51
|
Sergeeva EG, Rosenberg PA, Benowitz LI. Non-Cell-Autonomous Regulation of Optic Nerve Regeneration by Amacrine Cells. Front Cell Neurosci 2021; 15:666798. [PMID: 33935656 PMCID: PMC8085350 DOI: 10.3389/fncel.2021.666798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Visual information is conveyed from the eye to the brain through the axons of retinal ganglion cells (RGCs) that course through the optic nerve and synapse onto neurons in multiple subcortical visual relay areas. RGCs cannot regenerate their axons once they are damaged, similar to most mature neurons in the central nervous system (CNS), and soon undergo cell death. These phenomena of neurodegeneration and regenerative failure are widely viewed as being determined by cell-intrinsic mechanisms within RGCs or to be influenced by the extracellular environment, including glial or inflammatory cells. However, a new concept is emerging that the death or survival of RGCs and their ability to regenerate axons are also influenced by the complex circuitry of the retina and that the activation of a multicellular signaling cascade involving changes in inhibitory interneurons - the amacrine cells (AC) - contributes to the fate of RGCs. Here, we review our current understanding of the role that interneurons play in cell survival and axon regeneration after optic nerve injury.
Collapse
Affiliation(s)
- Elena G. Sergeeva
- Department of Neurology, Boston Children’s Hospital, Boston, MA, United States
- Kirby Center for Neuroscience, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Paul A. Rosenberg
- Department of Neurology, Boston Children’s Hospital, Boston, MA, United States
- Kirby Center for Neuroscience, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Larry I. Benowitz
- Kirby Center for Neuroscience, Boston Children’s Hospital, Boston, MA, United States
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurosurgery, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
52
|
Chen P, Bornhorst J, Patton S, Bagai K, Nitin R, Miah M, Hare DJ, Kysenius K, Crouch PJ, Xiong L, Rouleau GA, Schwerdtle T, Connor J, Aschner M, Bowman AB, Walters AS. A potential role for zinc in restless legs syndrome. Sleep 2021; 44:zsaa236. [PMID: 33175142 PMCID: PMC8033460 DOI: 10.1093/sleep/zsaa236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/13/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Evaluate serum and brain noniron metals in the pathology and genetics of restless legs syndrome (RLS). METHODS In two independent studies (cohorts 1 and 2), in which subjects either remained on medications or tapered off medications, we analyzed serum levels of iron, calcium, magnesium, manganese, copper, and zinc both in RLS patients and controls, and assessed the prevalence of the MEIS1 and BTBD9 risk alleles previously established through genome-wide association studies. Human brain sections and a nematode genetic model were also quantified for metal levels using mass spectrometry. RESULTS We found a significant enrichment for the BTBD9 risk genotype in the RLS affected group compared to control (p = 0.0252), consistent with previous literature. Serum (p = 0.0458 and p = 0.0139 for study cohorts 1 and 2, respectively) and brain (p = 0.0413) zinc levels were significantly elevated in the RLS patients versus control subjects. CONCLUSION We show for the first time that serum and brain levels of zinc are elevated in RLS. Further, we confirm the BTBD9 genetic risk factor in a new population, although the zinc changes were not significantly associated with risk genotypes. Zinc and iron homeostasis are interrelated, and zinc biology impacts neurotransmitter systems previously linked to RLS. Given the modest albeit statistically significant increase in serum zinc of ~20%, and the lack of association with two known genetic risk factors, zinc may not represent a primary etiology for the syndrome. Further investigation into the pathogenetic role that zinc may play in restless legs syndrome is needed.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Stephanie Patton
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA
| | - Kanika Bagai
- Department of Neurology, Sleep Division, Vanderbilt University Medical Center, Nashville, TN
| | - Rachana Nitin
- Vanderbilt University, Vanderbilt Brain Institute, Nashville, TN
| | - Mahfuzur Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | - Dominic J Hare
- School of Biosciences, The University of Melbourne, Victoria, Australia
| | - Kai Kysenius
- Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
| | - Peter J Crouch
- Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria, Australia
| | - Lan Xiong
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Tanja Schwerdtle
- Institute of Nutritional Science, Department of Food Chemistry, University of Potsdam, Nuthetal, Germany
| | - James Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN
| | - Arthur S Walters
- Department of Neurology, Sleep Division, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
53
|
Schizophrenia-associated SLC39A8 polymorphism is a loss-of-function allele altering glutamate receptor and innate immune signaling. Transl Psychiatry 2021; 11:136. [PMID: 33608496 PMCID: PMC7895948 DOI: 10.1038/s41398-021-01262-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/02/2021] [Indexed: 11/08/2022] Open
Abstract
Schizophrenia is a complex and heterogenous disease that presents with abnormalities in glutamate signaling and altered immune and inflammatory signals. Genome-wide association studies have indicated specific genes and pathways that may contribute to schizophrenia. We assessed the impact of the functional missense variant SLC39A8 (ZIP8)-A391T (ZIP8A391T) on zinc transport, glutamate signaling, and the neuroinflammatory response. The ZIP8A391T mutation resulted in reduced zinc transport into the cell, suggesting a loss in the tight control of zinc in the synaptic cleft. Electrophysiological recordings from perturbed neurons revealed a significant reduction in NMDA- and AMPA-mediated spontaneous EPSCs (sEPSCs) and a reduction in GluN2A and GluA1/2/3 receptor surface expression. All phenotypes were rescued by re-expression of wild-type ZIP8 (ZIP8WT) or application of the membrane-impermeable zinc chelator ZX1. ZIP8 reduction also resulted in decreased BBB integrity, increased IL-6/IL-1β protein expression, and increased NFκB following TNFα stimulation, indicating that ZIP8 loss-of-function may exacerbate immune and inflammatory signals. Together, our findings demonstrate that the A391T missense mutation results in alterations in glutamate and immune function and provide novel therapeutic targets relevant to schizophrenia.
Collapse
|
54
|
Krall RF, Tzounopoulos T, Aizenman E. The Function and Regulation of Zinc in the Brain. Neuroscience 2021; 457:235-258. [PMID: 33460731 DOI: 10.1016/j.neuroscience.2021.01.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/31/2022]
Abstract
Nearly sixty years ago Fredrich Timm developed a histochemical technique that revealed a rich reserve of free zinc in distinct regions of the brain. Subsequent electron microscopy studies in Timm- stained brain tissue found that this "labile" pool of cellular zinc was highly concentrated at synaptic boutons, hinting a possible role for the metal in synaptic transmission. Although evidence for activity-dependent synaptic release of zinc would not be reported for another twenty years, these initial findings spurred decades of research into zinc's role in neuronal function and revealed a diverse array of signaling cascades triggered or regulated by the metal. Here, we delve into our current understanding of the many roles zinc plays in the brain, from influencing neurotransmission and sensory processing, to activating both pro-survival and pro-death neuronal signaling pathways. Moreover, we detail the many mechanisms that tightly regulate cellular zinc levels, including metal binding proteins and a large array of zinc transporters.
Collapse
Affiliation(s)
- Rebecca F Krall
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA
| | - Thanos Tzounopoulos
- Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA.
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
55
|
Domart F, Cloetens P, Roudeau S, Carmona A, Verdier E, Choquet D, Ortega R. Correlating STED and synchrotron XRF nano-imaging unveils cosegregation of metals and cytoskeleton proteins in dendrites. eLife 2020; 9:62334. [PMID: 33289481 PMCID: PMC7787660 DOI: 10.7554/elife.62334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Zinc and copper are involved in neuronal differentiation and synaptic plasticity but the molecular mechanisms behind these processes are still elusive due in part to the difficulty of imaging trace metals together with proteins at the synaptic level. We correlate stimulated-emission-depletion microscopy of proteins and synchrotron X-ray fluorescence imaging of trace metals, both performed with 40 nm spatial resolution, on primary rat hippocampal neurons. We reveal the co-localization at the nanoscale of zinc and tubulin in dendrites with a molecular ratio of about one zinc atom per tubulin-αβ dimer. We observe the co-segregation of copper and F-actin within the nano-architecture of dendritic protrusions. In addition, zinc chelation causes a decrease in the expression of cytoskeleton proteins in dendrites and spines. Overall, these results indicate new functions for zinc and copper in the modulation of the cytoskeleton morphology in dendrites, a mechanism associated to neuronal plasticity and memory formation.
Collapse
Affiliation(s)
- Florelle Domart
- Chemical Imaging and Speciation, CENBG, Univ. Bordeaux, Gradignan, France.,CNRS, IN2P3, CENBG, UMR 5797, Gradignan, France.,Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | | | - Stéphane Roudeau
- Chemical Imaging and Speciation, CENBG, Univ. Bordeaux, Gradignan, France.,CNRS, IN2P3, CENBG, UMR 5797, Gradignan, France
| | - Asuncion Carmona
- Chemical Imaging and Speciation, CENBG, Univ. Bordeaux, Gradignan, France.,CNRS, IN2P3, CENBG, UMR 5797, Gradignan, France
| | - Emeline Verdier
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Daniel Choquet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.,Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS, Bordeaux, France
| | - Richard Ortega
- Chemical Imaging and Speciation, CENBG, Univ. Bordeaux, Gradignan, France.,CNRS, IN2P3, CENBG, UMR 5797, Gradignan, France
| |
Collapse
|
56
|
Granzotto A, Canzoniero LMT, Sensi SL. A Neurotoxic Ménage-à-trois: Glutamate, Calcium, and Zinc in the Excitotoxic Cascade. Front Mol Neurosci 2020; 13:600089. [PMID: 33324162 PMCID: PMC7725690 DOI: 10.3389/fnmol.2020.600089] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Fifty years ago, the seminal work by John Olney provided the first evidence of the neurotoxic properties of the excitatory neurotransmitter glutamate. A process hereafter termed excitotoxicity. Since then, glutamate-driven neuronal death has been linked to several acute and chronic neurological conditions, like stroke, traumatic brain injury, Alzheimer’s, Parkinson’s, and Huntington’s diseases, and Amyotrophic Lateral Sclerosis. Mechanisms linked to the overactivation of glutamatergic receptors involve an aberrant cation influx, which produces the failure of the ionic neuronal milieu. In this context, zinc, the second most abundant metal ion in the brain, is a key but still somehow underappreciated player of the excitotoxic cascade. Zinc is an essential element for neuronal functioning, but when dysregulated acts as a potent neurotoxin. In this review, we discuss the ionic changes and downstream effects involved in the glutamate-driven neuronal loss, with a focus on the role exerted by zinc. Finally, we summarize our work on the fascinating distinct properties of NADPH-diaphorase neurons. This neuronal subpopulation is spared from excitotoxic insults and represents a powerful tool to understand mechanisms of resilience against excitotoxic processes.
Collapse
Affiliation(s)
- Alberto Granzotto
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States.,Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences (DNISC), Laboratory of Molecular Neurology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Stefano L Sensi
- Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences (DNISC), Laboratory of Molecular Neurology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
57
|
Neumaier F, Schneider T, Albanna W. Ca v2.3 channel function and Zn 2+-induced modulation: potential mechanisms and (patho)physiological relevance. Channels (Austin) 2020; 14:362-379. [PMID: 33079629 PMCID: PMC7583514 DOI: 10.1080/19336950.2020.1829842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) are critical for Ca2+ influx into all types of excitable cells, but their exact function is still poorly understood. Recent reconstruction of homology models for all human VGCCs at atomic resolution provides the opportunity for a structure-based discussion of VGCC function and novel insights into the mechanisms underlying Ca2+ selective flux through these channels. In the present review, we use these data as a basis to examine the structure, function, and Zn2+-induced modulation of Cav2.3 VGCCs, which mediate native R-type currents and belong to the most enigmatic members of the family. Their unique sensitivity to Zn2+ and the existence of multiple mechanisms of Zn2+ action strongly argue for a role of these channels in the modulatory action of endogenous loosely bound Zn2+, pools of which have been detected in a number of neuronal, endocrine, and reproductive tissues. Following a description of the different mechanisms by which Zn2+ has been shown or is thought to alter the function of these channels, we discuss their potential (patho)physiological relevance, taking into account what is known about the magnitude and function of extracellular Zn2+ signals in different tissues. While still far from complete, the picture that emerges is one where Cav2.3 channel expression parallels the occurrence of loosely bound Zn2+ pools in different tissues and where these channels may serve to translate physiological Zn2+ signals into changes of electrical activity and/or intracellular Ca2+ levels.
Collapse
Affiliation(s)
- Felix Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5) , Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging , Cologne, Germany
| | - Toni Schneider
- Institute of Neurophysiology , Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Walid Albanna
- Department of Neurosurgery, RWTH Aachen University , Aachen, Germany
| |
Collapse
|
58
|
Chantranupong L, Saulnier JL, Wang W, Jones DR, Pacold ME, Sabatini BL. Rapid purification and metabolomic profiling of synaptic vesicles from mammalian brain. eLife 2020; 9:59699. [PMID: 33043885 PMCID: PMC7575323 DOI: 10.7554/elife.59699] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
Neurons communicate by the activity-dependent release of small-molecule neurotransmitters packaged into synaptic vesicles (SVs). Although many molecules have been identified as neurotransmitters, technical limitations have precluded a full metabolomic analysis of SV content. Here, we present a workflow to rapidly isolate SVs and to interrogate their metabolic contents at high-resolution using mass spectrometry. We validated the enrichment of glutamate in SVs of primary cortical neurons using targeted polar metabolomics. Unbiased and extensive global profiling of SVs isolated from these neurons revealed that the only detectable polar metabolites they contain are the established neurotransmitters glutamate and GABA. In addition, we adapted the approach to enable quick capture of SVs directly from brain tissue and determined the neurotransmitter profiles of diverse brain regions in a cell-type-specific manner. The speed, robustness, and precision of this method to interrogate SV contents will facilitate novel insights into the chemical basis of neurotransmission.
Collapse
Affiliation(s)
- Lynne Chantranupong
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Jessica L Saulnier
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Wengang Wang
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Drew R Jones
- New York University School of Medicine, Metabolomics Core Resource Laboratory at NYU Langone Health, New York, United States
| | - Michael E Pacold
- Department of Radiation Oncology, New York University Langone Medical Center, New York, United States
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
59
|
Pratt EPS, Damon LJ, Anson KJ, Palmer AE. Tools and techniques for illuminating the cell biology of zinc. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118865. [PMID: 32980354 DOI: 10.1016/j.bbamcr.2020.118865] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
Zinc (Zn2+) is an essential micronutrient that is required for a wide variety of cellular processes. Tools and methods have been instrumental in revealing the myriad roles of Zn2+ in cells. This review highlights recent developments fluorescent sensors to measure the labile Zn2+ pool, chelators to manipulate Zn2+ availability, and fluorescent tools and proteomics approaches for monitoring Zn2+-binding proteins in cells. Finally, we close with some highlights on the role of Zn2+ in regulating cell function and in cell signaling.
Collapse
Affiliation(s)
- Evan P S Pratt
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States of America
| | - Leah J Damon
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States of America
| | - Kelsie J Anson
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States of America
| | - Amy E Palmer
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States of America.
| |
Collapse
|
60
|
Stroebel D, Paoletti P. Architecture and function of NMDA receptors: an evolutionary perspective. J Physiol 2020; 599:2615-2638. [PMID: 32786006 DOI: 10.1113/jp279028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Ionotropic glutamate receptors (iGluRs) are a major class of ligand-gated ion channels that are widespread in the living kingdom. Their critical role in excitatory neurotransmission and brain function of arthropods and vertebrates has made them a compelling subject of interest for neurophysiologists and pharmacologists. This is particularly true for NMDA receptor (NMDARs), a subclass of iGluRs that act as central drivers of synaptic plasticity in the CNS. How and when the unique properties of NMDARs arose during evolution, and how they relate to the evolution of the nervous system, remain open questions. Recent years have witnessed a boom in both genomic and structural data, such that it is now possible to analyse the evolution of iGluR genes on an unprecedented scale and within a solid molecular framework. In this review, combining insights from phylogeny, atomic structure and physiological and mechanistic data, we discuss how evolution of NMDAR motifs and sequences shaped their architecture and functionalities. We trace differences and commonalities between NMDARs and other iGluRs, emphasizing a few distinctive properties of the former regarding ligand binding and gating, permeation, allosteric modulation and intracellular signalling. Finally, we speculate on how specific molecular properties of iGuRs arose to supply new functions to the evolving structure of the nervous system, from early metazoan to present mammals.
Collapse
Affiliation(s)
- David Stroebel
- Ecole Normale Supérieure, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| | - Pierre Paoletti
- Ecole Normale Supérieure, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| |
Collapse
|
61
|
Baraibar AM, Hernández-Guijo JM. Micromolar concentrations of Zn 2+ depress cellular excitability through a blockade of calcium current in rat adrenal slices. Toxicology 2020; 444:152543. [PMID: 32858065 DOI: 10.1016/j.tox.2020.152543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/25/2020] [Indexed: 11/30/2022]
Abstract
The present work, using chromaffin cells in rat adrenal slices (RCCs), aims to describe what type of ionic current alterations induced by zinc underlies their effects reported on synaptic transmission. Thus, Zn2+ blocked calcium channels of RCCs in a time- and concentration-dependent manner with an IC50 of 391 μM. This blockade was partially reversed upon washout and was greater at more depolarizing holding potentials (i.e. 32 ± 5% at -110 mV, and 43 ± 6% at -50 mV, after 5 min perfusion). In ω-toxins-sensitive calcium channels (N-, P- and Q-types), Zn2+caused a lower blockade of ICa, 33.3%, than in ω-toxins-resistant ones (L-type, 55.3%; and R-type, 90%). This compound inhibited calcium current at all test potentials and shows a shift of the I-V curve to more depolarized values of about 10 mV. The sodium current was not blocked by acute application of high Zn2+concentrations. Voltage-dependent potassium current was marginally affected by high Zn2+ concentrations showing no concentration-dependence. Nevertheless, calcium- and voltage-dependent potassium current was drastically depressed in a dose-dependent manner, with an IC50 of 453 μM. This blockade was related to the prevention of Ca2+ influx through voltage-dependent calcium channels coupled to BK channels. Under current-clamp conditions, RCCs exhibit a resting potential of -50.7 mV, firing spontaneous APs (1-2 spikes/s) generated by the opening of Na+ and Ca2+-channels, and terminated by the activation of voltage and Ca2+-activated K+-channels (BK). We found that the blockade of these ionic currents by Zn2+ led to a drastic alteration of cellular excitability with a depolarization of the membrane potential, the slowdown and broadening of the APs and the severe reduction of the after hyperpolarization (AHP) which led to a decrease in the APs firing frequency. Taken together, these results point to a neurotoxic action evoked by zinc that is associated with changes to cellular excitability by blocking the ionic currents responsible for both the neurotransmitter release and the action potentials firing.
Collapse
Affiliation(s)
- Andrés M Baraibar
- Department of Neuroscience, University of Minnesota, 4-260 Wallin Medical Biosciences Building, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain; Instituto Teófilo Hernando, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Hospital Ramón y Cajal, Ctra. de Colmenar Viejo, Km. 9,100, 28029, Madrid, Spain.
| |
Collapse
|
62
|
Krall RF, Moutal A, Phillips MB, Asraf H, Johnson JW, Khanna R, Hershfinkel M, Aizenman E, Tzounopoulos T. Synaptic zinc inhibition of NMDA receptors depends on the association of GluN2A with the zinc transporter ZnT1. SCIENCE ADVANCES 2020; 6:eabb1515. [PMID: 32937457 PMCID: PMC7458442 DOI: 10.1126/sciadv.abb1515] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/20/2020] [Indexed: 05/08/2023]
Abstract
The NMDA receptor (NMDAR) is inhibited by synaptically released zinc. This inhibition is thought to be the result of zinc diffusion across the synaptic cleft and subsequent binding to the extracellular domain of the NMDAR. However, this model fails to incorporate the observed association of the highly zinc-sensitive NMDAR subunit GluN2A with the postsynaptic zinc transporter ZnT1, which moves intracellular zinc to the extracellular space. Here, we report that disruption of ZnT1-GluN2A association by a cell-permeant peptide strongly reduced NMDAR inhibition by synaptic zinc in mouse dorsal cochlear nucleus synapses. Moreover, synaptic zinc inhibition of NMDARs required postsynaptic intracellular zinc, suggesting that cytoplasmic zinc is transported by ZnT1 to the extracellular space in close proximity to the NMDAR. These results challenge a decades-old dogma on how zinc inhibits synaptic NMDARs and demonstrate that presynaptic release and a postsynaptic transporter organize zinc into distinct microdomains to modulate NMDAR neurotransmission.
Collapse
Affiliation(s)
- Rebecca F Krall
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Matthew B Phillips
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hila Asraf
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Jon W Johnson
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Elias Aizenman
- Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Thanos Tzounopoulos
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
- Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
63
|
Scassellati C, Bonvicini C, Benussi L, Ghidoni R, Squitti R. Neurodevelopmental disorders: Metallomics studies for the identification of potential biomarkers associated to diagnosis and treatment. J Trace Elem Med Biol 2020; 60:126499. [PMID: 32203724 DOI: 10.1016/j.jtemb.2020.126499] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/10/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diagnosis and treatment of complex diseases such as Neurodevelopmental Disorders (NDDs) can be resolved through the identification of biomarkers. Metallomics (research on biometals) and metallomes (metalloproteins/metalloenzymes/chaperones) along with genomics, proteomics and metabolomics, can contribute to accelerate and improve this process. AIM This review focused on four NDDs pathologies (Schizophrenia, SZ; Attention Deficit Hyperactivity Disorder, ADHD; Autism, ADS; Epilepsy), and we reported, for the first time, different studies on the role played by the principal six essential trace elements (Cobalt, Co; Copper, Cu; Iron, Fe; Manganese, Mn; Selenium, Se; Zinc, Zn) that can influence diagnosis/treatment. RESULTS in light of the literature presented, based on meta-analyses, we suggest that Zn (glutamatergic neurotransmission, inflammation, neurodegeneration, autoimmunity alterations), could be a potential diagnostic biomarker associated to SZ. Moreover, considering the single association studies going in the same direction, increased Cu (catecholamine alterations, glucose intolerance, altered lipid metabolism/oxidative stress) and lower Fe (dopaminergic dysfunctions) levels were associated with a specific negative symptomatology. Lower Mn (lipid metabolism/oxidative stress alterations), and lower Se (metabolic syndrome) were linked to SZ. From the meta-analyses in ADHD, it is evidenced that Fe (and ferritin in particular), Mn, and Zn (oxidative stress dysfunctions) could be potential diagnostic biomarkers, mainly associated to severe hyperactive or inattentive symptoms; as well as Cu, Fe, Zn in ADS and Zn in Epilepsy. Fe, Zn and Mn levels seem to be influenced by antipsychotics treatment in SZ; Mn and Zn by methylphenidate treatment in ADHD; Cu and Zn by antiepileptic drugs in Epilepsy. CONCLUSIONS Although there is controversy and further studies are needed, this work summarizes the state of art of the literature on this topic. We claim to avoid underreporting the impact of essential trace elements in paving the way for biomarkers research for NDDs.
Collapse
Affiliation(s)
- Catia Scassellati
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
64
|
Mechanisms Underlying Long-Term Synaptic Zinc Plasticity at Mouse Dorsal Cochlear Nucleus Glutamatergic Synapses. J Neurosci 2020; 40:4981-4996. [PMID: 32434779 DOI: 10.1523/jneurosci.0175-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/21/2022] Open
Abstract
In many brain areas, such as the neocortex, limbic structures, and auditory brainstem, synaptic zinc is released from presynaptic terminals to modulate neurotransmission. As such, synaptic zinc signaling modulates sensory processing and enhances acuity for discrimination of different sensory stimuli. Whereas sensory experience causes long-term changes in synaptic zinc signaling, the mechanisms underlying this long-term synaptic zinc plasticity remain unknown. To study these mechanisms in male and female mice, we used in vitro and in vivo models of zinc plasticity observed at the zinc-rich glutamatergic dorsal cochlear nucleus (DCN) parallel fiber synapses onto cartwheel cells. High-frequency stimulation of DCN parallel fiber synapses induced LTD of synaptic zinc signaling (Z-LTD), evidenced by reduced zinc-mediated inhibition of EPSCs. Low-frequency stimulation induced LTP of synaptic zinc signaling (Z-LTP), evidenced by enhanced zinc-mediated inhibition of EPSCs. Pharmacological manipulations of Group 1 metabotropic glutamate receptors (G1 mGluRs) demonstrated that G1 mGluR activation is necessary and sufficient for inducing Z-LTD and Z-LTP. Pharmacological manipulations of Ca2+ dynamics indicated that rises in postsynaptic Ca2+ are necessary and sufficient for Z-LTD induction. Electrophysiological measurements assessing postsynaptic expression mechanisms, and imaging studies with a ratiometric extracellular zinc sensor probing zinc release, supported that Z-LTD is expressed, at least in part, via reductions in presynaptic zinc release. Finally, exposure of mice to loud sound caused G1 mGluR-dependent Z-LTD at DCN parallel fiber synapses, thus validating our in vitro results. Together, our results reveal a novel mechanism underlying activity- and experience-dependent plasticity of synaptic zinc signaling.SIGNIFICANCE STATEMENT In the neocortex, limbic structures, and auditory brainstem, glutamatergic nerve terminals corelease zinc to modulate excitatory neurotransmission and sensory responses. Moreover, sensory experience causes bidirectional, long-term changes in synaptic zinc signaling. However, the mechanisms of this long-term synaptic zinc plasticity remain unknown. Here, we identified a novel Group 1 mGluR-dependent mechanism that causes bidirectional, long-term changes in synaptic zinc signaling. Our results highlight new mechanisms of brain adaptation during sensory processing, and potentially point to mechanisms of disorders associated with pathologic adaptation, such as tinnitus.
Collapse
|
65
|
Rychlik M, Mlyniec K. Zinc-mediated Neurotransmission in Alzheimer's Disease: A Potential Role of the GPR39 in Dementia. Curr Neuropharmacol 2020; 18:2-13. [PMID: 31272355 PMCID: PMC7327932 DOI: 10.2174/1570159x17666190704153807] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 01/19/2023] Open
Abstract
With more people reaching an advanced age in modern society, there is a growing need for strategies to slow down age-related neuropathology and loss of cognitive functions, which are a hallmark of Alzheimer's disease. Neuroprotective drugs and candidate drug compounds target one or more processes involved in the neurodegenerative cascade, such as excitotoxicity, oxidative stress, misfolded protein aggregation and/or ion dyshomeostasis. A growing body of research shows that a G-protein coupled zinc (Zn2+) receptor (GPR39) can modulate the abovementioned processes. Zn2+ itself has a diverse activity profile at the synapse, and by binding to numerous receptors, it plays an important role in neurotransmission. However, Zn2+ is also necessary for the formation of toxic oligomeric forms of amyloid beta, which underlie the pathology of Alzheimer’s disease. Furthermore, the binding of Zn2+ by amyloid beta causes a disruption of zincergic signaling, and recent studies point to GPR39 and its intracellular targets being affected by amyloid pathology. In this review, we present neurobiological findings related to Zn2+ and GPR39, focusing on its signaling pathways, neural plasticity, interactions with other neurotransmission systems, as well as on the effects of pathophysiological changes observed in Alzheimer's disease on GPR39 function. Direct targeting of the GPR39 might be a promising strategy for the pharmacotherapy of zincergic dyshomeostasis observed in Alzheimer’s disease. The information presented in this article will hopefully fuel further research into the role of GPR39 in neurodegeneration and help in identifying novel therapeutic targets for dementia.
Collapse
Affiliation(s)
- Michal Rychlik
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| |
Collapse
|
66
|
Shen Z, Haragopal H, Li YV. Zinc modulates synaptic transmission by differentially regulating synaptic glutamate homeostasis in hippocampus. Eur J Neurosci 2020; 52:3710-3722. [PMID: 32302450 DOI: 10.1111/ejn.14749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/29/2020] [Accepted: 04/10/2020] [Indexed: 12/27/2022]
Abstract
A subset of presynaptic glutamatergic vesicles in the brain co-releases zinc (Zn2+ ) with glutamate into the synapse. However, the role of synaptically released Zn2+ is still under investigation. Here, we studied the effect of Zn2+ on glutamate homeostasis by measuring the evoked extracellular glutamate level (EGL) and the probability of evoked action potential (PEAP ) at the Zn2+ -containing or zincergic mossy fiber-CA3 synapses of the rat hippocampus. We found that the application of Zn2+ (ZnCl2 ) exerted bidirectional effects on both EGL and PEAP : facilitatory at low concentration (~1 µM) while repressive at high concentration (~50 µM). To determine the action of endogenous Zn2+ , we also used extracellular Zn2+ chelator to remove the synaptically released Zn2+ . Zn2+ chelation reduced both EGL and PEAP , suggesting that endogenous Zn2+ has mainly a facilitative role in glutamate secretion on physiological condition. We revealed that calcium/calmodulin-dependent protein kinase II was integral to the mechanism by which Zn2+ facilitated the release of glutamate. Moreover, a glutamate transporter was the molecular entity for the action of Zn2+ on glutamate uptake by which Zn2+ decreases glutamate availability. Taken together, we show a novel action of Zn2+ , which is to biphasically regulate glutamate homeostasis via Zn2+ concentration-dependent synaptic facilitation and depression. Thus, co-released Zn2+ is physiologically important for enhancing weak stimulation, but potentially mitigates excessive stimulation to keep synaptic transmission within optimal physiological range.
Collapse
Affiliation(s)
- Zhijun Shen
- Departments of Biological Sciences and Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Hariprakash Haragopal
- Departments of Biological Sciences and Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Yang V Li
- Departments of Biological Sciences and Biomedical Sciences, Ohio University, Athens, OH, USA
| |
Collapse
|
67
|
Chan K, Nestor J, Huerta TS, Certain N, Moody G, Kowal C, Huerta PT, Volpe BT, Diamond B, Wollmuth LP. Lupus autoantibodies act as positive allosteric modulators at GluN2A-containing NMDA receptors and impair spatial memory. Nat Commun 2020; 11:1403. [PMID: 32179753 PMCID: PMC7075964 DOI: 10.1038/s41467-020-15224-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Patients with Systemic lupus erythematosus (SLE) experience various peripheral and central nervous system manifestations including spatial memory impairment. A subset of autoantibodies (DNRAbs) cross-react with the GluN2A and GluN2B subunits of the NMDA receptor (NMDAR). We find that these DNRAbs act as positive allosteric modulators on NMDARs with GluN2A-containing NMDARs, even those containing a single GluN2A subunit, exhibiting a much greater sensitivity to DNRAbs than those with exclusively GluN2B. Accordingly, GluN2A-specific antagonists provide greater protection from DNRAb-mediated neuronal cell death than GluN2B antagonists. Using transgenic mice to perturb expression of either GluN2A or GluN2B in vivo, we find that DNRAb-mediated disruption of spatial memory characterized by early neuronal cell death and subsequent microglia-dependent pathologies requires GluN2A-containing NMDARs. Our results indicate that GluN2A-specific antagonists or negative allosteric modulators are strong candidates to treat SLE patients with nervous system dysfunction.
Collapse
Affiliation(s)
- Kelvin Chan
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Jacquelyn Nestor
- Donald & Barbara Zucker School of Medicine, Hofstra University, Hempstead, NY, 11549, USA
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Tomás S Huerta
- Donald & Barbara Zucker School of Medicine, Hofstra University, Hempstead, NY, 11549, USA
| | - Noele Certain
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Gabrielle Moody
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Czeslawa Kowal
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Patricio T Huerta
- Donald & Barbara Zucker School of Medicine, Hofstra University, Hempstead, NY, 11549, USA
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Bruce T Volpe
- Center for Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA.
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5230, USA.
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794-5230, USA.
| |
Collapse
|
68
|
Kouvaros S, Kumar M, Tzounopoulos T. Synaptic Zinc Enhances Inhibition Mediated by Somatostatin, but not Parvalbumin, Cells in Mouse Auditory Cortex. Cereb Cortex 2020; 30:3895-3909. [PMID: 32090251 DOI: 10.1093/cercor/bhaa005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 11/13/2022] Open
Abstract
Cortical inhibition is essential for brain activity and behavior. Yet, the mechanisms that modulate cortical inhibition and their impact on sensory processing remain less understood. Synaptically released zinc, a neuromodulator released by cortical glutamatergic synaptic vesicles, has emerged as a powerful modulator of sensory processing and behavior. Despite the puzzling finding that the vesicular zinc transporter (ZnT3) mRNA is expressed in cortical inhibitory interneurons, the actions of synaptic zinc in cortical inhibitory neurotransmission remain unknown. Using in vitro electrophysiology and optogenetics in mouse brain slices containing the layer 2/3 (L2/3) of auditory cortex, we discovered that synaptic zinc increases the quantal size of inhibitory GABAergic neurotransmission mediated by somatostatin (SOM)- but not parvalbumin (PV)-expressing neurons. Using two-photon imaging in awake mice, we showed that synaptic zinc is required for the effects of SOM- but not PV-mediated inhibition on frequency tuning of principal neurons. Thus, cell-specific zinc modulation of cortical inhibition regulates frequency tuning.
Collapse
Affiliation(s)
- Stylianos Kouvaros
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Manoj Kumar
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thanos Tzounopoulos
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
69
|
Sanford L, Palmer AE. Dissociated Hippocampal Neurons Exhibit Distinct Zn 2+ Dynamics in a Stimulation-Method-Dependent Manner. ACS Chem Neurosci 2020; 11:508-514. [PMID: 32013397 PMCID: PMC7251562 DOI: 10.1021/acschemneuro.0c00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ionic Zn2+ has increasingly been recognized as an important neurotransmitter and signaling ion in glutamatergic neuron pathways. Intracellular Zn2+ transiently increases as a result of neuronal excitation, and this Zn2+ signal is essential for neuron plasticity, but the source and regulation of the signal is still unclear. In this study, we rigorously quantified Zn2+, Ca2+, and pH dynamics in dissociated mouse hippocampal neurons stimulated with bath application of high KCl or glutamate. While both stimulation methods yielded Zn2+ signals, Ca2+ influx, and acidification, glutamate stimulation induced more sustained high intracellular Ca2+ and a larger increase in intracellular Zn2+. However, the stimulation-induced pH change was similar between conditions, indicating that a different cellular change is responsible for the stimulation-dependent difference in Zn2+ signal. This work provides the first robust quantification of Zn2+ dynamics in neurons using different methods of stimulation.
Collapse
Affiliation(s)
- Lynn Sanford
- Department of Biochemistry, BioFrontiers Institute , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Amy E Palmer
- Department of Biochemistry, BioFrontiers Institute , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| |
Collapse
|
70
|
Blakemore LJ, Trombley PQ. Zinc Modulates Olfactory Bulb Kainate Receptors. Neuroscience 2020; 428:252-268. [PMID: 31874243 PMCID: PMC7193548 DOI: 10.1016/j.neuroscience.2019.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
Kainate receptors (KARs) are glutamate receptors with ionotropic and metabotropic activity composed of the GluK1-GluK5 subunits. We previously reported that KARs modulate excitatory and inhibitory transmission in the olfactory bulb (OB). Zinc, which is highly concentrated in the OB, also appears to modulate OB synaptic transmission via actions at other ionotropic glutamate receptors (i.e., AMPA, NMDA). However, few reports of effects of zinc on recombinant and/or native KARs exist and none have involved the OB. In the present study, we investigated the effects of exogenously applied zinc on OB KARs expressed by mitral/tufted (M/T) cells. We found that 100 µM zinc inhibits currents evoked by various combinations of KAR agonists (kainate or SYM 2081) and the AMPA receptor antagonist SYM 2206. The greatest degree of zinc-mediated inhibition was observed with coapplication of zinc with the GluK1- and GluK2-preferring agonist SYM 2081 plus SYM 2206. This finding is consistent with prior reports of zinc's inhibitory effects on some recombinant (homomeric GluK1 and GluK2 and heteromeric GluK2/GluK4 and GluK2/GluK5) KARs, although potentiation of other (GluK3, GluK2/3) KARs has also been described. It is also of potential importance given our previously reported molecular data suggesting that OB neurons express relatively high levels of GluK1 and GluK2. Our present findings suggest that a physiologically relevant concentration of zinc modulates KARs expressed by M/T cells. As M/T cells are targets of zinc-containing olfactory sensory neurons, synaptically released zinc may influence odor information-encoding synaptic circuits in the OB via actions at KARs.
Collapse
Affiliation(s)
- Laura J Blakemore
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA; Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Paul Q Trombley
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA; Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
71
|
Ishihara Y, Fukuda T, Sato F. Internal structure of the rat subiculum characterized by diverse immunoreactivities and septotemporal differences. Neurosci Res 2020; 150:17-28. [DOI: 10.1016/j.neures.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/30/2018] [Accepted: 02/04/2019] [Indexed: 01/07/2023]
|
72
|
Sikora J, Kieffer BL, Paoletti P, Ouagazzal AM. Synaptic zinc contributes to motor and cognitive deficits in 6-hydroxydopamine mouse models of Parkinson's disease. Neurobiol Dis 2019; 134:104681. [PMID: 31759136 DOI: 10.1016/j.nbd.2019.104681] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
Hyperactivity of glutamatergic corticostrial pathways is recognized as a key pathophysiological mechanism contributing to development of PD symptoms and dopaminergic neurotoxicity. Subset of corticostriatal projection neurons uses Zn2+ as a co-transmitter alongside glutamate, but the role of synaptically released Zn2+ in PD remains unexplored. We used genetically modified mice and pharmacological tools in combination with 6-hydroxydopamine (6-OHDA) lesion models of PD to investigate the contribution of synaptic zinc to disease associated behavioral deficits and neurodegeneration. Vesicular zinc transporter-3 (ZnT3) knockout mice lacking releasable Zn2+ were more resistant to locomotor deficit and memory impairment of nigrostriatal dopamine (DA) denervation compared to wildtype littermates. The loss of striatal dopaminergic fibers was comparable between genotypes, indicating that synaptically released Zn2+ contributes to behavioral deficits but not neurotoxic effects of 6-OHDA. To gain further insight into the mechanisms of Zn2+ actions, we used the extracellular Zn2+ chelator CaEDTA and knock-in mice lacking the high affinity Zn2+ inhibition of GluN2A-containing NMDA receptors (GluN2A-NMDARs). Acute chelation of extracellular Zn2+ in the striatum restored locomotor deficit of 6-OHDA lesion, confirming that synaptic Zn2+ suppresses locomotor behavior. Disruption of the Zn2+-GluN2A interaction had, on the other hand, no impact on locomotor deficit or neurotoxic effect of 6-OHDA. Collectively, these findings provide clear evidence for the implication of striatal synaptic Zn2+ in the pathophysiology of PD. They unveil that synaptic Zn2+ plays predominantly a detrimental role by promoting motor and cognitive deficits caused by nigrostriatal DA denervation, pointing towards new therapeutic interventions.
Collapse
Affiliation(s)
- Joanna Sikora
- Laboratoire de Neurosciences Cognitives, Aix-Marseille Univ, CNRS, LNC, UMR 7291, 13331 Marseille, France; Aix-marseille Université, Marseille, France
| | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Canada
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Abdel-Mouttalib Ouagazzal
- Laboratoire de Neurosciences Cognitives, Aix-Marseille Univ, CNRS, LNC, UMR 7291, 13331 Marseille, France.
| |
Collapse
|
73
|
Dwivedi OP, Lehtovirta M, Hastoy B, Chandra V, Krentz NAJ, Kleiner S, Jain D, Richard AM, Abaitua F, Beer NL, Grotz A, Prasad RB, Hansson O, Ahlqvist E, Krus U, Artner I, Suoranta A, Gomez D, Baras A, Champon B, Payne AJ, Moralli D, Thomsen SK, Kramer P, Spiliotis I, Ramracheya R, Chabosseau P, Theodoulou A, Cheung R, van de Bunt M, Flannick J, Trombetta M, Bonora E, Wolheim CB, Sarelin L, Bonadonna RC, Rorsman P, Davies B, Brosnan J, McCarthy MI, Otonkoski T, Lagerstedt JO, Rutter GA, Gromada J, Gloyn AL, Tuomi T, Groop L. Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nat Genet 2019; 51:1596-1606. [PMID: 31676859 PMCID: PMC6858874 DOI: 10.1038/s41588-019-0513-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 09/13/2019] [Indexed: 12/30/2022]
Abstract
A rare loss-of-function allele p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8), which is enriched in Western Finland, protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, particularly when compared with individuals matched for the genotype of a common T2D-risk allele in SLC30A8, p.Arg325. In genome-edited human induced pluripotent stem cell (iPSC)-derived β-like cells, we establish that the p.Arg138* allele results in reduced SLC30A8 expression due to haploinsufficiency. In human β cells, loss of SLC30A8 leads to increased glucose responsiveness and reduced KATP channel function similar to isolated islets from carriers of the T2D-protective allele p.Trp325. These data position ZnT8 as an appealing target for treatment aimed at maintaining insulin secretion capacity in T2D.
Collapse
Affiliation(s)
- Om Prakash Dwivedi
- Institute for Molecular Medicine Finland, Helsinki University, Helsinki, Finland
| | - Mikko Lehtovirta
- Institute for Molecular Medicine Finland, Helsinki University, Helsinki, Finland
| | - Benoit Hastoy
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nicole A J Krentz
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Deepak Jain
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Fernando Abaitua
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicola L Beer
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Antje Grotz
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Rashmi B Prasad
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Ola Hansson
- Institute for Molecular Medicine Finland, Helsinki University, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Emma Ahlqvist
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Ulrika Krus
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Isabella Artner
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Anu Suoranta
- Institute for Molecular Medicine Finland, Helsinki University, Helsinki, Finland
| | | | - Aris Baras
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Benoite Champon
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anthony J Payne
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Soren K Thomsen
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Philipp Kramer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ioannis Spiliotis
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Reshma Ramracheya
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Pauline Chabosseau
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith, Hospital, London, UK
| | - Andria Theodoulou
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith, Hospital, London, UK
| | - Rebecca Cheung
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith, Hospital, London, UK
| | - Martijn van de Bunt
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jason Flannick
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Maddalena Trombetta
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Enzo Bonora
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Claes B Wolheim
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | - Riccardo C Bonadonna
- Department of Medicine and Surgery, University of Parma School of Medicine and Azienda Ospedaliera Universitaria of Parma, Parma, Italy
| | - Patrik Rorsman
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Mark I McCarthy
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program and Biomedicum Stem Cell Centre, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jens O Lagerstedt
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Guy A Rutter
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith, Hospital, London, UK
| | | | - Anna L Gloyn
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland, Helsinki University, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Endocrinology, Helsinki University Central Hospital, Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Leif Groop
- Institute for Molecular Medicine Finland, Helsinki University, Helsinki, Finland.
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
74
|
Sub-nanomolar sensitive GZnP3 reveals TRPML1-mediated neuronal Zn 2+ signals. Nat Commun 2019; 10:4806. [PMID: 31641116 PMCID: PMC6805855 DOI: 10.1038/s41467-019-12761-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
Although numerous fluorescent Zn2+ sensors have been reported, it is unclear whether and how Zn2+ can be released from the intracellular compartments into the cytosol due to a lack of probes that can detect physiological dynamics of cytosolic Zn2+. Here, we create a genetically encoded sensor, GZnP3, which demonstrates unprecedented sensitivity for Zn2+ at sub-nanomolar concentrations. Using GZnP3 as well as GZnP3-derived vesicular targeted probes, we provide the first direct evidence that Zn2+ can be released from endolysosomal vesicles to the cytosol in primary hippocampal neurons through the TRPML1 channel. Such TRPML1-mediated Zn2+ signals are distinct from Ca2+ in that they are selectively present in neurons, sustain longer, and are significantly higher in neurites as compared to the soma. Together, our work not only creates highly sensitive probes for investigating sub-nanomolar Zn2+ dynamics, but also reveals new pools of Zn2+ signals that can play critical roles in neuronal function. Numerous fluorescent Zn2+ sensors are available but most are unsuitable to detect physiological dynamics of cytosolic Zn2+. In this study, the authors present a genetically encoded sensor with sub-nanomolar sensitivity and show that Zn2 + is released from endolysosomal vesicles via TRPML1 in neurons.
Collapse
|
75
|
O-hexyl O-2,5-dichlorophenyl phosphoramidate as a substrate for domestic and sea bird serum A-esterases: Hydrolysis levels, Cu2+- and Zn2+-dependence and stereoselectivity. Chem Biol Interact 2019; 310:108727. [DOI: 10.1016/j.cbi.2019.108727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 02/08/2023]
|
76
|
Jalali-Yazdi F, Chowdhury S, Yoshioka C, Gouaux E. Mechanisms for Zinc and Proton Inhibition of the GluN1/GluN2A NMDA Receptor. Cell 2019; 175:1520-1532.e15. [PMID: 30500536 DOI: 10.1016/j.cell.2018.10.043] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/26/2018] [Accepted: 10/19/2018] [Indexed: 11/19/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play essential roles in memory formation, neuronal plasticity, and brain development, with their dysfunction linked to a range of disorders from ischemia to schizophrenia. Zinc and pH are physiological allosteric modulators of NMDARs, with GluN2A-containing receptors inhibited by nanomolar concentrations of divalent zinc and by excursions to low pH. Despite the widespread importance of zinc and proton modulation of NMDARs, the molecular mechanism by which these ions modulate receptor activity has proven elusive. Here, we use cryoelectron microscopy to elucidate the structure of the GluN1/GluN2A NMDAR in a large ensemble of conformations under a range of physiologically relevant zinc and proton concentrations. We show how zinc binding to the amino terminal domain elicits structural changes that are transduced though the ligand-binding domain and result in constriction of the ion channel gate.
Collapse
Affiliation(s)
- Farzad Jalali-Yazdi
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sandipan Chowdhury
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Craig Yoshioka
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA; Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA; Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
77
|
Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2019; 98:1080-1098. [PMID: 29953871 DOI: 10.1016/j.neuron.2018.05.018] [Citation(s) in RCA: 406] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022]
Abstract
Glutamate serves as both the mammalian brain's primary excitatory neurotransmitter and as a key neuromodulator to control synapse and circuit function over a wide range of spatial and temporal scales. This functional diversity is decoded by two receptor families: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The challenges posed by the complexity and physiological importance of each of these subtypes has limited our appreciation and understanding of how these receptors work in concert. In this review, by comparing both receptor families with a focus on their crosstalk, we argue for a more holistic understanding of neural glutamate signaling.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
78
|
Otsu Y, Lecca S, Pietrajtis K, Rousseau CV, Marcaggi P, Dugué GP, Mailhes-Hamon C, Mameli M, Diana MA. Functional Principles of Posterior Septal Inputs to the Medial Habenula. Cell Rep 2019; 22:693-705. [PMID: 29346767 PMCID: PMC5792424 DOI: 10.1016/j.celrep.2017.12.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/26/2017] [Accepted: 12/20/2017] [Indexed: 11/29/2022] Open
Abstract
The medial habenula (MHb) is an epithalamic hub contributing to expression and extinction of aversive states by bridging forebrain areas and midbrain monoaminergic centers. Although contradictory information exists regarding their synaptic properties, the physiology of the excitatory inputs to the MHb from the posterior septum remains elusive. Here, combining optogenetics-based mapping with ex vivo and in vivo physiology, we examine the synaptic properties of posterior septal afferents to the MHb and how they influence behavior. We demonstrate that MHb cells receive sparse inputs producing purely glutamatergic responses via calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), heterotrimeric GluN2A-GluN2B-GluN1 N-methyl-D-aspartate (NMDA) receptors, and inhibitory group II metabotropic glutamate receptors. We describe the complex integration dynamics of these components by MHb cells. Finally, we combine ex vivo data with realistic afferent firing patterns recorded in vivo to demonstrate that efficient optogenetic septal stimulation in the MHb induces anxiolysis and promotes locomotion, contributing long-awaited evidence in favor of the importance of this septo-habenular pathway. Medial habenular (MHb) neurons receive sparse inputs from the posterior septum (PS) PS afferents to the MHb function in a purely glutamatergic mode Excitatory ionotropic and inhibitory metabotropic receptors convey PS inputs in the MHb PS activation in the MHb increases locomotion and induces anxiolysis
Collapse
Affiliation(s)
- Yo Otsu
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Salvatore Lecca
- Institut du Fer à Moulin, INSERM-UPMC UMR-S 839, Paris, France
| | - Katarzyna Pietrajtis
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Charly Vincent Rousseau
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Païkan Marcaggi
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Guillaume Pierre Dugué
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Caroline Mailhes-Hamon
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Manuel Mameli
- Institut du Fer à Moulin, INSERM-UPMC UMR-S 839, Paris, France
| | - Marco Alberto Diana
- Institut de Biologie de l'École Normale Supérieure, INSERM U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France.
| |
Collapse
|
79
|
Intracellular Zn 2+ transients modulate global gene expression in dissociated rat hippocampal neurons. Sci Rep 2019; 9:9411. [PMID: 31253848 PMCID: PMC6598991 DOI: 10.1038/s41598-019-45844-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022] Open
Abstract
Zinc (Zn2+) is an integral component of many proteins and has been shown to act in a regulatory capacity in different mammalian systems, including as a neurotransmitter in neurons throughout the brain. While Zn2+ plays an important role in modulating neuronal potentiation and synaptic plasticity, little is known about the signaling mechanisms of this regulation. In dissociated rat hippocampal neuron cultures, we used fluorescent Zn2+ sensors to rigorously define resting Zn2+ levels and stimulation-dependent intracellular Zn2+ dynamics, and we performed RNA-Seq to characterize Zn2+-dependent transcriptional effects upon stimulation. We found that relatively small changes in cytosolic Zn2+ during stimulation altered expression levels of 931 genes, and these Zn2+ dynamics induced transcription of many genes implicated in neurite expansion and synaptic growth. Additionally, while we were unable to verify the presence of synaptic Zn2+ in these cultures, we did detect the synaptic vesicle Zn2+ transporter ZnT3 and found it to be substantially upregulated by cytosolic Zn2+ increases. These results provide the first global sequencing-based examination of Zn2+-dependent changes in transcription and identify genes that may mediate Zn2+-dependent processes and functions.
Collapse
|
80
|
Nemashkalova EL, Permyakov EA, Uversky VN, Permyakov SE, Litus EA. Effect of Cu 2+ and Zn 2+ ions on human serum albumin interaction with plasma unsaturated fatty acids. Int J Biol Macromol 2019; 131:505-509. [PMID: 30880051 DOI: 10.1016/j.ijbiomac.2019.03.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/15/2023]
Abstract
Human serum albumin (HSA) serves as a depot and carrier of multiple unrelated ligands including several participants of the pathogenesis of Alzheimer's disease (AD), such as amyloid β peptide (Aβ), Zn2+/Cu2+ ions, docosahexaenoic (DHA), linoleic (LA), and oleic (OA) acids. To explore the interplay between HSA interaction with Zn2+/Cu2+ and the plasma unsaturated fatty acids (DHA, LA, OA, and arachidonic acid (ArA)), we have studied the metal dependence of the fatty acid (FA) binding capacity of HSA (nmax) and structural consequences of the HSA-FA interactions. HSA loading with Zn2+ decreases nmax value by 0.3-1.5, while its saturation with Cu2+ causes the FA-dependent nmax changes by up to 0.9. The Cu2+-induced decline in nmax value for DHA is due to conformational rearrangements in HSA molecule. In other cases, the changes in nmax are attributed to steric hindarance/facilitation of the HSA-FA interaction because of the protein multimerization/monomerization, as confirmed by chemical crosslinking. The surface hydrophobicity of HSA is Cu2+-, Zn2+-, and FA-dependent and decreases upon the FA binding, according to bis-ANS fluorescence data. Overall, Zn2+ or Cu2+ binding selectively affect HSA interaction with the FAs studied, in part due to changes in quaternary structure of the protein.
Collapse
Affiliation(s)
- Ekaterina L Nemashkalova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region 142290, Russia
| | - Eugene A Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region 142290, Russia
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Sergei E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region 142290, Russia
| | - Ekaterina A Litus
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institutskaya str., 7, Pushchino, Moscow region 142290, Russia.
| |
Collapse
|
81
|
August A, Schmidt N, Klingler J, Baumkötter F, Lechner M, Klement J, Eggert S, Vargas C, Wild K, Keller S, Kins S. Copper and zinc ions govern the trans‐directed dimerization of APP family members in multiple ways. J Neurochem 2019; 151:626-641. [DOI: 10.1111/jnc.14716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Alexander August
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Nadine Schmidt
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Johannes Klingler
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Frederik Baumkötter
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Marius Lechner
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Jessica Klement
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Simone Eggert
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Carolyn Vargas
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH) University of Heidelberg Heidelberg Germany
| | - Sandro Keller
- Molecular Biophysics Technische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| | - Stefan Kins
- Division of Human Biology and Human GeneticsTechnische Universität Kaiserslautern (TUK) Kaiserslautern Germany
| |
Collapse
|
82
|
Rama S, Jensen TP, Rusakov DA. Glutamate Imaging Reveals Multiple Sites of Stochastic Release in the CA3 Giant Mossy Fiber Boutons. Front Cell Neurosci 2019; 13:243. [PMID: 31213985 PMCID: PMC6558140 DOI: 10.3389/fncel.2019.00243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/16/2019] [Indexed: 11/17/2022] Open
Abstract
One of the most studied central synapses which have provided fundamental insights into cellular mechanisms of neural connectivity is the “giant” excitatory connection between hippocampal mossy fibers (MFs) and CA3 pyramidal cells. Its large presynaptic bouton features multiple release sites and is densely packed with thousands of synaptic vesicles, to sustain a highly facilitating “detonator” transmission. However, whether glutamate release sites at this synapse act independently, in a stochastic manner, or rather synchronously, remains poorly understood. This knowledge is critical for a better understanding of mechanisms underpinning presynaptic plasticity and postsynaptic signal integration rules. Here, we use the optical glutamate sensor SF-iGluSnFR and the intracellular Ca2+ indicator Cal-590 to monitor spike-evoked glutamate release and presynaptic calcium entry in MF boutons. Multiplexed imaging reveals that distinct sites in individual MF giant boutons release glutamate in a probabilistic fashion, also showing use-dependent short-term facilitation. The present approach provides novel insights into the basic mechanisms of neurotransmitter release at excitatory synapses.
Collapse
Affiliation(s)
- Sylvain Rama
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Thomas P Jensen
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
83
|
Mechanisms of zinc modulation of olfactory bulb AMPA receptors. Neuroscience 2019; 410:160-175. [PMID: 31082537 DOI: 10.1016/j.neuroscience.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022]
Abstract
The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of ionotropic glutamate receptors mediates most fast excitatory transmission. Glutamate binding to AMPA receptors (AMPARs) causes most AMPARs to rapidly and completely desensitize, and their desensitization kinetics influence synaptic timing. Thus, factors that alter AMPAR desensitization influence synaptic transmission. Synaptically released zinc is such a factor. Zinc is a neuromodulator with effects on amino acid receptors and synaptic transmission in many brain regions, including the olfactory bulb (OB). We have previously shown in the OB that zinc potentiates AMPAR-mediated currents at low concentrations (30 μM, 100 μM) and inhibits them at a higher concentration (1 mM). It has been hypothesized that zinc potentiates AMPARs by decreasing receptor desensitization. Here, we used cyclothiazide (CTZ), a drug that blocks AMPAR desensitization, to determine whether zinc-mediated potentiation and/or inhibition of AMPA-evoked currents reflect(s) changes in AMPAR desensitization. Zinc largely had biphasic concentration-dependent effects at OB AMPARs. CTZ completely blocked potentiation by zinc but had no significant effect on inhibition. There was a significant negative correlation between the degree of potentiation of AMPAR-mediated currents by 100 μM zinc and a quantitative measure of the degree of AMPAR desensitization (the steady-state to peak [S:P] ratio of AMPA-evoked currents), but no correlation between the degree of current inhibition by 1 mM zinc and the S:P ratio. Together, these findings suggest that low zinc concentrations potentiate rat OB AMPARs by decreasing receptor desensitization, but that the inhibitory effects of higher zinc concentrations are mediated by a separate mechanism.
Collapse
|
84
|
Hagimori M, Taniura M, Mizuyama N, Karimine Y, Kawakami S, Saji H, Mukai T. Synthesis of a Novel Pyrazine⁻Pyridone Biheteroaryl-Based Fluorescence Sensor and Detection of Endogenous Labile Zinc Ions in Lung Cancer Cells. SENSORS 2019; 19:s19092049. [PMID: 31052519 PMCID: PMC6540122 DOI: 10.3390/s19092049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
A small extent of endogenous labile zinc is involved in many vital physiological roles in living systems. However, its detailed functions have not been fully elucidated. In this study, we developed a novel biheteroaryl-based low molecular weight fluorescent sensor, 3-(phenylsulfonyl)-pyrazine–pyridone (5b), and applied it for the detection of endogenous labile zinc ions from lung cancer cells during apoptosis. The electron-withdrawing property of the sulfonyl group between the phenyl ring as an electron donor and the pyridone ring as a fluorophore inhibited the intramolecular charge transfer state, and the background fluorescence of the sensor was decreased in aqueous media. From the structure–fluorescence relationship analysis of the substituent effects with/without Zn2+, compound 5b acting as a sensor possessed favorable properties, including a longer emission wavelength, a large Stokes shift (over 100 nm), a large fluorescence enhancement in response to Zn2+ under physical conditions, and good cell membrane permeability in living cells. Fluorescence imaging studies of human lung adenocarcinoma cells (A549) undergoing apoptosis revealed that compound 5b could detect endogenous labile zinc ions. These experiments suggested that the low molecular weight compound 5b is a potential fluorescence sensor for Zn2+ toward understanding its functions in living systems.
Collapse
Affiliation(s)
- Masayori Hagimori
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita Machi, Higashinada Ku, Kobe 658-8558, Japan.
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Mana Taniura
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita Machi, Higashinada Ku, Kobe 658-8558, Japan.
| | - Naoko Mizuyama
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Yasushi Karimine
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Hideo Saji
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46⁻29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Takahiro Mukai
- Department of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita Machi, Higashinada Ku, Kobe 658-8558, Japan.
| |
Collapse
|
85
|
Hasna J, Bohic S, Lemoine S, Blugeon C, Bouron A. Zinc Uptake and Storage During the Formation of the Cerebral Cortex in Mice. Mol Neurobiol 2019; 56:6928-6940. [DOI: 10.1007/s12035-019-1581-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022]
|
86
|
Intracellular Zn 2+ Signaling Facilitates Mossy Fiber Input-Induced Heterosynaptic Potentiation of Direct Cortical Inputs in Hippocampal CA3 Pyramidal Cells. J Neurosci 2019; 39:3812-3831. [PMID: 30833508 DOI: 10.1523/jneurosci.2130-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Repetitive action potentials (APs) in hippocampal CA3 pyramidal cells (CA3-PCs) backpropagate to distal apical dendrites, and induce calcium and protein tyrosine kinase (PTK)-dependent downregulation of Kv1.2, resulting in long-term potentiation of direct cortical inputs and intrinsic excitability (LTP-IE). When APs were elicited by direct somatic stimulation of CA3-PCs from rodents of either sex, only a narrow window of distal dendritic [Ca2+] allowed LTP-IE because of Ca2+-dependent coactivation of PTK and protein tyrosine phosphatase (PTP), which renders non-mossy fiber (MF) inputs incompetent in LTP-IE induction. High-frequency MF inputs, however, could induce LTP-IE at high dendritic [Ca2+] of the window. We show that MF input-induced Zn2+ signaling inhibits postsynaptic PTP, and thus enables MF inputs to induce LTP-IE at a wide range of [Ca2+]i values. Extracellular chelation of Zn2+ or genetic deletion of vesicular zinc transporter abrogated the privilege of MF inputs for LTP-IE induction. Moreover, the incompetence of somatic stimulation was rescued by the inhibition of PTP or a supplement of extracellular zinc, indicating that MF input-induced increase in dendritic [Zn2+] facilitates the induction of LTP-IE by inhibiting PTP. Consistently, high-frequency MF stimulation induced immediate and delayed elevations of [Zn2+] at proximal and distal dendrites, respectively. These results indicate that MF inputs are uniquely linked to the regulation of direct cortical inputs owing to synaptic Zn2+ signaling.SIGNIFICANCE STATEMENT Zn2+ has been mostly implicated in pathological processes, and the physiological roles of synaptically released Zn2+ in intracellular signaling are little known. We show here that Zn2+ released from hippocampal mossy fiber (MF) terminals enters postsynaptic CA3 pyramidal cells, and plays a facilitating role in MF input-induced heterosynaptic potentiation of perforant path (PP) synaptic inputs through long-term potentiation of intrinsic excitability (LTP-IE). We show that the window of cytosolic [Ca2+] that induces LTP-IE is normally very narrow because of the Ca2+-dependent coactivation of antagonistic signaling pairs, whereby non-MF inputs become ineffective in inducing excitability change. The MF-induced Zn2+ signaling, however, biases toward facilitating the induction of LTP-IE. The present study elucidates why MF inputs are more privileged for the regulation of PP synapses.
Collapse
|
87
|
Zhou Y, Liu Z, Zhang J, Dou T, Chen J, Ge G, Zhu S, Wang F. Prediction of ligand modulation patterns on membrane receptors via lysine reactivity profiling. Chem Commun (Camb) 2019; 55:4311-4314. [DOI: 10.1039/c9cc00520j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A mass spectrometry-based lysine reactivity profiling strategy for the prediction of the ligand modulation patterns on neuronal membrane receptors.
Collapse
Affiliation(s)
- Ye Zhou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Jinbao Zhang
- Institute of Neuroscience
- CAS Center for Excellence in Brain Science and Intelligence Technology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
- Shanghai
| | - Tongyi Dou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Jin Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Guangbo Ge
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Shujia Zhu
- Institute of Neuroscience
- CAS Center for Excellence in Brain Science and Intelligence Technology
- Shanghai Institutes for Biological Sciences
- Chinese Academy of Sciences
- Shanghai
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| |
Collapse
|
88
|
Ni H, Chen SH, Li LL, Jin MF. Alterations in the Neurobehavioral Phenotype and ZnT3/CB-D28k Expression in the Cerebral Cortex Following Lithium-Pilocarpine-Induced Status Epilepticus: the Ameliorative Effect of Leptin. Biol Trace Elem Res 2019; 187:100-106. [PMID: 29687372 DOI: 10.1007/s12011-018-1343-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/10/2018] [Indexed: 12/31/2022]
Abstract
Zinc transporter 3 (ZnT3)-dependent "zincergic" vesicular zinc accounts for approximately 20% of the total zinc content of the mammalian telencephalon. Elevated hippocampal ZnT3 expression is acknowledged to be associated with mossy fiber sprouting and cognitive deficits. However, no studies have compared the long-term neurobehavioral phenotype with the expression of ZnT3 in the cerebral cortex following status epilepticus (SE). The aim of this study was to investigate changes in the long-term neurobehavioral phenotype as well as the expression of ZnT3 and calcium homeostasis-related CB-D28k in the cerebral cortex of rats subjected to neonatal SE and to determine the effects of leptin treatment immediately after neonatal SE. Fifty Sprague-Dawley rats (postnatal day 6, P6) were randomly assigned to two groups: the pilocarpine hydrochloride-induced status epilepticus group (RS, n = 30) and control group (n = 20). Rats were further divided into the control group without leptin (Control), control-plus-leptin treatment group (Leptin), RS group without leptin treatment (RS), and RS-plus-leptin treatment group (RS + Leptin). On P6, all rats in the RS group and RS + Leptin group were injected intraperitoneally (i.p.) with lithium chloride (5 mEq/kg). Pilocarpine (320 mg/kg, i.p.) was administered 30 min after the scopolamine methyl chloride (1 mg/kg) injection on P7. From P8 to P14, animals of the Leptin group and RS + Leptin group were given leptin (4 mg/kg/day, i.p.). The neurological behavioral parameters (negative geotaxis reaction reflex, righting reflex, cliff avoidance reflex, forelimb suspension reflex, and open field test) were observed from P23 to P30. The protein levels of ZnT3 and CB-D28k in the cerebral cortex were detected subsequently by the western blot method. Pilocarpine-treated neonatal rats showed long-term abnormal neurobehavioral parameters. In parallel, there was a significantly downregulated protein level of CB-D28k and upregulated protein level of ZnT3 in the cerebral cortex of the RS group. Leptin treatment soon after epilepticus for 7 consecutive days counteracted these abnormal changes. Taken together with the results from our previous reports on another neonatal seizure model, which showed a significant positive inter-relationship between ZnT3 and calcium/calmodulin-dependent protein kinase IIα (CaMKIIα), the data here suggest that ZnT3/CB-D28k-associated Zn (2+)/Ca(2+) signaling might be involved in neonatal SE-induced long-term brain damage in the aspects of neurobehavioral impairment. Moreover, consecutive leptin treatment is effect at counteracting these hyperexcitability-related changes, suggesting a potential clinical significance.
Collapse
Affiliation(s)
- Hong Ni
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No.303, Jingde Road, 215003, Suzhou, People's Republic of China.
| | - Su-Hong Chen
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No.303, Jingde Road, 215003, Suzhou, People's Republic of China
| | - Li-Li Li
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No.303, Jingde Road, 215003, Suzhou, People's Republic of China
| | - Mei-Fang Jin
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No.303, Jingde Road, 215003, Suzhou, People's Republic of China
| |
Collapse
|
89
|
Fine Control of Sound Frequency Tuning and Frequency Discrimination Acuity by Synaptic Zinc Signaling in Mouse Auditory Cortex. J Neurosci 2018; 39:854-865. [PMID: 30504277 DOI: 10.1523/jneurosci.1339-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/16/2018] [Accepted: 11/16/2018] [Indexed: 11/21/2022] Open
Abstract
Neurons in the auditory cortex are tuned to specific ranges of sound frequencies. Although the cellular and network mechanisms underlying neuronal sound frequency selectivity are well studied and reflect the interplay of thalamocortical and intracortical excitatory inputs and further refinement by cortical inhibition, the precise synaptic signaling mechanisms remain less understood. To gain further understanding on these mechanisms and their effects on sound-driven behavior, we used in vivo imaging as well as behavioral approaches in awake and behaving female and male mice. We discovered that synaptic zinc, a modulator of neurotransmission and responsiveness to sound, sharpened the sound frequency tuning of principal and parvalbumin-expressing neurons and widened the sound frequency tuning of somatostatin-expressing inhibitory neurons in layer 2/3 of the primary auditory cortex. In the absence of cortical synaptic zinc, mice exhibited reduced acuity for detecting changes in sound frequencies. Together, our results reveal that cell-type-specific effects of zinc contribute to cortical sound frequency tuning and enhance acuity for sound frequency discrimination.SIGNIFICANCE STATEMENT Neuronal tuning to specific features of sensory stimuli is a fundamental property of cortical sensory processing that advantageously supports behavior. Despite the established roles of synaptic thalamocortical and intracortical excitation and inhibition in cortical tuning, the precise synaptic signaling mechanisms remain unknown. Here, we investigated these mechanisms in the mouse auditory cortex. We discovered a previously unknown signaling mechanism linking synaptic zinc signaling with cell-specific cortical tuning and enhancement in sound frequency discrimination acuity. Given the abundance of synaptic zinc in all sensory cortices, this newly discovered interaction between synaptic zinc and cortical tuning can provide a general mechanism for modulating neuronal stimulus specificity and sensory-driven behavior.
Collapse
|
90
|
Ha HTT, Leal-Ortiz S, Lalwani K, Kiyonaka S, Hamachi I, Mysore SP, Montgomery JM, Garner CC, Huguenard JR, Kim SA. Shank and Zinc Mediate an AMPA Receptor Subunit Switch in Developing Neurons. Front Mol Neurosci 2018; 11:405. [PMID: 30524232 PMCID: PMC6256285 DOI: 10.3389/fnmol.2018.00405] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/15/2018] [Indexed: 11/18/2022] Open
Abstract
During development, pyramidal neurons undergo dynamic regulation of AMPA receptor (AMPAR) subunit composition and density to help drive synaptic plasticity and maturation. These normal developmental changes in AMPARs are particularly vulnerable to risk factors for Autism Spectrum Disorders (ASDs), which include loss or mutations of synaptic proteins and environmental insults, such as dietary zinc deficiency. Here, we show how Shank2 and Shank3 mediate a zinc-dependent regulation of AMPAR function and subunit switch from GluA2-lacking to GluA2-containing AMPARs. Over development, we found a concomitant increase in Shank2 and Shank3 with GluA2 at synapses, implicating these molecules as potential players in AMPAR maturation. Since Shank activation and function require zinc, we next studied whether neuronal activity regulated postsynaptic zinc at glutamatergic synapses. Zinc was found to increase transiently and reversibly with neuronal depolarization at synapses, which could affect Shank and AMPAR localization and activity. Elevated zinc induced multiple functional changes in AMPAR, indicative of a subunit switch. Specifically, zinc lengthened the decay time of AMPAR-mediated synaptic currents and reduced their inward rectification in young hippocampal neurons. Mechanistically, both Shank2 and Shank3 were necessary for the zinc-sensitive enhancement of AMPAR-mediated synaptic transmission and act in concert to promote removal of GluA1 while enhancing recruitment of GluA2 at pre-existing Shank puncta. These findings highlight a cooperative local dynamic regulation of AMPAR subunit switch controlled by zinc signaling through Shank2 and Shank3 to shape the biophysical properties of developing glutamatergic synapses. Given the zinc sensitivity of young neurons and its dependence on Shank2 and Shank3, genetic mutations and/or environmental insults during early development could impair synaptic maturation and circuit formation that underlie ASD etiology.
Collapse
Affiliation(s)
- Huong T T Ha
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States.,Neurosciences Graduate Program, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sergio Leal-Ortiz
- Department of Material Science & Engineering, School of Engineering, Stanford University, Stanford, CA, United States
| | - Kriti Lalwani
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry & Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry & Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shreesh P Mysore
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Craig C Garner
- German Center for Neurodegenerative Diseases (DZNE), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - John R Huguenard
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sally A Kim
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
91
|
Gonoodi K, Moslem A, Ahmadnezhad M, Darroudi S, Mazloum Z, Tayefi M, Tabatabaeizadeh SA, Eslami S, Shafiee M, Khashayarmanesh Z, Haghighi HM, Ferns GA, Ghayour-Mobarhan M. Relationship of Dietary and Serum Zinc with Depression Score in Iranian Adolescent Girls. Biol Trace Elem Res 2018; 186:91-97. [PMID: 29603100 DOI: 10.1007/s12011-018-1301-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/06/2018] [Indexed: 01/03/2023]
Abstract
Zinc deficiency, which is common among Iranian populations, is believed to play a crucial role in the onset and progression of mood disorders such as depression in different stages of life. We have therefore investigated the relationship between serum/dietary zinc status and depression scores among adolescent girls living in northeastern Iran. Serum zinc was measured by flame atomic absorption (Varian AA240FS) and the mean zinc intake was assessed using 3-day food record. A validated Persian version of the Beck Depression Inventory (BDI) was used to determine the severity of depressive symptoms for all subjects. Data were analyzed using SPSS 18 software. There was a statistically significant correlation between dietary zinc intake and serum zinc concentration (r = 0.117, p = 0.018). Dietary intake of zinc (7.04 ± 4.28 mg/day) was significantly lower among subjects with mild to severe depression symptoms than those with no or minimal depression symptoms (8.06 ± 3.03 mg/day). Dietary zinc intake was inversely correlated with depression score (r = 0.133, p = 0.008). However, there was no significant difference in serum zinc concentrations among individuals with no or minimal and mild to severe depression symptoms (p = 0.5). Dietary zinc intake, but not serum zinc concentration, was inversely associated with depression symptoms. Therefore, controlled clinical trials are needed to determine the efficacy of zinc supplementation in the treatment of depression disorders.
Collapse
Affiliation(s)
- Kayhan Gonoodi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Moslem
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Anesthesiology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahsa Ahmadnezhad
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Nutrition Research Center, Department of Community Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Darroudi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Nutrition Research Center, Department of Community Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Mazloum
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Evidence-Based Care Research Center, Medical Surgical Nursing Department, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Tayefi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Amir Tabatabaeizadeh
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Eslami
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Informatics, University of Amsterdam, Amsterdam, The Netherlands
| | - Mojtaba Shafiee
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khashayarmanesh
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Moalemzadeh Haghighi
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK.
| | - Majid Ghayour-Mobarhan
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
92
|
McAllister BB, Wright DK, Wortman RC, Shultz SR, Dyck RH. Elimination of vesicular zinc alters the behavioural and neuroanatomical effects of social defeat stress in mice. Neurobiol Stress 2018; 9:199-213. [PMID: 30450385 PMCID: PMC6234281 DOI: 10.1016/j.ynstr.2018.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/26/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic stress can have deleterious effects on mental health, increasing the risk of developing depression or anxiety. But not all individuals are equally affected by stress; some are susceptible while others are more resilient. Understanding the mechanisms that lead to these differing outcomes has been a focus of considerable research. One unexplored mechanism is vesicular zinc – zinc that is released by neurons as a neuromodulator. We examined how chronic stress, induced by repeated social defeat, affects mice that lack vesicular zinc due to genetic deletion of zinc transporter 3 (ZnT3). These mice, unlike wild type mice, did not become socially avoidant of a novel conspecific, suggesting resilience to stress. However, they showed enhanced sensitivity to the potentiating effect of stress on cued fear memory. Thus, the contribution of vesicular zinc to stress susceptibility is not straightforward. Stress also increased anxiety-like behaviour but produced no deficits in a spatial Y-maze test. We found no evidence that microglial activation or hippocampal neurogenesis accounted for the differences in behavioural outcome. Volumetric analysis revealed that ZnT3 KO mice have larger corpus callosum and parietal cortex volumes, and that corpus callosum volume was decreased by stress in ZnT3 KO, but not wild type, mice.
Collapse
Key Words
- BLA, Basolateral amygdala
- CC, Corpus callosum
- Chronic stress
- Depression
- EPM, Elevated plus-maze
- Fear memory
- LV, Lateral ventricles
- Magnetic resonance imaging (MRI)
- NAc, Nucleus accumbens
- NSF, Novelty-suppressed feeding
- PBS, Phosphate-buffered saline
- PFA, Paraformaldehyde
- PFC, Prefrontal cortex
- RSD, Repeated social defeat
- SLC30A3
- Synaptic zinc
- ZnT3, Zinc transporter 3
- dHPC, Dorsal hippocampus
- vHPC, Ventral hippocampus
Collapse
Affiliation(s)
- Brendan B McAllister
- Department of Psychology & Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - David K Wright
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Ryan C Wortman
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Richard H Dyck
- Department of Psychology & Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
93
|
Kellermayer B, Ferreira JS, Dupuis J, Levet F, Grillo-Bosch D, Bard L, Linarès-Loyez J, Bouchet D, Choquet D, Rusakov DA, Bon P, Sibarita JB, Cognet L, Sainlos M, Carvalho AL, Groc L. Differential Nanoscale Topography and Functional Role of GluN2-NMDA Receptor Subtypes at Glutamatergic Synapses. Neuron 2018; 100:106-119.e7. [PMID: 30269991 DOI: 10.1016/j.neuron.2018.09.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 04/26/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
NMDA receptors (NMDARs) play key roles in the use-dependent adaptation of glutamatergic synapses underpinning memory formation. In the forebrain, these plastic processes involve the varied contributions of GluN2A- and GluN2B-containing NMDARs that have different signaling properties. Although the molecular machinery of synaptic NMDAR trafficking has been under scrutiny, the postsynaptic spatial organization of these two receptor subtypes has remained elusive. Here, we used super-resolution imaging of NMDARs in rat hippocampal synapses to unveil the nanoscale topography of native GluN2A- and GluN2B-NMDARs. Both subtypes were found to be organized in separate nanodomains that vary over the course of development. Furthermore, GluN2A- and GluN2B-NMDAR nanoscale organizations relied on distinct regulatory mechanisms. Strikingly, the selective rearrangement of GluN2A- and GluN2B-NMDARs, with no overall change in NMDAR current amplitude, allowed bi-directional tuning of synaptic LTP. Thus, GluN2A- and GluN2B-NMDAR nanoscale organizations are differentially regulated and seem to involve distinct signaling complexes during synaptic adaptation.
Collapse
Affiliation(s)
- Blanka Kellermayer
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Joana S Ferreira
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France
| | - Julien Dupuis
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France
| | - Florian Levet
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France; CNRS, Bordeaux Imaging Center UMS 3420, 33000 Bordeaux, France
| | - Dolors Grillo-Bosch
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France
| | - Lucie Bard
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France; UCL Institute of Neurology, University College London, London, UK
| | - Jeanne Linarès-Loyez
- Institut d'Optique & CNRS, LP2N UMR 5298, 33400 Talence, France; Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400 Talence, France
| | - Delphine Bouchet
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France
| | - Daniel Choquet
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France; CNRS, Bordeaux Imaging Center UMS 3420, 33000 Bordeaux, France
| | - Dmitri A Rusakov
- UCL Institute of Neurology, University College London, London, UK
| | - Pierre Bon
- Institut d'Optique & CNRS, LP2N UMR 5298, 33400 Talence, France; Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400 Talence, France
| | - Jean-Baptiste Sibarita
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France
| | - Laurent Cognet
- Institut d'Optique & CNRS, LP2N UMR 5298, 33400 Talence, France; Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400 Talence, France
| | - Matthieu Sainlos
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France
| | - Ana Luisa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Laurent Groc
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France; CNRS, IINS UMR 5297, Bordeaux, France.
| |
Collapse
|
94
|
Higher ambient synaptic glutamate at inhibitory versus excitatory neurons differentially impacts NMDA receptor activity. Nat Commun 2018; 9:4000. [PMID: 30275542 PMCID: PMC6167324 DOI: 10.1038/s41467-018-06512-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/31/2018] [Indexed: 01/28/2023] Open
Abstract
Selective disruption of synaptic drive to inhibitory neurons could contribute to the pathophysiology of various brain disorders. We have previously identified a GluN2A-selective positive allosteric modulator, GNE-8324, that selectively enhances N-methyl-d-aspartate receptor (NMDAR)-mediated synaptic responses in inhibitory but not excitatory neurons. Here, we demonstrate that differences in NMDAR subunit composition do not underlie this selective potentiation. Rather, a higher ambient glutamate level in the synaptic cleft of excitatory synapses on inhibitory neurons is a key factor. We show that increasing expression of glutamate transporter 1 (GLT-1) eliminates GNE-8324 potentiation in inhibitory neurons, while decreasing GLT-1 activity enables potentiation in excitatory neurons. Our results reveal an unsuspected difference between excitatory synapses onto different neuronal types, and a more prominent activation of synaptic NMDARs by ambient glutamate in inhibitory than excitatory neurons. This difference has implications for tonic NMDAR activity/signaling and the selective modulation of inhibitory neuron activity to treat brain disorders. Inhibitory interneurons play important roles in brain circuits and in several neuropsychiatric disorders. Here, the authors show that excitatory synapses onto interneurons vs. excitatory neurons differ in their ambient synaptic glutamate level, a finding with important implications for selective pharmacological targeting of inhibitory neuron NMDA receptors.
Collapse
|
95
|
Coverdale JPC, Khazaipoul S, Arya S, Stewart AJ, Blindauer CA. Crosstalk between zinc and free fatty acids in plasma. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:532-542. [PMID: 30266430 PMCID: PMC6372834 DOI: 10.1016/j.bbalip.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/23/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
In mammalian blood plasma, serum albumin acts as a transport protein for free fatty acids, other lipids and hydrophobic molecules including neurodegenerative peptides, and essential metal ions such as zinc to allow their systemic distribution. Importantly, binding of these chemically extremely diverse entities is not independent, but linked allosterically. One particularly intriguing allosteric link exists between free fatty acid and zinc binding. Albumin thus mediates crosstalk between energy status/metabolism and organismal zinc handling. In recognition of the fact that even small changes in extracellular zinc concentration and speciation modulate the function of many cell types, the albumin-mediated impact of free fatty acid concentration on zinc distribution may be significant for both normal physiological processes including energy metabolism, insulin activity, heparin neutralisation, blood coagulation, and zinc signalling, and a range of disease states, including metabolic syndrome, cardiovascular disease, myocardial ischemia, diabetes, and thrombosis. Serum albumin binds and transports both free fatty acids and Zn2+ ions Elevated plasma free fatty acids impair Zn2+ binding by albumin through an allosteric mechanism The resulting changes in plasma zinc speciation are thought to impact blood coagulation and may promote thrombosis Increased free Zn2+ may lead to enhanced zinc export from plasma and dysregulation of zinc homeostasis in multiple tissues
Collapse
Affiliation(s)
| | | | - Swati Arya
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Alan J Stewart
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | | |
Collapse
|
96
|
Wolf C, Weth A, Walcher S, Lax C, Baumgartner W. Modeling of Zinc Dynamics in the Synaptic Cleft: Implications for Cadherin Mediated Adhesion and Synaptic Plasticity. Front Mol Neurosci 2018; 11:306. [PMID: 30233309 PMCID: PMC6131644 DOI: 10.3389/fnmol.2018.00306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
While the numerous influences of synaptically released zinc on synaptic efficiency during long-term potentiation have been discussed by many authors already, we focused on the possible effect of zinc on cadherins and therefore its contribution to morphological changes in the context of synaptic plasticity. The difficulty with gaining insights into the dynamics of zinc-cadherin interaction is the inability to directly observe it on a suitable timescale. Therefore our approach was to establish an analytical model of the zinc diffusion dynamics in the synaptic cleft and experimentally validate, if the theoretical concentrations at the periphery of the synaptic cleft are sufficient to significantly modulate cadherin-mediated adhesion. Our results emphasize, that synaptically released zinc might have a strong accelerating effect on the morphological changes involved in long-term synaptic plasticity. The approach presented here might also prove useful for investigations on other synaptically released trace metals.
Collapse
Affiliation(s)
- Christoph Wolf
- Institute of Medical Biomechatronics, Johannes Kepler University Linz, Linz, Austria
| | - Agnes Weth
- Institute of Medical Biomechatronics, Johannes Kepler University Linz, Linz, Austria
| | | | - Christian Lax
- Lehrstuhl A für Mathematik, RWTH-Aachen University, Aachen, Germany
| | - Werner Baumgartner
- Institute of Medical Biomechatronics, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
97
|
Abstract
Evidence from both preclinical and clinical studies suggest the importance of zinc homeostasis in seizures/epilepsy. Undoubtedly, zinc, via modulation of a variety of targets, is necessary for maintaining the balance between neuronal excitation and inhibition, while an imbalance between excitation and inhibition underlies seizures. However, the relationship between zinc signaling and seizures/epilepsy is complex as both extracellular and intracellular zinc may produce either protective or detrimental effects. This review provides an overview of preclinical/behavioral, functional and molecular studies, as well as clinical data on the involvement of zinc in the pathophysiology and treatment of seizures/epilepsy. Furthermore, the potential of targeting elements associated with zinc signaling or homeostasis and zinc levels as a therapeutic strategy for epilepsy is discussed.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Katarzyna Młyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland; Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
98
|
How cellular Zn 2+ signaling drives physiological functions. Cell Calcium 2018; 75:53-63. [PMID: 30145429 DOI: 10.1016/j.ceca.2018.08.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/10/2023]
Abstract
Zinc is an essential micronutrient affecting many aspects of human health. Cellular Zn2+ homeostasis is critical for cell function and survival. Zn2+, acting as a first or second messenger, triggers signaling pathways that mediate the physiological roles of Zn2+. Transient changes in Zn2+ concentrations within the cell or in the extracellular region occur following its release from Zn2+ binding metallothioneins, its transport across membranes by the ZnT or ZIP transporters, or release of vesicular Zn2+. These transients activate a distinct Zn2+ sensing receptor, ZnR/GPR39, or modulate numerous proteins and signaling pathways. Importantly, Zn2+ signaling regulates cellular physiological functions such as: proliferation, differentiation, ion transport and secretion. Indeed, novel therapeutic approaches aimed to maintain Zn2+ homeostasis and signaling are evolving. This review focuses on recent findings describing roles of Zn2+ and its transporters in regulating physiological or pathological processes.
Collapse
|
99
|
Frazzini V, Granzotto A, Bomba M, Massetti N, Castelli V, d'Aurora M, Punzi M, Iorio M, Mosca A, Delli Pizzi S, Gatta V, Cimini A, Sensi SL. The pharmacological perturbation of brain zinc impairs BDNF-related signaling and the cognitive performances of young mice. Sci Rep 2018; 8:9768. [PMID: 29950603 PMCID: PMC6021411 DOI: 10.1038/s41598-018-28083-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/15/2018] [Indexed: 01/13/2023] Open
Abstract
Zinc (Zn2+) is a pleiotropic modulator of the neuronal and brain activity. The disruption of intraneuronal Zn2+ levels triggers neurotoxic processes and affects neuronal functioning. In this study, we investigated how the pharmacological modulation of brain Zn2+ affects synaptic plasticity and cognition in wild-type mice. To manipulate brain Zn2+ levels, we employed the Zn2+ (and copper) chelator 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol, CQ). CQ was administered for two weeks to 2.5-month-old (m.o.) mice, and effects studied on BDNF-related signaling, metalloproteinase activity as well as learning and memory performances. CQ treatment was found to negatively affect short- and long-term memory performances. The CQ-driven perturbation of brain Zn2+ was found to reduce levels of BDNF, synaptic plasticity-related proteins and dendritic spine density in vivo. Our study highlights the importance of choosing "when", "where", and "how much" in the modulation of brain Zn2+ levels. Our findings confirm the importance of targeting Zn2+ as a therapeutic approach against neurodegenerative conditions but, at the same time, underscore the potential drawbacks of reducing brain Zn2+ availability upon the early stages of development.
Collapse
Affiliation(s)
- Valerio Frazzini
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, Chieti, Italy
- Institut du Cerveau et de la Moelle épinière, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
- AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit and Neurophysiology Department, Paris, France
| | - Alberto Granzotto
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti-Pescara, Italy
| | - Manuela Bomba
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti-Pescara, Italy
| | - Noemi Massetti
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, Chieti, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marco d'Aurora
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, Chieti, Italy
- Department of Psychological Sciences, School of Medicine and Health Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti-Pescara, Italy
| | - Miriam Punzi
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti-Pescara, Italy
| | - Mariangela Iorio
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, Chieti, Italy
| | - Alessandra Mosca
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, Chieti, Italy
| | - Stefano Delli Pizzi
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti-Pescara, Italy
| | - Valentina Gatta
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, Chieti, Italy
- Department of Psychological Sciences, School of Medicine and Health Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti-Pescara, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, USA
- National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Stefano L Sensi
- Center of Excellence on Aging and Translational Medicine - CeSI-MeT, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti-Pescara, Italy.
- Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders, University of California - Irvine, Irvine, USA.
| |
Collapse
|
100
|
Santhakumar H, Nair RV, Philips DS, Shenoy SJ, Thekkuveettil A, Ajayaghosh A, Jayasree RS. Real Time Imaging and Dynamics of Hippocampal Zn 2+ under Epileptic Condition Using a Ratiometric Fluorescent Probe. Sci Rep 2018; 8:9069. [PMID: 29899532 PMCID: PMC5998144 DOI: 10.1038/s41598-018-27029-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/23/2018] [Indexed: 01/07/2023] Open
Abstract
Zinc, the essential trace element in human body exists either in the bound or free state, for both structural and functional roles. Insights on Zn2+ distribution and its dynamics are essential in view of the fact that Zn2+ dyshomeostasis is a risk factor for epileptic seizures, Alzheimer's disease, depression, etc. Herein, a bipyridine bridged bispyrrole (BP) probe is used for ratiometric imaging and quantification of Zn2+ in hippocampal slices. The green fluorescence emission of BP shifts towards red in the presence of Zn2+. The probe is used to detect and quantify the exogenous and endogenous Zn2+ in glioma cells and hippocampal slices. The dynamics of chelatable zinc ions during epileptic condition is studied in the hippocampal neurons, in vitro wherein the translocation of Zn2+ from presynaptic to postsynaptic neuronal bodies is imaged and ratiometrically quantified. Raman mapping technique is used to confirm the dynamics of Zn2+ under epileptic condition. Finally, the Zn2+ distribution was imaged in vivo in epileptic rats and the total Zn2+ in rat brain was quantified. The results favour the use of BP as an excellent Zn2+ imaging probe in biological system to understand the zinc associated diseases and their management.
Collapse
Affiliation(s)
- Hema Santhakumar
- Division of Biophotonics and Imaging, Bio Medical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum, 695012, Kerala, India
| | - Resmi V Nair
- Division of Biophotonics and Imaging, Bio Medical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum, 695012, Kerala, India
| | - Divya Susan Philips
- Photosciences and Photonics Group, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, Kerala, India
| | - Sachin J Shenoy
- Division of In Vivo Models and Testing, SCTIMST, Trivandrum, 695012, Kerala, India
| | | | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Group, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, Kerala, India.
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Bio Medical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum, 695012, Kerala, India.
| |
Collapse
|