51
|
Ochandarena NE, Niehaus JK, Tassou A, Scherrer G. Cell-type specific molecular architecture for mu opioid receptor function in pain and addiction circuits. Neuropharmacology 2023; 238:109597. [PMID: 37271281 PMCID: PMC10494323 DOI: 10.1016/j.neuropharm.2023.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/13/2023] [Indexed: 06/06/2023]
Abstract
Opioids are potent analgesics broadly used for pain management; however, they can produce dangerous side effects including addiction and respiratory depression. These harmful effects have led to an epidemic of opioid abuse and overdose deaths, creating an urgent need for the development of both safer pain medications and treatments for opioid use disorders. Both the analgesic and addictive properties of opioids are mediated by the mu opioid receptor (MOR), making resolution of the cell types and neural circuits responsible for each of the effects of opioids a critical research goal. Single-cell RNA sequencing (scRNA-seq) technology is enabling the identification of MOR-expressing cell types throughout the nervous system, creating new opportunities for mapping distinct opioid effects onto newly discovered cell types. Here, we describe molecularly defined MOR-expressing neuronal cell types throughout the peripheral and central nervous systems and their potential contributions to opioid analgesia and addiction.
Collapse
Affiliation(s)
- Nicole E Ochandarena
- Neuroscience Curriculum, Biological and Biomedical Sciences Program, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jesse K Niehaus
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; New York Stem Cell Foundation - Robertson Investigator, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
52
|
Li Y, Du W, Liu R, Zan G, Ye B, Li Q, Sheng Z, Yuan Y, Song Y, Liu J, Liu Z. Paraventricular nucleus-central amygdala oxytocinergic projection modulates pain-related anxiety-like behaviors in mice. CNS Neurosci Ther 2023; 29:3493-3506. [PMID: 37248645 PMCID: PMC10580334 DOI: 10.1111/cns.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
AIMS Anxiety disorders associated with pain are a common health problem. However, the underlying mechanisms remain poorly understood. We aimed to investigate the role of paraventricular nucleus (PVN)-central nucleus of the amygdala (CeA) oxytocinergic projections in anxiety-like behaviors induced by inflammatory pain. METHODS After inflammatory pain induction by complete Freund's adjuvant (CFA), mice underwent elevated plus maze, light-dark transition test, and marble burying test to examine the anxiety-like behaviors. Chemogenetic, optogenetic, and fiber photometry recordings were used to modulate and record the activity of the oxytocinergic projections of the PVN-CeA. RESULTS The key results are as follows: inflammatory pain-induced anxiety-like behaviors in mice accompanied by decreased activity of PVN oxytocin neurons. Chemogenetic activation of PVN oxytocin neurons prevented pain-related anxiety-like behaviors, whereas inhibition of PVN oxytocin neurons induced anxiety-like behaviors in naïve mice. PVN oxytocin neurons projected directly to the CeA, and microinjection of oxytocin into the CeA blocked anxiety-like behaviors. Inflammatory pain also decreased the activity of CeA neurons, and optogenetic activation of PVNoxytocin -CeA circuit prevented anxiety-like behavior in response to inflammatory pain. CONCLUSION The results of our study suggest that oxytocin has anti-anxiety effects and provide novel insights into the role of PVNoxytocin -CeA projections in the regulation of anxiety-like behaviors induced by inflammatory pain.
Collapse
Affiliation(s)
- Yu‐Jie Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Wei‐Jia Du
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Rui Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Gui‐Ying Zan
- Key Laboratory of Receptor Research, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Bing‐Lu Ye
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qian Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhi‐Hao Sheng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ya‐Wei Yuan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yu‐Jie Song
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jing‐Gen Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Zhi‐Qiang Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal‐Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
53
|
Liu AR, Lin ZJ, Wei M, Tang Y, Zhang H, Peng XG, Li Y, Zheng YF, Tan Z, Zhou LJ, Feng X. The potent analgesia of intrathecal 2R, 6R-HNK via TRPA1 inhibition in LF-PENS-induced chronic primary pain model. J Headache Pain 2023; 24:141. [PMID: 37858040 PMCID: PMC10585932 DOI: 10.1186/s10194-023-01667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Chronic primary pain (CPP) is an intractable pain of unknown cause with significant emotional distress and/or dysfunction that is a leading factor of disability globally. The lack of a suitable animal model that mimic CPP in humans has frustrated efforts to curb disease progression. 2R, 6R-hydroxynorketamine (2R, 6R-HNK) is the major antidepressant metabolite of ketamine and also exerts antinociceptive action. However, the analgesic mechanism and whether it is effective for CPP are still unknown. METHODS Based on nociplastic pain is evoked by long-term potentiation (LTP)-inducible high- or low-frequency electrical stimulation (HFS/LFS), we wanted to develop a novel CPP mouse model with mood and cognitive comorbidities by noninvasive low-frequency percutaneous electrical nerve stimulation (LF-PENS). Single/repeated 2R, 6R-HNK or other drug was intraperitoneally (i.p.) or intrathecally (i.t.) injected into naïve or CPP mice to investigate their analgesic effect in CPP model. A variety of behavioral tests were used to detect the changes in pain, mood and memory. Immunofluorescent staining, western blot, reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and calcium imaging of in cultured dorsal root ganglia (DRG) neurons by Fluo-8-AM were used to elucidate the role and mechanisms of 2R, 6R-HNK in vivo or in vitro. RESULTS Intrathecal 2R, 6R-HNK, rather than intraperitoneal 2R, 6R-HNK or intrathecal S-Ketamine, successfully mitigated HFS-induced pain. Importantly, intrathecal 2R, 6R-HNK displayed effective relief of bilateral pain hypersensitivity and depressive and cognitive comorbidities in a dose-dependent manner in LF-PENS-induced CPP model. Mechanically, 2R, 6R-HNK markedly attenuated neuronal hyperexcitability and the upregulation of calcitonin gene-related peptide (CGRP), transient receptor potential ankyrin 1 (TRPA1) or vanilloid-1 (TRPV1), and vesicular glutamate transporter-2 (VGLUT2) in peripheral nociceptive pathway. In addition, 2R, 6R-HNK suppressed calcium responses and CGRP overexpression in cultured DRG neurons elicited by the agonists of TRPA1 or/and TRPV1. Strikingly, the inhibitory effects of 2R, 6R-HNK on these pain-related molecules and mechanical allodynia were substantially occluded by TRPA1 antagonist menthol. CONCLUSIONS In the newly designed CPP model, our findings highlighted the potential utility of intrathecal 2R, 6R-HNK for preventing and therapeutic modality of CPP. TRPA1-mediated uprgulation of CGRP and neuronal hyperexcitability in nociceptive pathways may undertake both unique characteristics and solving process of CPP.
Collapse
Affiliation(s)
- An-Ran Liu
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhen-Jia Lin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Ming Wei
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Yuan Tang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Hui Zhang
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, No.466, Mid Xingang Road, Haizhu District, Guangzhou, 510317, China
| | - Xiang-Ge Peng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Ying Li
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Yu-Fan Zheng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhi Tan
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| | - Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| | - Xia Feng
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
54
|
Bai X, Wang W, Zhang X, Hu Z, Zhang X, Zhang Y, Tang H, Zhang Y, Yu X, Yuan Z, Zhang P, Li Z, Pei X, Wang Y, Sui B. Hyperperfusion of bilateral amygdala in patients with chronic migraine: an arterial spin-labeled magnetic resonance imaging study. J Headache Pain 2023; 24:138. [PMID: 37848831 PMCID: PMC10583377 DOI: 10.1186/s10194-023-01668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Amygdala, an essential element of the limbic system, has served as an important structure in pain modulation. There is still a lack of clarity about altered cerebral perfusion of amygdala in migraine. This study aimed to investigate the perfusion variances of bilateral amygdala in episodic migraine (EM) and chronic migraine (CM) using multi-delay pseudo-continuous arterial spin-labeled magnetic resonance imaging (pCASL-MRI). METHODS Twenty-six patients with EM, 55 patients with CM (33 CM with medication overuse headache (MOH)), and 26 age- and sex-matched healthy controls (HCs) were included. All participants underwent 3D multi-delay pCASL MR imaging to obtain cerebral perfusion data, including arrival-time-corrected cerebral blood flow (CBF) and arterial cerebral blood volume (aCBV). The CBF and aCBV values in the bilateral amygdala were compared among the three groups. Correlation analyses between cerebral perfusion parameters and clinical variables were performed. RESULTS Compared with HC participants, patients with CM were found to have increased CBF and aCBV values in the left amygdala, as well as increased CBF values in the right amygdala (all P < 0.05). There were no significant differences of CBF and aCBV values in the bilateral amygdala between the HC and EM groups, the EM and CM groups, as well as the CM without and with MOH groups (all P > 0.05). In patients with CM, the increased perfusion parameters of bilateral amygdala were positively correlated with MIDAS score after adjustments for age, sex, and body mass index (BMI). CONCLUSION Hyperperfusion of bilateral amygdala might provide potential hemodynamics evidence in the neurolimbic pain network of CM.
Collapse
Affiliation(s)
- Xiaoyan Bai
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xueyan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Xue Zhang
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yingkui Zhang
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Hefei Tang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yaqing Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xueying Yu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ziyu Yuan
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Peng Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhiye Li
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xun Pei
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Binbin Sui
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital and Beijing Neurosurgical Institute, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
55
|
Santos JM, Wang R, Bhakta V, Driver Z, Vadim Y, Kiritoshi T, Ji G, Neugebauer V, Shen CL. Turmeric Bioactive Compounds Alleviate Spinal Nerve Ligation-Induced Neuropathic Pain by Suppressing Glial Activation and Improving Mitochondrial Function in Spinal Cord and Amygdala. Nutrients 2023; 15:4403. [PMID: 37892476 PMCID: PMC10610406 DOI: 10.3390/nu15204403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This study examined the effects of turmeric bioactive compounds, curcumin C3 complex® (CUR) and bisdemethoxycurcumin (BDMC), on mechanical hypersensitivity and the gene expression of markers for glial activation, mitochondrial function, and oxidative stress in the spinal cord and amygdala of rats with neuropathic pain (NP). Twenty-four animals were randomly assigned to four groups: sham, spinal nerve ligation (SNL, an NP model), SNL+100 mg CUR/kg BW p.o., and SNL+50 mg BDMC/kg BW p.o. for 4 weeks. Mechanical hypersensitivity was assessed by the von Frey test (VFT) weekly. The lumbosacral section of the spinal cord and the right amygdala (central nucleus) were collected to determine the mRNA expression of genes (IBA-1, CD11b, GFAP, MFN1, DRP1, FIS1, PGC1α, PINK, Complex I, TLR4, and SOD1) utilizing qRT-PCR. Increased mechanical hypersensitivity and increased gene expression of markers for microglial activation (IBA-1 in the amygdala and CD11b in the spinal cord), astrocyte activation (GFAP in the spinal cord), mitochondrial dysfunction (PGC1α in the amygdala), and oxidative stress (TLR4 in the spinal cord and amygdala) were found in untreated SNL rats. Oral administration of CUR and BDMC significantly decreased mechanical hypersensitivity. CUR decreased CD11b and GFAP gene expression in the spinal cord. BDMC decreased IBA-1 in the spinal cord and amygdala as well as CD11b and GFAP in the spinal cord. Both CUR and BDMC reduced PGC1α gene expression in the amygdala, PINK1 gene expression in the spinal cord, and TLR4 in the spinal cord and amygdala, while they increased Complex I and SOD1 gene expression in the spinal cord. CUR and BDMC administration decreased mechanical hypersensitivity in NP by mitigating glial activation, oxidative stress, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Julianna M. Santos
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (R.W.)
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (R.W.)
| | - Viren Bhakta
- Department of Biochemistry, Texas Tech University, Lubbock, TX 79409, USA (Z.D.)
| | - Zarek Driver
- Department of Biochemistry, Texas Tech University, Lubbock, TX 79409, USA (Z.D.)
| | - Yakhnitsa Vadim
- Department of Pharmacology and Neurosciences, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (Y.V.); (T.K.); (G.J.); (V.N.)
| | - Takaki Kiritoshi
- Department of Pharmacology and Neurosciences, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (Y.V.); (T.K.); (G.J.); (V.N.)
| | - Guangchen Ji
- Department of Pharmacology and Neurosciences, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (Y.V.); (T.K.); (G.J.); (V.N.)
| | - Volker Neugebauer
- Department of Pharmacology and Neurosciences, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (Y.V.); (T.K.); (G.J.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (R.W.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
56
|
Beets I, Zels S, Vandewyer E, Demeulemeester J, Caers J, Baytemur E, Courtney A, Golinelli L, Hasakioğulları İ, Schafer WR, Vértes PE, Mirabeau O, Schoofs L. System-wide mapping of peptide-GPCR interactions in C. elegans. Cell Rep 2023; 42:113058. [PMID: 37656621 PMCID: PMC7615250 DOI: 10.1016/j.celrep.2023.113058] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Neuropeptides and peptide hormones are ancient, widespread signaling molecules that underpin almost all brain functions. They constitute a broad ligand-receptor network, mainly by binding to G protein-coupled receptors (GPCRs). However, the organization of the peptidergic network and roles of many peptides remain elusive, as our insight into peptide-receptor interactions is limited and many peptide GPCRs are still orphan receptors. Here we report a genome-wide peptide-GPCR interaction map in Caenorhabditis elegans. By reverse pharmacology screening of over 55,384 possible interactions, we identify 461 cognate peptide-GPCR couples that uncover a broad signaling network with specific and complex combinatorial interactions encoded across and within single peptidergic genes. These interactions provide insights into peptide functions and evolution. Combining our dataset with phylogenetic analysis supports peptide-receptor co-evolution and conservation of at least 14 bilaterian peptidergic systems in C. elegans. This resource lays a foundation for system-wide analysis of the peptidergic network.
Collapse
Affiliation(s)
- Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| | - Sven Zels
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | | | - Jonas Demeulemeester
- The Francis Crick Institute, London NW1 1AT, UK; VIB - KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jelle Caers
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Esra Baytemur
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Amy Courtney
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Petra E Vértes
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Inserm U1224, Brain-Immune Communication Lab, 75015 Paris, France
| | | |
Collapse
|
57
|
Pérez-Fernández M, Suárez-Rojas I, Bai X, Martínez-Martel I, Ciaffaglione V, Pittalà V, Salerno L, Pol O. Novel Heme Oxygenase-1 Inducers Palliate Inflammatory Pain and Emotional Disorders by Regulating NLRP3 Inflammasome and Activating the Antioxidant Pathway. Antioxidants (Basel) 2023; 12:1794. [PMID: 37891874 PMCID: PMC10604550 DOI: 10.3390/antiox12101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic pain caused by persistent inflammation is current in multiple diseases and has a strong negative impact on society. It is commonly associated with several mental illnesses, which can exert a negative influence on pain perception, and needs to be eradicated. Nevertheless, actual therapies are not sufficiently safe and effective. Recent reports demonstrate that the induction of heme oxygenase-1 (HO-1) enzyme produces analgesic effects in animals with osteoarthritis pain and reverses the grip strength loss caused by sciatic nerve crush. In this research, we evaluated the potential use of three new HO-1 inducers, 1m, 1a, and 1b, as well as dimethyl fumarate (DMF), for treating persistent inflammatory pain induced by the subplantar injection of complete Freud's adjuvant and the functional deficits and emotional sickness associated. The modulator role of these treatments on the inflammatory and antioxidant pathways were also assessed. Our findings revealed that repeated treatment, for four days, with 1m, 1a, 1b, or DMF inhibited inflammatory pain, reversed grip strength deficits, and reversed the linked anxious- and depressive-like behaviors, with 1m being the most effective. These treatments also suppressed the up-regulation of the inflammasome NLRP3 and activated the expression of the Nrf2 transcription factor and the HO-1 and superoxide dismutase 1 enzymes in the paw and/or amygdala, thus revealing the anti-inflammatory and antioxidant capacity of these compounds during inflammatory pain. Results suggest the use of 1m, 1a, 1b, and DMF, particularly 1m, as promising therapies for inflammatory pain and the accompanying functional disabilities and emotional diseases.
Collapse
Affiliation(s)
- Montse Pérez-Fernández
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Irene Suárez-Rojas
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), 95126 Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
58
|
Csabafi K, Ibos KE, Bodnár É, Filkor K, Szakács J, Bagosi Z. A Brain Region-Dependent Alteration in the Expression of Vasopressin, Corticotropin-Releasing Factor, and Their Receptors Might Be in the Background of Kisspeptin-13-Induced Hypothalamic-Pituitary-Adrenal Axis Activation and Anxiety in Rats. Biomedicines 2023; 11:2446. [PMID: 37760887 PMCID: PMC10525110 DOI: 10.3390/biomedicines11092446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Previously, we reported that intracerebroventricularly administered kisspeptin-13 (KP-13) induces anxiety-like behavior and activates the hypothalamic-pituitary-adrenal (HPA) axis in rats. In the present study, we aimed to shed light on the mediation of KP-13's stress-evoking actions. The relative gene expressions of the corticotropin-releasing factor (Crf, Crfr1, and Crfr2) and arginine vasopressin (Avp, Avpr1a, and Avpr1b) systems were measured in the amygdala and hippocampus of male Wistar rats after icv KP-13 treatment. CRF and AVP protein content were also determined. A different set of animals received CRF or V1 receptor antagonist pretreatment before the KP-13 challenge, after which either an open-field test or plasma corticosterone levels measurement was performed. In the amygdala, KP-13 induced an upregulation of Avp and Avpr1b expression, and a downregulation of Crf. In the hippocampus, the mRNA level of Crf increased and the level of Avpr1a decreased. A significant rise in AVP protein content was also detected in the amygdala. KP-13 also evoked anxiety-like behavior in the open field test, which the V1 receptor blocker antagonized. Both CRF and V1 receptor blockers reduced the KP-13-evoked rise in the plasma corticosterone level. This suggests that KP-13 alters the AVP and CRF signaling and that might be responsible for its effect on the HPA axis and anxiety-like behavior.
Collapse
Affiliation(s)
- Krisztina Csabafi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary (K.F.)
| | | | | | | | | | | |
Collapse
|
59
|
Chen Q, Wang Z, Zhang S. Mechanism, application and effect evaluation of nerve mobilization in the treatment of low back pain: A narrative review. Medicine (Baltimore) 2023; 102:e34961. [PMID: 37653794 PMCID: PMC10470699 DOI: 10.1097/md.0000000000034961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Lower back pain is a prevalent condition affecting people across all age groups and causing significant personal and societal burdens. While numerous treatments exist, nerve mobilization has emerged as a promising approach for managing lower back pain. Nerve mobilization involves applying gentle and rhythmic movements to the affected nerves, promoting normal nerve function and releasing tension. It has been well documented that nerve mobilization can be effective in reducing pain and improving function in patients with lower back pain, but the underlying mechanisms have not been clarified. This study aims to review the mechanisms of nerve mobilization in the management of lower back pain, its application, and effectiveness evaluation, and provide a potential solution for managing lower back pain.
Collapse
Affiliation(s)
- Quanzheng Chen
- Department of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Zhenshan Wang
- Department of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Shuna Zhang
- Department of Physical Education and Health, Guangxi Normal University, Guilin, China
| |
Collapse
|
60
|
Silva-Cardoso GK, Lazarini-Lopes W, Primini EO, Hallak JE, Crippa JA, Zuardi AW, Garcia-Cairasco N, Leite-Panissi CRA. Cannabidiol modulates chronic neuropathic pain aversion behavior by attenuation of neuroinflammation markers and neuronal activity in the corticolimbic circuit in male Wistar rats. Behav Brain Res 2023; 452:114588. [PMID: 37474023 DOI: 10.1016/j.bbr.2023.114588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Chronic neuropathic pain (CNP) is a vast world health problem often associated with the somatosensory domain. This conceptualization is problematic because, unlike most other sensations that are usually affectively neutral and may present emotional, affective, and cognitive impairments. Neuronal circuits that modulate pain can increase or decrease painful sensitivity based on several factors, including context and expectation. The objective of this study was to evaluate whether subchronic treatment with Cannabidiol (CBD; 0.3, 3, and 10 mg/kg intraperitoneal route - i.p., once a day for 3 days) could promote pain-conditioned reversal, in the conditioned place preference (CPP) test, in male Wistar rats submitted to chronic constriction injury (CCI) of the sciatic nerve. Then, we evaluated the expression of astrocytes and microglia in animals treated with CBD through the immunofluorescence technique. Our results demonstrated that CBD promoted the reversal of CPP at 3 and 10 mg/kg. In CCI animals, CBD was able to attenuate the increase in neuronal hyperactivity, measured by FosB protein expression, in the regions of the corticolimbic circuit: anterior cingulate cortex (ACC), complex basolateral amygdala (BLA), granular layer of the dentate gyrus (GrDG), and dorsal hippocampus (DH) - adjacent to subiculum (CA1). CBD also prevented the increased expression of GFAP and IBA-1 in CCI animals. We concluded that CBD effects on CNP are linked to the modulation of the aversive component of pain. These effects decrease chronic neuronal activation and inflammatory markers in regions of the corticolimbic circuit.
Collapse
Affiliation(s)
- Gleice K Silva-Cardoso
- Department of Psychology, School of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - Willian Lazarini-Lopes
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Department of Pharmacology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Eduardo Octaviano Primini
- Department of Psychology, School of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Brazil
| | - Jaime E Hallak
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - Antônio W Zuardi
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | - Christie R A Leite-Panissi
- Department of Psychology, School of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil.
| |
Collapse
|
61
|
Presto P, Ji G, Ponomareva O, Ponomarev I, Neugebauer V. Hmgb1 Silencing in the Amygdala Inhibits Pain-Related Behaviors in a Rat Model of Neuropathic Pain. Int J Mol Sci 2023; 24:11944. [PMID: 37569320 PMCID: PMC10418916 DOI: 10.3390/ijms241511944] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic pain presents a therapeutic challenge due to the highly complex interplay of sensory, emotional-affective and cognitive factors. The mechanisms of the transition from acute to chronic pain are not well understood. We hypothesized that neuroimmune mechanisms in the amygdala, a brain region involved in the emotional-affective component of pain and pain modulation, play an important role through high motility group box 1 (Hmgb1), a pro-inflammatory molecule that has been linked to neuroimmune signaling in spinal nociception. Transcriptomic analysis revealed an upregulation of Hmgb1 mRNA in the right but not left central nucleus of the amygdala (CeA) at the chronic stage of a spinal nerve ligation (SNL) rat model of neuropathic pain. Hmgb1 silencing with a stereotaxic injection of siRNA for Hmgb1 into the right CeA of adult male and female rats 1 week after (post-treatment), but not 2 weeks before (pre-treatment) SNL induction decreased mechanical hypersensitivity and emotional-affective responses, but not anxiety-like behaviors, measured 4 weeks after SNL. Immunohistochemical data suggest that neurons are a major source of Hmgb1 in the CeA. Therefore, Hmgb1 in the amygdala may contribute to the transition from acute to chronic neuropathic pain, and the inhibition of Hmgb1 at a subacute time point can mitigate neuropathic pain.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
62
|
Li J, Wang Y, Yang R, Ma W, Yan J, Li Y, Chen G, Pan J. Pain in Huntington's disease and its potential mechanisms. Front Aging Neurosci 2023; 15:1190563. [PMID: 37484692 PMCID: PMC10357841 DOI: 10.3389/fnagi.2023.1190563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Pain is common and frequent in many neurodegenerative diseases, although it has not received much attention. In Huntington's disease (HD), pain is often ignored and under-researched because attention is more focused on motor and cognitive decline than psychiatric symptoms. In HD progression, pain symptoms are complex and involved in multiple etiologies, particularly mental issues such as apathy, anxiety and irritability. Because of psychiatric issues, HD patients rarely complain of pain, although their bodies show severe pain symptoms, ultimately resulting in insufficient awareness and lack of research. In HD, few studies have focused on pain and pain-related features. A detailed and systemic pain history is crucial to assess and explore pain pathophysiology in HD. This review provides an overview concentrating on pain-related factors in HD, including neuropathology, frequency, features, affecting factors and mechanisms. More attention and studies are still needed in this interesting field in the future.
Collapse
Affiliation(s)
- Jiajie Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yan Wang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Wenjun Ma
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - JunGuo Yan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yi Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
63
|
Seymour B, Crook RJ, Chen ZS. Post-injury pain and behaviour: a control theory perspective. Nat Rev Neurosci 2023; 24:378-392. [PMID: 37165018 PMCID: PMC10465160 DOI: 10.1038/s41583-023-00699-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/12/2023]
Abstract
Injuries of various types occur commonly in the lives of humans and other animals and lead to a pattern of persistent pain and recuperative behaviour that allows safe and effective recovery. In this Perspective, we propose a control-theoretic framework to explain the adaptive processes in the brain that drive physiological post-injury behaviour. We set out an evolutionary and ethological view on how animals respond to injury, illustrating how the behavioural state associated with persistent pain and recuperation may be just as important as phasic pain in ensuring survival. Adopting a normative approach, we suggest that the brain implements a continuous optimal inference of the current state of injury from diverse sensory and physiological signals. This drives the various effector control mechanisms of behavioural homeostasis, which span the modulation of ongoing motivation and perception to drive rest and hyper-protective behaviours. However, an inherent problem with this is that these protective behaviours may partially obscure information about whether injury has resolved. Such information restriction may seed a tendency to aberrantly or persistently infer injury, and may thus promote the transition to pathological chronic pain states.
Collapse
Affiliation(s)
- Ben Seymour
- Institute for Biomedical Engineering, University of Oxford, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, Headington, Oxford, UK.
| | - Robyn J Crook
- Department of Biology, San Francisco State University, San Francisco, CA, USA.
| | - Zhe Sage Chen
- Departments of Psychiatry, Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA.
- Interdisciplinary Pain Research Program, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
64
|
Miller Neilan R, Reith C, Anandan I, Kraeuter K, Allen HN, Kolber BJ. Developing a 3-D computational model of neurons in the central amygdala to understand pharmacological targets for pain. FRONTIERS IN PAIN RESEARCH 2023; 4:1183553. [PMID: 37332477 PMCID: PMC10270735 DOI: 10.3389/fpain.2023.1183553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/05/2023] [Indexed: 06/20/2023] Open
Abstract
Neuropathic and nociplastic pain are major causes of pain and involve brain areas such as the central nucleus of the amygdala (CeA). Within the CeA, neurons expressing protein kinase c-delta (PKCδ) or somatostatin (SST) have opposing roles in pain-like modulation. In this manuscript, we describe our progress towards developing a 3-D computational model of PKCδ and SST neurons in the CeA and the use of this model to explore the pharmacological targeting of these two neural populations in modulating nociception. Our 3-D model expands upon our existing 2-D computational framework by including a realistic 3-D spatial representation of the CeA and its subnuclei and a network of directed links that preserves morphological properties of PKCδ and SST neurons. The model consists of 13,000 neurons with cell-type specific properties and behaviors estimated from laboratory data. During each model time step, neuron firing rates are updated based on an external stimulus, inhibitory signals are transmitted between neurons via the network, and a measure of nociceptive output from the CeA is calculated as the difference in firing rates of pro-nociceptive PKCδ neurons and anti-nociceptive SST neurons. Model simulations were conducted to explore differences in output for three different spatial distributions of PKCδ and SST neurons. Our results show that the localization of these neuron populations within CeA subnuclei is a key parameter in identifying spatial and cell-type pharmacological targets for pain.
Collapse
Affiliation(s)
- Rachael Miller Neilan
- Department of Mathematics and Computer Science, Duquesne University, Pittsburgh, PA, United States
| | - Carley Reith
- Department of Mathematics and Computer Science, Duquesne University, Pittsburgh, PA, United States
| | - Iniya Anandan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Kayla Kraeuter
- Department of Mathematics and Computer Science, Duquesne University, Pittsburgh, PA, United States
- Department of Engineering, Duquesne University, Pittsburgh, PA, United States
| | - Heather N. Allen
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Benedict J. Kolber
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
65
|
Li DY, Gao SJ, Sun J, Zhang LQ, Wu JY, Song FH, Liu DQ, Zhou YQ, Mei W. Targeting the nitric oxide/cGMP signaling pathway to treat chronic pain. Neural Regen Res 2023; 18:996-1003. [PMID: 36254980 PMCID: PMC9827765 DOI: 10.4103/1673-5374.355748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 11/07/2022] Open
Abstract
Nitric oxide (NO)/cyclic guanosine 3',5'-monophosphate (cGMP) signaling has been shown to act as a mediator involved in pain transmission and processing. In this review, we summarize and discuss the mechanisms of the NO/cGMP signaling pathway involved in chronic pain, including neuropathic pain, bone cancer pain, inflammatory pain, and morphine tolerance. The main process in the NO/cGMP signaling pathway in cells involves NO activating soluble guanylate cyclase, which leads to subsequent production of cGMP. cGMP then activates cGMP-dependent protein kinase (PKG), resulting in the activation of multiple targets such as the opening of ATP-sensitive K+ channels. The activation of NO/cGMP signaling in the spinal cord evidently induces upregulation of downstream molecules, as well as reactive astrogliosis and microglial polarization which participate in the process of chronic pain. In dorsal root ganglion neurons, natriuretic peptide binds to particulate guanylyl cyclase, generating and further activating the cGMP/PKG pathway, and it also contributes to the development of chronic pain. Upregulation of multiple receptors is involved in activation of the NO/cGMP signaling pathway in various pain models. Notably the NO/cGMP signaling pathway induces expression of downstream effectors, exerting both algesic and analgesic effects in neuropathic pain and inflammatory pain. These findings suggest that activation of NO/cGMP signaling plays a constituent role in the development of chronic pain, and this signaling pathway with dual effects is an interesting and promising target for chronic pain therapy.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shao-Jie Gao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Long-Qing Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia-Yi Wu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fan-He Song
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
66
|
Bai T, Chen H, Hu W, Liu J, Lin X, Chen S, Luo F, Yang X, Chen J, Li C. Amygdala Metabotropic Glutamate Receptor 1 Influences Synaptic Transmission to Participate in Fentanyl-Induced Hyperalgesia in Rats. Cell Mol Neurobiol 2023; 43:1401-1412. [PMID: 35798932 PMCID: PMC11414450 DOI: 10.1007/s10571-022-01248-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
The underlying mechanisms of opioid-induced hyperalgesia (OIH) remain unclear. Herein, we found that the protein expression of metabotropic glutamate receptor 1 (mGluR1) was significantly increased in the right but not in the left laterocapsular division of central nucleus of the amygdala (CeLC) in OIH rats. In CeLC neurons, the frequency and the amplitude of mini-excitatory postsynaptic currents (mEPSCs) were significantly increased in fentanyl group which were decreased by acute application of a mGluR1 antagonist, A841720. Finally, the behavioral hypersensitivity could be reversed by A841720 microinjection into the right CeLC. These results show that the right CeLC mGluR1 is an important factor associated with OIH that enhances synaptic transmission and could be a potential drug target to alleviate fentanyl-induced hyperalgesia.
Collapse
Affiliation(s)
- Tianyu Bai
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Hengling Chen
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Wenwu Hu
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Jingtao Liu
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Xianguang Lin
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Su Chen
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Fang Luo
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaofei Yang
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Chenhong Li
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, No.182 Minzu Ave, Hongshan District, Wuhan, Hubei, 430074, People's Republic of China.
| |
Collapse
|
67
|
Hidese S, Yoshida F, Ishida I, Matsuo J, Hattori K, Kunugi H. Plasma neuropeptide levels in patients with schizophrenia, bipolar disorder, or major depressive disorder and healthy controls: A multiplex immunoassay study. Neuropsychopharmacol Rep 2023; 43:57-68. [PMID: 36414415 PMCID: PMC10009433 DOI: 10.1002/npr2.12304] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
AIM We aimed to compare neuropeptide levels between patients with major psychiatric disorders and healthy controls and examine their association with symptoms and cognitive function. METHODS The participants were 149 patients with schizophrenia, 115 patients with bipolar disorder (BD), 186 unremitted patients with major depressive disorder (MDD), and 350 healthy controls. Psychiatric (schizophrenic, manic, and depressive) symptoms, sleep state, and cognitive (premorbid intelligence quotient, general cognitive, and memory) functions were evaluated. A multiplex immunoassay kit was used to measure cerebrospinal fluid (CSF) and plasma α-melanocyte-stimulating hormone (MSH), β-endorphin, neurotensin, oxytocin, and substance P levels. RESULTS The verification assay revealed that CSF α-MSH, β-endorphin, neurotensin, oxytocin, and substance P levels were too low to be reliably measured, while plasma α-MSH, β-endorphin, neurotensin, oxytocin, and substance P levels could be successfully measured. Plasma α-MSH, β-endorphin, neurotensin, oxytocin, and substance P levels were not significantly different between patients with schizophrenia, BD, or MDD and healthy controls. Plasma α-MSH, β-endorphin, neurotensin, oxytocin, and substance P levels were not significantly correlated with psychiatric symptom scores in patients with schizophrenia, BD, or MDD and cognitive function scores in patients or healthy controls. CONCLUSION Our data suggest that plasma neuropeptide levels do not elucidate the involvement of neuropeptides in the pathology of schizophrenia, BD, or MDD.
Collapse
Affiliation(s)
- Shinsuke Hidese
- Department of Psychiatry, Teikyo University School of Medicine, Itabashi-ku, Japan.,Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Fuyuko Yoshida
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ikki Ishida
- Department of Psychiatry, Teikyo University School of Medicine, Itabashi-ku, Japan.,Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Junko Matsuo
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kotaro Hattori
- Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hiroshi Kunugi
- Department of Psychiatry, Teikyo University School of Medicine, Itabashi-ku, Japan.,Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
68
|
We need to talk: The urgent conversation on chronic pain, mental health, prescribing patterns and the opioid crisis. J Psychopharmacol 2023; 37:437-448. [PMID: 37171242 DOI: 10.1177/02698811221144635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The opioid crisis’ pathways from first exposure onwards to eventual illnesses and fatalities are multiple, intertwined and difficult to dissect. Here, we offer a multidisciplinary appraisal of the relationships among mental health, chronic pain, prescribing patterns worldwide and the opioid crisis. Because the opioid crisis’ toll is especially harsh on young people, emphasis is given on data regarding the younger strata of the population. Because analgesic opioid prescription constitute a recognised entry point towards misuse, opioid use disorder, and ultimately overdose, prescribing patterns across different countries are examined as a modifiable hazard factor along these pathways of risk. Psychiatrists are called to play a more compelling role in this urgent conversation, as they are uniquely placed to provide synthesis and lead action among the different fields of knowledge and care that lie at the crossroads of the opioid crisis. Psychiatrists are also ideally positioned to gauge and disseminate the foundations for diagnosis and clinical management of mental conditions associated with chronic pain, including the identification of hazardous and protective factors. It is our hope to spark more interdisciplinary exchanges and encourage psychiatrists worldwide to become leaders in an urgent conversation with interlocutors from the clinical and basic sciences, policy makers and stakeholders including clients and their families.
Collapse
|
69
|
Allen HN, Chaudhry S, Hong VM, Lewter LA, Sinha GP, Carrasquillo Y, Taylor BK, Kolber BJ. A Parabrachial-to-Amygdala Circuit That Determines Hemispheric Lateralization of Somatosensory Processing. Biol Psychiatry 2023; 93:370-381. [PMID: 36473754 PMCID: PMC9852076 DOI: 10.1016/j.biopsych.2022.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND The central amygdala (CeA) is a bilateral hub of pain and emotional processing with well-established functional lateralization. We reported that optogenetic manipulation of neural activity in the left and right CeA has opposing effects on bladder pain. METHODS To determine the influence of calcitonin gene-related peptide (CGRP) signaling from the parabrachial nucleus on this diametrically opposed lateralization, we administered CGRP and evaluated the activity of CeA neurons in acute brain slices as well as the behavioral signs of bladder pain in the mouse. RESULTS We found that CGRP increased firing in both the right and left CeA neurons. Furthermore, we found that CGRP administration in the right CeA increased behavioral signs of bladder pain and decreased bladder pain-like behavior when administered in the left CeA. CONCLUSIONS These studies reveal a parabrachial-to-amygdala circuit driven by opposing actions of CGRP that determines hemispheric lateralization of visceral pain.
Collapse
Affiliation(s)
- Heather N Allen
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania; Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, Texas; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah Chaudhry
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland
| | - Veronica M Hong
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, Texas
| | - Lakeisha A Lewter
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, Texas
| | - Ghanshyam P Sinha
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yarimar Carrasquillo
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland
| | - Bradley K Taylor
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Benedict J Kolber
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, Texas.
| |
Collapse
|
70
|
Torres-Rodriguez JM, Wilson TD, Singh S, Chaudhry S, Adke AP, Becker JJ, Lin JL, Martinez Gonzalez S, Soler-Cedeño O, Carrasquillo Y. The parabrachial to central amygdala circuit is a key mediator of injury-induced pain sensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527340. [PMID: 36945586 PMCID: PMC10028796 DOI: 10.1101/2023.02.08.527340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The spino-ponto-amygdaloid pathway is a major ascending circuit relaying nociceptive information from the spinal cord to the brain. Potentiation of excitatory synaptic transmission in the parabrachial nucleus (PbN) to central amygdala (CeA) pathway has been reported in rodent models of persistent pain. At the behavioral level, the PbN→CeA pathway has been proposed to serve as a general alarm system to potential threats that modulates pain-related escape behaviors, threat memory, aversion, and affective-motivational (but not somatosensory) responses to painful stimuli. Increased sensitivity to previously innocuous somatosensory stimulation is a hallmark of chronic pain. Whether the PbN→CeA circuit contributes to heightened peripheral sensitivity following an injury, however, remains unknown. Here, we demonstrate that activation of CeA-projecting PbN neurons contributes to injury-induced behavioral hypersensitivity but not baseline nociception in male and female mice. Using optogenetic assisted circuit mapping, we confirmed a functional excitatory projection from PbN→CeA that is independent of the genetic or firing identity of CeA cells. We then showed that peripheral noxious stimulation increases the expression of the neuronal activity marker c-Fos in CeA-projecting PbN neurons and chemogenetic inactivation of these cells reduces behavioral hypersensitivity in models of neuropathic and inflammatory pain without affecting baseline nociception. Lastly, we show that chemogenetic activation of CeA-projecting PbN neurons is sufficient to induce bilateral hypersensitivity without injury. Together, our results demonstrate that the PbN→CeA pathway is a key modulator of pain-related behaviors that can amplify responses to somatosensory stimulation in pathological states without affecting nociception under normal physiological conditions. Significance Statement Early studies identified the spino-ponto-amygdaloid pathway as a major ascending circuit conveying nociceptive inputs from the spinal cord to the brain. The functional significance of this circuit to injury-induced hypersensitivity, however, remains unknown. Here, we addressed this gap in knowledge using viral-mediated anatomical tracers, ex-vivo electrophysiology and chemogenetic intersectional approaches in rodent models of persistent pain. We found that activation of this pathway contributes to injury-induced hypersensitivity, directly demonstrating a critical function of the PbN→CeA circuit in pain modulation.
Collapse
Affiliation(s)
| | - Torri D. Wilson
- National Center for Complementary and Integrative Health, Bethesda, MD, United States
| | - Sudhuman Singh
- National Center for Complementary and Integrative Health, Bethesda, MD, United States
| | - Sarah Chaudhry
- National Center for Complementary and Integrative Health, Bethesda, MD, United States
| | - Anisha P. Adke
- National Center for Complementary and Integrative Health, Bethesda, MD, United States
| | - Jordan J. Becker
- National Center for Complementary and Integrative Health, Bethesda, MD, United States
| | - Jenny L. Lin
- National Center for Complementary and Integrative Health, Bethesda, MD, United States
| | | | - Omar Soler-Cedeño
- National Center for Complementary and Integrative Health, Bethesda, MD, United States
| | - Yarimar Carrasquillo
- National Center for Complementary and Integrative Health, Bethesda, MD, United States
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
71
|
Okhuarobo A, Angelo M, Bolton JL, Lopez C, Igbe I, Baram TZ, Contet C. Influence of early-life adversity on responses to acute and chronic ethanol in female mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:336-347. [PMID: 36462937 PMCID: PMC9992294 DOI: 10.1111/acer.14988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/11/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Stressful early-life experiences increase the risk of developing an alcohol use disorder. We previously found that male C57BL/6J mice reared under limited bedding and nesting (LBN) conditions, a model of early-life adversity, escalate their ethanol intake in limited-access two-bottle choice (2BC) sessions faster than control (CTL)-reared counterparts when exposed to chronic intermittent ethanol (CIE) vapor inhalation. However, the alcohol consumption of female littermates was not affected by LBN or CIE. In the present study, we sought to determine whether this phenotype reflected a general insensitivity of female mice to the influence of early-life stress on alcohol responses. METHODS In a first experiment, CTL and LBN females with a history of 2BC combined or not with CIE were tested in affective and nociceptive assays during withdrawal. In a second group of CTL and LBN females, we examined ethanol-induced antinociception, sedation, plasma clearance, and c-Fos induction. RESULTS In females withdrawn from chronic 2BC, CIE increased digging, reduced grooming, and increased immobility in the tail suspension test regardless of early-life history. In contrast, LBN rearing lowered mechanical nociceptive thresholds regardless of CIE exposure. In females acutely treated with ethanol, LBN rearing facilitated antinociception and delayed the onset of sedation without influencing ethanol clearance rate or c-Fos induction in the paraventricular nucleus of the hypothalamus, paraventricular nucleus of the thalamus, central nucleus of the amygdala, or auditory cortex. CONCLUSION CIE withdrawal produced multiple indices of negative affect in C57BL/6J females, suggesting that their motivation to consume alcohol may differ from air-exposed counterparts despite equivalent intake. Contrasted with our previous findings in males, LBN-induced mechanical hyperalgesia in chronic alcohol drinkers was specific to females. Lower nociceptive thresholds combined with increased sensitivity to the acute antinociceptive effect of ethanol may contribute to reinforcing ethanol consumption in LBN females but are not sufficient to increase their intake.
Collapse
Affiliation(s)
- Agbonlahor Okhuarobo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
- University of Benin, Faculty of Pharmacy, Department of Pharmacology & Toxicology, Benin City, Nigeria
| | - Maggie Angelo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | - Jessica L. Bolton
- University of California - Irvine, Departments of Anatomy / Neurobiology and Pediatrics, Irvine, CA
- Georgia State University, Neuroscience Institute, Atlanta, GA
| | - Catherine Lopez
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | - Ighodaro Igbe
- University of Benin, Faculty of Pharmacy, Department of Pharmacology & Toxicology, Benin City, Nigeria
| | - Tallie Z. Baram
- University of California - Irvine, Departments of Anatomy / Neurobiology and Pediatrics, Irvine, CA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| |
Collapse
|
72
|
Ronström JW, Johnson NL, Jones ST, Werner SJ, Wadsworth HA, Brundage JN, Stolp V, Graziane NM, Silberman Y, Steffensen SC, Yorgason JT. Opioid-Induced Reductions in Amygdala Lateral Paracapsular GABA Neuron Circuit Activity. Int J Mol Sci 2023; 24:1929. [PMID: 36768252 PMCID: PMC9916002 DOI: 10.3390/ijms24031929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Opioid use and withdrawal evokes behavioral adaptations such as drug seeking and anxiety, though the underlying neurocircuitry changes are unknown. The basolateral amygdala (BLA) regulates these behaviors through principal neuron activation. Excitatory BLA pyramidal neuron activity is controlled by feedforward inhibition provided, in part, by lateral paracapsular (LPC) GABAergic inhibitory neurons, residing along the BLA/external capsule border. LPC neurons express µ-opioid receptors (MORs) and are potential targets of opioids in the etiology of opioid-use disorders and anxiety-like behaviors. Here, we investigated the effects of opioid exposure on LPC neuron activity using immunohistochemical and electrophysiological approaches. We show that LPC neurons, and other nearby BLA GABA and non-GABA neurons, express MORs and δ-opioid receptors. Additionally, DAMGO, a selective MOR agonist, reduced GABA but not glutamate-mediated spontaneous postsynaptic currents in LPC neurons. Furthermore, in LPC neurons, abstinence from repeated morphine-exposure in vivo (10 mg/kg/day, 5 days, 2 days off) decrease the intrinsic membrane excitability, with a ~75% increase in afterhyperpolarization and ~40-50% enhanced adenylyl cyclase-dependent activity in LPC neurons. These data show that MORs in the BLA are a highly sensitive targets for opioid-induced inhibition and that repeated opioid exposure results in impaired LPC neuron excitability.
Collapse
Affiliation(s)
- Joakim W. Ronström
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - Natalie L. Johnson
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - Stephen T. Jones
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - Sara J. Werner
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - Hillary A. Wadsworth
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - James N. Brundage
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - Valerie Stolp
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - Nicholas M. Graziane
- Department of Pharmacology/Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Scott C. Steffensen
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - Jordan T. Yorgason
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA
- Department of Cellular Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
73
|
Shen Z, Li W, Chang W, Yue N, Yu J. Sex differences in chronic pain-induced mental disorders: Mechanisms of cerebral circuitry. Front Mol Neurosci 2023; 16:1102808. [PMID: 36891517 PMCID: PMC9986270 DOI: 10.3389/fnmol.2023.1102808] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 02/22/2023] Open
Abstract
Mental disorders such as anxiety and depression induced by chronic pain are common in clinical practice, and there are significant sex differences in their epidemiology. However, the circuit mechanism of this difference has not been fully studied, as preclinical studies have traditionally excluded female rodents. Recently, this oversight has begun to be resolved and studies including male and female rodents are revealing sex differences in the neurobiological processes behind mental disorder features. This paper reviews the structural functions involved in the injury perception circuit and advanced emotional cortex circuit. In addition, we also summarize the latest breakthroughs and insights into sex differences in neuromodulation through endogenous dopamine, 5-hydroxytryptamine, GABAergic inhibition, norepinephrine, and peptide pathways like oxytocin, as well as their receptors. By comparing sex differences, we hope to identify new therapeutic targets to offer safer and more effective treatments.
Collapse
Affiliation(s)
- Zuqi Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiqi Chang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Yue
- Weifang Maternal and Child Health Hospital, Weifang, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
74
|
Pereira V, Arias JA, Llebaria A, Goudet C. Photopharmacological manipulation of amygdala metabotropic glutamate receptor mGlu4 alleviates neuropathic pain. Pharmacol Res 2023; 187:106602. [PMID: 36529205 DOI: 10.1016/j.phrs.2022.106602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Neuropathic pain is a common health problem resulting in exacerbated response to noxious and non noxious stimuli, as well as impaired emotional and cognitive responses. Unfortunately, neuropathic pain is also one of the most difficult pain syndromes to manage, highlighting the importance of better understanding the brain regions and neuromodulatory mechanisms involved in its regulation. Among the many interconnected brain areas which process pain, the amygdala is known to play an important role in the integration of sensory and emotional pain signals. Here we questioned the ability of a recently identified neuromodulatory mechanism associated with the metabotropic glutamate receptors mGlu4 in the amygdala to modulate neuropathic pain. In a murine model of peripheral mononeuropathy, we demonstrate that pharmacological activation of amygdala mGlu4 efficiently alleviates sensory and depressive-like symptoms in both male and female mice. Moreover, we reveal a differential modulation of these symptoms. Activating mGlu4 in the contralateral amygdala relative to the side of the mononeuropathy, is necessary and sufficient to relieve both sensory and depressive-like symptoms, while ipsilateral activation solely reduces depressive-like symptoms. Furthermore, using photopharmacology, a recent strategy allowing precise photocontrol of endogenous proteins, we further demonstrate the dynamic alleviation of neuropathic pain through light-dependent facilitation of mGlu4 by a photoswitchable positive allosteric modulator. Finally, coupling photopharmacology and analgesic conditioned place preference, we show a significant pain-reducing effect of mGlu4 activation. Taken together, these data highlight the analgesic potential of enhancing amygdala mGlu4 activity to counteract neuropathy reinforcing its therapeutic interest for the treatment of pathological pain.
Collapse
Affiliation(s)
| | | | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Cyril Goudet
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
75
|
Chen YL, Feng XL, Cheung CW, Liu JA. Mode of action of astrocytes in pain: From the spinal cord to the brain. Prog Neurobiol 2022; 219:102365. [DOI: 10.1016/j.pneurobio.2022.102365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
76
|
Altered Structural and Functional Abnormalities of Hippocampus in Classical Trigeminal Neuralgia: A Combination of DTI and fMRI Study. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8538700. [PMID: 36504636 PMCID: PMC9729045 DOI: 10.1155/2022/8538700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/05/2022] [Accepted: 11/19/2022] [Indexed: 12/05/2022]
Abstract
Purpose Diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) were applied to speculate the altered structural and functional abnormalities within the hippocampus in classical trigeminal neuralgia (CTN) patients by detecting the alteration of apparent diffusion coefficient (ADC), fractional anisotropy (FA), and regional homogeneity (ReHo). Patients and Methods. Multimodal MRI dataset (DTI and fMRI) and clinical indices (pain and neuropsychological scores) were collected in 27 CTN patients and 27 age- and gender-matched healthy controls (HC). Two independent-sample t-tests were performed to compare the ADC, FA, and ReHo values in hippocampus areas between CTN patients and HC. Correlation analyses were applied between all the DTI and fMRI parameters within the hippocampus and the VAS (visual analog scale), MoCA (Montreal cognitive assessment), and CDR (clinical dementia rating) scores. Results CTN patients showed a significantly increased FA values in the right hippocampus (t = 2.387, P = 0.021) and increased ReHo values in the right hippocampus head (voxel P < 0.001, cluster P < 0.05, FDR correction) compared with HC. A positively significant correlation was observed between the ReHo values and MOCA scores in the right hippocampus head; FA values were also positively correlated with MOCA scores in the right hippocampus. Conclusion CTN patients demonstrated an abnormality of structures and functions in the hippocampus, which may help to provide novel insights into the neuropathologic change related to the pain-related dysfunction of CTN.
Collapse
|
77
|
Shi J, Hu ZY, Wen YR, Wang YF, Lin YY, Zhao HZ, Lin YT, Wang YL. Optimal modes of mind-body exercise for treating chronic non-specific low back pain: Systematic review and network meta-analysis. Front Neurosci 2022; 16:1046518. [PMID: 36466167 PMCID: PMC9713308 DOI: 10.3389/fnins.2022.1046518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 01/01/2024] Open
Abstract
Background There were limited studies that directly compare the outcomes of various mind-body exercise (MBE) therapies on chronic non-specific low back pain (CNLBP). Objectives To compare the efficacy of the four most popular MBE modes [Pilates, Yoga, Tai Chi (TC), and Qigong] in clinically CNLBP patients, we conducted a systematic review and network meta-analysis (NMA). Methods We searched databases for eligible randomized controlled trials (RCTs) (from origin to July 2022). RCTs were eligible if they included adults with CNLBP, and implemented one or more MBE intervention arms using Pilates, yoga, TC, and qigong. In addition, pain intensity and physical function were evaluated using validated questionnaires. Results NMA was carried out on 36 eligible RCTs involving 3,050 participants. The effect of exercise therapy on pain was in the following rankings: Pilates [Surface under cumulative ranking (SUCRA) = 86.6%], TC (SUCRA = 77.2%), yoga (SUCRA = 67.6%), and qigong (SUCRA = 64.6%). The effect of exercise therapy on function: Pilates (SUCRA = 98.4%), qigong (SUCRA = 61.6%,), TC (SUCRA = 59.5%) and yoga (SUCRA = 59.0%). Conclusion Our NMA shows that Pilates might be the best MBE therapy for CNLBP in pain intensity and physical function. TC is second only to Pilates in improving pain in patients with CNLBP and has the value of promotion. In the future, we need more high-quality, long-term follow-up RCTs to confirm our findings. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=306905, identifier: CRD42022306905.
Collapse
Affiliation(s)
- Jian Shi
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zheng-Yu Hu
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Rong Wen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Ya-Fei Wang
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang-Yang Lin
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao-Zhi Zhao
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - You-Tian Lin
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Postgraduate Research Institute, Guangzhou Sport University, Guangzhou, China
| | - Yu-Ling Wang
- Rehabilitation Medicine Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
78
|
Ge J, Cai Y, Pan ZZ. Synaptic plasticity in two cell types of central amygdala for regulation of emotion and pain. Front Cell Neurosci 2022; 16:997360. [PMID: 36385947 PMCID: PMC9643269 DOI: 10.3389/fncel.2022.997360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/07/2022] [Indexed: 07/29/2023] Open
Abstract
The amygdala is a critical brain site for regulation of emotion-associated behaviors such as pain and anxiety. Recent studies suggest that differential cell types and synaptic circuits within the amygdala complex mediate interacting and opposing effects on emotion and pain. However, the underlying cellular and circuit mechanisms are poorly understood at present. Here we used optogenetics combined with electrophysiological analysis of synaptic inputs to investigate pain-induced synaptic plasticity within the amygdala circuits in rats. We found that 50% of the cell population in the lateral division of the central nucleus of the amygdala (CeAl) received glutamate inputs from both basolateral amygdala (BLA) and from the parabrachial nucleus (PBN), and 39% of the remaining CeAl cells received glutamate inputs only from PBN. Inflammatory pain lasting 3 days, which induced anxiety, produced sensitization in synaptic activities of the BLA-CeAl-medial division of CeA (CeAm) pathway primarily through a postsynaptic mechanism. Moreover, in CeAl cells receiving only PBN inputs, pain significantly augmented the synaptic strength of the PBN inputs. In contrast, in CeAl cells receiving both BLA and PBN inputs, pain selectively increased the synaptic strength of BLA inputs, but not the PBN inputs. Electrophysiological analysis of synaptic currents showed that the increased synaptic strength in both cases involved a postsynaptic mechanism. These findings reveal two main populations of CeAl cells that have differential profiles of synaptic inputs and show distinct plasticity in their inputs in response to anxiety-associated pain, suggesting that the specific input plasticity in the two populations of CeAl cells may encode a different role in amygdala regulation of pain and emotion.
Collapse
|
79
|
Nguyen SN, Hassett AL, Hu HM, Brummett CM, Bicket MC, Carlozzi NE, Waljee JF. Prospective cohort study on the trajectory and association of perioperative anxiety and postoperative opioid-related outcomes. Reg Anesth Pain Med 2022; 47:637-642. [PMID: 35973779 PMCID: PMC9549960 DOI: 10.1136/rapm-2022-103742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/18/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Although perioperative anxiety is common, its trajectory and influence on postoperative pain and opioid use are not well understood. We sought to examine the association and trajectory of perioperative anxiety, pain and opioid use following common surgical procedures. METHODS We conducted a prospective cohort study of 1771 patients undergoing elective surgical procedures. Self-reported opioid use, pain (Brief Pain Inventory) and anxiety (Patient-Reported Outcome Measurement Information System (PROMIS) Anxiety) were recorded on the day of surgery and at 1 month, 3 months and 6 months postsurgery. Clinically significant anxiety was defined as a PROMIS Anxiety T-score ≥55. We examined postoperative opioid use in the context of surgical site pain and anxiety using mixed-effects regression models adjusted for covariates, and examined anxiety as a mediator between pain and opioid use. RESULTS In this cohort, 65% of participants completed all follow-ups and 30% reported clinically significant anxiety at baseline. Anxiety and surgical site pain were highest on the day of surgery (anxiety: mean=49.3, SD=9.0; pain: mean=4.3, SD=3.3) and declined in the follow-up period. Those with anxiety reported higher opioid use (OR=1.40; 95% CI 1.0, 1.9) and 1.14-point increase in patient-reported surgical pain (95% CI 1.0, 1.3) compared with those without anxiety. Anxiety had no significant mediation effect on the relationship of pain and opioid use. DISCUSSION Anxiety is an independent risk factor for increased pain and opioid use after surgery. Future studies examining targeted behavioral therapies to reduce anxiety during the perioperative period may positively impact postoperative pain and opioid use.
Collapse
Affiliation(s)
- Shay N Nguyen
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Afton L Hassett
- Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hsou-Mei Hu
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Chad M Brummett
- Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mark C Bicket
- Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Opioid Prescribing Engagement Network (OPEN), Institute for Health Policy and Evaluations, University of Michigan, Ann Arbor, MI, USA
| | - Noelle E Carlozzi
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
- Department of Physical Medicine & Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer F Waljee
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
80
|
Zhu Y, Sun M, Liu P, Shao W, Xiong M, Xu B. Perioperative stress prolong post-surgical pain via miR-339-5p targeting oprm1 in the amygdala. Korean J Pain 2022; 35:423-432. [PMID: 36175341 PMCID: PMC9530683 DOI: 10.3344/kjp.2022.35.4.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022] Open
Abstract
Background The decreased expression of mu-opioid receptors (MOR) in the amygdala may be a key molecular in chronic post-surgical pain (CPSP). It is known that miR-339-5p expression in the amygdala of a stressed rat model was increased. Analyzed by RNAhybrid, miR-339-5p could target opioid receptor mu 1 (oprm1) which codes MOR directly. So, the authors hypothesized that miR-339-5p could regulate the expression of MOR via targeting oprm1 and cause the effects to CPSP. Methods To simulate perioperative short-term stress, a perioperative stress prolongs incision-induced pain hypersensitivity without changing basal pain perception rat model was built. A pmiR-RB-REPORT™ dual luciferase assay was taken to verify whether miR-339-5p could act on oprm1 as a target. The serum glucocorticoid level of rats was test. Differential expressions of MOR, GFAP, and pERK1/2 in each group of the rats' amygdala were tested, and the expressions of miR-339-5p in each group of rats' amygdalas were also measured. Results Perioperative stress prolonged the recovery time of incision pain. The expression of MOR was down-regulated in the amygdala of rats in stress + incision (S + IN) group significantly compared with other groups (P < 0.050). miR-339-5p was up-regulated in the amygdala of rats in group S + IN significantly compared with other groups (P < 0.050). miR-339-5p acts on oprm1 3'UTR and take MOR mRNA as a target. Conclusions Perioperative stress could increase the expression of miR-339-5p, and miR-339-5p could cause the expression of MOR to decrease via targeting oprm1. This regulatory pathway maybe an important molecular mechanism of CPSP.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Anesthesiology, General Hospital of The Southern Theater Command of PLA, Guangzhou, China
| | - Mei Sun
- Department of Anesthesiology, General Hospital of The Southern Theater Command of PLA, Guangzhou, China
| | - Peng Liu
- Department of Burns and Plastic Surgery, General Hospital of The Southern Theater Command of PLA, Guangzhou, China
| | - Weidong Shao
- Department of Anesthesiology, General Hospital of The Southern Theater Command of PLA, Guangzhou, China
| | - Ming Xiong
- Department of Anesthesiology and Peri-Operative Medicine, New Jersey Medical School, Newark, NJ, USA
| | - Bo Xu
- Department of Anesthesiology, General Hospital of The Southern Theater Command of PLA, Guangzhou, China
| |
Collapse
|
81
|
Korem N, Duek O, Ben-Zion Z, Kaczkurkin AN, Lissek S, Orederu T, Schiller D, Harpaz-Rotem I, Levy I. Emotional numbing in PTSD is associated with lower amygdala reactivity to pain. Neuropsychopharmacology 2022; 47:1913-1921. [PMID: 35945274 PMCID: PMC9485255 DOI: 10.1038/s41386-022-01405-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022]
Abstract
Posttraumatic stress disorder (PTSD) is associated with altered pain perception, namely increased pain threshold and higher pain response. While pain consists of physiological and affective components, affective components are often overlooked. Similar patterns of increased threshold-high response in PTSD were shown in response to emotional stimuli, i.e., emotional numbing. As both emotional numbing and pain processing are modulated by the amygdala, we aimed to examine whether individuals diagnosed with PTSD show lower amygdala activation to pain compared with combat controls, and whether the amygdala responses to pain correlates with emotional numbing. To do so, two independent samples of veterans (original study: 44 total (20 PTSD); conceptual replication study: 40 total (20 PTSD)) underwent threat conditioning, where a conditioned stimulus (CS+; visual stimulus) was paired with an unconditioned stimulus (US; electric-shock). We contrasted the amygdala activity to the CS + US pairing with the CS+ presented alone and correlated it with emotional numbing severity. In both samples, the PTSD group showed a robust reduction in amygdala reactivity to shock compared to the Combat Controls group. Furthermore, amygdala activation was negatively correlated with emotional numbing severity. These patterns were unique to the amygdala, and did not appear in comparison to a control region, the insula, a pivotal region for the processing of pain. To conclude, amygdala response to pain is lower in individuals with PTSD, and is associated with emotional numbing symptoms. Lower amygdala reactivity to mild pain may contribute to the "all-or-none" reaction to stressful situations often observed in PTSD.
Collapse
Affiliation(s)
- Nachshon Korem
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, 06511, USA.
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA.
- Yale University School of Medicine, Departments of Comparative Medicine and Neuroscience, New Haven, CT, 06511, USA.
| | - Or Duek
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, 06511, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Ziv Ben-Zion
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, 06511, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | | | - Shmuel Lissek
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Temidayo Orederu
- The Nash Family Department of Neuroscience, Department of Psychiatry, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daniela Schiller
- The Nash Family Department of Neuroscience, Department of Psychiatry, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ilan Harpaz-Rotem
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, 06511, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
- Yale University Department of Psychology, New Haven, CT, 06511, USA
- Wu Tsai Institute, Yale University New Haven, New Haven, CT, 06510, USA
| | - Ifat Levy
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
- Yale University School of Medicine, Departments of Comparative Medicine and Neuroscience, New Haven, CT, 06511, USA
- Yale University Department of Psychology, New Haven, CT, 06511, USA
- Wu Tsai Institute, Yale University New Haven, New Haven, CT, 06510, USA
| |
Collapse
|
82
|
Mechanisms underlying paclitaxel-induced neuropathic pain: Channels, inflammation and immune regulations. Eur J Pharmacol 2022; 933:175288. [PMID: 36122757 DOI: 10.1016/j.ejphar.2022.175288] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Paclitaxel is a chemotherapeutic agent widely used for many types of malignancies. However, when paclitaxel is used to treat tumors, patients commonly experience severe neuropathic pain that is difficult to manage. The mechanism underlying paclitaxel-induced neuropathic pain remains unclear. Evidence demonstrates correlations between mechanisms of paclitaxel-mediated pain and associated actions of ion channels, neuroinflammation, mitochondrial damage, and other factors. This review provides a comprehensive analysis of paclitaxel-induced neuropathic pain mechanisms and suggestions for effective interventions.
Collapse
|
83
|
Markiewicz-Gospodarek A, Markiewicz R, Dobrowolska B, Rahnama M, Łoza B. Relationship of Neuropeptide S (NPS) with Neurocognitive, Clinical, and Electrophysiological Parameters of Patients during Structured Rehabilitation Therapy for Schizophrenia. J Clin Med 2022; 11:jcm11185266. [PMID: 36142912 PMCID: PMC9506378 DOI: 10.3390/jcm11185266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction: Neuropeptide S is a biomarker related to various neuropsychiatric and neurocognitive functions. Since the need to improve cognitive functions in schizophrenia is unquestionable, it was valuable to investigate the possible relationships of plasma levels of NPS with neurocognitive, psychopathological and EEG parameters in patients with schizophrenia. Aim: Relationships between the serum NPS level and neurocognitive, clinical, and electrophysiological parameters were investigated in patients diagnosed with schizophrenia who underwent structured rehabilitation therapy. Methods: Thirty-three men diagnosed with schizophrenia were randomized into two groups. The REH group (N16) consisted of patients who underwent structured rehabilitation therapy, the CON group (N17) continued its previous treatment. Additionally, the reference NPS serum results were checked in a group of healthy people (N15). In the study several tests assessing various neurocognitive functions were used: d2 Sustained-Attention Test (d2), Color Trails Test (CTT), Beck Cognitive Insight Scale (BCIS), Acceptance of Illness Scale (AIS), and General Self-Efficacy Scale (GSES). The clinical parameters were measured with Positive and Negative Syndrome Scale (PANSS) and electrophysiological parameters were analyzed with auditory evoked potentials (AEPs) and quantitative electroencephalography (QEEG). The NPS, neurocognitive, clinical, and electrophysiological results of REH and CON groups were recorded at the beginning (T1) and after a period of 3 months (T2). Results: A decreased level of NPS was associated with the improvement in specific complex indices of d2 and BCIS neurocognitive tests, as well as the improvement in the clinical state (PANSS). No correlation was observed between the level of NPS and the results of AEPs and QEEG measurements. Conclusions: A decreased level of NPS is possibly related to the improvement in metacognition and social cognition domains, as well as to clinical improvement during the rehabilitation therapy of patients with schizophrenia.
Collapse
Affiliation(s)
| | - Renata Markiewicz
- Department of Neurology, Neurological and Psychiatric Nursing, Medical University of Lublin, 20-093 Lublin, Poland
| | - Beata Dobrowolska
- Department of Holistic Care and Management in Nursing, Medical University of Lublin, 20-081 Lublin, Poland
| | - Mansur Rahnama
- Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland
| | - Bartosz Łoza
- Department of Psychiatry, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
84
|
Putnam PT, Chang SWC. Interplay between the oxytocin and opioid systems in regulating social behaviour. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210050. [PMID: 35858101 PMCID: PMC9272147 DOI: 10.1098/rstb.2021.0050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/25/2022] [Indexed: 07/30/2023] Open
Abstract
The influence of neuromodulators on brain activity and behaviour is undeniably profound, yet our knowledge of the underlying mechanisms, or ability to reliably reproduce effects across varying conditions, is still lacking. Oxytocin, a hormone that acts as a neuromodulator in the brain, is an example of this quandary; it powerfully shapes behaviours across nearly all mammalian species, yet when manipulated exogenously can produce unreliable or sometimes unexpected behavioural results across varying contexts. While current research is rapidly expanding our understanding of oxytocin, interactions between oxytocin and other neuromodulatory systems remain underappreciated in the current literature. This review highlights interactions between oxytocin and the opioid system that serve to influence social behaviour and proposes a parallel-mechanism hypothesis to explain the supralinear effects of combinatorial neuropharmacological approaches. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Philip T. Putnam
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W. C. Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
85
|
Ma X, Yu W, Yao P, Zhu Y, Dai J, He X, Liu B, Xu C, Shao X, Fang J, Shen Z. Afferent and efferent projections of the rostral anterior cingulate cortex in young and middle-aged mice. Front Aging Neurosci 2022; 14:960868. [PMID: 36062147 PMCID: PMC9428471 DOI: 10.3389/fnagi.2022.960868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Research shows that across life, the incidence of mental illness is highest in the young. In the context of the COVID-19 pandemic, mental health issues of the young in particular have received global attention. The rostral anterior cingulate cortex (rACC) plays an important role in psychiatric disorders and chronic pain-psychiatric comorbidities. However, it remains unknown whether or how the afferent and efferent circuits of the rACC change with aging. In this study, we microinjected a retrograde tracer virus and an anterograde trans-monosynaptic virus into the rACC of young and middle-aged mice (both male and female), and systematically and quantitatively analyzed the whole-brain afferent and efferent connections of rACC at different ages and sexes. Notably, in young and middle-aged mice, afferents of the rACC belong to four groups of brain structures arising mainly from the amygdala [mainly basolateral amygdaloid nucleus (BLA)] and cerebral cortex (mainly orbital cortex), with a small part originating from the basal forebrain and thalamus. In contrast, efferents of the rACC belong to four groups of brain structures mainly projecting to the thalamus (mainly ventral anterior-lateral/ventromedial thalamic nucleus (VAL/VM)], with a very small part projecting to the amygdala, basal forebrain, and cerebral cortex. Compared with young mice, the BLA-rACC circuit in middle-aged mice (male and female) did not change significantly, while the rACC-VAL/VM circuit in middle-aged mice (male and female) decreased significantly. In conclusion, this study comprehensively analyzed the input-output neural projections of rACC in mice of different ages and sexes and provided preliminary evidence for further targeted research.
Collapse
|
86
|
Lopez JB, Chang CC, Kuo YM, Chan MF, Winn BJ. Oxytocin and secretin receptors - implications for dry eye syndrome and ocular pain. FRONTIERS IN OPHTHALMOLOGY 2022; 2:948481. [PMID: 38983562 PMCID: PMC11182124 DOI: 10.3389/fopht.2022.948481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 07/11/2024]
Abstract
Dry eye syndrome, a form of ocular surface inflammation, and chronic ocular pain are common conditions impacting activities of daily living and quality of life. Oxytocin and secretin are peptide hormones that have been shown to synergistically reduce inflammation in various tissues and attenuate the pain response at both the neuron and brain level. The oxytocin receptor (OXTR) and secretin receptor (SCTR) have been found in a wide variety of tissues and organs, including the eye. We reviewed the current literature of in vitro experiments, animal models, and human studies that examine the anti-inflammatory and anti-nociceptive roles of oxytocin and secretin. This review provides an overview of the evidence supporting oxytocin and secretin as the basis for novel treatments of dry eye and ocular pain syndromes.
Collapse
Affiliation(s)
- Jacqueline B Lopez
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
| | - Chih-Chiun Chang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
| | - Matilda F Chan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
- Department of Ophthalmology, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, CA, United States
| | - Bryan J Winn
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States
- Surgical Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|
87
|
Hogri R, Teuchmann HL, Heinke B, Holzinger R, Trofimova L, Sandkühler J. GABAergic CaMKIIα+ Amygdala Output Attenuates Pain and Modulates Emotional-Motivational Behavior via Parabrachial Inhibition. J Neurosci 2022; 42:5373-5388. [PMID: 35667849 PMCID: PMC9270917 DOI: 10.1523/jneurosci.2067-21.2022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 01/09/2023] Open
Abstract
Pain and emotion are strongly regulated by neurons in the central nucleus of the amygdala (CeA), a major output of the limbic system; yet, the neuronal signaling pathways underlying this modulation are incompletely understood. Here, we characterized a subpopulation of CeA neurons that express the CaMKIIα gene (CeACAM neurons) and project to the lateral parabrachial nucleus (LPBN), a brainstem region known for its critical role in distributing nociceptive and other aversive signals throughout the brain. In male Sprague Dawley rats, we show that CeACAM-LPBN neurons are GABAergic and mostly express somatostatin. In anaesthetized rats, optogenetic stimulation of CeACAM-LPBN projections inhibited responses of LPBN neurons evoked by electrical activation of Aδ- and C-fiber primary afferents; this inhibition could be blocked by intra-LPBN application of the GABAA receptor antagonist bicuculline. CeACAM-LPBN stimulation also dampened LPBN responses to noxious mechanical, thermal, and chemical stimuli. In behaving rats, optogenetic stimulation of CeACAM-LPBN projections attenuated nocifensive responses to mechanical pressure and radiant heat, disrupted the ability of a noxious shock to drive aversive learning, reduced the defensive behaviors of thigmotaxis and freezing, induced place preference, and promoted food consumption in sated rats. Thus, we suggest that CeACAM-LPBN projections mediate a form of analgesia that is accompanied by a shift toward the positive-appetitive pole of the emotional-motivational continuum. Since the affective state of pain patients strongly influences their prognosis, we envision that recruitment of this pathway in a clinical setting could potentially promote pain resilience and recovery.SIGNIFICANCE STATEMENT Pain and emotion interact on multiple levels of the nervous system. Both positive and negative emotion may have analgesic effects. However, while the neuronal mechanisms underlying "stress-induced analgesia" have been the focus of many studies, the neuronal substrates underlying analgesia accompanied by appetitive emotional-motivational states have received far less attention. The current study focuses on a subpopulation of amygdala neurons that form inhibitory synapses within the brainstem lateral parabrachial nucleus (LPBN). We show that activation of these amygdalo-parabrachial projections inhibits pain processing, while also reducing behaviors related to negative affect and enhancing behaviors related to positive affect. We propose that recruitment of this pathway would benefit pain patients, many of whom suffer from psychological comorbidities such as anxiety and depression.
Collapse
Affiliation(s)
- Roni Hogri
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna 1190, Austria
| | - Hannah Luise Teuchmann
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna 1190, Austria
| | - Bernhard Heinke
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna 1190, Austria
| | - Raphael Holzinger
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna 1190, Austria
| | - Lidia Trofimova
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna 1190, Austria
| | - Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna 1190, Austria
| |
Collapse
|
88
|
Melkumyan M, Silberman Y. Subregional Differences in Alcohol Modulation of Central Amygdala Neurocircuitry. Front Mol Neurosci 2022; 15:888345. [PMID: 35866156 PMCID: PMC9294740 DOI: 10.3389/fnmol.2022.888345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol use disorder is a highly significant medical condition characterized by an impaired ability to stop or control alcohol use, compulsive alcohol seeking behavior, and withdrawal symptoms in the absence of alcohol. Understanding how alcohol modulates neurocircuitry critical for long term and binge-like alcohol use, such as the central amygdala (CeA), may lead to the development of novel therapeutic strategies to treat alcohol use disorder. In clinical studies, reduction in the volume of the amygdala has been linked with susceptibility to relapse to alcohol use. Preclinical studies have shown the involvement of the CeA in the effects of alcohol use, with lesions of the amygdala showing a reduction in alcohol drinking, and manipulations of cells in the CeA altering alcohol drinking. A great deal of work has shown that acute alcohol, as well as chronic alcohol exposure via intake or dependence models, alters glutamatergic and GABAergic transmission in the CeA. The CeA, however, contains heterogeneous cell populations and distinct subregional differences in neurocircuit architecture which may influence the mechanism by which alcohol modulates CeA function overall. The current review aimed to parse out the differences in alcohol effects on the medial and lateral subregions of the CeA, and what role neuroinflammatory cells and markers, the endocannabinoid system, and the most commonly studied neuropeptide systems play in mediating these effects. A better understanding of alcohol effects on CeA subregional cell type and neurocircuit function may lead to development of more selective pharmacological interventions for alcohol use disorder.
Collapse
Affiliation(s)
- Mariam Melkumyan
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
89
|
Mousa SA, Khalefa BI, Shaqura M, Al-Madol M, Treskatsch S, Schäfer M. Superior control of inflammatory pain by corticotropin-releasing factor receptor 1 via opioid peptides in distinct pain-relevant brain areas. J Neuroinflammation 2022; 19:148. [PMID: 35705992 PMCID: PMC9199204 DOI: 10.1186/s12974-022-02498-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/26/2022] [Indexed: 08/30/2023] Open
Abstract
Background Under inflammatory conditions, the activation of corticotropin-releasing factor (CRF) receptor has been shown to inhibit pain through opioid peptide release from immune cells or neurons. CRF’s effects on human and animal pain modulation depend, however, on the distribution of its receptor subtypes 1 and 2 (CRF-R1 and CRF-R2) along the neuraxis of pain transmission. The objective of this study is to investigate the respective role of each CRF receptor subtype on centrally administered CRF-induced antinociception during inflammatory pain. Methods The present study investigated the role of intracerebroventricular (i.c.v.) CRF receptor agonists on nociception and the contribution of cerebral CRF-R1 and/or CRF-R2 subtypes in an animal model of Freund’s complete adjuvant (FCA)-induced hind paw inflammation. Methods used included behavioral experiments, immunofluorescence confocal analysis, and reverse transcriptase-polymerase chain reaction. Results Intracerebroventricular, but systemically inactive, doses of CRF elicited potent, dose-dependent antinociceptive effects in inflammatory pain which were significantly antagonized by i.c.v. CRF-R1-selective antagonist NBI 27914 (by approximately 60%) but less by CRF-R2-selective antagonist K41498 (by only 20%). In line with these findings, i.c.v. administration of CRF-R1 agonist stressin I produced superior control of inflammatory pain over CRF-R2 agonist urocortin-2. Intriguingly, i.c.v. opioid antagonist naloxone significantly reversed the CRF as well as CRF-R1 agonist-elicited pain inhibition. Consistent with existing evidence of high CRF concentrations in brain areas such as the thalamus, hypothalamus, locus coeruleus, and periaqueductal gray following its i.c.v. administration, double-immunofluorescence confocal microscopy demonstrated primarily CRF-R1-positive neurons that expressed opioid peptides in these pain-relevant brain areas. Finally, PCR analysis confirmed the predominant expression of the CRF-R1 over CRF-R2 in representative brain areas such as the hypothalamus. Conclusion Taken together, these findings suggest that CRF-R1 in opioid-peptide-containing brain areas plays an important role in the modulation of inflammatory pain and may be a useful therapeutic target for inflammatory pain control. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02498-8.
Collapse
Affiliation(s)
- Shaaban A Mousa
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Baled I Khalefa
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.,Zoology Department, Faculty of Science, AL-Zintan University, Alzintan, Libya
| | - Mohammed Shaqura
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | | | - Sascha Treskatsch
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Michael Schäfer
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
90
|
Relationship of Neuropeptide S with Clinical and Metabolic Parameters of Patients during Rehabilitation Therapy for Schizophrenia. Brain Sci 2022; 12:768. [PMID: 35741653 PMCID: PMC9221542 DOI: 10.3390/brainsci12060768&set/a 869781119+878628306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Neuropeptide S (NPS) is a factor associated with the central regulation of body weight, stress, anxiety, learning, memory consolidation, wakefulness-sleep cycle, and anti-inflammatory and neuroplastic effects. Its stress-reducing, anti-anxiety, arousal without anxiety, and pro-cognitive effects represent an interesting option for the treatment of neuropsychiatric disorders. The purpose of the study was to examine the potential associations of NPS levels in the blood with clinical and metabolic parameters during the rehabilitation therapy of patients with schizophrenia. Thirty-three male subjects diagnosed with schizophrenia were randomly divided into two groups. The rehabilitation group (REH, N16) consisted of patients who were subjected to structured, 3-month intensive rehabilitation therapy, and the control group (CON, N17) consisted of patients who were subjected to a standard support mechanism. Both groups continued their pharmacological treatment as usual. The NPS concentration, as well as clinical and metabolic parameters, were compared in both groups. Additionally, a group of healthy (H) males (N15) was tested for NPS reference scores. To look for the specificity and selectivity of the NPS relationship with clinical results, various factor models of the positive and negative syndrome scale (PANSS) were analyzed, including the original PANSS 2/3 model, its modified four-factor version, the male-specific four-factor model, and two five-factorial models validated in large groups in clinical and multi-ethnic studies. Results and conclusions: (1) Structured rehabilitation therapy, compared to unstructured supportive therapy, significantly reduced the level of schizophrenia disorders defined by various factor models derived from PANSS. (2) The clinical improvement within the 3-month rehabilitation therapy course was correlated with a significant decrease in neuropeptide S (NPS) serum level. (3) The excitement/Hostility (E/H) factor, which included schizophrenic symptoms of the psychotic disorganization, was specific and selective for the reduction in serum NPS, which was stable across all analyzed factor models. (4) The long-term relationship between serum NPS and clinical factors was not accompanied by basic metabolic parameters.
Collapse
|
91
|
Relationship of Neuropeptide S with Clinical and Metabolic Parameters of Patients during Rehabilitation Therapy for Schizophrenia. Brain Sci 2022. [DOI: 10.3390/brainsci12060768
expr 958893762 + 814326274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Neuropeptide S (NPS) is a factor associated with the central regulation of body weight, stress, anxiety, learning, memory consolidation, wakefulness–sleep cycle, and anti-inflammatory and neuroplastic effects. Its stress-reducing, anti-anxiety, arousal without anxiety, and pro-cognitive effects represent an interesting option for the treatment of neuropsychiatric disorders. The purpose of the study was to examine the potential associations of NPS levels in the blood with clinical and metabolic parameters during the rehabilitation therapy of patients with schizophrenia. Thirty-three male subjects diagnosed with schizophrenia were randomly divided into two groups. The rehabilitation group (REH, N16) consisted of patients who were subjected to structured, 3-month intensive rehabilitation therapy, and the control group (CON, N17) consisted of patients who were subjected to a standard support mechanism. Both groups continued their pharmacological treatment as usual. The NPS concentration, as well as clinical and metabolic parameters, were compared in both groups. Additionally, a group of healthy (H) males (N15) was tested for NPS reference scores. To look for the specificity and selectivity of the NPS relationship with clinical results, various factor models of the positive and negative syndrome scale (PANSS) were analyzed, including the original PANSS 2/3 model, its modified four-factor version, the male-specific four-factor model, and two five-factorial models validated in large groups in clinical and multi-ethnic studies. Results and conclusions: (1) Structured rehabilitation therapy, compared to unstructured supportive therapy, significantly reduced the level of schizophrenia disorders defined by various factor models derived from PANSS. (2) The clinical improvement within the 3-month rehabilitation therapy course was correlated with a significant decrease in neuropeptide S (NPS) serum level. (3) The excitement/Hostility (E/H) factor, which included schizophrenic symptoms of the psychotic disorganization, was specific and selective for the reduction in serum NPS, which was stable across all analyzed factor models. (4) The long-term relationship between serum NPS and clinical factors was not accompanied by basic metabolic parameters.
Collapse
|
92
|
Relationship of Neuropeptide S with Clinical and Metabolic Parameters of Patients during Rehabilitation Therapy for Schizophrenia. Brain Sci 2022; 12:brainsci12060768. [PMID: 35741653 PMCID: PMC9221542 DOI: 10.3390/brainsci12060768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/09/2023] Open
Abstract
Neuropeptide S (NPS) is a factor associated with the central regulation of body weight, stress, anxiety, learning, memory consolidation, wakefulness–sleep cycle, and anti-inflammatory and neuroplastic effects. Its stress-reducing, anti-anxiety, arousal without anxiety, and pro-cognitive effects represent an interesting option for the treatment of neuropsychiatric disorders. The purpose of the study was to examine the potential associations of NPS levels in the blood with clinical and metabolic parameters during the rehabilitation therapy of patients with schizophrenia. Thirty-three male subjects diagnosed with schizophrenia were randomly divided into two groups. The rehabilitation group (REH, N16) consisted of patients who were subjected to structured, 3-month intensive rehabilitation therapy, and the control group (CON, N17) consisted of patients who were subjected to a standard support mechanism. Both groups continued their pharmacological treatment as usual. The NPS concentration, as well as clinical and metabolic parameters, were compared in both groups. Additionally, a group of healthy (H) males (N15) was tested for NPS reference scores. To look for the specificity and selectivity of the NPS relationship with clinical results, various factor models of the positive and negative syndrome scale (PANSS) were analyzed, including the original PANSS 2/3 model, its modified four-factor version, the male-specific four-factor model, and two five-factorial models validated in large groups in clinical and multi-ethnic studies. Results and conclusions: (1) Structured rehabilitation therapy, compared to unstructured supportive therapy, significantly reduced the level of schizophrenia disorders defined by various factor models derived from PANSS. (2) The clinical improvement within the 3-month rehabilitation therapy course was correlated with a significant decrease in neuropeptide S (NPS) serum level. (3) The excitement/Hostility (E/H) factor, which included schizophrenic symptoms of the psychotic disorganization, was specific and selective for the reduction in serum NPS, which was stable across all analyzed factor models. (4) The long-term relationship between serum NPS and clinical factors was not accompanied by basic metabolic parameters.
Collapse
|
93
|
Presto P, Neugebauer V. Sex Differences in CGRP Regulation and Function in the Amygdala in a Rat Model of Neuropathic Pain. Front Mol Neurosci 2022; 15:928587. [PMID: 35726298 PMCID: PMC9206543 DOI: 10.3389/fnmol.2022.928587] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
The amygdala has emerged as a key player in the emotional response to pain and pain modulation. The lateral and capsular regions of the central nucleus of the amygdala (CeA) represent the “nociceptive amygdala” due to their high content of neurons that process pain-related information. These CeA divisions are the targets of the spino-parabrachio-amygdaloid pain pathway, which is the predominant source of calcitonin gene-related peptide (CGRP) within the amygdala. Changes in lateral and capsular CeA neurons have previously been observed in pain models, and synaptic plasticity in these areas has been linked to pain-related behavior. CGRP has been demonstrated to play an important role in peripheral and spinal mechanisms, and in pain-related amygdala plasticity in male rats in an acute arthritis pain model. However, the role of CGRP in chronic neuropathic pain-related amygdala function and behaviors remains to be determined for both male and female rats. Here we tested the hypothesis that the CGRP1 receptor is involved in neuropathic pain-related amygdala activity, and that blockade of this receptor can inhibit neuropathic pain behaviors in both sexes. CGRP mRNA expression levels in the CeA of male rats were upregulated at the acute stage of the spinal nerve ligation (SNL) model of neuropathic pain, whereas female rats had significantly higher CGRP and CGRP receptor component expression at the chronic stage. A CGRP1 receptor antagonist (CGRP 8-37) administered into the CeA in chronic neuropathic rats reduced mechanical hypersensitivity (von Frey and paw compression tests) in both sexes but showed female-predominant effects on emotional-affective responses (ultrasonic vocalizations) and anxiety-like behaviors (open field test). CGRP 8-37 inhibited the activity of CeA output neurons assessed with calcium imaging in brain slices from chronic neuropathic pain rats. Together, these findings may suggest that CGRP1 receptors in the CeA are involved in neuropathic pain-related amygdala activity and contribute to sensory aspects in both sexes but to emotional-affective pain responses predominantly in females. The sexually dimorphic function of CGRP in the amygdala would make CGRP1 receptors a potential therapeutic target for neuropathic pain relief, particularly in females in chronic pain conditions.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- *Correspondence: Volker Neugebauer
| |
Collapse
|
94
|
Yakhnitsa V, Ji G, Hein M, Presto P, Griffin Z, Ponomareva O, Navratilova E, Porreca F, Neugebauer V. Kappa Opioid Receptor Blockade in the Amygdala Mitigates Pain Like-Behaviors by Inhibiting Corticotropin Releasing Factor Neurons in a Rat Model of Functional Pain. Front Pharmacol 2022; 13:903978. [PMID: 35694266 PMCID: PMC9177060 DOI: 10.3389/fphar.2022.903978] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/09/2022] [Indexed: 01/06/2023] Open
Abstract
Functional pain syndromes (FPS) occur in the absence of identifiable tissue injury or noxious events and include conditions such as migraine, fibromyalgia, and others. Stressors are very common triggers of pain attacks in various FPS conditions. It has been recently demonstrated that kappa opioid receptors (KOR) in the central nucleus of amygdala (CeA) contribute to FPS conditions, but underlying mechanisms remain unclear. The CeA is rich in KOR and encompasses major output pathways involving extra-amygdalar projections of corticotropin releasing factor (CRF) expressing neurons. Here we tested the hypothesis that KOR blockade in the CeA in a rat model of FPS reduces pain-like and nocifensive behaviors by restoring inhibition of CeA-CRF neurons. Intra-CeA administration of a KOR antagonist (nor-BNI) decreased mechanical hypersensitivity and affective and anxiety-like behaviors in a stress-induced FPS model. In systems electrophysiology experiments in anesthetized rats, intra-CeA application of nor-BNI reduced spontaneous firing and responsiveness of CeA neurons to peripheral stimulation. In brain slice whole-cell patch-clamp recordings, nor-BNI increased feedforward inhibitory transmission evoked by optogenetic and electrical stimulation of parabrachial afferents, but had no effect on monosynaptic excitatory transmission. Nor-BNI decreased frequency, but not amplitude, of spontaneous inhibitory synaptic currents, suggesting a presynaptic action. Blocking KOR receptors in stress-induced FPS conditions may therefore represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Matthew Hein
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Zack Griffin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
95
|
Ballantyne JC, Sullivan MD. Is Chronic Pain a Disease? THE JOURNAL OF PAIN 2022; 23:1651-1665. [PMID: 35577236 DOI: 10.1016/j.jpain.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022]
Abstract
It was not until the twentieth century that pain was considered a disease. Before that it was managed medically as a symptom. The motivations for declaring chronic pain a disease, whether of the body or of the brain, include increasing its legitimacy as clinical problem and research focus worthy of attention from healthcare and research organizations alike. But 1 problem with disease concepts is that having a disease favors medical solutions and tends to reduce patient participation. We argue that chronic pain, particularly chronic primary pain (recently designated a first tier pain diagnosis in International Diagnostic Codes 11), is a learned state that is not intransigent even if it has biological correlates. Chronic pain is sometimes a symptom, and may sometimes be its own disease. But here we question the value of a disease focus for much of chronic pain for which patient involvement is essential, and which may need a much broader societal approach than is suggested by the disease designation. PERSPECTIVE: This article examines whether designating chronic pain a disease of the body or brain is helpful or harmful to patients. Can the disease designation help advance treatment, and is it needed to achieve future therapeutic breakthrough? Or does it make patients over-reliant on medical intervention and reduce their engagement in the process of recovery?
Collapse
Affiliation(s)
- Jane C Ballantyne
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington.
| | - Mark D Sullivan
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
96
|
Zhang YN, Xing XX, Chen L, Dong X, Pan HT, Hua XY, Wang K. Brain Functional Alteration at Different Stages of Neuropathic Pain With Allodynia and Emotional Disorders. Front Neurol 2022; 13:843815. [PMID: 35585842 PMCID: PMC9108233 DOI: 10.3389/fneur.2022.843815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/30/2022] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain (NeuP), a challenging medical condition, has been suggested by neuroimaging studies to be associated with abnormalities of neural activities in some brain regions. However, aberrancies in brain functional alterations underlying the sensory-discriminative abnormalities and negative emotions in the setting of NeuP remain unexplored. Here, we aimed to investigate the functional alterations in neural activity relevant to pain as well as pain-related depressive-like and anxiety-like behaviors in NeuP by combining amplitude of low frequency fluctuation (ALFF) and degree centrality (DC) analyses methods based on resting-state functional magnetic resonance imaging (rs-fMRI). A rat model of NeuP was established via chronic constriction injury (CCI) of the sciatic nerve. Results revealed that the robust mechanical allodynia occurred early and persisted throughout the entire observational period. Depressive and anxiety-like behaviors did not appear until 4 weeks after injury. When the maximum allodynia was apparent early, CCI rats exhibited decreased ALFF and DC values in the left somatosensory and nucleus accumbens shell (ACbSh), respectively, as compared with sham rats. Both values were significantly positively correlated with mechanical withdrawal thresholds (MWT). At 4 weeks post-CCI, negative emotional states were apparent and CCI rats were noted to exhibit increased ALFF values in the left somatosensory and medial prefrontal cortex (mPFC) as well as increased DC values in the right motor cortex, as compared with sham rats. At 4 weeks post-CCI, ALFF values in the left somatosensory cortex and DC values in the right motor cortex were noted to negatively correlate with MWT and exhibition of anxiety-like behavior on an open-field test (OFT); values were found to positively correlate with the exhibition of depressive-like behavior on forced swimming test (FST). The mPFC ALFF values were found to negatively correlate with the exhibition of anxiety-like behavior on OFT and positively correlate with the exhibition of depressive-like behavior on FST. Our findings detail characteristic alterations of neural activity patterns induced by chronic NeuP and underscore the important role of the left somatosensory cortex, as well as its related networks, in the mediation of subsequent emotional dysregulation due to NeuP.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Liu Chen
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Dong
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao-Tian Pan
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China,Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Xu-Yun Hua
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Ke Wang
| |
Collapse
|
97
|
Huang C, Wang Y, Chen P, Shan QH, Wang H, Ding LF, Bi GQ, Zhou JN. Single-cell reconstruction reveals input patterns and pathways into corticotropin-releasing factor neurons in the central amygdala in mice. Commun Biol 2022; 5:322. [PMID: 35388122 PMCID: PMC8986827 DOI: 10.1038/s42003-022-03260-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
Corticotropin-releasing factor (CRF) neurons are one of the most densely distributed cell types in the central amygdala (CeA), and are involved in a wide range of behaviors including anxiety and learning. However, the fundamental input circuits and patterns of CeA-CRF neurons are still unclear. Here, we generate a monosynaptic-input map onto CeA-CRF neurons at single-cell resolution via a retrograde rabies-virus system. We find all inputs are located in 44 nested subregions that directly innervate CeA-CRF neurons; most of them are top-down convergent inputs expressing Ca2+/calmodulin-dependent protein kinase II, and are centralized in cortex, especially in the layer 4 of the somatosensory cortex, which may directly relay information from the thalamus. While the bottom-up divergent inputs have the highest proportion of glutamate decarboxylase expression. Finally, en passant structures of single input neuron are revealed by in-situ reconstruction in a modified 3D-reference atlas, represented by a Periaqueductal gray-Subparafascicular nucleus-Subthalamic nucleus-Globus pallidus-Caudoputamen-CeA pathway. Taken together, our findings provide morphological and connectivity properties of inputs onto CeA-CRF neurons, which may provide insights for future studies interrogating circuit mechanisms of CeA-CRF neurons in mediating various functions. Viral retrograde tracing identifies input regions and patterns into the corticotropin releasing factor-expressing neurons in central amygdala, providing an important resource to disentangle the role of these cells in fear and anxiety.
Collapse
Affiliation(s)
- Chuan Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Peng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Hong Shan
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Hao Wang
- National Engineering Laboratory for Brain-inspired Intelligence Technology and Application, University of Science and Technology of China, Hefei, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Lu-Feng Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Guo-Qiang Bi
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiang-Ning Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
98
|
Carboni L, El Khoury A, Beiderbeck DI, Neumann ID, Mathé AA. Neuropeptide Y, calcitonin gene-related peptide, and neurokinin A in brain regions of HAB rats correlate with anxiety-like behaviours. Eur Neuropsychopharmacol 2022; 57:1-14. [PMID: 35008014 DOI: 10.1016/j.euroneuro.2021.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022]
Abstract
Anxiety disorders are pervasive psychiatric disorders causing great suffering. The high (HAB) and low (LAB) anxiety-related behaviour rats were selectively bred to investigate neurobiological correlates of anxiety. We compared the level of neuropeptides relevant for anxiety- and depression-related behaviours in selected brain regions of HAB and LAB rats. Increased anxiety and depression-like behaviours of male and female HAB rats in the elevated plus-maze and forced swim tests were accompanied by elevated levels of neuropeptide Y (NPY) in the prefrontal (PFC), frontal (FC) and cingulate cortex (CCx), the striatum, and periaqueductal grey (PAG). Moreover, HAB rats displayed sex-dependent, elevated levels of calcitonin gene-related peptide (CGRP) in PFC, FC, CCx, hippocampus, and PAG. Higher neurokinin A (NKA) levels were detected in CCx, striatum, and PAG in HAB males and in CCx and hypothalamus in HAB females. Increased neurotensin was detected in CCx and PAG in HAB males and in hypothalamus in HAB females. Elevated corticotropin-releasing hormone (CRH) levels appeared in female HAB hypothalamus. Significant correlations were found between anxiety-like behaviour and NPY, CGRP, NKA, and neurotensin, particularly with NPY in CCx and striatum, CGRP in FC and hippocampus, and NKA in entorhinal cortex. This is the first report of NPY, CGRP, NKA, Neurotensin, and CRH measurements in brain regions of HAB and LAB rats, which showed widespread NPY and CGRP alterations in cortical regions, with NKA and neurotensin changes localised in sub-cortical areas. The results may contribute to elucidate pathophysiological mechanisms underlying anxiety and depression and should facilitate identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Aram El Khoury
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Daniela I Beiderbeck
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040, Regensburg, Germany
| | - Aleksander A Mathé
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| |
Collapse
|
99
|
Optogenetic manipulations of CeA-CRF neurons modulate pain- and anxiety-like behaviors in neuropathic pain and control rats. Neuropharmacology 2022; 210:109031. [PMID: 35304173 DOI: 10.1016/j.neuropharm.2022.109031] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 11/23/2022]
Abstract
The amygdala plays a critical role in the emotional-affective component of pain and pain modulation. The central nucleus of amygdala (CeA) serves major output functions and has been linked to pain-related behaviors. Corticotropin releasing factor (CRF) in the CeA has emerged as an important modulator of pain and affective disorders. Here we measured the effects of optogenetic manipulation of CeA-CRF neurons on pain-related behaviors in a rat neuropathic pain model and under control conditions. Emotional-affective behaviors (vocalizations), mechanosensitivity (electronic von Frey anesthesiometer and calibrated forceps), and anxiety-like behaviors (open field test and elevated plus maze) were assessed in adult rats 1 week and 4 weeks after spinal nerve ligation (SNL model) and sham surgery (control). For optogenetic silencing or activation of CRF neurons, a Cre-inducible viral vector encoding enhanced halorhodopsin (eNpHR3.0) or channelrhodopsin 2 (ChR2) was injected stereotaxically into the right CeA of transgenic Crh-Cre rats. Light of the appropriate wavelength (590 nm for eNpHR3.0; 473 nm for ChR2) was delivered into the CeA with an LED optic fiber. Optical silencing of CeA-CRF neurons decreased the emotional-affective responses in the acute and chronic phases of the neuropathic pain model but had anxiolytic effects only at the chronic stage and no effect on mechanosensitivity. Optogenetic activation of CeA-CRF neurons increased the emotional-affective responses and induced anxiety-like behaviors but had no effect on mechanosensitivity in control rats. The data show the critical contribution of CeA-CRF neurons to pain-related behaviors under normal conditions and beneficial effects of inhibiting CeA-CRF neurons in neuropathic pain.
Collapse
|
100
|
Yeo XY, Cunliffe G, Ho RC, Lee SS, Jung S. Potentials of Neuropeptides as Therapeutic Agents for Neurological Diseases. Biomedicines 2022; 10:343. [PMID: 35203552 PMCID: PMC8961788 DOI: 10.3390/biomedicines10020343] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Despite recent leaps in modern medicine, progress in the treatment of neurological diseases remains slow. The near impermeable blood-brain barrier (BBB) that prevents the entry of therapeutics into the brain, and the complexity of neurological processes, limits the specificity of potential therapeutics. Moreover, a lack of etiological understanding and the irreversible nature of neurological conditions have resulted in low tolerability and high failure rates towards existing small molecule-based treatments. Neuropeptides, which are small proteinaceous molecules produced by the body, either in the nervous system or the peripheral organs, modulate neurological function. Although peptide-based therapeutics originated from the treatment of metabolic diseases in the 1920s, the adoption and development of peptide drugs for neurological conditions are relatively recent. In this review, we examine the natural roles of neuropeptides in the modulation of neurological function and the development of neurological disorders. Furthermore, we highlight the potential of these proteinaceous molecules in filling gaps in current therapeutics.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Grace Cunliffe
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Roger C. Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Su Seong Lee
- NanoBio Lab, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (X.Y.Y.); (G.C.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|