51
|
Chew YL, Tanizawa Y, Cho Y, Zhao B, Yu AJ, Ardiel EL, Rabinowitch I, Bai J, Rankin CH, Lu H, Beets I, Schafer WR. An Afferent Neuropeptide System Transmits Mechanosensory Signals Triggering Sensitization and Arousal in C. elegans. Neuron 2018; 99:1233-1246.e6. [PMID: 30146306 PMCID: PMC6162336 DOI: 10.1016/j.neuron.2018.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/22/2018] [Accepted: 08/02/2018] [Indexed: 11/05/2022]
Abstract
Sensitization is a simple form of behavioral plasticity by which an initial stimulus, often signaling danger, leads to increased responsiveness to subsequent stimuli. Cross-modal sensitization is an important feature of arousal in many organisms, yet its molecular and neural mechanisms are incompletely understood. Here we show that in C. elegans, aversive mechanical stimuli lead to both enhanced locomotor activity and sensitization of aversive chemosensory pathways. Both locomotor arousal and cross-modal sensitization depend on the release of FLP-20 neuropeptides from primary mechanosensory neurons and on their receptor FRPR-3. Surprisingly, the critical site of action of FRPR-3 for both sensory and locomotor arousal is RID, a single neuroendocrine cell specialized for the release of neuropeptides that responds to mechanical stimuli in a FLP-20-dependent manner. Thus, FLP-20 peptides function as an afferent arousal signal that conveys mechanosensory information to central neurons that modulate arousal and other behavioral states.
Collapse
Affiliation(s)
- Yee Lian Chew
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Yoshinori Tanizawa
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Yongmin Cho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Buyun Zhao
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK
| | - Alex J Yu
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada
| | - Evan L Ardiel
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada
| | - Ithai Rabinowitch
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Catharine H Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T, Canada; Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | - Isabel Beets
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK; Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3000, Leuven, Belgium
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.
| |
Collapse
|
52
|
Delomas TA, Dabrowski K. Larval rearing of zebrafish at suboptimal temperatures. J Therm Biol 2018; 74:170-173. [DOI: 10.1016/j.jtherbio.2018.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/02/2018] [Accepted: 03/18/2018] [Indexed: 10/17/2022]
|
53
|
Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum. Dev Biol 2018; 438:44-56. [PMID: 29548943 DOI: 10.1016/j.ydbio.2018.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/16/2018] [Accepted: 03/03/2018] [Indexed: 11/21/2022]
Abstract
A single Atoh1 basic-helix-loop-helix transcription factor specifies multiple neuron types in the mammalian cerebellum and anterior hindbrain. The zebrafish genome encodes three paralagous atoh1 genes whose functions in cerebellum and anterior hindbrain development we explore here. With use of a transgenic reporter, we report that zebrafish atoh1c-expressing cells are organized in two distinct domains that are separated both by space and developmental time. An early isthmic expression domain gives rise to an extracerebellar population in rhombomere 1 and an upper rhombic lip domain gives rise to granule cell progenitors that migrate to populate all four granule cell territories of the fish cerebellum. Using genetic mutants we find that of the three zebrafish atoh1 paralogs, atoh1c and atoh1a are required for the full complement of granule neurons. Surprisingly, the two genes are expressed in non-overlapping granule cell progenitor populations, indicating that fish use duplicate atoh1 genes to generate granule cell diversity that is not detected in mammals. Finally, live imaging of granule cell migration in wildtype and atoh1c mutant embryos reveals that while atoh1c is not required for granule cell specification per se, it is required for granule cells to delaminate and migrate away from the rhombic lip.
Collapse
|
54
|
Wan Y, Zhang J, Fang C, Chen J, Li J, Li J, Wu C, Wang Y. Characterization of neuromedin U (NMU), neuromedin S (NMS) and their receptors (NMUR1, NMUR2) in chickens. Peptides 2018; 101:69-81. [PMID: 29288685 DOI: 10.1016/j.peptides.2017.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022]
Abstract
Neuromedin U (NMU) and its structurally-related peptide, neuromedin S (NMS), are reported to regulate many physiological processes and their actions are mediated by two NMU receptors (NMUR1, NMUR2) in mammals. However, the information regarding NMU, NMS, and their receptors is limited in birds. In this study, we examined the structure, functionality, and expression of NMS, NMU, NMUR1 and NMUR2 in chickens. The results showed that: 1) chicken (c-) NMU cDNA encodes a 181-amino acid precursor, which may generate two forms of NMU peptide with 9 (cNMU-9) and 25 amino acids (cNMU-25), respectively. 2) Interestingly, two cNMS transcripts encoding two cNMS precursors of different lengths were identified from chicken pituitary, and both cNMS precursors may produce a mature cNMS peptide of 9 amino acids (cNMS-9). 3) cNMU-9, cNMU-25 and cNMS-9 could activate cNMUR1 expressed in HEK293 cells potently, as monitored by three cell-based luciferase reporter systems, indicating that cNMUR1 can act as a receptor common for cNMU and cNMS peptides, whereas cNMUR2 could be potently activated by cNMS-9, but not by cNMU-9/cNMU-25. 4) cNMU and cNMUR1 are widely expressed in chicken tissues with abundant expression noted in the gastrointestinal tract, as detected by quantitative real-time PCR, whereas cNMUR2 expression is mainly restricted to the brain and anterior pituitary, and cNMS is widely expressed in chicken tissues. Collectively, our data helps to elucidate the physiological roles of NMU/NMS peptides in birds and reveal the functional conservation and changes of NMU/NMS-NMUR axis across vertebrates.
Collapse
Affiliation(s)
- Yiping Wan
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Chao Fang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Junan Chen
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Jing Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| | - Chenlei Wu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
55
|
Jaggard JB, Stahl BA, Lloyd E, Prober DA, Duboue ER, Keene AC. Hypocretin underlies the evolution of sleep loss in the Mexican cavefish. eLife 2018; 7:32637. [PMID: 29405117 PMCID: PMC5800846 DOI: 10.7554/elife.32637] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/25/2017] [Indexed: 01/09/2023] Open
Abstract
The duration of sleep varies dramatically between species, yet little is known about the genetic basis or evolutionary factors driving this variation in behavior. The Mexican cavefish, Astyanax mexicanus, exists as surface populations that inhabit rivers, and multiple cave populations with convergent evolution on sleep loss. The number of Hypocretin/Orexin (HCRT)-positive hypothalamic neurons is increased significantly in cavefish, and HCRT is upregulated at both the transcript and protein levels. Pharmacological or genetic inhibition of HCRT signaling increases sleep in cavefish, suggesting enhanced HCRT signaling underlies the evolution of sleep loss. Ablation of the lateral line or starvation, manipulations that selectively promote sleep in cavefish, inhibit hcrt expression in cavefish while having little effect on surface fish. These findings provide the first evidence of genetic and neuronal changes that contribute to the evolution of sleep loss, and support a conserved role for HCRT in sleep regulation.
Collapse
Affiliation(s)
- James B Jaggard
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| | - Bethany A Stahl
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| | - Evan Lloyd
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Erik R Duboue
- Department of Embryology, Carnegie Institution for Science, Baltimore, United States.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, United States
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| |
Collapse
|
56
|
Abstract
Despite decades of intense study, the functions of sleep are still shrouded in mystery. The difficulty in understanding these functions can be at least partly attributed to the varied manifestations of sleep in different animals. Daily sleep duration can range from 4-20 hrs among mammals, and sleep can manifest throughout the brain, or it can alternate over time between cerebral hemispheres, depending on the species. Ecological factors are likely to have shaped these and other sleep behaviors during evolution by altering the properties of conserved arousal circuits in the brain. Nonetheless, core functions of sleep are likely to have arisen early and to have persisted to the present day in diverse organisms. This review will discuss the evolutionary forces that may be responsible for phylogenetic differences in sleep and the potential core functions that sleep fulfills.
Collapse
Affiliation(s)
- William J Joiner
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093-0636, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093-0636, USA; Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093-0636, USA; Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093-0636, USA.
| |
Collapse
|
57
|
Neuropeptide Y Regulates Sleep by Modulating Noradrenergic Signaling. Curr Biol 2017; 27:3796-3811.e5. [PMID: 29225025 DOI: 10.1016/j.cub.2017.11.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/11/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
Sleep is an essential and evolutionarily conserved behavioral state whose regulation remains poorly understood. To identify genes that regulate vertebrate sleep, we recently performed a genetic screen in zebrafish, and here we report the identification of neuropeptide Y (NPY) as both necessary for normal daytime sleep duration and sufficient to promote sleep. We show that overexpression of NPY increases sleep, whereas mutation of npy or ablation of npy-expressing neurons decreases sleep. By analyzing sleep architecture, we show that NPY regulates sleep primarily by modulating the length of wake bouts. To determine how NPY regulates sleep, we tested for interactions with several systems known to regulate sleep, and provide anatomical, molecular, genetic, and pharmacological evidence that NPY promotes sleep by inhibiting noradrenergic signaling. These data establish NPY as an important vertebrate sleep/wake regulator and link NPY signaling to an established arousal-promoting system.
Collapse
|
58
|
Lee DA, Andreev A, Truong TV, Chen A, Hill AJ, Oikonomou G, Pham U, Hong YK, Tran S, Glass L, Sapin V, Engle J, Fraser SE, Prober DA. Genetic and neuronal regulation of sleep by neuropeptide VF. eLife 2017; 6:25727. [PMID: 29106375 PMCID: PMC5705210 DOI: 10.7554/elife.25727] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 11/03/2017] [Indexed: 12/25/2022] Open
Abstract
Sleep is an essential and phylogenetically conserved behavioral state, but it remains unclear to what extent genes identified in invertebrates also regulate vertebrate sleep. RFamide-related neuropeptides have been shown to promote invertebrate sleep, and here we report that the vertebrate hypothalamic RFamide neuropeptide VF (NPVF) regulates sleep in the zebrafish, a diurnal vertebrate. We found that NPVF signaling and npvf-expressing neurons are both necessary and sufficient to promote sleep, that mature peptides derived from the NPVF preproprotein promote sleep in a synergistic manner, and that stimulation of npvf-expressing neurons induces neuronal activity levels consistent with normal sleep. These results identify NPVF signaling and npvf-expressing neurons as a novel vertebrate sleep-promoting system and suggest that RFamide neuropeptides participate in an ancient and central aspect of sleep control.
Collapse
Affiliation(s)
- Daniel A Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Andrey Andreev
- Department of Bioengineering, University of Southern California, Los Angeles, United States
| | - Thai V Truong
- Translational Imaging Center, University of Southern California, Los Angeles, United States
| | - Audrey Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Andrew J Hill
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Grigorios Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Uyen Pham
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Young K Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Steven Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Laura Glass
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Viveca Sapin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Jae Engle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Scott E Fraser
- Department of Bioengineering, University of Southern California, Los Angeles, United States.,Translational Imaging Center, University of Southern California, Los Angeles, United States
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
59
|
King AN, Barber AF, Smith AE, Dreyer AP, Sitaraman D, Nitabach MN, Cavanaugh DJ, Sehgal A. A Peptidergic Circuit Links the Circadian Clock to Locomotor Activity. Curr Biol 2017; 27:1915-1927.e5. [PMID: 28669757 PMCID: PMC5698909 DOI: 10.1016/j.cub.2017.05.089] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/19/2017] [Accepted: 05/30/2017] [Indexed: 01/29/2023]
Abstract
The mechanisms by which clock neurons in the Drosophila brain confer an ∼24-hr rhythm onto locomotor activity are unclear, but involve the neuropeptide diuretic hormone 44 (DH44), an ortholog of corticotropin-releasing factor. Here we identified DH44 receptor 1 as the relevant receptor for rest:activity rhythms and mapped its site of action to hugin-expressing neurons in the subesophageal zone (SEZ). We traced a circuit that extends from Dh44-expressing neurons in the pars intercerebralis (PI) through hugin+ SEZ neurons to the ventral nerve cord. Hugin neuropeptide, a neuromedin U ortholog, also regulates behavioral rhythms. The DH44 PI-Hugin SEZ circuit controls circadian locomotor activity in a daily cycle but has minimal effect on feeding rhythms, suggesting that the circadian drive to feed can be separated from circadian locomotion. These findings define a linear peptidergic circuit that links the clock to motor outputs to modulate circadian control of locomotor activity.
Collapse
Affiliation(s)
- Anna N King
- Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Annika F Barber
- Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amelia E Smith
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Austin P Dreyer
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Divya Sitaraman
- Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA; Department of Genetics, Yale University, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale University, New Haven, CT 06520, USA
| | - Daniel J Cavanaugh
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Amita Sehgal
- Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
60
|
Levitas-Djerbi T, Appelbaum L. Modeling sleep and neuropsychiatric disorders in zebrafish. Curr Opin Neurobiol 2017; 44:89-93. [PMID: 28414966 DOI: 10.1016/j.conb.2017.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/28/2017] [Indexed: 01/03/2023]
Abstract
What are the molecular and cellular mechanisms that link neurological disorders and sleep disturbances? The transparent zebrafish model could bridge this gap in knowledge due to its unique genetic and imaging toolbox, and amenability to high-throughput screening. Sleep is well-characterized in zebrafish and key regulators of the sleep/wake cycle are conserved, including melatonin and hypocretin/orexin (Hcrt), whereas novel sleep regulating proteins are continually being identified, such as Kcnh4a, Neuromedin U, and QRFP. Sleep deficiencies have been observed in various zebrafish models for genetic neuropsychiatric disorders, ranging from psychomotor retardation and autism to anxiety disorders. Understanding the link between neuropsychiatric disorders and sleep phenotypes in zebrafish may ultimately provide a platform for identifying therapeutic targets for clinical trials in humans.
Collapse
Affiliation(s)
- Talia Levitas-Djerbi
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
61
|
Barlow IL, Rihel J. Zebrafish sleep: from geneZZZ to neuronZZZ. Curr Opin Neurobiol 2017; 44:65-71. [PMID: 28391130 DOI: 10.1016/j.conb.2017.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/24/2022]
Abstract
All animals have a fundamental and unavoidable requirement for rest, yet we still do not fully understand the processes that initiate, maintain, and regulate sleep. The larval zebrafish is an optically translucent, genetically tractable model organism that exhibits sleep states regulated by conserved sleep circuits, thereby offering a unique system for investigating the genetic and neural control of sleep. Recent studies using high throughput monitoring of larval sleep/wake behaviour have unearthed novel modulators involved in regulating arousal and have provided new mechanistic insights into the role of established sleep/wake modulators. In addition, the application of computational tools to large behavioural datasets has allowed for the identification of neuroactive compounds that alleviate sleep symptoms associated with genetic neurological disorders.
Collapse
Affiliation(s)
- Ida L Barlow
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| |
Collapse
|
62
|
Oikonomou G, Prober DA. Attacking sleep from a new angle: contributions from zebrafish. Curr Opin Neurobiol 2017; 44:80-88. [PMID: 28391131 DOI: 10.1016/j.conb.2017.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 11/28/2022]
Abstract
Sleep consumes a third of our lifespan, but we are far from understanding how it is initiated, maintained and terminated, or what purposes it serves. To address these questions, alternative model systems have recently been recruited. The diurnal zebrafish holds the promise of bridging the gap between simple invertebrate systems, which show little neuroanatomical conservation with mammals, and well-established, but complex and nocturnal, murine systems. Zebrafish larvae can be monitored in a high-throughput fashion, pharmacologically tested by adding compounds into the water, genetically screened using transient transgenesis, and optogenetically manipulated in a non-invasive manner. Here we discuss work that has established the zebrafish as a powerful system for the study of sleep, as well as novel insights gained by exploiting its particular advantages.
Collapse
Affiliation(s)
- Grigorios Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
63
|
Srdanović S, Þorsteinsson H, Friðriksson Þ, Pétursson SÓ, Maier VH, Karlsson KÆ. Transient knock-down of kcna2 reduces sleep in larval zebrafish. Behav Brain Res 2017; 326:13-21. [PMID: 28223099 DOI: 10.1016/j.bbr.2017.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 11/19/2022]
Abstract
In the current study we set out to determine the effects of morpholino oligonucleotide (MO) knock-down of kcna2 on sleep-wake cycles in zebrafish. The results were compared to a non-overlapping MO injection, Dec2, who's mutant is also linked with a short sleep phenotype. Four groups of fish were used in the experiment: naïve fish, and fish injected with either control, kcna2, or Dec2 MO. All groups underwent 24-h behavioral monitoring of sleep-wake cycles at four and seven days-post-fertilization (dpf). First, we established an immobility dependent, sleep related, increase in arousal thresholds at both 4 and 7 dpf. Secondly, we show that kcna2 MO injected fish exhibit significantly less sleep behavior than controls and naïve fish, whereas Dec2 MO injections had similar but less severe effects. Finally, using kcna2 MO injected fish only, we turn to local field recordings at the level of the telencephalon and tectum opticum and rule out that the knock-down resulted in a non-specific increase in neural excitability that would mask sleep behavior.
Collapse
Affiliation(s)
| | | | - Þ Friðriksson
- Biomedical Center, University of Iceland, Læknagarður, 101, Reykjavik, Iceland
| | - S Ó Pétursson
- Biomedical Center, University of Iceland, Læknagarður, 101, Reykjavik, Iceland
| | - V H Maier
- Biomedical Center, University of Iceland, Læknagarður, 101, Reykjavik, Iceland
| | - K Æ Karlsson
- Department of Biomedical Engineering, School of Science and Engineering, Reykjavik University, Reykjavik, Iceland.
| |
Collapse
|
64
|
Bedont JL, LeGates TA, Buhr E, Bathini A, Ling JP, Bell B, Wu MN, Wong PC, Van Gelder RN, Mongrain V, Hattar S, Blackshaw S. An LHX1-Regulated Transcriptional Network Controls Sleep/Wake Coupling and Thermal Resistance of the Central Circadian Clockworks. Curr Biol 2016; 27:128-136. [PMID: 28017605 DOI: 10.1016/j.cub.2016.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/03/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the central circadian clock in mammals. It is entrained by light but resistant to temperature shifts that entrain peripheral clocks [1-5]. The SCN expresses many functionally important neuropeptides, including vasoactive intestinal peptide (VIP), which drives light entrainment, synchrony, and amplitude of SCN cellular clocks and organizes circadian behavior [5-16]. The transcription factor LHX1 drives SCN Vip expression, and cellular desynchrony in Lhx1-deficient SCN largely results from Vip loss [17, 18]. LHX1 regulates many genes other than Vip, yet activity rhythms in Lhx1-deficient mice are similar to Vip-/- mice under light-dark cycles and only somewhat worse in constant conditions. We suspected that LHX1 targets other than Vip have circadian functions overlooked in previous studies. In this study, we compared circadian sleep and temperature rhythms of Lhx1- and Vip-deficient mice and found loss of acute light control of sleep in Lhx1 but not Vip mutants. We also found loss of circadian resistance to fever in Lhx1 but not Vip mice, which was partially recapitulated by heat application to cultured Lhx1-deficient SCN. Having identified VIP-independent functions of LHX1, we mapped the VIP-independent transcriptional network downstream of LHX1 and a largely separable VIP-dependent transcriptional network. The VIP-independent network does not affect core clock amplitude and synchrony, unlike the VIP-dependent network. These studies identify Lhx1 as the first gene required for temperature resistance of the SCN clockworks and demonstrate that acute light control of sleep is routed through the SCN and its immediate output regions.
Collapse
Affiliation(s)
- Joseph L Bedont
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tara A LeGates
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ethan Buhr
- Department of Ophthalmology, University of Washington, Seattle, WA 98104, USA
| | - Abhijith Bathini
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan P Ling
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Benjamin Bell
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mark N Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Philip C Wong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Valerie Mongrain
- Department of Neuroscience, Université de Montreal, Montreal, QC H3C 3J7, Canada
| | - Samer Hattar
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
65
|
Jarrin DC, Morin CM, Rochefort A, Ivers H, Dauvilliers YA, Savard J, LeBlanc M, Merette C. Familial Aggregation of Insomnia. Sleep 2016; 40:2666710. [DOI: 10.1093/sleep/zsw053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
66
|
Schlegel P, Texada MJ, Miroschnikow A, Schoofs A, Hückesfeld S, Peters M, Schneider-Mizell CM, Lacin H, Li F, Fetter RD, Truman JW, Cardona A, Pankratz MJ. Synaptic transmission parallels neuromodulation in a central food-intake circuit. eLife 2016; 5:16799. [PMID: 27845623 PMCID: PMC5182061 DOI: 10.7554/elife.16799] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
NeuromedinU is a potent regulator of food intake and activity in mammals. In Drosophila, neurons producing the homologous neuropeptide hugin regulate feeding and locomotion in a similar manner. Here, we use EM-based reconstruction to generate the entire connectome of hugin-producing neurons in the Drosophila larval CNS. We demonstrate that hugin neurons use synaptic transmission in addition to peptidergic neuromodulation and identify acetylcholine as a key transmitter. Hugin neuropeptide and acetylcholine are both necessary for the regulatory effect on feeding. We further show that subtypes of hugin neurons connect chemosensory to endocrine system by combinations of synaptic and peptide-receptor connections. Targets include endocrine neurons producing DH44, a CRH-like peptide, and insulin-like peptides. Homologs of these peptides are likewise downstream of neuromedinU, revealing striking parallels in flies and mammals. We propose that hugin neurons are part of an ancient physiological control system that has been conserved at functional and molecular level. DOI:http://dx.doi.org/10.7554/eLife.16799.001
Collapse
Affiliation(s)
- Philipp Schlegel
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | - Michael J Texada
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Anton Miroschnikow
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | - Andreas Schoofs
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | - Sebastian Hückesfeld
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | - Marc Peters
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| | | | - Haluk Lacin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Michael J Pankratz
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
67
|
Iannacone M, Raizen D. Sleep: How Many Switches Does It Take To Turn Off the Lights? Curr Biol 2016; 26:R847-R849. [DOI: 10.1016/j.cub.2016.07.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|