51
|
Jevtovic-Todorovic V. Sex hormones and the young brain: are we ready to embrace neuroprotective strategies? Br J Anaesth 2021; 128:229-231. [PMID: 34857358 DOI: 10.1016/j.bja.2021.10.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
Growing animal and clinical data continue to point to general anaesthetics as being potentially detrimental to the very young brain. While we are trying to understand the mechanisms responsible for this worrisome phenomenon, we must consider the value of protective strategies that would enable use of currently available general anaesthetics while avoiding histopathological changes and long-lasting impairment in behavioural and cognitive development. Wali and colleagues1 report that the gestational hormone progesterone is a promising 'safening' agent that ameliorates systemic inflammation caused by sevoflurane, a commonly used inhaled anaesthetic, while preventing development of cognitive impairment and an anxious phenotype.
Collapse
|
52
|
Hydrogen-Rich Water Improves Cognitive Ability and Induces Antioxidative, Antiapoptotic, and Anti-Inflammatory Effects in an Acute Ischemia-Reperfusion Injury Mouse Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9956938. [PMID: 34746315 PMCID: PMC8566066 DOI: 10.1155/2021/9956938] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022]
Abstract
Background Cerebral ischemia and its reperfusion injury facilitate serious neurodegenerative diseases such as dementia due to cell death; however, there is currently no treatment for it. Reactive oxygen species is one of the many factors that induce and worsen the development of such diseases, and it can be targeted by hydrogen treatment. This study examined the effect of molecular hydrogen in cerebral ischemia-reperfusion injury, which is emerging as a novel therapeutic agent for various diseases. Methods Ischemia-reperfusion injury was generated through bilateral common carotid artery occlusion in C57BL/6 mice. The test group received hydrogen-rich water orally during the test period. To confirm model establishment and the effect of hydrogen treatment, behavioural tests, biochemical assays, immunofluorescence microscopy, and cytokine assays were conducted. Results Open field and novel object recognition tests revealed that the hydrogen-treated group had improved cognitive function and anxiety levels compared to the nontreated group, while hematoxylin and eosin stain showed abundant pyknotic cells in a model mouse brain, and this was attenuated in the hydrogen-treated mouse brain. Total antioxidant capacity and thiobarbituric acid reactive substance assays revealed that hydrogen treatment induced antioxidative effects in the mouse brain. Immunofluorescence microscopy revealed attenuated apoptosis in the striatum, cerebral cortex, and hippocampus of hydrogen-treated mice. Western blotting showed that hydrogen treatment reduced Bax and TNFα levels. Finally, cytokine assays showed that IL-2 and IL-10 levels significantly differed between the hydrogen-treated and nontreated groups. Conclusion Hydrogen treatment could potentially be a future therapeutic strategy for ischemia and its derived neurodegenerative diseases by improving cognitive abilities and inducing antioxidative and antiapoptotic effects. Hydrogen treatment also decreased Bax and TNFα levels and induced an anti-inflammatory response via regulation of IL-2 and IL-10. These results will serve as a milestone for future studies intended to reveal the mechanism of action of molecular hydrogen in neurodegenerative diseases.
Collapse
|
53
|
Zhang T, Ji D, Sun J, Song J, Nie L, Sun N. NPAS4 suppresses propofol-induced neurotoxicity by inhibiting autophagy in hippocampal neuronal cells. Arch Biochem Biophys 2021; 711:109018. [PMID: 34418347 DOI: 10.1016/j.abb.2021.109018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 01/15/2023]
Abstract
Propofol, a general intravenous anesthetic, has been demonstrated to cause a profound neuroapoptosis in the developing brain followed by long-term neurocognitive impairment. Our study aimed to examine the neuroprotective effect of neuronal PAS domain protein 4 (NPAS4), an activity-dependent neuron-specific transcription factor, on propofol-induced neurotoxicity in hippocampal neuronal HT22 cells. The differentially expressed genes in HT22 cells after treatment with propofol were screened from Gene Expression Omnibus dataset GSE106799. NPAS4 expression in HT22 cells treated with different doses of propofol was investigated by qRT-PCR and Western blot analysis. Cell viability, lactate dehydrogenase (LDH) release, caspase-3 activity, and apoptosis were evaluated by MTT, a LDH-Cytotoxicity Assay Kit, a Caspase-3 Colorimetric Assay Kit, and TUNEL assay, respectively. The protein levels of LC3-I, LC3-II, Beclin 1, p62 and NPAS4 were detected using Western blot analysis. Propofol treatment concentration-dependently decreased NPAS4 expression in HT22 cells. Propofol treatment inhibited cell viability, increased LDH release and caspase-3 activity, and induced apoptosis and autophagy in HT22 cells. NPAS4 overexpression suppressed propofol-induced cell injury and autophagy in HT22 cells. Mechanistically, autophagy agonist rapamycin attenuated the neuroprotective effect of NPAS4 in propofol-treated HT22 cells. In conclusion, NAPS4 overexpression protected hippocampal neuronal HT22 cells against propofol-induced neurotoxicity by reducing autophagy.
Collapse
Affiliation(s)
- Tongyin Zhang
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, 473065, China
| | - Daofei Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Junyi Sun
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, 473065, China
| | - Jiangling Song
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, 473065, China
| | - Limin Nie
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, 473065, China
| | - Na Sun
- Catheterization Room, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, China.
| |
Collapse
|
54
|
Quantitative behavioural phenotyping to investigate anaesthesia induced neurobehavioural impairment. Sci Rep 2021; 11:19398. [PMID: 34588499 PMCID: PMC8481492 DOI: 10.1038/s41598-021-98405-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Anaesthesia exposure to the developing nervous system causes neuroapoptosis and behavioural impairment in vertebrate models. Mechanistic understanding is limited, and target-based approaches are challenging. High-throughput methods may be an important parallel approach to drug-discovery and mechanistic research. The nematode worm Caenorhabditis elegans is an ideal candidate model. A rich subset of its behaviour can be studied, and hundreds of behavioural features can be quantified, then aggregated to yield a 'signature'. Perturbation of this behavioural signature may provide a tool that can be used to quantify the effects of anaesthetic regimes, and act as an outcome marker for drug screening and molecular target research. Larval C. elegans were exposed to: isoflurane, ketamine, morphine, dexmedetomidine, and lithium (and combinations). Behaviour was recorded, and videos analysed with automated algorithms to extract behavioural features. Anaesthetic exposure during early development leads to persisting behavioural variation (in total, 125 features across exposure combinations). Higher concentrations, and combinations of isoflurane with ketamine, lead to persistent change in a greater number of features. Morphine and dexmedetomidine do not appear to lead to behavioural impairment. Lithium rescues the neurotoxic phenotype produced by isoflurane. Findings correlate well with vertebrate research: impairment is dependent on agent, is concentration-specific, is more likely with combination therapies, and can potentially be rescued by lithium. These results suggest that C. elegans may be an appropriate model with which to pursue phenotypic screens for drugs that mitigate the neurobehavioural impairment. Some possibilities are suggested for how high-throughput platforms might be organised in service of this field.
Collapse
|
55
|
Demirgan S, Akyol O, Temel Z, Şengelen A, Pekmez M, Ulaş O, Sevdi MS, Erkalp K, Selcan A. Intranasal levosimendan prevents cognitive dysfunction and apoptotic response induced by repeated isoflurane exposure in newborn rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1553-1567. [PMID: 33772342 DOI: 10.1007/s00210-021-02077-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Anesthetic-induced toxicity in early life may lead to risk of cognitive decline at later ages. Notably, multiple exposures to isoflurane (ISO) cause acute apoptotic cell death in the developing brain and long-term cognitive dysfunction. This study is the first to investigate whether levosimendan (LVS), known for its protective myocardial properties, can prevent anesthesia-induced apoptotic response in brain cells and learning and memory impairment. Postnatal day (P)7 Wistar albino pups were randomly assigned to groups consisting of an equal number of males and females in this laboratory investigation. We treated rats with LVS (0.8 mg/kg/day) intranasally 30 min before each ISO exposure (1.5%, 3 h) at P7+9+11. We selected DMSO as the drug vehicle. Also, the control group at P7+9+11 received 50% O2 for 3 h instead of ISO. Neuroprotective activity of LVS against ISO-induced cognitive dysfunction was evaluated by Morris water maze. Expression of apoptotic-related proteins was detected in the whole brain using western blot. LVS pretreatment significantly prevented anesthesia-induced deficit in spatial learning (at P28-32) and memory (at P33, P60, and P90). No sex-dependent difference occurred on any day of the training and probe trial. Intranasal LVS was also found to significantly prevent the ISO-induced apoptosis by reducing Bax and cleaved caspase-3, and by increasing Bcl-2 and Bcl-xL. Our findings support pretreatment with intranasal LVS application as a simple strategy in daily clinical practice in pediatric anesthesia to protect infants and children from the risk of general anesthesia-induced cell death and cognitive declines.
Collapse
Affiliation(s)
- Serdar Demirgan
- T.C. Health Ministry, Anesthesiology and Reanimation Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, 34134, Vezneciler-Fatih/Istanbul, Turkey
| | - Onat Akyol
- T.C. Health Ministry, Anesthesiology and Reanimation Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Zeynep Temel
- Department of Neuroscience Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, 34134, Vezneciler-Fatih/Istanbul, Turkey.
| | - Murat Pekmez
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Ozancan Ulaş
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, 34134, Vezneciler-Fatih/Istanbul, Turkey
| | - Mehmet Salih Sevdi
- T.C. Health Ministry, Anesthesiology and Reanimation Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Kerem Erkalp
- T.C. Health Ministry, Anesthesiology and Reanimation Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Ayşin Selcan
- T.C. Health Ministry, Anesthesiology and Reanimation Clinic, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
56
|
Neonatal administration of a subanaesthetic dose of JM-1232(-) in mice results in no behavioural deficits in adulthood. Sci Rep 2021; 11:12874. [PMID: 34145371 PMCID: PMC8213711 DOI: 10.1038/s41598-021-92344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 06/08/2021] [Indexed: 11/09/2022] Open
Abstract
In animal models, neonatal exposure of general anaesthetics significantly increases apoptosis in the brain, resulting in persistent behavioural deficits later in adulthood. Consequently, there is growing concern about the use of general anaesthetics in obstetric and paediatric practice. JM-1232(−) has been developed as a novel intravenous anaesthetic, but the effects of JM-1232(−) on the developing brain are not understood. Here we show that neonatal administration of JM-1232(−) does not lead to detectable behavioural deficits in adulthood, contrarily to other widely-used intravenous anaesthetics. At postnatal day 6 (P6), mice were injected intraperitoneally with a sedative-equivalent dose of JM-1232(−), propofol, or midazolam. Western blot analysis of forebrain extracts using cleaved poly-(adenosine diphosphate-ribose) polymerase antibody showed that JM-1232(−) is accompanied by slight but measurable apoptosis 6 h after administration, but it was relatively small compared to those of propofol and midazolam. Behavioural studies were performed in adulthood, long after the neonatal anaesthesia, to evaluate the long-term effects on cognitive, social, and affective functions. P6 administration to JM-1232(−) was not accompanied by detectable long-term behavioural deficits in adulthood. However, animals receiving propofol or midazolam had impaired social and/or cognitive functions. These data suggest that JM-1232(−) has prospects for use in obstetric and paediatric practice.
Collapse
|
57
|
A synthetic peptide rescues rat cortical neurons from anesthetic-induced cell death, perturbation of growth and synaptic assembly. Sci Rep 2021; 11:4567. [PMID: 33633281 PMCID: PMC7907385 DOI: 10.1038/s41598-021-84168-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Anesthetics are deemed necessary for all major surgical procedures. However, they have also been found to exert neurotoxic effects when tested on various experimental models, but the underlying mechanisms remain unknown. Earlier studies have implicated mitochondrial fragmentation as a potential target of anesthetic-induced toxicity, although clinical strategies to protect their structure and function remain sparse. Here, we sought to determine if preserving mitochondrial networks with a non-toxic, short-life synthetic peptide—P110, would protect cortical neurons against both inhalational and intravenous anesthetic-induced neurotoxicity. This study provides the first direct and comparative account of three key anesthetics (desflurane, propofol, and ketamine) when used under identical conditions, and demonstrates their impact on neonatal, rat cortical neuronal viability, neurite outgrowth and synaptic assembly. Furthermore, we discovered that inhibiting Fis1-mediated mitochondrial fission reverses anesthetic-induced aberrations in an agent-specific manner. This study underscores the importance of designing mitigation strategies invoking mitochondria-mediated protection from anesthetic-induced toxicity in both animals and humans.
Collapse
|
58
|
Latham LE, Wang C, Patterson TA, Slikker W, Liu F. Neuroprotective Effects of Carnitine and Its Potential Application to Ameliorate Neurotoxicity. Chem Res Toxicol 2021; 34:1208-1222. [PMID: 33570912 DOI: 10.1021/acs.chemrestox.0c00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Carnitine is an essential metabolite that is absorbed from the diet and synthesized in the kidney, liver, and brain. It ferries fatty acids across the mitochondrial membrane to undergo β-oxidation. Carnitine has been studied as a therapy or protective agent for many neurological diseases and neurotoxicity (e.g., prolonged anesthetic exposure-induced developmental neurotoxicity in preclinical models). Preclinical and clinical data support the notion that carnitine or acetyl carnitine may improve a patient's quality of life through increased mitochondrial respiration, release of neurotransmitters, and global gene expression changes, showing the potential of carnitine beyond its approved use to treat primary and secondary carnitine deficiency. In this review, we summarize the beneficial effects of carnitine or acetyl carnitine on the central nervous system, highlighting protective effects against neurotoxicity-induced damage caused by various chemicals and encouraging a thorough evaluation of carnitine use as a therapy for patients suffering from neurotoxicant exposure.
Collapse
Affiliation(s)
- Leah E Latham
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Cheng Wang
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Tucker A Patterson
- Office of Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - William Slikker
- Office of Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| |
Collapse
|
59
|
Noguchi KK, Fuhler NA, Wang SH, Capuano S, Brunner KR, Larson S, Crosno K, Simmons HA, Mejia AF, Martin LD, Dissen GA, Brambrink A, Ikonomidou C. Brain pathology caused in the neonatal macaque by short and prolonged exposures to anticonvulsant drugs. Neurobiol Dis 2021; 149:105245. [PMID: 33385515 PMCID: PMC7856070 DOI: 10.1016/j.nbd.2020.105245] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/07/2020] [Accepted: 12/27/2020] [Indexed: 01/18/2023] Open
Abstract
Barbiturates and benzodiazepines are potent GABAA receptor agonists and strong anticonvulsants. In the developing brain they can cause neuronal and oligodendroglia apoptosis, impair synaptogenesis, inhibit neurogenesis and trigger long-term neurocognitive sequelae. In humans, the vulnerable period is projected to extend from the third trimester of pregnancy to the third year of life. Infants with seizures and epilepsies may receive barbiturates, benzodiazepines and their combinations for days, months or years. How exposure duration affects neuropathological sequelae is unknown. Here we investigated toxicity of phenobarbital/midazolam (Pb/M) combination in the developing nonhuman primate brain. Neonatal rhesus monkeys received phenobarbital intravenously, followed by infusion of midazolam over 5 (n = 4) or 24 h (n = 4). Animals were euthanized at 8 or 36 h and brains examined immunohistochemically and stereologically. Treatment was well tolerated, physiological parameters remained at optimal levels. Compared to naïve controls, Pb/M exposed brains displayed widespread apoptosis affecting neurons and oligodendrocytes. Pattern and severity of cell death differed depending on treatment-duration, with more extensive neurodegeneration following longer exposure. At 36 h, areas of the brain not affected at 8 h displayed neuronal apoptosis, while oligodendroglia death was most prominent at 8 h. A notable feature at 36 h was degeneration of neuronal tracts and trans-neuronal death of neurons, presumably following their disconnection from degenerated presynaptic partners. These findings demonstrate that brain toxicity of Pb/M in the neonatal primate brain becomes more severe with longer exposures and expands trans-synaptically. Impact of these sequelae on neurocognitive outcomes and the brain connectome will need to be explored.
Collapse
Affiliation(s)
- Kevin K Noguchi
- Department of Psychiatry, Washington University, School of Medicine, St Louis, USA
| | - Nicole A Fuhler
- Department of Psychiatry, Washington University, School of Medicine, St Louis, USA
| | - Sophie H Wang
- Department of Psychiatry, Washington University, School of Medicine, St Louis, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Kevin R Brunner
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Shreya Larson
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Kristin Crosno
- Wisconsin National Primate Research Center, Madison, WI, USA
| | | | - Andres F Mejia
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Lauren D Martin
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Gregory A Dissen
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Ansgar Brambrink
- Department of Anesthesiology, Columbia University, New York Presbyterian Hospital, Irving Medical Center, New York, NY, USA
| | - Chrysanthy Ikonomidou
- Department of Neurology, University of Wisconsin, School of Medicine, Madison, WI, USA.
| |
Collapse
|
60
|
Jevtovic-Todorovic V. Detrimental effects of general anaesthesia on young primates: are we closer to understanding the link? Br J Anaesth 2021; 126:575-577. [PMID: 33509616 DOI: 10.1016/j.bja.2020.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
|
61
|
Slupe AM, Villasana L, Wright KM. GABAergic neurons are susceptible to BAX-dependent apoptosis following isoflurane exposure in the neonatal period. PLoS One 2021; 16:e0238799. [PMID: 33434191 PMCID: PMC7802958 DOI: 10.1371/journal.pone.0238799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/27/2020] [Indexed: 12/18/2022] Open
Abstract
Exposure to volatile anesthetics during the neonatal period results in acute neuron death. Prior work suggests that apoptosis is the dominant mechanism mediating neuron death. We show that Bax deficiency blocks neuronal death following exposure to isoflurane during the neonatal period. Blocking Bax-mediated neuron death attenuated the neuroinflammatory response of microglia following isoflurane exposure. We find that GABAergic interneurons are disproportionately overrepresented among dying neurons. Despite the increase in neuronal apoptosis induced by isoflurane exposure during the neonatal period, seizure susceptibility, spatial memory retention, and contextual fear memory were unaffected later in life. However, Bax deficiency alone led to mild deficiencies in spatial memory and contextual fear memory, suggesting that normal developmental apoptotic death is important for cognitive function. Collectively, these findings show that while GABAergic neurons in the neonatal brain undergo elevated Bax-dependent apoptotic cell death following exposure to isoflurane, this does not appear to have long-lasting consequences on overall neurological function later in life.
Collapse
Affiliation(s)
- Andrew M. Slupe
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Laura Villasana
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Kevin M. Wright
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
62
|
Song J, Li H, Wang Y, Niu C. Does Exposure to General Anesthesia Increase Risk of ADHD for Children Before Age of Three? Front Psychiatry 2021; 12:717093. [PMID: 34899413 PMCID: PMC8652283 DOI: 10.3389/fpsyt.2021.717093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The objective of the study was to evaluate the relationship between frequency of exposure to general anesthesia before the age of 3 and subsequent risk of diagnosis for attention-deficit hyperactivity disorder (ADHD). Method: We searched PubMed, Embase, Web of Science, and Cochrane Library database for eligible inclusion in the meta-analysis. The indicated outcomes were extracted from the included studies, and the combined effects were calculated using the RevMan software 5.3. Results: Compared with no exposure to general anesthesia, single exposure to general anesthesia did not increase the risk of ADHD for children before the age of 3 [hazard ratio (HR): 1.14, 95%; confidence intervals (CI): 0.97-1.35; p = 0.11; I 2 = 0%], while multiple exposures to general anesthesia did increase the risk of ADHD (HR: 1.83; 95% CIs: 1.00-3.32; p = 0.05; I 2 = 81%). Conclusion: Multiple, but not single, exposures to general anesthesia in children before age of 3 increased the risk of ADHD.
Collapse
Affiliation(s)
- Junjie Song
- Department of Anesthesiology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Huifang Li
- Department of Anesthesiology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Ying Wang
- Department of Medical Hospital, Henan University, Henan Medical Hospital, Henan University, Kaifeng, China
| | - Chenguang Niu
- Department of Anesthesiology, The First Affiliated Hospital of Henan University, Kaifeng, China.,The Key Laboratory of Clinical Resources Translation, Henan University, Kaifeng, China
| |
Collapse
|
63
|
Aldemir Şensoy D, Demirgan S, Akyol O, Gümüş Özcan F, Selcan A. Effect of Isoflurane Exposure with Administration of Polyunsaturated Fatty Acids on Cognition in Developing Rats. Turk J Anaesthesiol Reanim 2020; 48:477-483. [PMID: 33313587 PMCID: PMC7720831 DOI: 10.5152/tjar.2020.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 08/17/2020] [Indexed: 11/22/2022] Open
Abstract
Objective The developing brain is vulnerable to the negative effects of anaesthetics. We aimed to investigate the effect of isoflurane and polyunsaturated fatty acids (PUFAs) on cognition. Methods A total of 64, ten days old rats were randomly divided into 4 groups: group O2 (oxygen group), group Iso (isoflurane group), group Iso-S (isoflurane+saline) and group Iso-PUFAs (isoflurane+intraperitoneal [IP] PUFAs emulsion). Rats in groups Iso, Iso-S and Iso-PUFAs were exposed to 1.5% isoflurane in 50% oxygen for 6 hours. Rats in group O2 breathed only 50% oxygen. Before anaesthesia, rats in group Iso-S were administered 0.5 mL isotonic and rats in group Iso-PUFAs were administered 5 mL kg-1 PUFAs emulsion by IP injection. The Morris water maze (MWM) test was performed on postnatal 28-33 days. Histological evaluation and immune histochemical staining (Bcl-2 antibody) were performed on postnatal day 11 on rat brains. Results As demonstrated by the reduction in the escape latency on days 3, 4 and 5 compared with day 1, all rats learned the task during the acquisition period. In contrast to others, rats in group Iso spent significantly lower time to find the platform on day 2 than on day 1 (p=0.034). No significant difference was found among the groups in terms of time spent in finding the platform. There were no significant differences in probe trials, histological features and Bcl-2 immunoreactivity among the groups. Conclusion Isoflurane did not cause cognitive dysfunction and neuronal death, and a single dose of PUFAs emulsion had no effect on cognition either.
Collapse
Affiliation(s)
- Didem Aldemir Şensoy
- Department of Anaesthesiology and Reanimation, Health Ministry, Health Sciences University, Bağcılar Training and Research Hospital, İstanbul, Turkey
| | - Serdar Demirgan
- Department of Anaesthesiology and Reanimation, Health Ministry, Health Sciences University, Bağcılar Training and Research Hospital, İstanbul, Turkey
| | - Onat Akyol
- Department of Anaesthesiology and Reanimation, Health Ministry, Health Sciences University, Bağcılar Training and Research Hospital, İstanbul, Turkey
| | - Funda Gümüş Özcan
- Department of Anaesthesiology and Reanimation, Health Ministry, Health Sciences University, Bağcılar Training and Research Hospital, İstanbul, Turkey
| | - Ayşin Selcan
- Department of Anaesthesiology and Reanimation, Health Ministry, Health Sciences University, Bağcılar Training and Research Hospital, İstanbul, Turkey
| |
Collapse
|
64
|
D'Elia A, Schiavi S, Soluri A, Massari R, Soluri A, Trezza V. Role of Nuclear Imaging to Understand the Neural Substrates of Brain Disorders in Laboratory Animals: Current Status and Future Prospects. Front Behav Neurosci 2020; 14:596509. [PMID: 33362486 PMCID: PMC7759612 DOI: 10.3389/fnbeh.2020.596509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular imaging, which allows the real-time visualization, characterization and measurement of biological processes, is becoming increasingly used in neuroscience research. Scintigraphy techniques such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) provide qualitative and quantitative measurement of brain activity in both physiological and pathological states. Laboratory animals, and rodents in particular, are essential in neuroscience research, providing plenty of models of brain disorders. The development of innovative high-resolution small animal imaging systems together with their radiotracers pave the way to the study of brain functioning and neurotransmitter release during behavioral tasks in rodents. The assessment of local changes in the release of neurotransmitters associated with the performance of a given behavioral task is a turning point for the development of new potential drugs for psychiatric and neurological disorders. This review addresses the role of SPECT and PET small animal imaging systems for a better understanding of brain functioning in health and disease states. Brain imaging in rodent models faces a series of challenges since it acts within the boundaries of current imaging in terms of sensitivity and spatial resolution. Several topics are discussed, including technical considerations regarding the strengths and weaknesses of both technologies. Moreover, the application of some of the radioligands developed for small animal nuclear imaging studies is discussed. Then, we examine the changes in metabolic and neurotransmitter activity in various brain areas during task-induced neural activation with special regard to the imaging of opioid, dopaminergic and cannabinoid receptors. Finally, we discuss the current status providing future perspectives on the most innovative imaging techniques in small laboratory animals. The challenges and solutions discussed here might be useful to better understand brain functioning allowing the translation of preclinical results into clinical applications.
Collapse
Affiliation(s)
- Annunziata D'Elia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| | - Sara Schiavi
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| | - Andrea Soluri
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Roberto Massari
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Alessandro Soluri
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Rome, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Department of Science, University “Roma Tre”, Rome, Italy
| |
Collapse
|
65
|
Zhao S, Fan Z, Hu J, Zhu Y, Lin C, Shen T, Li Z, Li K, Liu Z, Chen Y, Zhang B. The differential effects of isoflurane and sevoflurane on neonatal mice. Sci Rep 2020; 10:19345. [PMID: 33168900 PMCID: PMC7652873 DOI: 10.1038/s41598-020-76147-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Previous research has shown that exposure to volatile anesthetics can induce acute neuroinflammation and neuroapoptopsis in neonatal rodents and that these events can lead to cognitive dysfunction at later stages. Isoflurane and sevoflurane are two of the most popular anesthetics used in the field of pediatrics. However, the relative impact of these two anesthetics on the developing brain at distinct time points after the induction of anesthesia has not been compared. In the present study, we exposed 7-day-old mice to clinically equivalent doses of isoflurane (1.5%) and sevoflurane (2.5%) for 4 h and then investigated consequential changes in the brains of these mice at six different time points. We analyzed the levels of proteins that are directly related to neuroapoptosis, neuroinflammation, synaptic function, and memory, in the brains of neonatal mice. Exposure of neonatal mice to isoflurane and sevoflurane resulted in acute neuronal apoptosis. Our analysis observed significant levels of neuroinflammation and changes in the expression levels of proteins associated with both synaptic transmission and memory in mice from the isoflurane group but not the sevoflurane group. Our results therefore indicate that isoflurane and sevoflurane induce differential effects in the brains of neonatal mice.
Collapse
Affiliation(s)
- Shuai Zhao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ziqi Fan
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jing Hu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yueli Zhu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Caixiu Lin
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Ting Shen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zheyu Li
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Kaicheng Li
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhirong Liu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
66
|
Gupta A, Gairola S, Gupta N. Safety of anesthetic exposure on the developing brain - Do we have the answer yet? J Anaesthesiol Clin Pharmacol 2020. [PMID: 33013026 DOI: 10.4103/joacp.joacp_229_19.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
During the past two decades, a vast number of studies done on rodents and nonhuman primates have implicated general anesthetic exposure of developing brains in producing neurotoxicity leading to various structural and functional neurological abnormalities with cognitive and behavioral deficits later in life. However, it is still unclear whether these findings translate to children and whether single exposure to anesthesia in childhood can have long-term neuro-developmental risks. Considering the fact that a large number of healthy young children are undergoing elective surgery under general anesthesia globally, any such potential neurocognitive risk of pediatric anesthesia is a serious public health issue and is therefore important to understand. This review aims to assess the current preclinical and clinical evidence related to anesthetic neurotoxicity.
Collapse
Affiliation(s)
- Anju Gupta
- Department of Anesthesiology, Pain and Critical Care, AIIMS, New Delhi, India
| | - Shruti Gairola
- Department of Onco-Anesthesiology and Palliative Care, DRBRAIRCH, AIIMS, Delhi, India
| | - Nishkarsh Gupta
- Department of Onco-Anesthesiology and Palliative Care, DRBRAIRCH, AIIMS, Delhi, India
| |
Collapse
|
67
|
Yang F, Zhao H, Zhang K, Wu X, Liu H. Research progress and treatment strategies for anesthetic neurotoxicity. Brain Res Bull 2020; 164:37-44. [PMID: 32798600 DOI: 10.1016/j.brainresbull.2020.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022]
Abstract
Every year, a large number of infants and young children worldwide are administered general anesthesia. Whether general anesthesia adversely affects the intellectual development and cognitive function of children at a later date remains controversial. Many animal experiments have shown that general anesthetics can cause nerve damage during development, affect synaptic plasticity, and induce apoptosis, and finally affect learning and memory function in adulthood. The neurotoxicity of pediatric anesthetics (PAN) has received extensive attention in the field of anesthesia, which has been listed as a potential problem affecting public health by NFDA of the United States. Previous studies on rodents and non-human primates indicate that inhalation of anesthetics early after birth can induce long-term and sustained impairment of learning and memory function, as well as changes in brain function. Many anti-oxidant drugs, dexmedetomidine, as well as a rich living environment and exercise have been proven to reduce the neurotoxicity of anesthetics. In this paper, we summarize the research progress, molecular mechanisms and current intervention measures of anesthetic neurotoxicity.
Collapse
Affiliation(s)
- Fan Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| | - Hai Zhao
- Clinical Skills Center, Shenyang Medical College, Huanghe Street 146, Shenyang, 110034, China.
| | - Kaiyuan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| | - Hongtao Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| |
Collapse
|
68
|
Zhou XY, Liu J, Xu ZP, Fu Q, Wang PQ, Wang JH, Zhang H. Dexmedetomidine ameliorates postoperative cognitive dysfunction by inhibiting Toll-like receptor 4 signaling in aged mice. Kaohsiung J Med Sci 2020; 36:721-731. [PMID: 32627922 DOI: 10.1002/kjm2.12234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 04/11/2020] [Accepted: 04/26/2020] [Indexed: 11/11/2022] Open
Abstract
Our study aimed to explore the molecular mechanisms involved in the improvement of postoperative cognitive dysfunction (POCD) by dexmedetomidine (DEX). BV2 microglia cells were cultured under normal condition, DEX exposure (0.1 μg/mL), and lipopolysacchride (LPS) treatment (0.1 μg/mL) or with pretreatment of DEX before LPS incubation. For BV2 microglia cells, LPS induced markedly increased release of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, and tumor necrosis factor-alpha [TNF-α]) and expressions of Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-κB), while DEX pretreatment inhibited the LPS-induced production of pro-inflammatory cytokines and expressions of TLR4 and NF-κB. The spatial memory function was impaired in the aged mice following partial hepatectomy since the percentage of time spent in the target quadrant and the number of crossings over the former platform location were reduced. Pretreatment of DEX may attenuate neuroinflammation and improve POCD in aged mice through inhibiting the TLR4-NF-κB signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- Xue-Yue Zhou
- School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Anesthesiology, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Jing Liu
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Zhi-Peng Xu
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Qiang Fu
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Pei-Qi Wang
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Jing-Hua Wang
- Department of Anesthesiology, The 305 Hospital of Chinese PLA, Beijing, China
| | - Hong Zhang
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
69
|
Liu X, Ji J, Zhao GQ. General anesthesia affecting on developing brain: evidence from animal to clinical research. J Anesth 2020; 34:765-772. [PMID: 32601887 PMCID: PMC7511469 DOI: 10.1007/s00540-020-02812-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/06/2020] [Indexed: 11/29/2022]
Abstract
As the recent update of General anaesthesia compared to spinal anaesthesia (GAS) studies has been published in 2019, together with other clinical evidence, the human studies provided an overwhelming mixed evidence of an association between anaesthesia exposure in early childhood and later neurodevelopment changes in children. Pre-clinical studies in animals provided strong evidence on how anaesthetic and sedative agents (ASAs) causing neurotoxicity in developing brain and deficits in long-term cognitive functions. However pre-clinical results cannot translate to clinical practice directly. Three well designed large population-based human studies strongly indicated that a single brief exposure to general anesthesia (GAs) is not associated with any long-term neurodevelopment deficits in children's brain. Multiple exposure might cause decrease in processing speed and motor skills of children. However, the association between GAs and neurodevelopment in children is still inconclusive. More clinical studies with larger scale observations, randomized trials with longer duration exposure of GAs and follow-ups, more sensitive outcome measurements, and strict confounder controls are needed in the future to provide more conclusive and informative data. New research area has been developed to contribute in finding solutions for clinical practice as attenuating the neurotoxic effect of ASAs. Xenon and Dexmedetomidine are already used in clinical setting as neuroprotection and anaesthetic sparing-effect, but more research is still needed.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jing Ji
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guo-Qing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
70
|
Dai CL, Li H, Hu X, Zhang J, Liu F, Iqbal K, Gong CX. Neonatal Exposure to Anesthesia Leads to Cognitive Deficits in Old Age: Prevention with Intranasal Administration of Insulin in Mice. Neurotox Res 2020; 38:299-311. [PMID: 32458405 DOI: 10.1007/s12640-020-00223-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/09/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
Recent pre-clinical and clinical studies suggest that general anesthesia in infants and children may increase the risk of learning disabilities. Currently, there is no treatment for preventing anesthesia-induced neurotoxicity and potential long-term functional impairment. Animal studies have shown that neonatal exposure to anesthesia can induce acute neurotoxicity and long-term behavioral changes that can be detected a few months later. It is currently unknown whether neonatal exposure, especially repeated exposures, to general anesthesia can induce or increase the risk for cognitive impairment during aging. Here, we report that repeated exposures of neonatal mice (P7-9 days old) to anesthesia with sevoflurane (3 h/day for 3 days) led to cognitive impairment that was detectable at the age of 18-19 months, as assessed by using novel object recognition, Morris water maze, and fear conditioning tests. The repeated neonatal exposures to anesthesia did not result in detectable alterations in neurobehavioral development, in tau phosphorylation, or in the levels of synaptic proteins in the aged mouse brains. Importantly, we found that treatment with intranasal insulin prior to anesthesia exposure can prevent mice from anesthesia-induced cognitive impairment. These results suggest that neonatal exposure to general anesthesia could increase the risk for cognitive impairment during aging. This study also supports pre-treatment with intranasal administration of insulin to be a simple, effective approach to prevent infants and children from the increased risk for age-related cognitive impairment induced by neonatal exposure to general anesthesia.
Collapse
Affiliation(s)
- Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Hengchang Li
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA.,Department of Anesthesiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Xin Hu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Jin Zhang
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA.,Department of Rehabilitation, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA.
| |
Collapse
|
71
|
Gupta A, Gairola S, Gupta N. Safety of anesthetic exposure on the developing brain - Do we have the answer yet? J Anaesthesiol Clin Pharmacol 2020; 36:149-155. [PMID: 33013026 PMCID: PMC7480296 DOI: 10.4103/joacp.joacp_229_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/31/2019] [Indexed: 12/23/2022] Open
Abstract
During the past two decades, a vast number of studies done on rodents and nonhuman primates have implicated general anesthetic exposure of developing brains in producing neurotoxicity leading to various structural and functional neurological abnormalities with cognitive and behavioral deficits later in life. However, it is still unclear whether these findings translate to children and whether single exposure to anesthesia in childhood can have long-term neuro-developmental risks. Considering the fact that a large number of healthy young children are undergoing elective surgery under general anesthesia globally, any such potential neurocognitive risk of pediatric anesthesia is a serious public health issue and is therefore important to understand. This review aims to assess the current preclinical and clinical evidence related to anesthetic neurotoxicity.
Collapse
Affiliation(s)
- Anju Gupta
- Department of Anesthesiology, Pain and Critical Care, AIIMS, New Delhi, India
| | - Shruti Gairola
- Department of Onco-Anesthesiology and Palliative Care, DRBRAIRCH, AIIMS, Delhi, India
| | - Nishkarsh Gupta
- Department of Onco-Anesthesiology and Palliative Care, DRBRAIRCH, AIIMS, Delhi, India
| |
Collapse
|
72
|
Sun M, Yuan R, Liu H, Zhang J, Tu S. The effects of repeated propofol anesthesia on spatial memory and long-term potentiation in infant rats under hypoxic conditions. Genes Dis 2020; 7:245-252. [PMID: 32215294 PMCID: PMC7083743 DOI: 10.1016/j.gendis.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/02/2019] [Indexed: 11/26/2022] Open
Abstract
Propofol is widely used as an intravenous drug for induction and maintenance in general anesthesia. Hypoxemia is a common complication during perianesthesia. We want to know the effect of propofol on spatial memory and LTP (Long-term potentiation) under hypoxic conditions. In this study, 84 seven-day-old Sprague–Dawley rats were randomly assigned into six groups (n = 14)-four control groups: lipid emulsion solvent + 50% oxygen (CO), lipid emulsion solvent + room air (CA), lipid emulsion solvent + 18% oxygen (CH), and propofol + 50% oxygen (propofol–oxygen, PO); and two experiment groups: propofol + room air (propofol–air, PA), and propofol + 18% oxygen (propofol–hypoxia, PH). After receiving propofol (50 mg/kg) or the same volume of intralipid intraperitoneal (5.0 ml/kg), injected once per day for seven consecutive days, the rats were exposed to 18% oxygen, 50% oxygen and air, until recovery of the righting reflex. We found that the apoptotic index and activated caspase-3 increased in the PH group (P < 0.05) compared with the PA group, fEPSP (field excitatory postsynaptic) potential and success induction rate of LTP reduced in all propofol groups (P < 0.05). Compared with the PO group, the fEPSP and success induction rate of LTP reduced significantly in the PA and PH groups (P < 0.05). Moreover, compared with CH group, the average time of escape latency was longer, and the number of platform location crossings was significantly reduced in the PH group (P < 0.05). Thus, we believe that adequate oxygen is very important during propofol anesthesia.
Collapse
Affiliation(s)
- Mang Sun
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, China.,Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
| | - Ruixue Yuan
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, No. Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Hui Liu
- Chongqing Key Laboratory of Pediatrics, China
| | - Jing Zhang
- Chongqing Key Laboratory of Pediatrics, China
| | - Shengfen Tu
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| |
Collapse
|
73
|
Multiple Anesthesia/Surgery Cannot Impair Reference Memory in Adult Mice. Mediators Inflamm 2020; 2020:3736912. [PMID: 32214903 PMCID: PMC7081041 DOI: 10.1155/2020/3736912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Postoperative cognitive dysfunction increases mortality and morbidity in perioperative patients. Numerous studies have demonstrated that multiple surgery/anesthesia during the neurodevelopmental period affects cognitive function, whereas a single anesthesia/surgery rarely causes cognitive dysfunction in adults. However, whether adults who undergo multiple anesthesia/surgery over a short period will experience cognitive dysfunction remains unclear. In this study, central nervous system inflammation and changes in cholinergic markers were investigated in adult mice subjected to multiple laparotomy procedures over a short period of time. The results showed that despite the increased expression of IL-6 and TNF-α in the hippocampus after multiple operations and the activation of microglia, multiple anesthesia/surgery did not cause a decline in cognitive function in adult mice. There were no changes in the cholinergic markers after multiple anesthesia/surgery.
Collapse
|
74
|
Tesic V, Joksimovic SM, Quillinan N, Krishnan K, Covey DF, Todorovic SM, Jevtovic-Todorovic V. Neuroactive steroids alphaxalone and CDNC24 are effective hypnotics and potentiators of GABA A currents, but are not neurotoxic to the developing rat brain. Br J Anaesth 2020; 124:603-613. [PMID: 32151384 DOI: 10.1016/j.bja.2020.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/01/2020] [Accepted: 01/20/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The most currently used general anaesthetics are potent potentiators of γ-aminobutyric acid A (GABAA) receptors and are invariably neurotoxic during the early stages of brain development in preclinical animal models. As causality between GABAA potentiation and anaesthetic-induced developmental neurotoxicity has not been established, the question remains whether GABAergic activity is crucial for promoting/enhancing neurotoxicity. Using the neurosteroid analogue, (3α,5α)-3-hydroxy-13,24-cyclo-18,21-dinorchol-22-en-24-ol (CDNC24), which potentiates recombinant GABAA receptors, we examined whether this potentiation is the driving force in inducing neurotoxicity during development. METHODS The neurotoxic potential of CDNC24 was examined vis-à-vis propofol (2,6-diisopropylphenol) and alphaxalone (5α-pregnan-3α-ol-11,20-dione) at the peak of rat synaptogenesis. In addition to the morphological neurotoxicity studies of the subiculum and medial prefrontal cortex (mPFC), we assessed the extra-, pre-, and postsynaptic effects of these agents on GABAergic neurotransmission in acute subicular slices from rat pups. RESULTS CDNC24, like alphaxalone and propofol, caused dose-dependent hypnosis in vivo, with a higher therapeutic index. CDNC24 and alphaxalone, unlike propofol, did not cause developmental neuroapoptosis in the subiculum and mPFC. Propofol potentiated post- and extrasynaptic GABAA currents as evidenced by increased spontaneous inhibitory postsynaptic current (sIPSC) decay time and prominent tonic currents, respectively. CDNC24 and alphaxalone had a similar postsynaptic effect, but also displayed a strong presynaptic effect as evidenced by decreased frequency of sIPSCs and induced moderate tonic currents. CONCLUSIONS The lack of neurotoxicity of CDNC24 and alphaxalone may be at least partly related to suppression of presynaptic GABA release in the developing brain.
Collapse
Affiliation(s)
- Vesna Tesic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Srdjan M Joksimovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, MO, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | |
Collapse
|
75
|
Nugent BD, Davis PJ, Noll RB, Tersak JM. Sedation practices in pediatric patients with acute lymphoblastic leukemia. Pediatr Blood Cancer 2020; 67:e28037. [PMID: 31625677 DOI: 10.1002/pbc.28037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 11/11/2022]
Abstract
BACKGROUND The 5-year survival for pediatric acute lymphoblastic leukemia (ALL) is greater than 90%. One late effect of pediatric ALL associated with numerous long-term difficulties is neurocognitive deficits. The experience at our institution, as well as conversations with oncologists at other institutions, suggests an increase in the use of sedation during lumbar punctures (LPs) for treatment of pediatric ALL. Among the most common Children's Oncology Group (COG) ALL protocols, approximately 30 LPs are performed over 2-3 years. Studies in animals reveal that sedation drugs may harm the developing brain. Gaps in knowledge exist regarding their use in children, particularly repeated exposures. The purpose of this study is to summarize sedation practices for LPs related to the treatment of ALL at COG institutions. METHODS Responsible Individuals (RIs) of the Cancer Control Committee of COG were invited to complete an internet-based survey about sedation practices at their institutions. RESULTS Surveys were sent to 103 RIs with a 62% response rate (N = 64). A combined 2018 new patients with ALL were seen each year (mean = 31.5, range = 3-110) at the participating institutions. The majority (96%) of children with ALL received sedation for LPs. While there was considerable variability across institutions in the type of sedation given, the most common was propofol alone (n = 36, 56%). CONCLUSIONS A substantial number of children with ALL receive sedation for LPs; however, there is variation in the medication used. Better understanding of sedation practices in children with ALL may inform future research to investigate which methods are the safest, with an emphasis on long-term neurocognitive late effects.
Collapse
Affiliation(s)
- Bethany D Nugent
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter J Davis
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,UPMC Children's Hospital of Pittsburgh, Department of Anesthesiology, Pittsburgh, Pennsylvania
| | - Robert B Noll
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jean M Tersak
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,UPMC Children's Hospital of Pittsburgh, Division of Pediatric Hematology/Oncology, Pittsburgh, Pennsylvania
| |
Collapse
|
76
|
Hypoxia, hypercarbia, and mortality reporting in studies of anaesthesia-related neonatal neurodevelopmental delay in rodent models. Eur J Anaesthesiol 2020; 37:70-84. [DOI: 10.1097/eja.0000000000001105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
77
|
He L, Wang X, Zheng S. Inhibition of the electron transport chain in propofol induced neurotoxicity in zebrafish embryos. Neurotoxicol Teratol 2020; 78:106856. [PMID: 31923456 DOI: 10.1016/j.ntt.2020.106856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 01/20/2023]
Abstract
Fetal and neonatal exposure to propofol can lead to neuronal death and long-term neurobehavioral deficiencies in both rodents and nonhuman primates. Zebrafish embryo, which is fertilized ex-utero, has provided us a new model species to study the effects of general anesthetics on developing brain. Inhibited electron transport chain leads to mitochondrial dysfunction and insufficient energy production. The aim of this study was to dissect the role of electron transport chain in propofol-induced neurotoxicity. 6 h post fertilization (hpf) zebrafish embryos were exposed to control or 1, 2 or 4 μg/ml propofol until 48hpf. Acridine orange staining was used to assess cell apoptosis in the brain of zebrafish embryos. The activity of mitochondrial electron transport chain complex was assessed using colorimetric method. Expression of key subunit of cytochrome c oxidase was assessed by western blot and transcription level of cox4i1 was assessed by quantitative real time-PCR. The mitochondrial membrane potential and ATP content were assessed. Exposure to 1, 2 and 4 μg/ml propofol induced significant increases in cell apoptosis in the brain of zebrafish embryos in a dose-dependent manner and led to significant decreases in electron transport chain complex IV activity from (0.161 ± 0.023)μmol/mg/min in blank control-treated group to (0.096 ± 0.015)μmol/mg/min, (0.083 ± 0.013)μmol/mg/min and (0.045 ± 0.014)μmol/mg/min respectively, accompanied by decreased expression of key regulatory subunit of cytochrome c oxidase-subunit IV and decreased transcription level of cox4i1. Propofol exposure also decreased the mitochondrial membrane potential and ATP content. Our findings demonstrate that inhibition of the electron transport chain is involved in the mechanisms by which propofol induces neurotoxicity in the developing brain.
Collapse
Affiliation(s)
- Lin He
- Department of Anesthesiology, Children's Hospital of Fudan University, Shanghai, China
| | - Xuan Wang
- Department of Anesthesiology, Children's Hospital of Fudan University, Shanghai, China
| | - Shan Zheng
- Department of Surgery, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
78
|
Kasala S, Briyal S, Prazad P, Ranjan AK, Stefanov G, Donovan R, Gulati A. Exposure to Morphine and Caffeine Induces Apoptosis and Mitochondrial Dysfunction in a Neonatal Rat Brain. Front Pediatr 2020; 8:593. [PMID: 33042927 PMCID: PMC7530195 DOI: 10.3389/fped.2020.00593] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/11/2020] [Indexed: 11/23/2022] Open
Abstract
Background: Preterm infants experience rapid brain growth during early post-natal life making them vulnerable to drugs acting on central nervous system. Morphine is administered to premature neonates for pain control and caffeine for apnea of prematurity. Simultaneous use of morphine and caffeine is common in the neonatal intensive care unit. Prior studies have shown acute neurotoxicity with this combination, however, little information is available on the mechanisms mediating the neurotoxic effects. The objective of this study was to determine the effects of morphine and caffeine, independently and in combination on mitochondrial dysfunction (Drp1 and Mfn2), neural apoptosis (Bcl-2, Bax, and cell damage) and endothelin (ET) receptors (ETA and ETB) in neonatal rat brain. Methods: Male and female rat pups were grouped separately and were divided into four different subgroups on the basis of treatments-saline (Control), morphine (MOR), caffeine (CAFF), and morphine + caffeine (M+C) treatment. Pups in MOR group were injected with 2 mg/kg morphine, CAFF group received 100 mg/kg caffeine, and M+C group received both morphine (2 mg/kg) and caffeine (100 mg/kg), subcutaneously on postnatal days (PND) 3-6. Pups were euthanized at PND 7, 14, or 28. Brains were isolated and analyzed for mitochondrial dysfunction, apoptosis markers, cell damage, and ET receptor expression via immunofluorescence and western blot analyses. Results: M+C showed a significantly higher expression of Bax compared to CAFF or MOR alone at PND 7, 14, 28 in female pups (p < 0.05) and at PND 7, 14 in male pups (p < 0.05). Significantly (p < 0.05) increased expression of Drp1, Bax, and suppressed expression of Mfn2, Bcl-2 at PND 7, 14, 28 in all the treatment groups compared to the control was observed in both genders. No significant difference in the expression of ETA and ETB receptors in male or female pups was seen at PND 7, 14, and 28. Conclusion: Concurrent use of morphine and caffeine during the first week of life increases apoptosis and cell damage in the developing brain compared to individual use of caffeine and morphine.
Collapse
Affiliation(s)
- Sweatha Kasala
- Division of Neonatology, Department of Pediatrics, Advocate Children's Hospital, Park Ridge, IL, United States
| | - Seema Briyal
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Preetha Prazad
- Division of Neonatology, Department of Pediatrics, Advocate Children's Hospital, Park Ridge, IL, United States
| | - Amaresh K Ranjan
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| | - Gospodin Stefanov
- Division of Neonatology, Department of Pediatrics, Advocate Children's Hospital, Park Ridge, IL, United States
| | - Ramona Donovan
- Advocate Aurora Research Institute, Park Ridge, IL, United States
| | - Anil Gulati
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States.,Pharmazz Inc. Research and Development, Willowbrook, IL, United States
| |
Collapse
|
79
|
Jildenstål P, Sandin J, WarrènStomberg M, Pålsson J, Ricksten SE, Snygg J. Agreement between frontal and occipital regional cerebral oxygen saturation in infants during surgery and general anesthesia an observational study. Paediatr Anaesth 2019; 29:1122-1127. [PMID: 31536668 DOI: 10.1111/pan.13743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/26/2019] [Accepted: 09/14/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Advances in perioperative pediatric care have resulted in an increased number of procedures requiring anesthesia. During anesthesia and surgery, the patient is subjected to factors that affect the circulatory homeostasis, which can influence oxygenation of the brain. Near-infrared spectroscopy (NIRS) is an easy applicable noninvasive method for monitoring of regional tissue oxygenation (rScO₂%). Alternate placements for NIRS have been investigated; however, no alternative cranial placements have been explored. AIM To evaluate the agreement between frontal and occipital recordings of rScO₂% in infants using INVOSTM during surgery and general anesthesia. METHOD A standard frontal monitoring of rScO₂% with NIRS was compared with occipital rScO₂% measurements in fifteen children at an age <1 year, ASA 1-2, undergoing cleft lip and/or palate surgery during general anesthesia with sevoflurane. An agreement analysis was performed according to Bland and Altman. RESULTS Mean values of frontal and occipital rScO₂% at baseline were largely similar (70.7 ± 4.77% and 69.40 ± 5.04%, respectively). In the majority of the patients, the frontal and occipital recordings of rScO2 changed in parallel. There was a moderate positive correlation between frontal and occipital rScO₂% INVOS™ readings (rho[ρ]: 0.513, P < .01). The difference between frontal and occipital rScO₂ ranged from -31 to 28 with a mean difference (bias) of -0.15%. The 95% limit of agreement was -18.04%-17.74%. The error between frontal and occipital rScO₂ recordings was 23%. CONCLUSION The agreement between frontal and occipital recordings of brain rScO₂% in infants using INVOSTM during surgery and general anesthesia was acceptable. In surgical procedures where the frontal region of the head is not available for monitoring, occipital recordings of rScO₂% could be an option for monitoring.
Collapse
Affiliation(s)
- Pether Jildenstål
- Institute of Health and Care Sciences, Sahlgrenska academy, University of Gothenburg, Gothenburg, Sweden.,Department of Anesthesia and Intensive Care, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Anesthesiology, Surgery and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Sandin
- Department of children´s surgery division, Queen Silvia´s children´s hospital, Gothenburg, Sweden
| | - Margareta WarrènStomberg
- Institute of Health and Care Sciences, Sahlgrenska academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Pålsson
- Department of Anesthesia and Intensive Care, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Anesthesiology, Surgery and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sven-Erik Ricksten
- Department of Anesthesia and Intensive Care, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Anesthesiology, Surgery and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Snygg
- Department of Anesthesia and Intensive Care, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Anesthesiology, Surgery and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
80
|
Song Y, Li X, Gong X, Zhao X, Ma Z, Xia T, Gu X. Green tea polyphenols improve isoflurane-induced cognitive impairment via modulating oxidative stress. J Nutr Biochem 2019; 73:108213. [DOI: 10.1016/j.jnutbio.2019.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/04/2019] [Accepted: 07/02/2019] [Indexed: 12/24/2022]
|
81
|
General anesthetic neurotoxicity in the young: Mechanism and prevention. Neurosci Biobehav Rev 2019; 107:883-896. [PMID: 31606415 DOI: 10.1016/j.neubiorev.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022]
Abstract
General anesthesia (GA) is usually considered to safely induce a reversible unconscious state allowing surgery to be performed without pain. A growing number of studies, in particular pre-clinical studies, however, demonstrate that general anesthetics can cause neuronal death and even long-term neurological deficits. Herein, we report our literature review and meta-analysis data of the neurological outcomes after anesthesia in the young. We also review available mechanistic and epigenetic data of GA exposure related to cognitive impairment per se and the potential preventive strategies including natural herbal compounds to attenuate those side effects. In summary, anesthetic-induced neurotoxicity may be treatable and natural herbal compounds and other medications may have great potential for such use but warrants further study before clinical applications can be initiated.
Collapse
|
82
|
Effect of General Anesthetics on Caspase-3 Levels in Patients With Aneurysmal Subarachnoid Hemorrhage: A Preliminary Study. J Neurosurg Anesthesiol 2019; 33:172-176. [PMID: 31599811 DOI: 10.1097/ana.0000000000000648] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/16/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND General anesthesia has been associated with neuronal apoptosis and activation of caspases. Apoptosis is a crucial factor in early brain injury following aneurysmal subarachnoid hemorrhage (aSAH). We conducted a double-blind, prospective, randomized pilot study to evaluate the effect of 4 anesthetic agents on cerebrospinal fluid (CSF) and serum caspase-3 levels in aSAH patients. MATERIALS AND METHODS A total of 44 good-grade aSAH patients with preoperative lumbar drain scheduled for surgical clipping or endovascular coiling were randomized to receive maintenance of anesthesia with propofol, isoflurane, sevoflurane, or desflurane. Caspase-3 levels were measured in CSF and serum samples collected at baseline, 1 hour after induction, and 1 hour after cessation of anesthesia. RESULTS Compared with baseline, there was a decrease in CSF caspase-3 levels and an increase in serum caspase-3 levels 1 hour after exposure to all 4 anesthetic agents; levels returned to baseline values after cessation of anesthesia. Median CSF caspase-3 levels at baseline, 1 hour after anesthesia exposure, and 1 hour after cessation of anesthesia were 0.0679, 0.0004, and 0.0689 ng/mL, respectively (P<0.05). Median serum caspase-3 levels at baseline, 1 hour after anesthesia exposure, and 1-hour after cessation of anesthesia were 0.0028, 0.0682, and 0.0044 ng/mL, respectively (P<0.05). CONCLUSIONS Propofol, isoflurane, sevoflurane, or desflurane have similar effects on CSF and serum caspase-3. The reduction of intraoperative CSF caspase-3 levels suggests a possible role for general anesthesia in neuroresuscitation by slowing the neuronal apoptotic pathway.
Collapse
|
83
|
Ikonomidou C, Kirvassilis G, Swiney BS, Wang SH, Huffman JN, Williams SL, Masuoka K, Capuano S, Brunner KR, Crosno K, Simmons HS, Mejia AF, Turski CA, Brambrink A, Noguchi KK. Mild hypothermia ameliorates anesthesia toxicity in the neonatal macaque brain. Neurobiol Dis 2019; 130:104489. [PMID: 31175984 PMCID: PMC6689440 DOI: 10.1016/j.nbd.2019.104489] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/13/2019] [Accepted: 06/04/2019] [Indexed: 01/18/2023] Open
Abstract
Sedatives and anesthetics can injure the developing brain. They cause apoptosis of neurons and oligodendrocytes, impair synaptic plasticity, inhibit neurogenesis and trigger long-term neurocognitive deficits. The projected vulnerable period in humans extends from the third trimester of pregnancy to the third year of life. Despite all concerns, there is no ethically and medically acceptable alternative to the use of sedatives and anesthetics for surgeries and painful interventions. Development of measures that prevent injury while allowing the medications to exert their desired actions has enormous translational value. Here we investigated protective potential of hypothermia against histological toxicity of the anesthetic sevoflurane in the developing nonhuman primate brain. Neonatal rhesus monkeys underwent sevoflurane anesthesia over 5 h. Body temperature was regulated in the normothermic (>36.5 °C), mild hypothermic (35-36.5 °C) and moderately hypothermic (<35 °C) range. Animals were euthanized at 8 h and brains examined immunohistochemically (activated caspase 3) and stereologically to quantify apoptotic neuronal and oligodendroglial death. Sevoflurane anesthesia was well tolerated at all temperatures, with oxygen saturations, end tidal CO2 and blood gases remaining at optimal levels. Compared to controls, sevoflurane exposed brains displayed significant apoptosis in gray and white matter affecting neurons and oligodendrocytes. Mild hypothermia (35-36.5 °C) conferred significant protection from apoptotic brain injury, whereas moderate hypothermia (<35 °C) did not. Hypothermia ameliorates anesthesia-induced apoptosis in the neonatal primate brain within a narrow temperature window (35-36.5 °C). Protection is lost at temperatures below 35 °C. Given the mild degree of cooling needed to achieve significant brain protection, application of our findings to humans should be explored further.
Collapse
Affiliation(s)
- Chrysanthy Ikonomidou
- Department of Neurology, School of Medicine, University of Wisconsin, Madison, WI, USA.
| | - George Kirvassilis
- Department of Anesthesiology, School of Medicine, University of Wisconsin, Madison, WI, USA
| | - Brant S Swiney
- Department of Psychiatry, School of Medicine, Washington University, St Louis, WA, USA
| | - Sophie H Wang
- Department of Psychiatry, School of Medicine, Washington University, St Louis, WA, USA
| | - Jacob N Huffman
- Department of Psychiatry, School of Medicine, Washington University, St Louis, WA, USA
| | - Sasha L Williams
- Department of Psychiatry, School of Medicine, Washington University, St Louis, WA, USA
| | - Kobe Masuoka
- Department of Psychiatry, School of Medicine, Washington University, St Louis, WA, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Kevin R Brunner
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Kristin Crosno
- Wisconsin National Primate Research Center, Madison, WI, USA
| | | | - Andres F Mejia
- Wisconsin National Primate Research Center, Madison, WI, USA
| | - Christopher A Turski
- Department of Neurology, School of Medicine, University of Wisconsin, Madison, WI, USA
| | - Ansgar Brambrink
- Department of Anesthesiology, Columbia University, New York Presbyterian Hospital, Irving Medical Center, New York, NY, USA
| | - Kevin K Noguchi
- Department of Psychiatry, School of Medicine, Washington University, St Louis, WA, USA
| |
Collapse
|
84
|
Raviraj D, Engelhardt T, Hansen TG. Anaesthesia for the Growing Brain. Curr Pharm Des 2019; 25:2165-2170. [DOI: 10.2174/1381612825666190702151030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/20/2019] [Indexed: 11/22/2022]
Abstract
Despite the long history of paediatric anaesthesia, there is still much to be discovered regarding how
exposure to anaesthesia affects the developing brain. Given that commonly used anaesthetic agents are thought to
exert their effect via N-Methyl-D-Aspartate (NMDA) and gamma-aminobutyric acid A (GABAA) receptors, it is
biologically plausible that exposure during periods of vulnerable brain development may affect long term outcome.
There are numerous animal studies which suggest lasting neurological changes. However, whether this risk
also applies to humans is unclear given the varying physiological development of different species and humans.
Human studies are emerging and ongoing and their results are producing conflicting data. The purpose of this
review is to summarize the currently available evidence and consider how this may be used to minimize harm to
the paediatric population undergoing anaesthesia.
Collapse
Affiliation(s)
- Divya Raviraj
- Royal Aberdeen Children's Hospital, School of Medicine and Dentistry University of Aberdeen, Scotland, United Kingdom
| | - Thomas Engelhardt
- Royal Aberdeen Children's Hospital, School of Medicine and Dentistry University of Aberdeen, Scotland, United Kingdom
| | - Tom G. Hansen
- Department of Anaesthesia & Intensive Care - Paediatric Section, Odense University Hospital, & University of Southern Denmark, Clinical Institute - Anaesthesiology, Odense, Denmark
| |
Collapse
|
85
|
Joksimovic SM, DiGruccio MR, Boscolo A, Jevtovic-Todorovic V, Todorovic SM. The Role of Free Oxygen Radicals in Lasting Hyperexcitability of Rat Subicular Neurons After Exposure to General Anesthesia During Brain Development. Mol Neurobiol 2019; 57:208-216. [PMID: 31493241 DOI: 10.1007/s12035-019-01770-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/30/2022]
Abstract
A large number of preclinical studies have established that general anesthetics (GAs) may cause neurodevelopmental toxicity in rodents and nonhuman primates, which is followed by long-term cognitive deficits. The subiculum, the main output structure of hippocampal formation, is one of the brain regions most sensitive to exposure to GAs at the peak of synaptogenesis (i.e., postnatal day (PND) 7). We have previously shown that subicular neurons exposed to GAs produce excessive amounts of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), which is a known modulator of neuronal excitability. To further explore the association between GA-mediated increase in ROS levels and long-term functional changes within subicular neurons, we sought to investigate the effects of ROS on excitability of these neurons using patch-clamp electrophysiology in acute rat brain slices. We hypothesized that both acute application of H2O2 and an early exposure (at PND 7) to GA consisting of midazolam (9 mg/kg), 70% nitrous oxide, and 0.75% isoflurane can affect excitability of subicular neurons and that superoxide dismutase and catalase mimetic, EUK-134, may reverse GA-mediated hyperexcitability in the subiculum. Our results using whole-cell recordings demonstrate that acute application of H2O2 has bidirectional effects on neuronal excitability: lower concentrations (0.001%, 0.3 mM) cause an excitatory effect, whereas higher concentrations (0.01%, 3 mM) inhibited neuronal firing. Furthermore, 0.3 mM H2O2 increased the average action potential frequency of subicular neurons by almost twofold, as assessed using cell-attach configuration. Finally, we found that preemptive in vivo administration of EUK-134 reduced GA-induced long-lasting hyperexcitability of subicular neurons ex vivo when studied in neonatal and juvenile rats. This finding suggests that the increase in ROS after GA exposure may play an important role in regulating neuronal excitability, thus making it an attractive therapeutic target for GA-induced neurotoxicity in neonates.
Collapse
Affiliation(s)
- Srdjan M Joksimovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Mail Stop 8130, 12801 E. 17th Avenue, Rm L18-4100, Aurora, CO, 80045, USA
| | - Michael R DiGruccio
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Mail Stop 8130, 12801 E. 17th Avenue, Rm L18-4100, Aurora, CO, 80045, USA
| | - Annalisa Boscolo
- UOC Anaesthesia and Intensive Care, Hospital of Padua, Padua, Italy
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Mail Stop 8130, 12801 E. 17th Avenue, Rm L18-4100, Aurora, CO, 80045, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Mail Stop 8130, 12801 E. 17th Avenue, Rm L18-4100, Aurora, CO, 80045, USA. .,Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. .,Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
86
|
Foltran RB, Stefani KM, Bonafina A, Resasco A, Diaz SL. Differential Hippocampal Expression of BDNF Isoforms and Their Receptors Under Diverse Configurations of the Serotonergic System in a Mice Model of Increased Neuronal Survival. Front Cell Neurosci 2019; 13:384. [PMID: 31555094 PMCID: PMC6712164 DOI: 10.3389/fncel.2019.00384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Neurotrophic factors are relevant regulators of the neurogenic process at different levels. In particular, the brain-derived neurotrophic factor, BDNF, is highly expressed in the hippocampus (HC) of rodents and participates in the control of neuronal proliferation, and survival in the dentate gyrus (DG). Likewise, serotonin is also involved in the regulation of neurogenesis, though its role is apparently more complex. Indeed, both enhancement of serotonin neurotransmission as well as serotonin depletion, paradoxically increase neuronal survival in the HC of mice. In this study, we analyzed the protein expression of the BDNF isoforms, i.e., pro- and mature-BDNF, and their respective receptors p75 and TrkB, in the HC of mice chronically treated with para-chloro-phenyl-alanine (PCPA), an inhibitor of serotonin synthesis. The same analysis was conducted in hyposerotonergic mice with concomitant administration of the 5-HT1A receptor agonist, 8-Hydroxy-2-(di-n- propylamino) tetralin (8-OH-DPAT). Increased expression of p75 receptor with decreased expression of pro-BDNF was observed after chronic PCPA. Seven-day treatment with 8-OH-DPAT reestablished the expression of pro-BDNF modified by PCPA, and induced an increase in the expression of p75 receptor. It has been demonstrated that PCPA-treated mice have higher number of immature neurons in the HC. Given that immature neurons participate in the pattern separation process, the object pattern separation test was conducted. A better performance of hyposerotonergic mice was not confirmed in this assay. Altogether, our results show that molecules in the BDNF signaling pathway are differentially expressed under diverse configurations of the serotonergic system, allowing for fine-tuning of the neurogenic process.
Collapse
Affiliation(s)
- Rocío Beatriz Foltran
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karen Melany Stefani
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Bonafina
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustina Resasco
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvina Laura Diaz
- Instituto de Biología Celular y Neurociencia Prof. E. De Robertis, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
87
|
Demirgan S, Akyol O, Temel Z, Şengelen A, Pekmez M, Demirgan R, Sevdi MS, Erkalp K, Selcan A. Isoflurane exposure in infant rats acutely increases aquaporin 4 and does not cause neurocognitive impairment. Bosn J Basic Med Sci 2019; 19:257-264. [PMID: 30821219 DOI: 10.17305/bjbms.2019.4116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/19/2019] [Indexed: 11/16/2022] Open
Abstract
Isoflurane is commonly used in pediatric population, but its mechanism of action in cognition is unclear. Aquaporin 4 (AQP4) regulates water content in blood, brain, and cerebrospinal fluid. Various studies have provided evidence for the role of AQP4 in synaptic plasticity and neurocognition. In this study, we aimed to determine whether a prolonged exposure to isoflurane in infant rats is associated with cognition and what effect this exposure has on AQP4 expression. Ten-day-old [postnatal day (P) 10] Wistar albino rats were randomly allocated to isoflurane group (n = 32; 1.5% isoflurane in 50% oxygen for 6 hours) or control group (n = 32; only 50% oxygen for 6 hours). Acute (P11) and long-term (P33) effects of 6-hour anesthetic isoflurane exposure on AQP4 expression were analyzed in whole brains of P11 and P33 rats by RT-qPCR and Western blot. Spatial learning and memory were assessed on P28 to P33 days by Morris Water Maze (MWM) test. The analysis revealed that isoflurane increased acutely both mRNA (~4.5 fold) and protein (~90%) levels of AQP4 in P11 rats compared with control group. The increasing levels of AQP4 in P11 were not observed in P33 rats. Also, no statistically significant change between isoflurane and control groups was observed in the latency to find the platform during MWM training and probe trial. Our results indicate that a single exposure to isoflurane anesthesia does not influence cognition in infant rats. In this case, acutely increased AQP4 after isoflurane anesthesia may have a protective role in neurocognition.
Collapse
Affiliation(s)
- Serdar Demirgan
- T.C. Health Ministry, Health Sciences University, Bagcilar Training and Research Hospital, Anesthesiology and Reanimation Clinic; Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Pro-Con Debate: Nitrous Oxide for Labor Analgesia. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4618798. [PMID: 31531352 PMCID: PMC6720045 DOI: 10.1155/2019/4618798] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/19/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
This Pro-Con debate will provide the practitioner with an evidence-based knowledge approach to assist the clinician in determining whether to employ (Pro) or not to employ (Con) this technique in the obstetrical suite for labor analgesia. Nitrous oxide has been used safely in dentistry and medicine for many centuries. However, accumulating preclinical and clinical evidence increasingly suggests previously unrecognized adverse maternal and fetal effects of nitrous oxide, which warrants reconsideration of its use in pregnant women and a more detailed informed consent. Nitrous oxide is associated with metabolic, oxidative, genotoxic, and transgenerational epigenetic effects in animals and humans that may warrant limiting its usefulness in labor. This debate will discuss and review the clinical uses, advantages, and disadvantages of nitrous oxide on occupational effects of nitrous oxide exposure, neuroapoptosis, FDA warning on inhalational anesthetics and the developing brain, research limitations, occupational exposure safety limits, effects on global warming, and potential for diversion.
Collapse
|
89
|
Exposure of Developing Brain to General Anesthesia: What Is the Animal Evidence? Anesthesiology 2019; 128:832-839. [PMID: 29271804 DOI: 10.1097/aln.0000000000002047] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recently, the U.S. Food and Drug Administration issued an official warning to all practicing physicians regarding potentially detrimental behavioral and cognitive sequelae of an early exposure to general anesthesia during in utero and in early postnatal life. The U.S. Food and Drug Administration concern is focused on children younger than three years of age who are exposed to clinically used general anesthetics and sedatives for three hours or longer. Although human evidence is limited and controversial, a large body of scientific evidence gathered from several mammalian species demonstrates that there is a potential foundation for concern. Considering this new development in public awareness, this review focuses on nonhuman primates because their brain development is the closest to humans in terms of not only timing and duration, but in terms of complexity as well. The review compares those primate findings to previously published work done with rodents.
Collapse
|
90
|
Li M, Chen C, Zhang W, Gao R, Wang Q, Chen H, Zhang S, Mao X, Leblanc M, Behensky A, Zhang Z, Gan L, Yu H, Zhu T, Liu J. Identification of the Potential Key Long Non-coding RNAs in Aged Mice With Postoperative Cognitive Dysfunction. Front Aging Neurosci 2019; 11:181. [PMID: 31379560 PMCID: PMC6650538 DOI: 10.3389/fnagi.2019.00181] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a significant complication of surgery, particularly in elderly patients. Emerging researches showed that long non-coding RNA (lncRNA) may play a vital role in the pathogenesis of POCD. Here we aimed to identify potential key lncRNAs involved in the development of POCD. LncRNA and mRNA expression profiles in hippocampal tissues from POCD and control mice were analyzed by microarray assay. Gene ontology (GO) and KEGG pathway enrichment analyses were conducted to probe the functions of dysregulated genes. Then, important factors of the mainly affected biological processes were measured in the hippocampus. Correlated coding–non-coding co-expression (CNC) networks were constructed. Finally, the potential key pairs of lncRNA and target mRNA implicated in POCD were probed. Our data showed that 868 differentially expressed lncRNAs and 690 differentially expressed mRNAs were identified in total. GO and KEGG analyses indicated that the differentially expressed genes were mainly associated with inflammatory and apoptotic signaling pathways. Surgery-induced inflammatory cytokines and apoptosis were significantly increased in hippocampal tissues of aged mice. In CNC network analysis, we found that LncRNA uc009qbj.1 was positively correlated with apoptosis-associated gene Vrk2 level. LncRNA ENSMUST00000174338 correlated positively with expression of the inflammation and apoptosis-associated gene Smad7. LncRNA NONMMUT00000123687 mediated gene expression by binding the inflammation-regulated transcription factor Meis2. Our results suggested that these potential key lncRNAs and mRNAs may play a crucial role in the development of POCD through mediating neuronal inflammation or apoptosis.
Collapse
Affiliation(s)
- Ming Li
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chan Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Weiyi Zhang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Wang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shu Zhang
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaobo Mao
- Institute of Cell Engineering, Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Mathis Leblanc
- Institute of Cell Engineering, Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Adam Behensky
- Institute of Cell Engineering, Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Zheng Zhang
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Yu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
91
|
Iqbal F, Thompson AJ, Riaz S, Pehar M, Rice T, Syed NI. Anesthetics: from modes of action to unconsciousness and neurotoxicity. J Neurophysiol 2019; 122:760-787. [PMID: 31242059 DOI: 10.1152/jn.00210.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modern anesthetic compounds and advanced monitoring tools have revolutionized the field of medicine, allowing for complex surgical procedures to occur safely and effectively. Faster induction times and quicker recovery periods of current anesthetic agents have also helped reduce health care costs significantly. Moreover, extensive research has allowed for a better understanding of anesthetic modes of action, thus facilitating the development of more effective and safer compounds. Notwithstanding the realization that anesthetics are a prerequisite to all surgical procedures, evidence is emerging to support the notion that exposure of the developing brain to certain anesthetics may impact future brain development and function. Whereas the data in support of this postulate from human studies is equivocal, the vast majority of animal research strongly suggests that anesthetics are indeed cytotoxic at multiple brain structure and function levels. In this review, we first highlight various modes of anesthetic action and then debate the evidence of harm from both basic science and clinical studies perspectives. We present evidence from animal and human studies vis-à-vis the possible detrimental effects of anesthetic agents on both the young developing and the elderly aging brain while discussing potential ways to mitigate these effects. We hope that this review will, on the one hand, invoke debate vis-à-vis the evidence of anesthetic harm in young children and the elderly, and on the other hand, incentivize the search for better and less toxic anesthetic compounds.
Collapse
Affiliation(s)
- Fahad Iqbal
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Thompson
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Saba Riaz
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marcus Pehar
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany Rice
- Department of Anesthesiology, Perioperative and Pain Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Naweed I Syed
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
92
|
SmartTots Outcomes Workshop 2017: Notes From a Round Table Discussion About Outcome Measures. J Neurosurg Anesthesiol 2019; 31:115-118. [PMID: 30767933 DOI: 10.1097/ana.0000000000000550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An important element of designing research studies is the selection of appropriate outcome measures to ensure that the question posed is properly answered given the evidence. The selection of outcome measures is especially important when tackling complex, interdisciplinary problems, where appropriate outcome measures may not be as simple as a blood test or a laboratory value. One such area of study is the research into neurodevelopmental outcomes after early exposure to anesthetic agents. Concern has arisen recently that certain anesthetic agents may be toxic to the developing brain; a public-private partnership, SmartTots, was formed in conjunction with the Food and Drug Administration and various stakeholders to develop safe anesthetic regimens for neonates and infants who require surgery. However, as research has progressed, questions have arisen regarding the best outcome measures to use in order to detect a true effect, as well as the optimal window in which to measure. These issues were discussed in a round table meeting during the SmartTots meeting in September 2017, and a summary of the discussion is presented here.
Collapse
|
93
|
Abstract
Mounting evidence suggests that prolonged exposure to general anesthesia (GA) during brain synaptogenesis damages the immature neurons and results in long-term neurocognitive impairments. Importantly, synaptogenesis relies on timely axon pruning to select axons that participate in active neural circuit formation. This process is in part dependent on proper homeostasis of neurotrophic factors, in particular brain-derived neurotrophic factor (BDNF). We set out to examine how GA may modulate axon maintenance and pruning and focused on the role of BDNF. We exposed post-natal day (PND)7 mice to ketamine using a well-established dosing regimen known to induce significant developmental neurotoxicity. We performed morphometric analyses of the infrapyramidal bundle (IPB) since IPB is known to undergo intense developmental modeling and as such is commonly used as a well-established model of in vivo pruning in rodents. When IPB remodeling was followed from PND10 until PND65, we noted a delay in axonal pruning in ketamine-treated animals when compared to controls; this impairment coincided with ketamine-induced downregulation in BDNF protein expression and maturation suggesting two conclusions: a surge in BDNF protein expression "signals" intense IPB pruning in control animals and ketamine-induced downregulation of BDNF synthesis and maturation could contribute to impaired IPB pruning. We conclude that the combined effects on BDNF homeostasis and impaired axon pruning may in part explain ketamine-induced impairment of neuronal circuitry formation.
Collapse
|
94
|
Qi J, Jia Y, Wang W, Lu H, Wang Y, Li Z. The role of Bag2 in neurotoxicity induced by the anesthetic sevoflurane. J Cell Biochem 2019; 120:7551-7559. [PMID: 30548665 DOI: 10.1002/jcb.28029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Sevoflurane is the most commonly used general anesthetic in pediatric patients. But preclinical studies indicate that sevoflurane could have neurotoxicity in newborn and old animals, and this raises concern regarding its safety. In this study, we explored the potential mechanisms of sevoflurane-induced neurotoxicity in human SH-SY5Y neuronal cells. We showed that prolonged exposure to 2% sevoflurane caused a significant increase in the Bag family protein Bag2 in a time- and dose-dependent manner. We investigated the possible role of Bag2 upon exposure to sevoflurane by silencing Bag2 in neuronal cells. Knockdown of Bag2 caused increased overall reactive oxygen species (ROS) and generation of lipid peroxidation products 4-hydroxynonenal (4-HNE). Upon sevoflurane exposure, Bag2-silent cells have reduced glutathione (GSH) and glutathione peroxidase activity. Under the sevoflurane treatment, Bag2-deficient cells have reduced mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) production, while knockdown cells have less viability and higher lactic dehydrogenase (LDH) release as well as a higher percentage of apoptotic cells. The knockdown cells also had higher levels of mitochondrial cytochrome C release, a higher ratio of Bax/Bcl-2 and increased caspase cleavage by sevoflurane. Overall, our data support an important role of Bag2 in sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Jinlian Qi
- Department of anesthesiology, Henan Children's Hospital.,Department of anesthesiology, Zhengzhou Children's Hospital.,Department of Anesthesiology, Childern's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Yingping Jia
- Department of anesthesiology, Henan Children's Hospital.,Department of anesthesiology, Zhengzhou Children's Hospital.,Department of Anesthesiology, Childern's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Wenhua Wang
- Department of anesthesiology, Henan Children's Hospital.,Department of anesthesiology, Zhengzhou Children's Hospital.,Department of Anesthesiology, Childern's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Haibing Lu
- Department of anesthesiology, Henan Children's Hospital.,Department of anesthesiology, Zhengzhou Children's Hospital.,Department of Anesthesiology, Childern's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Yuan Wang
- Department of anesthesiology, Henan Children's Hospital.,Department of anesthesiology, Zhengzhou Children's Hospital.,Department of Anesthesiology, Childern's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Zhengchen Li
- Department of anesthesiology, Henan Children's Hospital.,Department of anesthesiology, Zhengzhou Children's Hospital.,Department of Anesthesiology, Childern's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
95
|
Neonatal general anesthesia causes lasting alterations in excitatory and inhibitory synaptic transmission in the ventrobasal thalamus of adolescent female rats. Neurobiol Dis 2019; 127:472-481. [PMID: 30825640 DOI: 10.1016/j.nbd.2019.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
Ample evidence has surfaced documenting the neurotoxic effects of various general anesthetic (GA) agents in the mammalian brain when administered at critical periods of synaptogenesis. However, little is known about how this neurotoxic insult affects persisting neuronal excitability after the initial exposure. Here we investigated synaptic activity and intrinsic excitability of the ventrobasal nucleus (VB) of the thalamus caused by neonatal GA administration. We used patch-clamp recordings from acute thalamic slices in young rats up to two weeks after neurotoxic GA exposure of isoflurane and nitrous oxide for 6 h at postnatal age of 7 (P7) days. We found that GA exposure at P7 increases evoked excitatory postsynaptic currents (eEPSCs) two fold by means through AMPA mediated mechanisms, while NMDA component was spared. In addition, miniature EPSCs showed a faster decay rate in neurons from GA treated animals when compared to sham controls. Likewise, we discovered that the amplitudes of evoked inhibitory postsynaptic currents (eIPSCs) were increased in VB neurons from GA animals about two-fold. Interestingly, these results were observed in female but not male rats. In contrast, intrinsic excitability and properties of T-type voltage gated calcium currents were minimally affected by GA exposure. Together, these data further the idea that GAs cause lasting alterations in synaptic transmission and neuronal excitability depending upon the placing and connectivity of neurons in the thalamus. Given that function of thalamocortical circuits critically depends on the delicate balance between excitation and inhibition, future development of therapies aimed at addressing consequences of altered excitability in the developing brain by GAs may be an attractive possibility.
Collapse
|
96
|
Baky FJ, Milbrandt TA, Flick R, Larson AN. Cumulative Anesthesia Exposure in Patients Treated for Early-Onset Scoliosis. Spine Deform 2019; 6:781-786. [PMID: 30348358 DOI: 10.1016/j.jspd.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/02/2018] [Accepted: 05/01/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Early-onset scoliosis (EOS) is a potentially life-threatening condition that requires early intervention to prevent severe deformity and pulmonary compromise. Observational studies have demonstrated that children receiving multiple procedures requiring general anesthesia are at a higher risk for adverse neurocognitive outcomes. We sought to characterize anesthetic exposure in EOS patients and to determine risk factors for increased exposure. We hypothesized that patients treated for EOS were at risk of receiving large amounts of cumulative anesthesia in childhood because of the need for early intervention to preserve pulmonary function. We sought to determine which factors impacted the amount of anesthesia patients received over the course of treatment. METHODS Records of all EOS patients treated at a tertiary referral center from 2000 to 2014 were reviewed. Patients with a minimum two-year follow-up, under age 10 at diagnosis, were included. Anesthesia was recorded in three categories: 1) orthopedic surgeries; 2) nonorthopedic surgeries; and 3) imaging/associated procedures. Diagnoses included congenital, idiopathic, neuromuscular, and syndromic scoliosis. Treatment groups were: observation, bracing, Mehta casting, growing spine, or fusion. RESULTS Mean cumulative anesthesia time was 1606 minutes. Patients with neuromuscular (mean 2132 minutes, p = .006) or congenital scoliosis (1875 minutes, p < .001) received more anesthesia than those with idiopathic scoliosis (754 minutes). Patients treated by fusion (2036 minutes, p < .001) or growing spine (2855 minutes, p < .001) received more anesthesia than those treated by bracing. CONCLUSIONS Disease severity, non-idiopathic diagnoses, and longer length of follow-up were associated with increased anesthesia. Patients who presented at earlier ages, and those treated by Mehta casting, were more likely to exceed three hours of anesthesia prior to age 3. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Fady J Baky
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Todd A Milbrandt
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Randall Flick
- Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
97
|
Schaefer ML, Wang M, Perez PJ, Coca Peralta W, Xu J, Johns RA. Nitric Oxide Donor Prevents Neonatal Isoflurane-induced Impairments in Synaptic Plasticity and Memory. Anesthesiology 2019; 130:247-262. [PMID: 30601214 PMCID: PMC6538043 DOI: 10.1097/aln.0000000000002529] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC Some general anesthetics have been shown to have adverse effects on neuronal development that affect neural function and cognitive behavior.Clinically relevant concentrations of inhalational anesthetics inhibit the postsynaptic density (PSD)-95, discs large homolog, and zona occludens-1 (PDZ) domain-mediated protein-protein interaction between PSD-95 or PSD-93 and N-methyl-D-aspartate receptors or neuronal NO synthase. WHAT THIS ARTICLE TELLS US THAT IS NEW Neonatal PSD-95 PDZ2WT peptide treatment mimics the effects of isoflurane (~1 minimum alveolar concentration) by altering dendritic spine morphology, neural plasticity, and memory without inducing detectable increases in apoptosis or changes in synaptic density.These results indicate that a single dose of isoflurane (~1 minimum alveolar concentration) or PSD-95 PDZ2WT peptide alters dendritic spine architecture and functions important for cognition in the developing brain. This impairment can be prevented by administration of the NO donor molsidomine. BACKGROUND In humans, multiple early exposures to procedures requiring anesthesia constitute a significant risk factor for development of learning disabilities and disorders of attention. In animal studies, newborns exposed to anesthetics develop long-term deficits in cognition. Previously, our laboratory showed that postsynaptic density (PSD)-95, discs large homolog, and zona occludens-1 (PDZ) domains may serve as a molecular target for inhaled anesthetics. This study investigated a role for PDZ interactions in spine development, plasticity, and memory as a potential mechanism for early anesthetic exposure-produced cognitive impairment. METHODS Postnatal day 7 mice were exposed to 1.5% isoflurane for 4 h or injected with 8 mg/kg active PSD-95 PDZ2WT peptide. Apoptosis, hippocampal dendritic spine changes, synapse density, long-term potentiation, and cognition functions were evaluated (n = 4 to 18). RESULTS Exposure of postnatal day 7 mice to isoflurane or PSD-95 PDZ2WT peptide causes a reduction in long thin spines (median, interquartile range [IQR]: wild type control [0.54, 0.52 to 0.86] vs. wild type isoflurane [0.31, 0.16 to 0.38], P = 0.034 and PDZ2MUT [0.86, 0.67 to 1.0] vs. PDZ2WT [0.55, 0.53 to 0.59], P = 0.028), impairment in long-term potentiation (median, IQR: wild type control [123, 119 to 147] and wild type isoflurane [101, 96 to 118], P = 0.049 and PDZ2MUT [125, 119 to 131] and PDZ2WT [104, 97 to 107], P = 0.029), and deficits in acute object recognition (median, IQR: wild type control [79, 72 to 88] vs. wild type isoflurane [63, 55 to 72], P = 0.044 and PDZ2MUT [81, 69 to 84] vs. PDZ2WT [67, 57 to 77], P = 0.039) at postnatal day 21 without inducing detectable differences in apoptosis or changes in synaptic density. Impairments in recognition memory and long-term potentiation were preventable by introduction of a NO donor. CONCLUSIONS Early disruption of PDZ domain-mediated protein-protein interactions alters spine morphology, synaptic function, and memory. These results support a role for PDZ interactions in early anesthetic exposure-produced cognitive impairment. Prevention of recognition memory and long-term potentiation deficits with a NO donor supports a role for the N-methyl-D-aspartate receptor/PSD-95/neuronal NO synthase pathway in mediating these aspects of isoflurane-induced cognitive impairment.
Collapse
Affiliation(s)
- Michele L Schaefer
- From the Department Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
98
|
Yu D, Xiao R, Huang J, Cai Y, Bao X, Jing S, Du Z, Yang T, Fan X. Neonatal exposure to propofol affects interneuron development in the piriform cortex and causes neurobehavioral deficits in adult mice. Psychopharmacology (Berl) 2019; 236:657-670. [PMID: 30415279 DOI: 10.1007/s00213-018-5092-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 10/25/2018] [Indexed: 11/24/2022]
Abstract
RATIONALE Animal studies have shown that early postnatal propofol administration is involved in neurobehavioral alterations in adults. However, the underlying mechanism is not clear. METHODS We used c-Fos immunohistochemistry to identify activated neurons in brain regions of neonatal mice under propofol exposure and performed behavioral tests to observe the long-term consequences. RESULTS Exposure to propofol (30g or 60 mg/kg) on P7 produced significant c-Fos expression in the deep layers of the piriform cortex on P8. Double immunofluorescence of c-Fos with interneuron markers in the piriform cortex revealed that c-Fos was specifically induced in calbindin (CB)-positive interneurons. Repeated propofol exposure from P7 to P9 induced behavioral deficits in adult mice, such as olfactory function deficit in a buried food test, decreased sociability in a three-chambered choice task, and impaired recognitive ability of learning and memory in novel object recognition tests. However, locomotor activity in the open-field test was not generally affected. Propofol treatment also significantly decreased the number of CB-positive interneurons in the piriform cortex of mice on P21 and adulthood. CONCLUSIONS These results suggest that CB-positive interneurons in the piriform cortex are vulnerable to propofol exposure during the neonatal period, and these neurons are involved in the damage effects of propofol on behavior changes. These data provide a new target of propofol neurotoxicity and may elucidate the mechanism of neurobehavioral deficits in adulthood.
Collapse
Affiliation(s)
- Dan Yu
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China.,Department of Anesthesiology, Wuhan No.4 Hospital, Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, People's Republic of China
| | - Rui Xiao
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China.,Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Jing Huang
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Yulong Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Xiaohang Bao
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China.,Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Sheng Jing
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Zhiyong Du
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Tiande Yang
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China.
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
99
|
Soriano SG, Vutskits L, Jevtovic-Todorovic V, Hemmings HC. Thinking, fast and slow: highlights from the 2016 BJA seminar on anaesthetic neurotoxicity and neuroplasticity. Br J Anaesth 2019; 119:443-447. [PMID: 28969326 DOI: 10.1093/bja/aex238] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- S G Soriano
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - L Vutskits
- Département d'Anesthésiologie, Pharmacologie et Soins Intensifs, Hopitaux Universitaires de Geneve, Rue Willy-Donzé 6, CH-1205 Genève, Switzerland
| | - V Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado Denver School of Medicine, 12631 E. 17th Ave. Suite 2001, Aurora, CO 80045, USA
| | - H C Hemmings
- Department of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
100
|
Garutti I, Gonzalez-Moraga F, Sanchez-Pedrosa G, Casanova J, Martin-Piñeiro B, Rancan L, Simón C, Vara E. The effect of anesthetic preconditioning with sevoflurane on intracellular signal-transduction pathways and apoptosis, in a lung autotransplant experimental model. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ENGLISH EDITION) 2019. [PMID: 30459087 PMCID: PMC9391783 DOI: 10.1016/j.bjane.2018.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Anesthetic pre-conditioning attenuates inflammatory response during ischemia-reperfusion lung injury. The molecular mechanisms to explain it are not fully understood. The aim of our investigation was to analyze the molecular mechanism that explain the anti-inflammatory effects of anesthetic pre-conditioning with sevoflurane focusing on its effects on MAPKs (mitogen-activated protein kinases), NF-κB (nuclear factor kappa beta) pathways, and apoptosis in an experimental lung autotransplant model. Methods Twenty large white pigs undergoing pneumonectomy plus lung autotransplant were divided into two 10-member groups on the basis of the anesthetic received (propofol or sevoflurane). Anesthetic pre-conditioning group received sevoflurane 3% after anesthesia induction and it stopped when one-lung ventilation get started. Control group did not receive sevoflurane in any moment during the whole study period. Intracellular signal-transduction pathways (MAPK family), transcription factor (NF-κB), and apoptosis (caspases 3 and 9) were analyzed during experiment. Results Pigs that received anesthetic pre-conditioning with sevoflurane have shown significant lower values of MAPK-p38, MAPK-P-p38, JNK (c-Jun N-terminal kinases), NF-κB p50 intranuclear, and caspases (p < 0.05) than pigs anesthetized with intravenous propofol. Conclusions Lung protection of anesthetic pre-conditioning with sevoflurane during experimental lung autotransplant is, at least, partially associated with MAPKs and NF κB pathways attenuation, and antiapoptotic effects.
Collapse
Affiliation(s)
- Ignacio Garutti
- Hospital General Universitario Gregorio Marañon, Departamento de Anestesiologia, Madri, Espanha; Universidad Complutense de Madrid, Departamento de Farmacologia, Madri, Espanha.
| | | | | | - Javier Casanova
- Hospital General Universitario Gregorio Marañon, Departamento de Anestesiologia, Madri, Espanha
| | | | - Lisa Rancan
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica, Madri, Espanha
| | - Carlos Simón
- Hospital General Universitario Gregorio Marañon, Departamento de Cirugía Torácica, Madri, Espanha; Universidad Complutense de Madrid, Departamento de Cirugía, Madri, Espanha
| | - Elena Vara
- Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Bioquímica, Madri, Espanha
| |
Collapse
|