording to compare the pharmacological sensitivity of neuronal excitability and network function. We observed similar effects for most receptor and channel agonists and antagonists, supporting the consistency between human PSC-derived and mouse primary spinal motor neuron models from a physiological perspective.
Collapse
|
82
|
Otsu Y, Lecca S, Pietrajtis K, Rousseau CV, Marcaggi P, Dugué GP, Mailhes-Hamon C, Mameli M, Diana MA. Functional Principles of Posterior Septal Inputs to the Medial Habenula. Cell Rep 2019; 22:693-705. [PMID: 29346767 PMCID: PMC5792424 DOI: 10.1016/j.celrep.2017.12.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/26/2017] [Accepted: 12/20/2017] [Indexed: 11/29/2022] Open
Abstract
The medial habenula (MHb) is an epithalamic hub contributing to expression and extinction of aversive states by bridging forebrain areas and midbrain monoaminergic centers. Although contradictory information exists regarding their synaptic properties, the physiology of the excitatory inputs to the MHb from the posterior septum remains elusive. Here, combining optogenetics-based mapping with ex vivo and in vivo physiology, we examine the synaptic properties of posterior septal afferents to the MHb and how they influence behavior. We demonstrate that MHb cells receive sparse inputs producing purely glutamatergic responses via calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), heterotrimeric GluN2A-GluN2B-GluN1 N-methyl-D-aspartate (NMDA) receptors, and inhibitory group II metabotropic glutamate receptors. We describe the complex integration dynamics of these components by MHb cells. Finally, we combine ex vivo data with realistic afferent firing patterns recorded in vivo to demonstrate that efficient optogenetic septal stimulation in the MHb induces anxiolysis and promotes locomotion, contributing long-awaited evidence in favor of the importance of this septo-habenular pathway. Medial habenular (MHb) neurons receive sparse inputs from the posterior septum (PS) PS afferents to the MHb function in a purely glutamatergic mode Excitatory ionotropic and inhibitory metabotropic receptors convey PS inputs in the MHb PS activation in the MHb increases locomotion and induces anxiolysis
Collapse
Affiliation(s)
- Yo Otsu
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Salvatore Lecca
- Institut du Fer à Moulin, INSERM-UPMC UMR-S 839, Paris, France
| | - Katarzyna Pietrajtis
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Charly Vincent Rousseau
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Païkan Marcaggi
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Guillaume Pierre Dugué
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Caroline Mailhes-Hamon
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Manuel Mameli
- Institut du Fer à Moulin, INSERM-UPMC UMR-S 839, Paris, France
| | - Marco Alberto Diana
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France.
| |
Collapse
|
83
|
Bueno D, Lima LB, Souza R, Gonçalves L, Leite F, Souza S, Furigo IC, Donato J, Metzger M. Connections of the laterodorsal tegmental nucleus with the habenular‐interpeduncular‐raphe system. J Comp Neurol 2019; 527:3046-3072. [DOI: 10.1002/cne.24729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Debora Bueno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Leandro B. Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Rudieri Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Luciano Gonçalves
- Department of Human AnatomyFederal University of the Triângulo Mineiro Uberaba Brazil
| | - Fernanda Leite
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Stefani Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Isadora C. Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Martin Metzger
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| |
Collapse
|
84
|
Arvin MC, Jin XT, Yan Y, Wang Y, Ramsey MD, Kim VJ, Beckley NA, Henry BA, Drenan RM. Chronic Nicotine Exposure Alters the Neurophysiology of Habenulo-Interpeduncular Circuitry. J Neurosci 2019; 39:4268-4281. [PMID: 30867261 PMCID: PMC6538858 DOI: 10.1523/jneurosci.2816-18.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/11/2019] [Accepted: 03/06/2019] [Indexed: 11/21/2022] Open
Abstract
Antagonism of nicotinic acetylcholine receptors (nAChRs) in the medial habenula (MHb) or interpeduncular nucleus (IPN) triggers withdrawal-like behaviors in mice chronically exposed to nicotine, implying that nicotine dependence involves the sensitization of nicotinic signaling. Identification of receptor and/or neurophysiological mechanisms underlying this sensitization is important, as it could promote novel therapeutic strategies to reduce tobacco use. Using an approach involving photoactivatable nicotine, we previously demonstrated that chronic nicotine (cNIC) potently enhances nAChR function in dendrites of MHb neurons. However, whether cNIC modulates downstream components of the habenulo-interpeduncular (Hb-IP) circuit is unknown. In this study, cNIC-mediated changes to Hb-IP nAChR function were examined in mouse (male and female) brain slices using molecular, electrophysiological, and optical techniques. cNIC enhanced action potential firing and modified spike waveform characteristics in MHb neurons. Nicotine uncaging revealed nAChR functional enhancement by cNIC on proximal axonal membranes. Similarly, nAChR-driven glutamate release from MHb axons was enhanced by cNIC. In IPN, the target structure of MHb axons, neuronal morphology, and nAChR expression is complex, with stronger nAChR function in the rostral subnucleus [rostral IPN (IPR)]. As in MHb, cNIC induced strong upregulation of nAChR function in IPN neurons. This, coupled with cNIC-enhanced nicotine-stimulated glutamate release, was associated with stronger depolarization responses to brief (1 ms) nicotine uncaging adjacent to IPR neurons. Together, these results indicate that chronic exposure to nicotine dramatically alters nicotinic cholinergic signaling and cell excitability in Hb-IP circuits, a key pathway involved in nicotine dependence.SIGNIFICANCE STATEMENT This study uncovers several neuropharmacological alterations following chronic exposure to nicotine in a key brain circuit involved in nicotine dependence. These results suggest that smokers or regular users of electronic nicotine delivery systems (i.e., "e-cigarettes") likely undergo sensitization of cholinergic circuitry in the Hb-IP system. Reducing the activity of Hb-IP nAChRs, either volitionally during smoking cessation or inadvertently via receptor desensitization during nicotine intake, may be a key trigger of withdrawal in nicotine dependence. Escalation of nicotine intake in smokers, or tolerance, may involve stimulation of these sensitized cholinergic pathways. Smoking cessation therapeutics are only marginally effective, and by identifying cellular/receptor mechanisms of nicotine dependence, our results take a step toward improved therapeutic approaches for this disorder.
Collapse
Affiliation(s)
- Matthew C Arvin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Xiao-Tao Jin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Yijin Yan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Yong Wang
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Matthew D Ramsey
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Veronica J Kim
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Nicole A Beckley
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Brittany A Henry
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Ryan M Drenan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
85
|
Silm K, Yang J, Marcott PF, Asensio CS, Eriksen J, Guthrie DA, Newman AH, Ford CP, Edwards RH. Synaptic Vesicle Recycling Pathway Determines Neurotransmitter Content and Release Properties. Neuron 2019; 102:786-800.e5. [PMID: 31003725 PMCID: PMC6541489 DOI: 10.1016/j.neuron.2019.03.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 01/28/2019] [Accepted: 03/19/2019] [Indexed: 01/03/2023]
Abstract
In contrast to temporal coding by synaptically acting neurotransmitters such as glutamate, neuromodulators such as monoamines signal changes in firing rate. The two modes of signaling have been thought to reflect differences in release by different cells. We now find that midbrain dopamine neurons release glutamate and dopamine with different properties that reflect storage in different synaptic vesicles. The vesicles differ in release probability, coupling to presynaptic Ca2+ channels and frequency dependence. Although previous work has attributed variation in these properties to differences in location or cytoskeletal association of synaptic vesicles, the release of different transmitters shows that intrinsic differences in vesicle identity drive different modes of release. Indeed, dopamine but not glutamate vesicles depend on the adaptor protein AP-3, revealing an unrecognized linkage between the pathway of synaptic vesicle recycling and the properties of exocytosis. Storage of the two transmitters in different vesicles enables the transmission of distinct signals.
Collapse
Affiliation(s)
- Kätlin Silm
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Jing Yang
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Pamela F Marcott
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Cedric S Asensio
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Jacob Eriksen
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Daryl A Guthrie
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes of Drug Abuse - Intramural Research Program, Baltimore, MD 21224, USA
| | - Amy H Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes of Drug Abuse - Intramural Research Program, Baltimore, MD 21224, USA
| | - Christopher P Ford
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert H Edwards
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA.
| |
Collapse
|
86
|
López AJ, Jia Y, White AO, Kwapis JL, Espinoza M, Hwang P, Campbell R, Alaghband Y, Chitnis O, Matheos DP, Lynch G, Wood MA. Medial habenula cholinergic signaling regulates cocaine-associated relapse-like behavior. Addict Biol 2019; 24:403-413. [PMID: 29430793 PMCID: PMC6087687 DOI: 10.1111/adb.12605] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/08/2017] [Accepted: 01/08/2018] [Indexed: 01/19/2023]
Abstract
Propensity to relapse, even following long periods of abstinence, is a key feature in substance use disorders. Relapse and relapse‐like behaviors are known to be induced, in part, by re‐exposure to drug‐associated cues. Yet, while many critical nodes in the neural circuitry contributing to relapse have been identified and studied, a full description of the networks driving reinstatement of drug‐seeking behaviors is lacking. One area that may provide further insight to the mechanisms of relapse is the habenula complex, an epithalamic region composed of lateral and medial (MHb) substructures, each with unique cell and target populations. Although well conserved across vertebrate species, the functions of the MHb are not well understood. Recent research has demonstrated that the MHb regulates nicotine aversion and withdrawal. However, it remains undetermined whether MHb function is limited to nicotine and aversive stimuli or if MHb circuit regulates responses to other drugs of abuse. Advances in circuit‐level manipulations now allow for cell‐type and temporally specific manipulations during behavior, specifically in spatially restrictive brain regions, such as the MHb. In this study, we focus on the response of the MHb to reinstatement of cocaine‐associated behavior, demonstrating that cocaine‐primed reinstatement of conditioned place preference engages habenula circuitry. Using chemogenetics, we demonstrate that MHb activity is sufficient to induce reinstatement behavior. Together, these data identify the MHb as a key hub in the circuitry underlying reinstatement and may serve as a target for regulating relapse‐like behaviors.
Collapse
Affiliation(s)
- Alberto J. López
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
- Center for the Neurobiology of Learning and Memory, Ayala School of Biological Sciences; University of California; Irvine CA USA
| | - Yousheng Jia
- Department of Anatomy and Neurobiology, School of Medicine; University of California; Irvine CA USA
| | - André O. White
- Department of Biological Sciences, Neuroscience and Behavior; Mount Holyoke College; South Hadley MA USA
| | - Janine L. Kwapis
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
| | - Monica Espinoza
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
- Center for the Neurobiology of Learning and Memory, Ayala School of Biological Sciences; University of California; Irvine CA USA
| | - Philip Hwang
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
- Center for the Neurobiology of Learning and Memory, Ayala School of Biological Sciences; University of California; Irvine CA USA
| | - Rianne Campbell
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
- Center for the Neurobiology of Learning and Memory, Ayala School of Biological Sciences; University of California; Irvine CA USA
| | - Yasaman Alaghband
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
- Center for the Neurobiology of Learning and Memory, Ayala School of Biological Sciences; University of California; Irvine CA USA
| | - Om Chitnis
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
- Center for the Neurobiology of Learning and Memory, Ayala School of Biological Sciences; University of California; Irvine CA USA
| | - Dina P. Matheos
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
- Center for the Neurobiology of Learning and Memory, Ayala School of Biological Sciences; University of California; Irvine CA USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, School of Medicine; University of California; Irvine CA USA
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, Ayala School of Biological Sciences; University of California; Irvine CA USA
- UC Irvine Center for Addiction Neuroscience, Ayala School of Biological Sciences; University of California; Irvine CA USA
- Center for the Neurobiology of Learning and Memory, Ayala School of Biological Sciences; University of California; Irvine CA USA
| |
Collapse
|
87
|
Janickova H, Kljakic O, Rosborough K, Raulic S, Matovic S, Gros R, Saksida LM, Bussey TJ, Inoue W, Prado VF, Prado MAM. Selective decrease of cholinergic signaling from pedunculopontine and laterodorsal tegmental nuclei has little impact on cognition but markedly increases susceptibility to stress. FASEB J 2019; 33:7018-7036. [PMID: 30857416 DOI: 10.1096/fj.201802108r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pedunculopontine tegmental nucleus (PPT) and laterodorsal tegmental nucleus (LDT) are heterogeneous brainstem structures that contain cholinergic, glutamatergic, and GABAergic neurons. PPT/LDT neurons are suggested to modulate both cognitive and noncognitive functions, yet the extent to which acetylcholine (ACh) signaling from the PPT/LDT is necessary for normal behavior remains uncertain. We addressed this issue by using a mouse model in which PPT/LDT cholinergic signaling is highly decreased by selective deletion of the vesicular ACh transporter (VAChT) gene. This approach interferes exclusively with ACh signaling, leaving signaling by other neurotransmitters from PPT/LDT cholinergic neurons intact and sparing other cells. VAChT mutants were examined on different PPT/LDT-associated cognitive domains. Interestingly, VAChT mutants showed no attentional deficits and only minor cognitive flexibility impairments while presenting large deficiencies in both spatial and cued Morris water maze (MWM) tasks. Conversely, working spatial memory determined with the Y-maze and spatial memory measured with the Barnes maze were not affected, suggesting that deficits in MWM were unrelated to spatial memory abnormalities. Supporting this interpretation, VAChT mutants exhibited alterations in anxiety-like behavior and increased corticosterone levels after exposure to the MWM, suggesting altered stress response. Thus, PPT/LDT VAChT-mutant mice present little cognitive impairment per se, yet they exhibit increased susceptibility to stress, which may lead to performance deficits in more stressful conditions.-Janickova, H., Kljakic, O., Rosborough, K., Raulic, S., Matovic, S., Gros, R., Saksida, L. M., Bussey, T. J., Inoue, W., Prado, V. F., Prado, M. A. M. Selective decrease of cholinergic signaling from pedunculopontine and laterodorsal tegmental nuclei has little impact on cognition but markedly increases susceptibility to stress.
Collapse
Affiliation(s)
- Helena Janickova
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Ornela Kljakic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kaie Rosborough
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sanda Raulic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sara Matovic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and
| | - Robert Gros
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and
| | - Lisa M Saksida
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Timothy J Bussey
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Wataru Inoue
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and
| | - Vania F Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; and.,Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
88
|
Moreno A, Endicott K, Skancke M, Dwyer MK, Brennan J, Efimov IR, Trachiotis G, Mendelowitz D, Kay MW. Sudden Heart Rate Reduction Upon Optogenetic Release of Acetylcholine From Cardiac Parasympathetic Neurons in Perfused Hearts. Front Physiol 2019; 10:16. [PMID: 30745877 PMCID: PMC6360159 DOI: 10.3389/fphys.2019.00016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/10/2019] [Indexed: 11/13/2022] Open
Abstract
The balance of sympathetic and parasympathetic tone provides exquisite control of heart rate and contractility and has also been shown to modulate coronary flow and inflammation. Understanding how autonomic balance is altered by cardiac disease is an active area of research, and developing new ways to control this balance provides insights into disease therapies. However, achieving acute neuron-specific stimulation of autonomic neurons can be difficult in experiments that measure the acute effects of nerve stimulation on the heart. Conventional electrical and pharmacological approaches can be spatially and temporally non-selective. Cell-specific expression of light-activated channels (channelrhodopsin, ChR2) is a powerful approach that enables control of the timing and distribution of cellular stimulation using light. We present such an optogenetic approach where parasympathetic cardiac neurons are selectively photoactivated at high temporal precision to initiate cholinergic-mediated slowing of heart rate. Mice were crossbred to express ChR2 in peripheral cholinergic neurons using Cre-Lox recombination driven by a choline acetyltransferase (ChAT) promoter. Hearts from adult mice were excised, perfused, and the epicardium was illuminated (peak 460–465 nm) to photoactivate ChR2. In one set of studies, hearts were illuminated using a large-field LED light source. In other studies, a micro LED was placed on the right atrium to selectively illuminate the junction of the superior vena cava (SVC) and right atrium. The ECG was acquired before, during, and after tissue illumination to measure changes in heart rate. Upon illumination, hearts exhibited sudden and dramatic reductions in heart rate with restoration of normal heart rate after cessation of illumination. Delays in atrioventricular conduction were also observed. Heart rate reductions at the highest irradiance levels were similar to heart rate reductions caused by application of bethanechol (10 μM) or acetylcholine (800 μM). Atropine (50 nM) completely blocked the effect of ChR2 photoactivation, confirming cholinergic mediation. Optogenetic activation of intrinsic parasympathetic neurons reduced heart rate in an immediate, dose-dependent fashion, resembling the slowing of sinus rate in response to acetylcholine. Our results demonstrate a new approach for controlling parasympathetic modulation of cardiac function by selectively activating the endogenous release of acetylcholine from intrinsic cardiac cholinergic neurons. Key Message: Optogenetic photoactivation of intrinsic cardiac neurons provides immediate, tissue-specific stimulation with minimal cross-reactivity. Our results demonstrate that selective expression of channelrhodopsin within cardiac cholinergic neurons enables photoactivated release of acetylcholine, thereby instantaneously slowing sinus rate and altering atrioventricular conduction. This provides for in-depth examination of the endogenous interplay between cardiac autonomic neurons and the functional outcomes of downstream post-synaptic receptor activation.
Collapse
Affiliation(s)
- Angel Moreno
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Kendal Endicott
- Division of Cardiothoracic Surgery, Veterans Affairs Medical Center, Washington, DC, United States
| | - Matthew Skancke
- Division of Cardiothoracic Surgery, Veterans Affairs Medical Center, Washington, DC, United States
| | - Mary Kate Dwyer
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Jaclyn Brennan
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | - Gregory Trachiotis
- Division of Cardiothoracic Surgery, Veterans Affairs Medical Center, Washington, DC, United States
| | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| |
Collapse
|
89
|
Arvin MC, Wokosin DL, Banala S, Lavis LD, Drenan RM. Probing Nicotinic Acetylcholine Receptor Function in Mouse Brain Slices via Laser Flash Photolysis of Photoactivatable Nicotine. J Vis Exp 2019. [PMID: 30735191 DOI: 10.3791/58873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Acetylcholine (ACh) acts through receptors to modulate a variety of neuronal processes, but it has been challenging to link ACh receptor function with subcellular location within cells where this function is carried out. To study the subcellular location of nicotinic ACh receptors (nAChRs) in native brain tissue, an optical method was developed for precise release of nicotine at discrete locations near neuronal membranes during electrophysiological recordings. Patch-clamped neurons in brain slices are filled with dye to visualize their morphology during 2-photon laser scanning microscopy, and nicotine uncaging is executed with a light flash by focusing a 405 nm laser beam near one or more cellular membranes. Cellular current deflections are measured, and a high-resolution three-dimensional (3D) image of the recorded neuron is made to allow reconciliation of nAChR responses with cellular morphology. This method allows for detailed analysis of nAChR functional distribution in complex tissue preparations, promising to enhance the understanding of cholinergic neurotransmission.
Collapse
Affiliation(s)
- Matthew C Arvin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine
| | - David L Wokosin
- Department of Physiology, Northwestern University Feinberg School of Medicine
| | | | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute
| | - Ryan M Drenan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine;
| |
Collapse
|
90
|
Lee HW, Yang SH, Kim JY, Kim H. The Role of the Medial Habenula Cholinergic System in Addiction and Emotion-Associated Behaviors. Front Psychiatry 2019; 10:100. [PMID: 30873055 PMCID: PMC6404551 DOI: 10.3389/fpsyt.2019.00100] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
The habenula is a complex nucleus composed of lateral and medial subnuclei, which connect between the limbic forebrain and midbrain. Over the past few years, the lateral habenula has received considerable attention because of its potential roles in cognition and in the pathogenesis of various psychiatric disorders. Unlike extensively studied lateral habenula, anatomically and histologically distinct medial habenula remains largely understudied. The medial habenula can be further subdivided into a dorsal region containing excitatory neurons that express the tachykinin neuropeptide substance P and a ventral region containing dense cholinergic neurons. Although the medial habenula is the source of one of the major cholinergic pathways in the brain, relatively few studies have been conducted to understand its roles. Recently, however, the medial habenula cholinergic system has attracted more attention because of its potential to provide therapeutic targets for the treatment of nicotine withdrawal symptoms, drug addiction, and various mood disorders. Here, we discuss the role of the medial habenula cholinergic system in brain function.
Collapse
Affiliation(s)
- Hyun Woo Lee
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Soo Hyun Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Jin Yong Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
91
|
Trudeau LE, El Mestikawy S. Glutamate Cotransmission in Cholinergic, GABAergic and Monoamine Systems: Contrasts and Commonalities. Front Neural Circuits 2018; 12:113. [PMID: 30618649 PMCID: PMC6305298 DOI: 10.3389/fncir.2018.00113] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Multiple discoveries made since the identification of vesicular glutamate transporters (VGLUTs) two decades ago revealed that many neuronal populations in the brain use glutamate in addition to their "primary" neurotransmitter. Such a mode of cotransmission has been detected in dopamine (DA), acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE) and surprisingly even in GABA neurons. Interestingly, work performed by multiple groups during the past decade suggests that the use of glutamate as a cotransmitter takes different forms in these different populations of neurons. In the present review, we will provide an overview of glutamate cotransmission in these different classes of neurons, highlighting puzzling differences in: (1) the proportion of such neurons expressing a VGLUT in different brain regions and at different stages of development; (2) the sub-cellular localization of the VGLUT; (3) the localization of the VGLUT in relation to the neurons' other vesicular transporter; and (4) the functional role of glutamate cotransmission.
Collapse
Affiliation(s)
- Louis-Eric Trudeau
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Salah El Mestikawy
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Sorbonne Universités, Université Pierre et Marie Curie UM 119-CNRS UMR 8246-INSERM U1130, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Paris, France
| |
Collapse
|
92
|
Ren J, Friedmann D, Xiong J, Liu CD, Ferguson BR, Weerakkody T, DeLoach KE, Ran C, Pun A, Sun Y, Weissbourd B, Neve RL, Huguenard J, Horowitz MA, Luo L. Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems. Cell 2018; 175:472-487.e20. [PMID: 30146164 PMCID: PMC6173627 DOI: 10.1016/j.cell.2018.07.043] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 07/01/2018] [Accepted: 07/25/2018] [Indexed: 01/21/2023]
Abstract
The dorsal raphe (DR) constitutes a major serotonergic input to the forebrain and modulates diverse functions and brain states, including mood, anxiety, and sensory and motor functions. Most functional studies to date have treated DR serotonin neurons as a single population. Using viral-genetic methods, we found that subcortical- and cortical-projecting serotonin neurons have distinct cell-body distributions within the DR and differentially co-express a vesicular glutamate transporter. Further, amygdala- and frontal-cortex-projecting DR serotonin neurons have largely complementary whole-brain collateralization patterns, receive biased inputs from presynaptic partners, and exhibit opposite responses to aversive stimuli. Gain- and loss-of-function experiments suggest that amygdala-projecting DR serotonin neurons promote anxiety-like behavior, whereas frontal-cortex-projecting neurons promote active coping in the face of challenge. These results provide compelling evidence that the DR serotonin system contains parallel sub-systems that differ in input and output connectivity, physiological response properties, and behavioral functions.
Collapse
Affiliation(s)
- Jing Ren
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Drew Friedmann
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jing Xiong
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Cindy D Liu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Brielle R Ferguson
- Department of Neurology and Neurological Sciences, Stanford, CA 94305, USA
| | - Tanya Weerakkody
- Department of Neurology and Neurological Sciences, Stanford, CA 94305, USA
| | - Katherine E DeLoach
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Chen Ran
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Albert Pun
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yanwen Sun
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Brandon Weissbourd
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Rachael L Neve
- Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | - John Huguenard
- Department of Neurology and Neurological Sciences, Stanford, CA 94305, USA
| | - Mark A Horowitz
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
93
|
Solari N, Hangya B. Cholinergic modulation of spatial learning, memory and navigation. Eur J Neurosci 2018; 48:2199-2230. [PMID: 30055067 PMCID: PMC6174978 DOI: 10.1111/ejn.14089] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023]
Abstract
Spatial learning, including encoding and retrieval of spatial memories as well as holding spatial information in working memory generally serving navigation under a broad range of circumstances, relies on a network of structures. While central to this network are medial temporal lobe structures with a widely appreciated crucial function of the hippocampus, neocortical areas such as the posterior parietal cortex and the retrosplenial cortex also play essential roles. Since the hippocampus receives its main subcortical input from the medial septum of the basal forebrain (BF) cholinergic system, it is not surprising that the potential role of the septo-hippocampal pathway in spatial navigation has been investigated in many studies. Much less is known of the involvement in spatial cognition of the parallel projection system linking the posterior BF with neocortical areas. Here we review the current state of the art of the division of labour within this complex 'navigation system', with special focus on how subcortical cholinergic inputs may regulate various aspects of spatial learning, memory and navigation.
Collapse
Affiliation(s)
- Nicola Solari
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| | - Balázs Hangya
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| |
Collapse
|
94
|
Jing M, Zhang P, Wang G, Feng J, Mesik L, Zeng J, Jiang H, Wang S, Looby JC, Guagliardo NA, Langma LW, Lu J, Zuo Y, Talmage DA, Role LW, Barrett PQ, Zhang LI, Luo M, Song Y, Zhu JJ, Li Y. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat Biotechnol 2018; 36:726-737. [PMID: 29985477 PMCID: PMC6093211 DOI: 10.1038/nbt.4184] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
The neurotransmitter acetylcholine (ACh) regulates a diverse array of physiological processes throughout the body. Despite its importance, cholinergic transmission in the majority of tissues and organs remains poorly understood owing primarily to the limitations of available ACh-monitoring techniques. We developed a family of ACh sensors (GACh) based on G-protein-coupled receptors that has the sensitivity, specificity, signal-to-noise ratio, kinetics and photostability suitable for monitoring ACh signals in vitro and in vivo. GACh sensors were validated with transfection, viral and/or transgenic expression in a dozen types of neuronal and non-neuronal cells prepared from multiple animal species. In all preparations, GACh sensors selectively responded to exogenous and/or endogenous ACh with robust fluorescence signals that were captured by epifluorescence, confocal, and/or two-photon microscopy. Moreover, analysis of endogenous ACh release revealed firing-pattern-dependent release and restricted volume transmission, resolving two long-standing questions about central cholinergic transmission. Thus, GACh sensors provide a user-friendly, broadly applicable tool for monitoring cholinergic transmission underlying diverse biological processes.
Collapse
Affiliation(s)
- Miao Jing
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871,
China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Peng Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Guangfu Wang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin
150001, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871,
China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Lukas Mesik
- Zilkha Neurogenetic Institute, Department of Physiology & Neuroscience, Keck School of Medicine,
University of Southern California, Los Angeles, CA, 90033
| | - Jianzhi Zeng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871,
China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Huoqing Jiang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871,
China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Shaohua Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794
| | - Jess C. Looby
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Undergraduate Class of 2019, University of Virginia College of Arts and Sciences, Charlottesville, VA
22908
| | - Nick A. Guagliardo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Linda W. Langma
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Ju Lu
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Yi Zuo
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA
95064
| | - David A. Talmage
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794
| | - Lorna W. Role
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794
| | - Paula Q. Barrett
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Li I. Zhang
- Zilkha Neurogenetic Institute, Department of Physiology & Neuroscience, Keck School of Medicine,
University of Southern California, Los Angeles, CA, 90033
| | - Minmin Luo
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yan Song
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - J. Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
- School of Medicine, Ningbo University, Ningbo, 315010, China
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6525 EN, Nijmegen,
Netherlands
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan 430030, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871,
China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| |
Collapse
|
95
|
Serrano-Saiz E, Leyva-Díaz E, De La Cruz E, Hobert O. BRN3-type POU Homeobox Genes Maintain the Identity of Mature Postmitotic Neurons in Nematodes and Mice. Curr Biol 2018; 28:2813-2823.e2. [PMID: 30146154 DOI: 10.1016/j.cub.2018.06.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 11/28/2022]
Abstract
Many distinct regulatory factors have been shown to be required for the proper initiation of neuron-type-specific differentiation programs, but much less is known about the regulatory programs that maintain the differentiated state in the adult [1-3]. One possibility is that regulatory factors that initiate a terminal differentiation program during development are continuously required to maintain the differentiated state. Here, we test this hypothesis by investigating the function of two orthologous POU homeobox genes in nematodes and mice. The C. elegans POU homeobox gene unc-86 is a terminal selector that is required during development to initiate the terminal differentiation program of several distinct neuron classes [4-13]. Through post-developmental removal of unc-86 activity, we show here that unc-86 is also continuously required throughout the life of many neuron classes to maintain neuron-class-specific identity features. Similarly, the mouse unc-86 ortholog Brn3a/POU4F1 has been shown to control the initiation of the terminal differentiation program of distinct neuron types across the mouse brain, such as the medial habenular neurons [14-20]. By conditionally removing Brn3a in the adult mouse central nervous system, we show that, like its invertebrate ortholog unc-86, Brn3a is also required for the maintenance of terminal identity features of medial habenular neurons. In addition, Brn3a is required for the survival of these neurons, indicating that identity maintenance and survival are genetically linked. We conclude that the continuous expression of transcription factors is essential for the active maintenance of the differentiated state of a neuron across phylogeny.
Collapse
Affiliation(s)
- Esther Serrano-Saiz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| | - Eduardo Leyva-Díaz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Estanislao De La Cruz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
96
|
Morton G, Nasirova N, Sparks DW, Brodsky M, Sivakumaran S, Lambe EK, Turner EE. Chrna5-Expressing Neurons in the Interpeduncular Nucleus Mediate Aversion Primed by Prior Stimulation or Nicotine Exposure. J Neurosci 2018; 38:6900-6920. [PMID: 29954848 PMCID: PMC6070661 DOI: 10.1523/jneurosci.0023-18.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 11/21/2022] Open
Abstract
Genetic studies have shown an association between smoking and variation at the CHRNA5/A3/B4 gene locus encoding the α5, α3, and β4 nicotinic receptor subunits. The α5 receptor has been specifically implicated because smoking-associated haplotypes contain a coding variant in the CHRNA5 gene. The Chrna5/a3/b4 locus is conserved in rodents and the restricted expression of these subunits suggests neural pathways through which the reinforcing and aversive properties of nicotine may be mediated. Here, we show that, in the interpeduncular nucleus (IP), the site of the highest Chrna5 mRNA expression in rodents, electrophysiological responses to nicotinic acetylcholine receptor stimulation are markedly reduced in α5-null mice. IP neurons differ markedly from their upstream ventral medial habenula cholinergic partners, which appear unaltered by loss of α5. To probe the functional role of α5-containing IP neurons, we used BAC recombineering to generate transgenic mice expressing Cre-recombinase from the Chrna5 locus. Reporter expression driven by Chrna5Cre demonstrates that transcription of Chrna5 is regulated independently from the Chrna3/b4 genes transcribed on the opposite strand. Chrna5-expressing IP neurons are GABAergic and project to distant targets in the mesopontine raphe and tegmentum rather than forming local circuits. Optogenetic stimulation of Chrna5-expressing IP neurons failed to elicit physical manifestations of withdrawal. However, after recent prior stimulation or exposure to nicotine, IP stimulation becomes aversive. These results using mice of both sexes support the idea that the risk allele of CHRNA5 may increase the drive to smoke via loss of IP-mediated nicotine aversion.SIGNIFICANCE STATEMENT Understanding the receptors and neural pathways underlying the reinforcing and aversive effects of nicotine may suggest new treatments for tobacco addiction. Part of the individual variability in smoking is associated with specific forms of the α5 nicotinic receptor subunit gene. Here, we show that deletion of the α5 subunit in mice markedly reduces the cellular response to nicotine and acetylcholine in the interpeduncular nucleus (IP). Stimulation of α5-expressing IP neurons using optogenetics is aversive, but this effect requires priming by recent prior stimulation or exposure to nicotine. These results support the idea that the smoking-associated variant of the α5 gene may increase the drive to smoke via loss of IP-mediated nicotine aversion.
Collapse
Affiliation(s)
- Glenn Morton
- Center for Integrative Brain Research, Seattle Children's Research Institute
| | - Nailyam Nasirova
- Center for Integrative Brain Research, Seattle Children's Research Institute
| | | | - Matthew Brodsky
- Center for Integrative Brain Research, Seattle Children's Research Institute
| | | | - Evelyn K Lambe
- Department of Physiology
- Department of Obstetrics and Gynecology, and
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Eric E Turner
- Center for Integrative Brain Research, Seattle Children's Research Institute,
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98101
| |
Collapse
|
97
|
Dominant Neuropeptide Cotransmission in Kisspeptin-GABA Regulation of GnRH Neuron Firing Driving Ovulation. J Neurosci 2018; 38:6310-6322. [PMID: 29899026 DOI: 10.1523/jneurosci.0658-18.2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 01/22/2023] Open
Abstract
A population of kisspeptin-GABA coexpressing neurons located in the rostral periventricular area of the third ventricle (RP3V) is believed to activate gonadotropin-releasing hormone (GnRH) neurons to generate the luteinizing hormone (LH) surge triggering ovulation. Selective optogenetic activation of RP3V kisspeptin (RP3VKISS) neurons in female mice for >30 s and ≥10 Hz in either a continuous or bursting mode was found to reliably generate a delayed and long-lasting activation of GnRH neuron firing in brain slices. Optogenetic activation of RP3VKISS neurons in vivo at 10 Hz generated substantial increments in LH secretion of similar amplitude to the endogenous LH surge. Studies using GABAA receptor antagonists and optogenetic activation of RP3V GABA (RP3VGABA) neurons in vitro revealed that low-frequency (2 Hz) stimulation generated immediate and transient GABAA receptor-mediated increases in GnRH neuron firing, whereas higher frequencies (10 Hz) recruited the long-lasting activation observed following RP3VKISS neuron stimulation. In vivo, 2 Hz activation of RP3VGABA neurons did not alter LH secretion, whereas 10 Hz stimulation evoked a sustained large increase in LH identical to RP3VKISS neuron activation. Optogenetic activation of RP3VKISS neurons in which kisspeptin had been deleted did not alter LH secretion. These studies demonstrate the presence of parallel transmission streams from RP3V neurons to GnRH neurons that are frequency dependent and temporally distinct. This comprises a rapid and transient GABAA receptor-mediated activation and a slower onset kisspeptin-mediated stimulation of long duration. At the time of the LH surge, GABA release appears to be functionally redundant with the neuropeptide kisspeptin being the dominant cotransmitter influencing GnRH neuron output.SIGNIFICANCE STATEMENT Miscommunication between the brain and ovaries is thought to represent a major cause of infertility in humans. Studies in rodents suggest that a population of neurons located in the rostral periventricular area of the third ventricle (RP3V) are critical for activating the gonadotropin-releasing hormone (GnRH) neurons that trigger ovulation. The present study provides evidence that an RP3V neuron population coexpressing kisspeptin and GABA provides a functionally important excitatory input to GnRH neurons at the time of ovulation. This neural input releases GABA and/or kisspeptin in the classical frequency dependent and temporally distinct nature of amino acid-neuropeptide cotransmission. Unusually, however, the neuropeptide stream is found to be functionally dominant in activating GnRH neurons at the time of ovulation.
Collapse
|
98
|
Grillner S, von Twickel A, Robertson B. The blueprint of the vertebrate forebrain – With special reference to the habenulae. Semin Cell Dev Biol 2018; 78:103-106. [DOI: 10.1016/j.semcdb.2017.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022]
|
99
|
Luquin E, Huerta I, Aymerich MS, Mengual E. Stereological Estimates of Glutamatergic, GABAergic, and Cholinergic Neurons in the Pedunculopontine and Laterodorsal Tegmental Nuclei in the Rat. Front Neuroanat 2018; 12:34. [PMID: 29867374 PMCID: PMC5958217 DOI: 10.3389/fnana.2018.00034] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 04/16/2018] [Indexed: 01/29/2023] Open
Abstract
The pedunculopontine tegmental nucleus (PPN) and laterodorsal tegmental nucleus (LDT) are functionally associated brainstem structures implicated in behavioral state control and sensorimotor integration. The PPN is also involved in gait and posture, while the LDT plays a role in reward. Both nuclei comprise characteristic cholinergic neurons intermingled with glutamatergic and GABAergic cells whose absolute numbers in the rat have been only partly established. Here we sought to determine the complete phenotypical profile of each nucleus to investigate potential differences between them. Counts were obtained using stereological methods after the simultaneous visualization of cholinergic and either glutamatergic or GABAergic cells. The two isoforms of glutamic acid decarboxylase (GAD), GAD65 and GAD67, were separately analyzed. Dual in situ hybridization revealed coexpression of GAD65 and GAD67 mRNAs in ∼90% of GAD-positive cells in both nuclei; thus, the estimated mean numbers of (1) cholinergic, (2) glutamatergic, and (3) GABAergic cells in PPN and LDT, respectively, were (1) 3,360 and 3,650; (2) 5,910 and 5,190; and (3) 4,439 and 7,599. These data reveal significant differences between PPN and LDT in their relative phenotypical composition, which may underlie some of the functional differences observed between them. The estimation of glutamatergic cells was significantly higher in the caudal PPN, supporting the reported functional rostrocaudal segregation in this nucleus. Finally, a small subset of cholinergic neurons (8% in PPN and 5% in LDT) also expressed the glutamatergic marker Vglut2, providing anatomical evidence for a potential corelease of transmitters at specific target areas.
Collapse
Affiliation(s)
- Esther Luquin
- Division of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Ibone Huerta
- Division of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - María S Aymerich
- Division of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona, Spain
| | - Elisa Mengual
- Division of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Anatomy Department, School of Medicine, University of Navarra, Pamplona, Spain
| |
Collapse
|
100
|
Stoichiometry of the Heteromeric Nicotinic Receptors of the Renshaw Cell. J Neurosci 2018; 38:4943-4956. [PMID: 29724797 DOI: 10.1523/jneurosci.0070-18.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 01/05/2023] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are pentamers built from a variety of subunits. Some are homomeric assemblies of α subunits, others heteromeric assemblies of α and β subunits which can adopt two stoichiometries (2α:3β or 3α:2β). There is evidence for the presence of heteromeric nAChRs with the two stoichiometries in the CNS, but it has not yet been possible to identify them at a given synapse. The 2α:3β receptors are highly sensitive to agonists, whereas the 3α:2β stoichiometric variants, initially described as low sensitivity receptors, are indeed activated by low and high concentrations of ACh. We have taken advantage of the discovery that two compounds (NS9283 and Zn) potentiate selectively the 3α:2β nAChRs to establish (in mice of either sex) the presence of these variants at the motoneuron-Renshaw cell (MN-RC) synapse. NS9283 prolonged the decay of the two-component EPSC mediated by heteromeric nAChRs. NS9283 and Zn also prolonged spontaneous EPSCs involving heteromeric nAChRs, and one could rule out prolongations resulting from AChE inhibition by NS9283. These results establish the presence of 3α:2β nAChRs at the MN-RC synapse. At the functional level, we had previously explained the duality of the EPSC by assuming that high ACh concentrations in the synaptic cleft account for the fast component and that spillover of ACh accounts for the slow component. The dual ACh sensitivity of 3α:2β nAChRs now allows to attribute to these receptors both components of the EPSC.SIGNIFICANCE STATEMENT Heteromeric nicotinic receptors assemble α and β subunits in pentameric structures, which can adopt two stoichiometries: 3α:2β or 2α:3β. Both stoichiometric variants are present in the CNS, but they have never been located and characterized functionally at the level of an identified synapse. Our data indicate that 3α:2β receptors are present at the spinal cord synapses between motoneurons and Renshaw cells, where their dual mode of activation (by high concentrations of ACh for synaptic receptors, by low concentrations of ACh for extrasynaptic receptors) likely accounts for the biphasic character of the synaptic current. More generally, 3α:2β nicotinic receptors appear unique by their capacity to operate both in the cleft of classical synapses and at extrasynaptic locations.
Collapse
|