51
|
Hu Q, Zheng X, Li X, Liu B, Yin C, Li Y, Chen R, Wang J, Liang Y, Shao X, Fang J, Liu B. Electroacupuncture Alleviates Mechanical Allodynia in a Rat Model of Complex Regional Pain Syndrome Type-I via Suppressing Spinal CXCL12/CXCR4 Signaling. THE JOURNAL OF PAIN 2020; 21:1060-1074. [PMID: 32006698 DOI: 10.1016/j.jpain.2020.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/12/2019] [Accepted: 01/25/2020] [Indexed: 12/22/2022]
Abstract
Complex regional pain syndrome (CRPS) results in chronic and excruciating pain in patients. Conventional therapies lack effectiveness, rendering it one of the most difficult to treat neurological conditions.. Electroacupuncture (EA) is an effective alternative therapy for pain relief. Here, we investigated whether EA exerts analgesic effect on a rat model of CRPS type-I (CRPS-I) and related mechanisms. The rat chronic postischemic pain (CPIP) model was established to mimic CRPS-I. 100Hz EA exerted robust and persistent antiallodynic effect on CPIP model compared with 2 Hz EA or sham EA. EA markedly suppressed the overexpression of CXCL12/CXCR4 in spinal cord dorsal horn (SCDH) of CPIP model, leading to substantial decrease in neuronal and glial cell activities in SCDH. Pharmacological blocking CXCR4 mimicked EA-induced antiallodynic effect and related cellular events in SCDH, whereas exogenous CXCL12 abolished EA's effect. CXCR4 signaling resulted in ERK activation in SCDH, contributing to mechanical allodynia of CPIP model rats, whereas EA markedly reduced ERK activation. Therefore, we demonstrated that EA interferes with CXCL12/CXCR4 signaling in SCDH and downstream ERK pathway to exert robust antiallodynic effect on an animal model of CRPS-I. Our work suggests that EA may be a potential therapeutic option for CRPS-I in clinic. PERSPECTIVE: Our work identified that EA exerts robust antiallodynic effect on an animal model of CRPS-I, via mechanisms involving inhibition of CXCL12/CXCR4 signaling. EA further attenuates downstream neuronal and glial cell activation and ERK pathway in SCDH. This work suggests that EA may be a potential therapeutic option for CRPS-I management in clinic.
Collapse
Affiliation(s)
- Qimiao Hu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Xiaoli Zheng
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Xiaojie Li
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Yuanyuan Li
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Ruixiang Chen
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Jie Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China.
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China.
| |
Collapse
|
52
|
Chen R, Yin C, Hu Q, Liu B, Tai Y, Zheng X, Li Y, Fang J, Liu B. Expression profiling of spinal cord dorsal horn in a rat model of complex regional pain syndrome type-I uncovers potential mechanisms mediating pain and neuroinflammation responses. J Neuroinflammation 2020; 17:162. [PMID: 32446302 PMCID: PMC7245895 DOI: 10.1186/s12974-020-01834-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/03/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Complex regional pain syndrome type-I (CRPS-I) is a progressive and devastating pain condition. The mechanisms of CRPS-I still remain poorly understood. We aim to explore expression profiles of genes relevant to pain and neuroinflammation mechanisms involved in CRPS-I. METHODS The rat chronic post-ischemic pain (CPIP) model that mimics human CRPS-I was established. RNA-sequencing (RNA-Seq), qPCR, Western blot, immunostaining, and pharmacological studies were used for profiling gene changes in ipsilateral spinal cord dorsal horn (SCDH) of CPIP model rat and further validation. RESULTS CPIP rats developed persistent mechanical allodynia in bilateral hind paws, accompanied with obvious glial activation in SCDH. RNA-Seq identified a total of 435 differentially expressed genes (DEGs) in ipsilateral SCDH of CPIP rats. qPCR confirmed the expression of several representative genes. Functional analysis of DEGs identified that the most significantly enriched biological processes of upregulated genes include inflammatory and innate immune response. We further identified NLRP3 inflammasome expression to be significantly upregulated in SCDH of CPIP rats. Pharmacological blocking NLRP3 inflammasome reduced IL-1β overproduction, glial activation in SCDH as well as mechanical allodynia of CPIP rats. CONCLUSION Our study revealed that immune and inflammatory responses are predominant biological events in SCDH of CPIP rats. We further identified NLRP3 inflammasome in SCDH as a key contributor to the pain and inflammation responses in CPIP rats. Thus, our study provided putative novel targets that may help to develop effective therapeutics against CRPS-I.
Collapse
Affiliation(s)
- Ruixiang Chen
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053 China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053 China
| | - Qimiao Hu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053 China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053 China
| | - Yan Tai
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053 China
| | - Xiaoli Zheng
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053 China
| | - Yuanyuan Li
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053 China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053 China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053 China
| |
Collapse
|
53
|
Effects of Tourniquets in the Development of Pain States: a Novel Clinical Pilot Study and Review of Utilization of Tissue Oximetry to Measure Neural Ischemia. Curr Pain Headache Rep 2020; 24:25. [PMID: 32323058 DOI: 10.1007/s11916-020-00855-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Approximately 20% of patients undergoing surgery develop persistent lower extremity pain following total knee arthroplasty. Animal studies have confirmed that prolonged tourniquet time increases the risk of endoneural ischemia and can mediate or modulate the development of chronic pain. The use of Near InfraRed Spectroscopy (NIRS) adjacent to nerve tissue, previously described as ONG has been shown to detect early neural compromise and has demonstrated clinical utility in carpal tunnel diagnosis. RECENT FINDINGS In this pilot study, we recruited 10 healthy adult volunteers to undergo oxyneurography (ONG) and sensory nerve conduction testing (sNCT). We performed testing on the upper and lower extremities in each individual. The tourniquet was applied followed by measurements of sNCT and ONG as described. We observed a significant drop in the mean ONG index at 3 and 5 min following tourniquet inflation in upper and lower extremities. Similar to raw ONG values, there was significant variability in sNCT measurements, which in general increased from baseline with tourniquet inflation. In the upper extremity, there was a significant increase in sNCT with tourniquet inflation, while in the lower extremity, there was a trend towards significance. The use of ONG can be supported as a diagnostic tool to detect nerve ischemia and to potentially reduce the incidence of tourniquet-mediated or -modulated neural ischemia and reduce the development of chronic post-tourniquet pain.
Collapse
|
54
|
Nahm FS, Lee JS, Lee PB, Choi E, Han WK, Nahm SS. Increased calcium-mediated cerebral processes after peripheral injury: possible role of the brain in complex regional pain syndrome. Korean J Pain 2020; 33:131-137. [PMID: 32235013 PMCID: PMC7136292 DOI: 10.3344/kjp.2020.33.2.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 11/23/2022] Open
Abstract
Background Among various diseases that accompany pain, complex regional pain syndrome (CRPS) is one of the most frustrating for patients and physicians. Recently, many studies have shown functional and anatomical abnormalities in the brains of patients with CRPS. The calcium-related signaling pathway is important in various physiologic processes via calmodulin (CaM) and calcium-calmodulin kinase 2 (CaMK2). To investigate the cerebral mechanism of CRPS, we measured changes in CaM and CaMK2 expression in the cerebrum in CRPS animal models. Methods The chronic post-ischemia pain model was employed for CRPS model generation. After generation of the animal models, the animals were categorized into three groups based on changes in the withdrawal threshold for the affected limb: CRPS-positive (P), CRPS-negative (N), and control (C) groups. Western blot analysis was performed to measure CaM and CaMK2 expression in the rat cerebrum. Results Animals with a decreased withdrawal threshold (group P) showed a significant increment in cerebral CaM and CaMK2 expression (P = 0.013 and P = 0.021, respectively). However, groups N and C showed no difference in CaM and CaMK2 expression. Conclusions The calcium-mediated cerebral process occurs after peripheral injury in CRPS, and there can be a relationship between the cerebrum and the pathogenesis of CRPS.
Collapse
Affiliation(s)
- Francis Sahngun Nahm
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Jae-Sung Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Pyung-Bok Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Eunjoo Choi
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Woong Ki Han
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang-Soep Nahm
- Department of Veterinary Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
55
|
Pigatto GR, Quinteiro MH, Nunes‐de‐Souza RL, Coimbra NC, Parizotto NA. Low‐Intensity Photobiomodulation Decreases Neuropathic Pain in Paw Ischemia‐Reperfusion and Spared Nervus Ischiadicus Injury Experimental Models. Pain Pract 2020; 20:371-386. [DOI: 10.1111/papr.12862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Glauce R. Pigatto
- Laboratory of Regenerative Medicine University of Araraquara (UNIARA) Araraquara Brazil
| | - Maiara H.S. Quinteiro
- Laboratory of Regenerative Medicine University of Araraquara (UNIARA) Araraquara Brazil
| | - Ricardo L. Nunes‐de‐Souza
- Laboratory of Neuropsychopharmacology School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Norberto C. Coimbra
- Laboratory of Neuroanatomy & Neuropsychobiology Department of Pharmacology Ribeirão Preto Medical School of the University of São Paulo (FMRP‐USP) Ribeirão Preto Brazil
| | - Nivaldo A. Parizotto
- Laboratory of Regenerative Medicine University of Araraquara (UNIARA) Araraquara Brazil
- Department of Physical Therapy Federal University of São Carlos (UFSCar) São Carlos Brazil
- Biomedical Engineering Program University of Brasil (UNIBRASIL) São Paulo Brazil
| |
Collapse
|
56
|
Rodrigues M, Cardoso RB, Kuriki HU, Marcolino AM, de Oliveira Guirro EC, Barbosa RI. Photobiomodulation Decreases Hyperalgesia in Complex Regional Pain Syndrome: An Experimental Mouse Model Subjected to Nicotine. Lasers Surg Med 2020; 52:890-896. [PMID: 32201964 DOI: 10.1002/lsm.23240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Complex regional pain syndrome (CRPS) is defined as an extreme and chronic pain condition, and photobiomodulation has relevance as a complementary treatment for CRPS. The objective of this study was to verify the effects of photobiomodulation (PBMT) therapy protocols at two wavelengths 660 and 830 nm, associated or not to nicotine in complex regional pain syndrome type I (CRPS-I). STUDY DESIGN/MATERIALS AND METHODS Sixty-four Swiss mice were divided into the following groups: (i) Naive, (ii) Sham, (iii) Control, (iv) 660 nm, (v) 830 nm, (vii) Nicotine, (vii) Nicotine/660 nm, and (viii) Nicotine/830 nm. CRPS-I was induced in an experimental ischemia/reperfusion model by affixing an elastic ring, proximal to the ankle joint of the right hind mouse paw, for 3 hours. Nicotine, in the respective groups was administered for 28 days prior to the induction of CRPS-I. PBMT was applied immediately after the procedure and for 20 consecutive days. The animals were evaluated for mechanical hyperalgesia, thermal hyperalgesia, paw edema at baseline and for 7, 14, and 21 days. Statistical analyses comprised a mixed-effects model, using the Tukey post hoc test (P < 0.05). RESULTS The PBMT wavelengths in 660 and 830 nm groups had beneficial effects (P < 0.05) in reducing mechanical and thermal hyperalgesia, but the effects at 660 nm were significantly better than 830 nm. At reducing edema, both wavelengths had significant effects statistically, absolutely no difference between them. CONCLUSIONS The use of PBMT (660 and 830 nm) was effective in reducing mechanical hyperalgesia and thermal hyperalgesia; however, PBMT at 660 nm generated significant results. In reducing edema, both wavelengths had similar effects, which were significant statistically. The deleterious effects of nicotine were evident statistically and were softened when treated with PBMT (P < 0.05). Lasers Surg. Med. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mariana Rodrigues
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina (LARAL/UFSC), Rua Pedro João Pereira, 150, Araranguá, Santa Catarina, CEP 88905-120, Brazil
| | - Ramon B Cardoso
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina (LARAL/UFSC), Rua Pedro João Pereira, 150, Araranguá, Santa Catarina, CEP 88905-120, Brazil
| | - Heloyse U Kuriki
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina (LARAL/UFSC), Rua Pedro João Pereira, 150, Araranguá, Santa Catarina, CEP 88905-120, Brazil
| | - Alexandre M Marcolino
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina (LARAL/UFSC), Rua Pedro João Pereira, 150, Araranguá, Santa Catarina, CEP 88905-120, Brazil
| | - Elaine Caldeira de Oliveira Guirro
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School of the University of São Paulo(USP), Av. dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rafael I Barbosa
- Postgraduate Program in Rehabilitation Sciences, Federal University of Santa Catarina (LARAL/UFSC), Rua Pedro João Pereira, 150, Araranguá, Santa Catarina, CEP 88905-120, Brazil
| |
Collapse
|
57
|
Biology of the human blood-nerve barrier in health and disease. Exp Neurol 2020; 328:113272. [PMID: 32142802 DOI: 10.1016/j.expneurol.2020.113272] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
A highly regulated endoneurial microenvironment is required for normal axonal function in peripheral nerves and nerve roots, which structurally consist of an outer collagenous epineurium, inner perineurium consisting of multiple concentric layers of specialized epithelioid myofibroblasts that surround the innermost endoneurium, which consists of myelinated and unmyelinated axons embedded in a looser mesh of collagen fibers. Endoneurial homeostasis is achieved by tight junction-forming endoneurial microvessels that control ion, solute, water, nutrient, macromolecule and leukocyte influx and efflux between the bloodstream and endoneurium, and the innermost layers of the perineurium that control interstitial fluid component flux between the freely permeable epineurium and endoneurium. Strictly speaking, endoneurial microvascular endothelium should be considered the blood-nerve barrier (BNB) due to direct communication with circulating blood. The mammalian BNB is considered the second most restrictive vascular system after the blood-brain barrier (BBB) based on classic in situ permeability studies. Structural alterations in endoneurial microvessels or interactions with hematogenous leukocytes have been described in several human peripheral neuropathies; however major advances in BNB biology in health and disease have been limited over the past 50 years. Guided by transcriptome and proteome studies of normal and pathologic human peripheral nerves, purified primary and immortalized human endoneurial endothelial cells that form the BNB and leukocytes from patients with well-characterized peripheral neuropathies, validated by in situ or ex vivo protein expression studies, data are emerging on the molecular and functional characteristics of the human BNB in health and in specific peripheral neuropathies, as well as chronic neuropathic pain. These early advancements have the potential to not only increase our understanding of how the BNB works and adapts or fails to adapt to varying insult, but provide insights relevant to pathogenic leukocyte trafficking, with translational potential and specific therapeutic application for chronic peripheral neuropathies and neuropathic pain.
Collapse
|
58
|
Fulas OA, Laferriere A, Stein RS, Bohle DS, Coderre TJ. Topical combination of meldonium and N‐acetyl cysteine relieves allodynia in rat models of CRPS‐1 and peripheral neuropathic pain by enhancing NO‐mediated tissue oxygenation. J Neurochem 2020; 152:570-584. [DOI: 10.1111/jnc.14943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Oli A. Fulas
- Department of Anesthesia McGill University Montreal QC Canada
| | | | - Robin S. Stein
- Department of Chemistry McGill University Montreal QC Canada
| | - D. Scott Bohle
- Department of Chemistry McGill University Montreal QC Canada
| | | |
Collapse
|
59
|
Yoo SH, Lee SH, Lee S, Park JH, Lee S, Jin H, Park HJ. The effect of human mesenchymal stem cell injection on pain behavior in chronic post-ischemia pain mice. Korean J Pain 2020; 33:23-29. [PMID: 31888314 PMCID: PMC6944374 DOI: 10.3344/kjp.2020.33.1.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022] Open
Abstract
Background Neuropathic pain (NP) is considered a clinically incurable condition despite various treatment options due to its diverse causes and complicated disease mechanisms. Since the early 2000s, multipotent human mesenchymal stem cells (hMSCs) have been used in the treatment of NP in animal models. However, the effects of hMSC injections have not been studied in chronic post-ischemia pain (CPIP) mice models. Here, we investigated whether intrathecal (IT) and intrapaw (IP) injections of hMSCs can reduce mechanical allodynia in CPIP model mice. Methods Seventeen CPIP C57/BL6 mice were selected and randomized into four groups: IT sham (n = 4), IT stem (n = 5), IP sham (n = 4), and IP stem (n = 4). Mice in the IT sham and IT stem groups received an injection of 5 μL saline and 2 × 104 hMSCs, respectively, while mice in the IP sham and IP stem groups received an injection of 5 μL saline and 2 × 105 hMSCs, respectively. Mechanical allodynia was assessed using von Frey filaments from pre-injection to 30 days post-injection. Glial fibrillary acidic protein (GFAP) expression in the spinal cord and dorsal root ganglia were also evaluated. Results IT and IP injections of hMSCs improved mechanical allodynia. GFAP expression was decreased on day 25 post-injection compared with the sham group. Injections of hMSCs improved allodynia and GFAP expression was decreased compared with the sham group. Conclusions These results suggested that hMSCs may be also another treatment modality in NP model by ischemia-reperfusion.
Collapse
Affiliation(s)
- Sie Hyeon Yoo
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sung Hyun Lee
- Department of Anesthesiology and Pain Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seunghwan Lee
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae Hong Park
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seunghyeon Lee
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Heecheol Jin
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Hue Jung Park
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
60
|
The emergence of animal models of chronic pain and logistical and methodological issues concerning their use. J Neural Transm (Vienna) 2019; 127:393-406. [DOI: 10.1007/s00702-019-02103-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022]
|
61
|
Molokie RE, Wang ZJ, Yao Y, Powell-Roach KL, Schlaeger JM, Suarez ML, Shuey DA, Angulo V, Carrasco J, Ezenwa MO, Fillingim RB, Wilkie DJ. Sensitivities to Thermal and Mechanical Stimuli: Adults With Sickle Cell Disease Compared to Healthy, Pain-Free African American Controls. THE JOURNAL OF PAIN 2019; 21:957-967. [PMID: 31733363 DOI: 10.1016/j.jpain.2019.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 02/02/2023]
Abstract
Evidence supports, but is inconclusive that sensitization contributes to chronic pain in some adults with sickle cell disease (SCD). We determined the prevalence of pain sensitization among adults with SCD pain compared with pain-free healthy adults. In a cross sectional, single session study of 186 African American outpatients with SCD pain (age 18-74 years, 59% female) and 124 healthy age, gender, and race matched control subjects (age 18-69 years, 49% female), we compared responses to standard thermal (Medoc TSA II) and mechanical stimuli (von Frey filaments). Although we observed no significant differences in thermal thresholds between controls and patients, patients with SCD had lower pain thresholds to mechanical stimuli and reported higher pain intensity scores to all thermal and mechanical stimuli at a non-painful body site. Compared with controls, about twice as many patients with SCD showed sensitization: 12% versus 23% at the anterior forearm site (P = .02), and 16% versus 32% across 3 tested sites (P = .004). Among patients with SCD, 18% exhibited some element of central sensitization. Findings indicate that persistent allodynia and hyperalgesia can be part of the SCD pain experience and should be considered when selecting therapies for SCD pain. PERSPECTIVE: Compared with matched healthy controls, quantitative sensory testing in adults with pain and sickle cell disease (SCD) demonstrates higher prevalence of sensitization, including central sensitization. The findings of allodynia and hyperalgesia may indicate neuropathic pain and could contribute to a paradigm shift in assessment and treatment of SCD pain.
Collapse
Affiliation(s)
- Robert E Molokie
- College of Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; College of Pharmacy, Department of Biopharmaceutical Sciences, College of Nursing, College of Nursing, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois
| | - Zaijie J Wang
- College of Pharmacy, Department of Biopharmaceutical Sciences, College of Nursing, College of Nursing, University of Illinois at Chicago, Chicago, Illinois
| | - Yingwei Yao
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, Illinois; College of Nursing, Department of Biobehavioral Nursing Science, University of Florida, Gainesville, Florida
| | - Keesha L Powell-Roach
- Department of Women, Children and Family Health Science, University of Illinois at Chicago, Chicago, Illinois; College of Nursing, Department of Biobehavioral Nursing Science, University of Florida, Gainesville, Florida; College of Dentistry, Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, Florida
| | - Judith M Schlaeger
- Department of Women, Children and Family Health Science, University of Illinois at Chicago, Chicago, Illinois
| | - Marie L Suarez
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, Illinois
| | - David A Shuey
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, Illinois
| | - Veronica Angulo
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, Illinois
| | - Jesus Carrasco
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, Illinois
| | - Miriam O Ezenwa
- College of Nursing, Department of Biobehavioral Nursing Science, University of Florida, Gainesville, Florida
| | - Roger B Fillingim
- College of Dentistry, Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, Florida
| | - Diana J Wilkie
- Department of Biobehavioral Health Science, University of Illinois at Chicago, Chicago, Illinois; College of Nursing, Department of Biobehavioral Nursing Science, University of Florida, Gainesville, Florida.
| |
Collapse
|
62
|
Improvement of peripheral vascular impairment by a phosphodiesterase type 5 inhibitor tadalafil prevents oxaliplatin-induced peripheral neuropathy in mice. J Pharmacol Sci 2019; 141:131-138. [PMID: 31734027 DOI: 10.1016/j.jphs.2019.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/03/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
Oxaliplatin, a platinum-based chemotherapeutic drug, frequently induces peripheral neuropathy. Accumulating evidences suggest a possible relationship between peripheral vascular impairment and peripheral neuropathy. In this study, we investigated the effects of vasodilators on cumulative peripheral neuropathy induced by repeated injections of oxaliplatin (10 mg/kg) once a week for 8 weeks in mice. Single injections of vasodilators, including a phosphodiesterase type 5 inhibitor tadalafil acutely alleviated oxaliplatin-induced cold hypersensitivity, while tadalafil had no effect on the mechanical hypersensitivity. By contrast, long-term administration of tadalafil (0.1% in chow diets) during the oxaliplatin injection period reduced the oxaliplatin-induced decreases in skin temperature and blood flow without affecting platinum concentrations in blood, sciatic nerves, and dorsal root ganglion. The long-term administration significantly suppressed cold, mechanical, and electrical current hypersensitivities as well as thermal hypoesthesia. Furthermore, it prevented the decreases in sensory nerve conductance velocity and the number of endoneurial microvessels, and axon degeneration in the sciatic nerves. In vitro studies confirmed that tadalafil does not interfere with the cytotoxicity of oxaliplatin against human cancer cell lines. Altogether, these results suggest that improvement of peripheral vascular impairment by tadalafil could alleviate and prevent oxaliplatin-induced peripheral neuropathy.
Collapse
|
63
|
Stimpson J, Gill DF, Memarzadeh A, Dunne M, Perry L, Magan A, Devany A, Pasapula C. Reducing the Hypertensive Effects of the Prolonged Surgical Tourniquet Using a Dual-Cuff Strategy: A Prospective Randomized Controlled Trial. J Foot Ankle Surg 2019; 58:1177-1186. [PMID: 31679670 DOI: 10.1053/j.jfas.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 12/16/2018] [Accepted: 03/31/2019] [Indexed: 02/03/2023]
Abstract
We evaluated whether moving the "line of crush" from thigh to the calf before onset of tourniquet-mediated hypertension would prevent or diminish it. We also evaluated any change in pain or functional outcome. Twenty adult patients were recruited and randomly assigned to either control or intervention groups. Inclusion criteria: any willing participant >18 years old with foot and/or ankle pathology requiring an operation lasting >90 minutes. Exclusion criteria included contraindication to general anesthesia, peripheral neuropathy affecting lower limbs of any etiology, or chronic pain requiring regular opiate analgesia. The intervention group received a thigh tourniquet for 60 minutes, after which a calf tourniquet was inflated and the thigh tourniquet was deflated. The control group received only a thigh tourniquet throughout surgery. At 90 minutes, the control group had mean arterial pressure of 86.8 mmHg, compared with the intervention group at 76.3 mmHg (p ≤ .014). At end of surgery, the difference had increased further (control 98.1 mmHg, intervention 78.3 mmHg (p ≤ .001). Moving the line of crush during limb tourniquet application prevents development of the hypertensive response. For cases in which a prolonged tourniquet application is required, a dual-tourniquet technique will prevent intraoperative hypertension and may influence long-term pain and function.
Collapse
Affiliation(s)
- James Stimpson
- Consultant Anaesthetist, Department of Anaesthesiology, Queen Elizabeth Hospital King's Lynn, Norfolk, United Kingdom
| | - Damien F Gill
- Specialist Registrar in Trauma & Orthopaedic Surgery, Department of Trauma and Orthopaedic Surgery, Queen Elizabeth Hospital King's Lynn, Norfolk, United Kingdom.
| | - Arman Memarzadeh
- Specialist Registrar in Trauma & Orthopaedic Surgery, Department of Trauma and Orthopaedic Surgery, Queen Elizabeth Hospital King's Lynn, Norfolk, United Kingdom
| | - Mike Dunne
- Specialist Registrar in Trauma & Orthopaedic Surgery, Department of Trauma and Orthopaedic Surgery, Queen Elizabeth Hospital King's Lynn, Norfolk, United Kingdom
| | - Laura Perry
- Specialist Registrar in Anaesthesiology, Department of Anaesthesiology, Queen Elizabeth Hospital King's Lynn, Norfolk, United Kingdom
| | - Ahmed Magan
- Specialist Registrar in Trauma & Orthopaedic Surgery, Department of Trauma and Orthopaedic Surgery, Queen Elizabeth Hospital King's Lynn, Norfolk, United Kingdom
| | - Adam Devany
- Specialist Registrar in Trauma & Orthopaedic Surgery, Department of Trauma and Orthopaedic Surgery, Queen Elizabeth Hospital King's Lynn, Norfolk, United Kingdom
| | - Chandra Pasapula
- Consultant Trauma & Orthopaedic Surgeon, Department of Trauma and Orthopaedic Surgery, Queen Elizabeth Hospital King's Lynn, Norfolk, United Kingdom
| |
Collapse
|
64
|
Hsiao HT, Liu YY, Wang JCF, Lin YC, Liu YC. The analgesic effect of propofol associated with the inhibition of hypoxia inducible factor and inflammasome in complex regional pain syndrome. J Biomed Sci 2019; 26:74. [PMID: 31627754 PMCID: PMC6798505 DOI: 10.1186/s12929-019-0576-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is related to microcirculation impairment caused by tissue hypoxia and peripheral cytokine overproduction in the affected human limb and chronic post-ischemic pain (CPIP) is considered as an animal model for this intractable disease. Previous studies suggest that the pathogenesis of CPIP involves the hypoxia inducible factor-1α (HIF-1α) and an exaggerated regional inflammatory and free radical response. The inhibition of HIF-1α is known to relieve CPIP. So, propofol, as a free radical scavenger, is very likely to be beneficial in terms of relieving CPIP. METHODS We set up a CPIP model using the hindpaw of mice. We administered propofol (10 mg/kg) just after the reperfusion period (early stage) and also on the second day (late stage), as treatment. The analysis evaluated the expression of HIF-1α, free radicals, and inflammasome. RESULTS Propofol administration produced obvious analgesia in both mechanical and thermal evaluation in the early stage of CPIP (2 h after reperfusion). Only a mild analgesic effect was found in the late stage (48 h later after reperfusion). In the early stage, the expression of HIF-1α and the inflammasome marker (NALP1) along with caspase-1 were suppressed by propofol. The free radical level also decreased in the propofol group. But those molecular changes were not founded in the late stage of CPIP. CONCLUSION Our data demonstrated that propofol produces mice analgesia in the early stage of CPIP and this effect is associated with inhibition of free radical, hypoxia inducible factor and inflammasome.
Collapse
Affiliation(s)
- Hung-Tsung Hsiao
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Yuan-Yuarn Liu
- Department of Emergency Medicine and Surgery, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Jeffrey Chi-Fei Wang
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Ya-Chi Lin
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Yen-Chin Liu
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan.
| |
Collapse
|
65
|
Bruehl S, Gamazon ER, Van de Ven T, Buchheit T, Walsh CG, Mishra P, Ramanujan K, Shaw A. DNA methylation profiles are associated with complex regional pain syndrome after traumatic injury. Pain 2019; 160:2328-2337. [PMID: 31145213 PMCID: PMC7473388 DOI: 10.1097/j.pain.0000000000001624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Factors contributing to development of complex regional pain syndrome (CRPS) are not fully understood. This study examined possible epigenetic mechanisms that may contribute to CRPS after traumatic injury. DNA methylation profiles were compared between individuals developing CRPS (n = 9) and those developing non-CRPS neuropathic pain (n = 38) after undergoing amputation following military trauma. Linear Models for Microarray (LIMMA) analyses revealed 48 differentially methylated cytosine-phosphate-guanine dinucleotide (CpG) sites between groups (unadjusted P's < 0.005), with the top gene COL11A1 meeting Bonferroni-adjusted P < 0.05. The second largest differential methylation was observed for the HLA-DRB6 gene, an immune-related gene linked previously to CRPS in a small gene expression study. For all but 7 of the significant CpG sites, the CRPS group was hypomethylated. Numerous functional Gene Ontology-Biological Process categories were significantly enriched (false discovery rate-adjusted q value <0.15), including multiple immune-related categories (eg, activation of immune response, immune system development, regulation of immune system processes, and antigen processing and presentation). Differentially methylated genes were more highly connected in human protein-protein networks than expected by chance (P < 0.05), supporting the biological relevance of the findings. Results were validated in an independent sample linking a DNA biobank with electronic health records (n = 126 CRPS phenotype, n = 19,768 non-CRPS chronic pain phenotype). Analyses using PrediXcan methodology indicated differences in the genetically determined component of gene expression in 7 of 48 genes identified in methylation analyses (P's < 0.02). Results suggest that immune- and inflammatory-related factors might confer risk of developing CRPS after traumatic injury. Validation findings demonstrate the potential of using electronic health records linked to DNA for genomic studies of CRPS.
Collapse
Affiliation(s)
- Stephen Bruehl
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States. Mr. Shaw is now with Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Eric R. Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Anesthesiology, Clare Hall, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Van de Ven
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Thomas Buchheit
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Colin G. Walsh
- Departments of Medicine and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Puneet Mishra
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States. Mr. Shaw is now with Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Krishnan Ramanujan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States. Mr. Shaw is now with Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Andrew Shaw
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States. Mr. Shaw is now with Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
66
|
Salgado ASI, Stramosk J, Ludtke DD, Kuci ACC, Salm DC, Ceci LA, Petronilho F, Florentino D, Danielski LG, Gassenferth A, Souza LR, Rezin GT, Santos ARS, Mazzardo-Martins L, Reed WR, Martins DF. Manual Therapy Reduces Pain Behavior and Oxidative Stress in a Murine Model of Complex Regional Pain Syndrome Type I. Brain Sci 2019; 9:brainsci9080197. [PMID: 31405150 PMCID: PMC6721404 DOI: 10.3390/brainsci9080197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 01/24/2023] Open
Abstract
Complex regional pain syndrome type I (CRPS-I) is a chronic painful condition. We investigated whether manual therapy (MT), in a chronic post-ischemia pain (CPIP) model, is capable of reducing pain behavior and oxidative stress. Male Swiss mice were subjected to ischemia-reperfusion (IR) to mimic CRPS-I. Animals received ankle joint mobilization 48h after the IR procedure, and response to mechanical stimuli was evaluated. For biochemical analyses, mitochondrial function as well as oxidative stress thiobarbituric acid reactive substances (TBARS), protein carbonyls, antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) levels were determined. IR induced mechanical hyperalgesia which was subsequently reduced by acute MT treatment. The concentrations of oxidative stress parameters were increased following IR with MT treatment preventing these increases in malondialdehyde (MDA) and carbonyls protein. IR diminished the levels of SOD and CAT activity and MT treatment prevented this decrease in CAT but not in SOD activity. IR also diminished mitochondrial complex activity, and MT treatment was ineffective in preventing this decrease. In conclusion, repeated sessions of MT resulted in antihyperalgesic effects mediated, at least partially, through the prevention of an increase of MDA and protein carbonyls levels and an improvement in the antioxidant defense system.
Collapse
Affiliation(s)
- Afonso S I Salgado
- Coordinator of Integrative Physical Therapy Residency-Philadelphia University Center, Londrina 86020-000, Paraná, Brazil
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
| | - Juliana Stramosk
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
| | - Daniela D Ludtke
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
| | - Ana C C Kuci
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
| | - Daiana C Salm
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
| | - Lisandro A Ceci
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão 88704-900, Santa Catarina, Brazil
| | - Drielly Florentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão 88704-900, Santa Catarina, Brazil
| | - Lucineia G Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão 88704-900, Santa Catarina, Brazil
| | - Aline Gassenferth
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Centre of Biological Sciences, University Federal of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - Luana R Souza
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - Gislaine T Rezin
- Department of Physical Therapy, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294-1212, USA
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Centre of Biological Sciences, University Federal of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - Leidiane Mazzardo-Martins
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - William R Reed
- Department of Physical Therapy, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294-1212, USA
| | - Daniel F Martins
- Coordinator of Integrative Physical Therapy Residency-Philadelphia University Center, Londrina 86020-000, Paraná, Brazil.
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil.
| |
Collapse
|
67
|
De Prá SDT, Antoniazzi CTDD, Ferro PR, Kudsi SQ, Camponogara C, Fialho MFP, Rigo FK, Gomez MV, Bochi GV, Moresco RN, Oliveira SM, Trevisan G. Nociceptive mechanisms involved in the acute and chronic phases of a complex regional pain syndrome type 1 model in mice. Eur J Pharmacol 2019; 859:172555. [PMID: 31326377 DOI: 10.1016/j.ejphar.2019.172555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/04/2023]
Abstract
Complex regional pain syndrome I (CRPS-I) is a chronic painful pathology still undertreated. CTK 01512-2 is a recombinant version of the spider peptide Phα1β, and it functions as a voltage-gated calcium channel blocker and a transient receptor potential ankyrin 1 (TRPA1) antagonist with antinociceptive effect in different pain models. Here, we investigate the mechanisms involved in the acute and chronic nociceptive phases of a model of CPRS-I in mice and assess the antinociceptive effect of CTK 01512-2 using this model. Adult male and female mice C57BL/6 (20-30 g) were used to determine mechanical (von Frey test) or cold (acetone test) allodynia induction. Inflammatory parameters (serum and tibial nerve lactate levels, hind paw temperature and edema, or tissue cell infiltration) were evaluated after chronic post-ischemia pain (CPIP, a model of CPRS-I) induction. Anti-inflammatory and anti-neuropathic drugs or CTK 01512-2 were tested. First, we detected that CPIP-induced mechanical and cold allodynia in male and female mice in a similar way. In the acute phase (1 day after CPIP), an increase in inflammatory parameters were observed, as well as the anti-allodynic effect of anti-inflammatory compounds. In the chronic phase (17 days after CPIP), mice exhibited mechanical and cold allodynia, and anti-neuropathic drugs induced antinociception, while no inflammatory alterations were found. CTK 01512-2 reversed the CPIP allodynic effect in both nociceptive phases. Thus, this CPRS-I model can be used to understand the mechanisms involved in CPRS-I induced pain and inflammation. Besides, we observed that CTK 01512-2 has a valuable antinociceptive effect in this pain model.
Collapse
Affiliation(s)
- Samira Dal Toé De Prá
- Graduated Program in Health Sciences, University of the Extreme South of Santa Catarina (Unesc), 88006-000, Criciúma (SC), Brazil
| | | | - Paula Ronsani Ferro
- Graduated Program in Health Sciences, University of the Extreme South of Santa Catarina (Unesc), 88006-000, Criciúma (SC), Brazil
| | - Sabrina Qader Kudsi
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria (RS), Brazil
| | - Camila Camponogara
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria (RS), Brazil
| | - Maria Fernanda Pessano Fialho
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria (RS), Brazil
| | - Flávia Karine Rigo
- Graduated Program in Health Sciences, University of the Extreme South of Santa Catarina (Unesc), 88006-000, Criciúma (SC), Brazil
| | - Marcus Vinícius Gomez
- Teaching and Research Institute, Santa Casa de Misericórdia de Belo Horizonte, 30150-240, Belo Horizonte, MG, Brazil
| | - Guilherme Vargas Bochi
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria (RS), Brazil
| | - Rafael Noal Moresco
- Graduated Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria (RS), Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria (RS), Brazil
| | - Gabriela Trevisan
- Graduated Program in Health Sciences, University of the Extreme South of Santa Catarina (Unesc), 88006-000, Criciúma (SC), Brazil; Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria (RS), Brazil.
| |
Collapse
|
68
|
Onishi T, Watanabe T, Sasaki M, Kamiya Y, Horie M, Tsukano H, Hishida R, Kohno T, Takebayashi H, Baba H, Shibuki K. Acute spatial spread of NO-mediated potentiation during hindpaw ischaemia in mice. J Physiol 2019; 597:3441-3455. [PMID: 31087329 PMCID: PMC6851834 DOI: 10.1113/jp277615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
Key points Neuropathic pain spreads spatially beyond the injured sites, and the mechanism underlying the spread has been attributed to inflammation occurring in the spinal cord. However, the spatial spread of spinal/cortical potentiation induced by conduction block of the peripheral nerves can be observed prior to inflammation. In the present study, we found that spreading potentiation and hypersensitivity acutely induced by unilateral hindpaw ischaemia are nitric oxide (NO)‐dependent and that NO is produced by ischaemia and quickly diffuses within the spinal cord. We also found that NO production induced by ischaemia is not observed in the presence of an antagonist for group II metabotropic glutamate receptors (mGluRs) and that neuronal NO synthase‐positive dorsal horn neurons express group II mGluRs. These results suggest strongly that NO‐mediated spreading potentiation in the spinal cord is one of the trigger mechanisms for neuropathic pain.
Abstract Cortical/spinal responses to hindpaw stimulation are bilaterally potentiated by unilateral hindpaw ischaemia in mice. We tested the hypothesis that hindpaw ischaemia produces nitric oxide (NO), which diffuses in the spinal cord to induce spatially spreading potentiation. Using flavoprotein fluorescence imaging, we confirmed that the spreading potentiation in hindpaw responses was induced during ischaemia in the non‐stimulated hindpaw. This spreading potentiation was blocked by spinal application of l‐NAME, an inhibitor of NO synthase (NOS). Furthermore, no spreading potentiation was observed in neural NOS (nNOS) knockout mice. Spinal application of an NO donor was enough to induce cortical potentiation and mechanical hypersensitivity. The spatial distribution of NO during unilateral hindpaw ischaemia was visualized using 4‐amino‐5‐methylamino‐2′,7′‐difluorofluorescein (DAF‐FM). An increase in fluorescence derived from the complex of DAF‐FM with NO was observed on the ischaemic side of the spinal cord. A similar but smaller increase was also observed on the contralateral side. Somatosensory potentiation after hindpaw ischaemia is known to be inhibited by spinal application of LY354740, an agonist of group II metabotropic glutamate receptors (mGluRs). We confirmed that the spinal DAF‐FM fluorescence increases during hindpaw ischaemia were not observed in the presence of LY354740. We also confirmed that approximately half of the nNOS‐positive neurons in the superficial laminae of the dorsal horn expressed mGluR2 mRNA. These results suggest that disinhibition of mGluR2 produces NO which in turn induces a spreading potentiation in a wide area of the spinal cord. Such spreading, along with the consequent non‐specific potentiation in the spinal cord, may trigger neuropathic pain. Neuropathic pain spreads spatially beyond the injured sites, and the mechanism underlying the spread has been attributed to inflammation occurring in the spinal cord. However, the spatial spread of spinal/cortical potentiation induced by conduction block of the peripheral nerves can be observed prior to inflammation. In the present study, we found that spreading potentiation and hypersensitivity acutely induced by unilateral hindpaw ischaemia are nitric oxide (NO)‐dependent and that NO is produced by ischaemia and quickly diffuses within the spinal cord. We also found that NO production induced by ischaemia is not observed in the presence of an antagonist for group II metabotropic glutamate receptors (mGluRs) and that neuronal NO synthase‐positive dorsal horn neurons express group II mGluRs. These results suggest strongly that NO‐mediated spreading potentiation in the spinal cord is one of the trigger mechanisms for neuropathic pain.
Collapse
Affiliation(s)
- Takeshi Onishi
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan.,Department of Anesthesiology, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Tatsunori Watanabe
- Department of Anesthesiology, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Mika Sasaki
- Department of Anesthesiology, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Yoshinori Kamiya
- Department of Anesthesiology, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Masao Horie
- Department of Morphological Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Tatsuro Kohno
- Department of Anesthesiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, 983-8536, Japan
| | - Hirohide Takebayashi
- Department of Neurobiology and Anatomy, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Hiroshi Baba
- Department of Anesthesiology, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| |
Collapse
|
69
|
Chen CH, Shih PC, Lin HY, Wang PK, Pan PT, Chuang CW, Kao MC. 4-Phenylbutyric acid protects against vasculitic peripheral neuropathy induced by ischaemia–reperfusion through attenuating endoplasmic reticulum stress. Inflammopharmacology 2019; 27:713-722. [DOI: 10.1007/s10787-019-00604-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/11/2019] [Indexed: 12/19/2022]
|
70
|
Hu Q, Wang Q, Wang C, Tai Y, Liu B, Shao X, Fang J, Liu B. TRPV1 Channel Contributes to the Behavioral Hypersensitivity in a Rat Model of Complex Regional Pain Syndrome Type 1. Front Pharmacol 2019; 10:453. [PMID: 31105572 PMCID: PMC6498414 DOI: 10.3389/fphar.2019.00453] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Complex regional pain syndrome type 1 (CRPS-I) is a debilitating pain condition that significantly affects life quality of patients. It remains a clinically challenging condition and the mechanisms of CRPS-I have not been fully elucidated. Here, we investigated the involvement of TRPV1, a non-selective cation channel important for integrating various painful stimuli, in an animal model of CRPS-I. A rat model of chronic post-ischemia pain (CPIP) was established to mimic CRPS-I. TRPV1 expression was significantly increased in hind paw tissue and small to medium-sized dorsal root ganglion (DRG) neurons of CPIP rats. CPIP rats showed increased TRPV1 current density and capsaicin responding rate in small-sized nociceptive DRG neurons. Local pharmacological blockage of TRPV1 with the specific antagonist AMG9810, at a dosage that does not produce hyperthermia or affect thermal perception or locomotor activity, effectively attenuated thermal and mechanical hypersensitivity in bilateral hind paws of CPIP rats and reduced the hyperexcitability of DRG neurons induced by CPIP. CPIP rats showed bilateral spinal astrocyte and microglia activations, which were significantly attenuated by AMG9810 treatment. These findings identified an important role of TRPV1 in mediating thermal and mechanical hypersensitivity in a CRPS-I animal model and further suggest local pharmacological blocking TRPV1 may represent an effective approach to ameliorate CRPS-I.
Collapse
Affiliation(s)
- Qimiao Hu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Qiong Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Yan Tai
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
71
|
Yin C, Hu Q, Liu B, Tai Y, Zheng X, Li Y, Xiang X, Wang P, Liu B. Transcriptome profiling of dorsal root ganglia in a rat model of complex regional pain syndrome type-I reveals potential mechanisms involved in pain. J Pain Res 2019; 12:1201-1216. [PMID: 31114302 PMCID: PMC6489655 DOI: 10.2147/jpr.s188758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/27/2019] [Indexed: 12/27/2022] Open
Abstract
Purpose: Complex regional pain syndrome type-I (CRPS-I) is a progressive and devastating pain condition, which remains clinically challenging. The mechanisms of CRPS-I still remain largely unknown. We aim to identify transcriptome profiles of genes relevant to pain mechanisms and major pathways involved in CRPS-I. Methods: A rat model of chronic post-ischemia pain (CPIP) was established to mimic CRPS-I. RNA-sequencing (RNA-Seq) was used to profile transcriptome of L4-6 dorsal root ganglia (DRGs) of a rat model of CRPS-I. Results: CPIP model rats developed persistent mechanical/thermal hyperalgesia in ipsilateral hind paw. RNA-Seq identified a total of 295 differentially expressed genes (DEGs), including 195 up- and 100 downregulated, in ipsilateral DRGs of CPIP rats compared with sham rats. The expression of several representative genes was confirmed by qPCR. Functional analysis of DEGs revealed that the most significant enriched biological processes of upregulated genes include response to lipopolysaccharide, inflammatory response and cytokine activity, which are all important mechanisms mediating pain. We further screened DEGs implicated in pain progress, genes enriched in small- to medium-sized sensory neurons and enriched in TRPV1-lineage nociceptors. By comparing our dataset with other published datasets of neuropathic or inflammatory pain models, we identified a core set of genes and pathways that extensively participate in CPIP and other neuropathic pain states. Conclusion: Our study identified transcriptome gene changes in DRGs of an animal model of CRPS-I and could provide insights into identifying promising genes or pathways that can be potentially targeted to ameliorate CRPS-I.
Collapse
Affiliation(s)
- Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qimiao Hu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yan Tai
- Academy of Chinese Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Xiaoli Zheng
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yuanyuan Li
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xuaner Xiang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Ping Wang
- Department of Pathology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
72
|
Nahm FS, Nahm SS, Han WK, Gil HY, Choi E, Lee PB. Increased cerebral nuclear factor kappa B in a complex regional pain syndrome rat model: possible relationship between peripheral injury and the brain. J Pain Res 2019; 12:909-914. [PMID: 30881100 PMCID: PMC6408925 DOI: 10.2147/jpr.s166270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Complex regional pain syndrome (CRPS) is a rare but refractory pain disorder. Recent advanced information retrieval studies using text-mining and network analysis have suggested nuclear factor kappa B (NFκB) as a possible central mediator of CRPS. The brain is also known to play important roles in CRPS. The aim of this study was to evaluate changes in cerebral NFκB in rats with CRPS. Materials and methods The chronic post-ischemia perfusion (CPIP) model was used as the CRPS animal model. O-rings were applied to the left hind paws of the rats. The rats were categorized into three groups according to the results of behavioral tests: the CPIP-positive (A) group, the CPIP-negative (B) group, and the control (C) group. Three weeks after the CPIP procedure, the right cerebrums of the animals were harvested to measure NFκB levels using an ELISA. Results Animals in group A had significantly decreased mechanical pain thresholds (P<0.01) and significantly increased cerebral NFκB when compared to those in groups B and C (P=0.024). Conclusion This finding indicates that peripheral injury increases cerebral NFκB levels and implies that minor peripheral injury can lead to the activation of pain-related cerebral processes in CRPS.
Collapse
Affiliation(s)
- Francis Sahngun Nahm
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea, .,College of Medicine, Seoul National University, Seoul, South Korea,
| | - Sang-Soep Nahm
- Laboratory of Veterinary Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Woong Ki Han
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea,
| | - Ho Young Gil
- Department of Anesthesiology and Pain Medicine, Ajou University Hospital, Suwon, South Korea
| | - Eunjoo Choi
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea,
| | - Pyung Bok Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea, .,College of Medicine, Seoul National University, Seoul, South Korea,
| |
Collapse
|
73
|
Yeo J, Park S. Effect of dexmedetomidine on the development of mechanical allodynia and central sensitization in chronic post-ischemia pain rats. J Pain Res 2018; 11:3025-3030. [PMID: 30568483 PMCID: PMC6267355 DOI: 10.2147/jpr.s184621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Complex regional pain syndrome type 1 (CRPS I) is an intractable neuropathic pain syndrome. Chronic post-ischemia pain (CPIP) model is an animal model of CRPS I which is produced by ischemia-reperfusion (IR) injury of the hind limb. Dexmedetomidine (DEX) is a selective and potent α2 adrenergic receptor agonist with analgesic and protective effects following an IR injury. We hypothesized that DEX protects the development of mechanical allodynia and central sensitization in CRPS I. Therefore, we evaluated the dose-related protective effect of DEX in a CPIP model. METHODS We divided 45 rats into five groups: sham, CPIP, CPIP + DEX 10 µg/kg, CPIP + DEX 50 µg/kg, and CPIP + DEX 100 µg/kg. Rats in the sham group underwent sham surgery, and the other rats received CPIP injury. One hour before reperfusion or end of sham surgery, normal saline was injected into the rats in the sham and CPIP groups, and DEX (designated dose) was injected into the rats in the other groups. All rats were evaluated for the withdrawal threshold of both hind paws before surgery and 1, 3, and 7 days after surgery. Phosphorylation of N-methyl-d-aspartate receptor subunits (pGluN1) and phosphorylation of extracellular signal-regulated kinases (pERK) in the spinal cord were measured 3 days after surgery. RESULTS Administration of DEX before reperfusion showed a significant increase in the withdrawal threshold in both hind paws and a significant decrease of the expressions of pGluN1 and pERK in CPIP rats dose dependently (P<0.05). CONCLUSION DEX may inhibit the development of mechanical allodynia and central sensitization in CPIP rats.
Collapse
Affiliation(s)
- Jinseok Yeo
- Department of Anesthesiology and Pain Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea,
| | - Sungsik Park
- Department of Anesthesiology and Pain Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
74
|
Garrido-Suárez BB, Garrido G, Castro-Labrada M, Pardo-Ruíz Z, Bellma Menéndez A, Spencer E, Godoy-Figueiredo J, Ferreira SH, Delgado-Hernández R. Anti-allodynic Effect of Mangiferin in Rats With Chronic Post-ischemia Pain: A Model of Complex Regional Pain Syndrome Type I. Front Pharmacol 2018; 9:1119. [PMID: 30333751 PMCID: PMC6176059 DOI: 10.3389/fphar.2018.01119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/13/2018] [Indexed: 12/29/2022] Open
Abstract
The present study reproduces chronic post-ischemia pain (CPIP), a model of complex regional pain syndrome type I (CRPS-I), in rats to examine the possible transient and long-term anti-allodynic effect of mangiferin (MG); as well as its potential beneficial interactions with some standard analgesic drugs and sympathetic-mediated vasoconstriction and vasodilator agents during the earlier stage of the pathology. A single dose of MG (50 and 100 mg/kg, p.o.) decreased mechanical allodynia 72 h post-ischemia-reperfusion (I/R). MG 100 mg/kg, i.p. (pre- vs. post-drug) increased von Frey thresholds in a yohimbine and naloxone-sensitive manner. Sub-effective doses of morphine, amitriptyline, prazosin, clonidine and a NO donor, SIN-1, in the presence of MG were found to be significantly anti-allodynic. A long-term anti-allodynic effect at 7 and 13 days post-I/R after repeated oral doses of MG (50 and 100 mg/kg) was also observed. Further, MG decreased spinal and muscle interleukin-1β concentration and restored muscle redox status. These results indicate that MG has a transient and long-term anti-allodynic effect in CPIP rats that appears to be at least partially attributable to the opioid and α2 adrenergic receptors. Additionally, its anti-inflammatory and antioxidant mechanisms could also be implicated in this effect. The association of MG with sub-effective doses of these drugs enhances the anti-allodynic effect; however, an isobolographic analysis should be performed to define a functional interaction between them. These findings suggest the possible clinical use of MG in the treatment of CRPS-I in both early sympathetically maintained pain and long-term sympathetically independent pain.
Collapse
Affiliation(s)
- Bárbara B. Garrido-Suárez
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Marian Castro-Labrada
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Zenia Pardo-Ruíz
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Addis Bellma Menéndez
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Evelyn Spencer
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Jozi Godoy-Figueiredo
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Sergio H. Ferreira
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - René Delgado-Hernández
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Havana, Cuba
| |
Collapse
|
75
|
Birklein F, Ibrahim A, Schlereth T, Kingery WS. The Rodent Tibia Fracture Model: A Critical Review and Comparison With the Complex Regional Pain Syndrome Literature. THE JOURNAL OF PAIN 2018; 19:1102.e1-1102.e19. [PMID: 29684510 PMCID: PMC6163066 DOI: 10.1016/j.jpain.2018.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/28/2018] [Accepted: 03/30/2018] [Indexed: 12/23/2022]
Abstract
Distal limb fracture is the most common cause of complex regional pain syndrome (CRPS), thus the rodent tibia fracture model (TFM) was developed to study CRPS pathogenesis. This comprehensive review summarizes the published TFM research and compares these experimental results with the CRPS literature. The TFM generated spontaneous and evoked pain behaviors, inflammatory symptoms (edema, warmth), and trophic changes (skin thickening, osteoporosis) resembling symptoms in early CRPS. Neuropeptides, inflammatory cytokines, and nerve growth factor (NGF) have been linked to pain behaviors, inflammation, and trophic changes in the TFM model and proliferating keratinocytes were identified as the primary source of cutaneous cytokines and NGF. Tibia fracture also activated spinal glia and upregulated spinal neuropeptide, cytokine, and NGF expression, and in the brain it changed dendritic architecture. B cell-expressed immunoglobulin M antibodies also contributed to pain behavior, indicating a role for adaptive immunity. These results modeled many findings in early CRPS, but significant differences were also noted. PERSPECTIVE Multiple neuroimmune signaling mechanisms contribute to the pain, inflammation, and trophic changes observed in the injured limb of the rodent TFM. This model replicates many of the symptoms, signs, and pathophysiology of early CRPS, but most post-fracture changes resolve within 5 months and may not contribute to perpetuating chronic CRPS.
Collapse
Affiliation(s)
- Frank Birklein
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Alaa Ibrahim
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Tanja Schlereth
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California.
| |
Collapse
|
76
|
Biochemical and Pharmacological Characterization of a Mice Model of Complex Regional Pain Syndrome. Reg Anesth Pain Med 2018; 42:507-516. [PMID: 28609318 DOI: 10.1097/aap.0000000000000622] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Complex regional pain syndrome is a challenging disease to treat. Recently, a mouse fracture model of complex regional pain syndrome has been developed that has many signs of the clinical syndrome. However, many aspects of the sensory neuron biochemistry and behavioral and pharmacological characterization of this model remain to be clarified. METHODS Mice were randomly assigned to fracture/cast or control (naive) groups. Fracture/cast mice underwent a closed distal tibia facture, with hindlimb wrapped in casting tape for 3 weeks. After cast removal, mice were tested for mechanical allodynia, burrowing behavior, and motor ability over a 12-week period. Protein immunohistochemistry was performed for substance P, calcitonin gene-related peptide, tropomyosin receptor kinase A, nerve growth factor, Nav1.7, and transient receptor potential cation-channel V1, colocalized in neurons, in the ipsilateral lumbar dorsal root ganglia (DRGs). Analgesic drugs were tested for pain-relieving efficacy. RESULTS Mechanical allodynia was greater in the ipsilateral hindpaw (P = 0.0002) in the fracture/cast group versus the control group, over the 3- to 12-week period. The amount of burrowing material removed was decreased (P = 0.0026), and there were deficits in spontaneous motor-rearing behavior (P = 0.018). Immunostaining of substance P, calcitonin gene-related peptide, Trk A receptor, nerve growth factor, Nav1.7, and transient receptor potential cation-channel V1 all demonstrated up-regulation in the DRGs of fracture mice versus controls (all P < 0.05). Morphine, pregabalin, ketamine, acetaminophen, and dexamethasone transiently increased force withdrawal thresholds on the ipsilateral (fracture) side and improved burrowing activity after injection (all P < 0.05). Ketorolac improved only burrowing. CONCLUSIONS Persistent pain-related behavior was demonstrated in this mouse fracture/cast model with wide-scale DRG up-regulation of pain mediators. Antihyperalgesic drugs reduced mechanical allodynia and improved burrowing.
Collapse
|
77
|
David Clark J, Tawfik VL, Tajerian M, Kingery WS. Autoinflammatory and autoimmune contributions to complex regional pain syndrome. Mol Pain 2018; 14:1744806918799127. [PMID: 30124090 PMCID: PMC6125849 DOI: 10.1177/1744806918799127] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Complex regional pain syndrome (CRPS) is a highly enigmatic syndrome typically developing after injury or surgery to a limb. Severe pain and disability are common among those with chronic forms of this condition. Accumulating evidence suggests that CRPS may involve both autoinflammatory and autoimmune components. In this review article, evidence for dysfunction of both the innate and adaptive immune systems in CRPS is presented. Findings from human studies in which cytokines and other inflammatory mediators were measured in the skin of affected limbs are discussed. Additional results from studies of mediator levels in animal models are evaluated in this context. Similarly, the evidence from human, animal, and translational studies of the production of autoantibodies and the potential targets of those antibodies is reviewed. Compelling evidence of autoinflammation in skin and muscle of the affected limb has been collected from CRPS patients and laboratory animals. Cytokines including IL-1β, IL-6, TNFα, and others are reliably identified during the acute phases of the syndrome. More recently, autoimmune contributions have been suggested by the discovery of self-directed pain-promoting IgG and IgM antibodies in CRPS patients and model animals. Both the autoimmune and the autoinflammatory components of CRPS appear to be regulated by neuropeptide-containing peripheral nerve fibers and the sympathetic nervous system. While CRPS displays a complex neuroimmunological pathogenesis, therapeutic interventions could be designed targeting autoinflammation, autoimmunity, or the neural support for these phenomena.
Collapse
Affiliation(s)
- J David Clark
- 1 Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vivianne L Tawfik
- 2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Maral Tajerian
- 2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wade S Kingery
- 3 Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| |
Collapse
|
78
|
Mazzardo-Martins L, Salm DC, Winkelmann-Duarte EC, Ferreira JK, Lüdtke DD, Frech KP, Belmonte LAO, Horewicz VV, Piovezan AP, Cidral-Filho FJ, Moré AOO, Martins DF. Electroacupuncture induces antihyperalgesic effect through endothelin-B receptor in the chronic phase of a mouse model of complex regional pain syndrome type I. Pflugers Arch 2018; 470:1815-1827. [DOI: 10.1007/s00424-018-2192-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/12/2018] [Accepted: 08/02/2018] [Indexed: 01/13/2023]
|
79
|
Belmonte LAO, Martins TC, Salm DC, Emer AA, de Oliveira BH, Mathias K, Goldim MP, Horewicz VV, Piovezan AP, Bobinski F, Petronilho F, Martins DF. Effects of Different Parameters of Continuous Training and High-Intensity Interval Training in the Chronic Phase of a Mouse Model of Complex Regional Pain Syndrome Type I. THE JOURNAL OF PAIN 2018; 19:1445-1460. [PMID: 30006271 DOI: 10.1016/j.jpain.2018.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 01/03/2023]
Abstract
This study evaluated the effects of continuous and interval running on a treadmill on mechanical hyperalgesia in an animal model of chronic postischemia pain and analyzed the mechanism of action of this effect. Different groups of male Swiss mice with chronic postischemia pain, induced by 3 hours of paw ischemia followed by reperfusion, ran on the treadmill in different protocols-the speed (10, 13, 16, or 19 m/min), duration (15, 30, or 60 minutes), weekly frequency (3 or 5 times), weekly increase in continuous and interval running speed-were tested. Mechanical hyperalgesia was evaluated by von Frey filament 7, 14, and 21 days after paw ischemia followed by reperfusion. On day 11 after paw ischemia followed by reperfusion and after 5 days of continuous and interval running, concentrations of cytokines, oxidative stress parameters, and extracellular signal-regulated kinase 1/2 and AKT 1/2/3 expression in the spinal cord were measured. The results showed that continuous running has an antihyperalgesic effect that depends on intensity and volume. Interval running has a longer-lasting antihyperalgesic effect than continuous running. The antihyperalgesic effect depends on intensity and volume in continuous running, and increasing speed maintains the antihyperalgesic effect in both protocols. In the spinal cord, both runs decreased tumor necrosis factor-α and interleukin-6 levels and increased interleukin-10. Both running protocols reduced oxidative damage in the spinal cord. Only interval running had lower concentrations of phosphorylated extracellular signal-regulated kinase 1/2 in the spinal cord. Interval running presented a great antihyperalgesic potential with more promising results than continuous running, which may be owing to the fact that the interval running can activate different mechanisms from those activated by continuous running. PERSPECTIVE: A minimum of .5-hour sessions of moderate to high intensity ≥3 times a week are essential parameters for continuous and interval running-induced analgesia. However, interval running was shown to be more effective than continuous running and can be an important adjuvant treatment to chronic pain.
Collapse
Affiliation(s)
- Luiz Augusto Oliveira Belmonte
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Thiago César Martins
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daiana Cristina Salm
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Aline Armiliato Emer
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna Hoffman de Oliveira
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Khiany Mathias
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, University of Southern Santa Catarina at Tubarão, SC, Brazil
| | - Mariana Pereira Goldim
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, University of Southern Santa Catarina at Tubarão, SC, Brazil
| | - Verônica Vargas Horewicz
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Anna Paula Piovezan
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Franciane Bobinski
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, University of Southern Santa Catarina at Tubarão, SC, Brazil
| | - Daniel Fernandes Martins
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
80
|
Epidemiology of complex regional pain syndrome in Korea: An electronic population health data study. PLoS One 2018; 13:e0198147. [PMID: 29864152 PMCID: PMC5986148 DOI: 10.1371/journal.pone.0198147] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/14/2018] [Indexed: 01/29/2023] Open
Abstract
Chronic regional pain syndrome (CRPS) is an inflammatory and neuropathic pain disorder characterized by the involvement of the autonomic nervous system with sensory, autonomic, motor, skin, and bone changes. At present, universally accepted consensus criteria for CRPS are not yet established, despite the diagnostic criteria proposed by the International Association for the Study of Pain (IASP). Various hypotheses for the pathophysiology of CRPS have been proposed; as a result, current therapeutic modalities are varied. General epidemiological data on CRPS are necessary for effective management. However, recent data on the epidemiology of CRPS in Korea are scarce. The aim of this study was to evaluate the incidence and other epidemiological features of CRPS in the general population in Korea. In this study on the epidemiology of CRPS in Korea, population-based medical data acquired from 51,448,491 subscribers to the National Health Insurance Service (NHIS) from 2011 to 2015 were analyzed, including the incidence, distribution by the CRPS type, regional distribution, monthly distribution, medical costs, and healthcare resource-utilization. The findings indicated that the incidence of CRPS in Korea was 29.0 per 100,000 person-years in 2015 and was correlated with patient age and sex. CRPS types included type I (63%) and type II (37%); moreover, the number of individuals with CRPS I have shown a growing trend since 2011. There was no monthly distribution, but there was regional variation according to the province. The medical departments managing CRPS I the most were orthopedics, internal medicine, anesthesiology and pain medicine, in order; however, patients with CRPS spent more money per visit in the departments of rehabilitation medicine, and anesthesiology and pain medicine. The incidence rate of CRPS in Korea was 29.0 per 100,000 person-years with an increasing trend, which was correlated with patient age in the 70s and female sex. CRPS type I was more common than CRPS type II; in addition, constant increase in medical expenses, regional imbalance, and differences in medical expense among medical specialties should be considered for early management of patients to reduce the disease burden in Korea. Sharing of knowledge about the diagnostic criteria of CRPS are also needed.
Collapse
|
81
|
Linagliptin attenuates chronic post-ischemia pain: Possible anti-inflammatory and anti-oxidant mechanisms. Eur J Pharmacol 2018; 828:110-118. [DOI: 10.1016/j.ejphar.2018.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/08/2023]
|
82
|
Guo TZ, Wei T, Huang TT, Kingery WS, Clark JD. Oxidative Stress Contributes to Fracture/Cast-Induced Inflammation and Pain in a Rat Model of Complex Regional Pain Syndrome. THE JOURNAL OF PAIN 2018; 19:1147-1156. [PMID: 29715519 DOI: 10.1016/j.jpain.2018.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/02/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022]
Abstract
Clinical evidence suggests that vitamin C (Vit C) may protect against the development of complex regional pain syndrome (CRPS) after fracture or surgery. Tibia fracture followed by 4 weeks of cast immobilization (fracture/cast) in rats results in nociceptive, vascular, and bone changes resembling clinical CRPS. In this study, fracture/cast rats were treated with the oxidative stress inhibitors Vit C, N-acetyl cysteine, or 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl to examine their effects on CRPS-related nociceptive and vascular changes. Administration of these agents significantly reduced fracture/cast-induced cutaneous allodynia by 64 to 78%, muscle hyperalgesia by 34 to 40%, and hind limb unweighting by 48 to 89%. Treatments with Vit C and N-acetyl cysteine reduced the oxidative stress markers malondialdehyde in the skin, muscle, and sciatic nerve, and lactate in the gastrocnemius muscle of the fracture/cast limb. Furthermore, Vit C treatment inhibited the post-fracture upregulation of substance P and calcitonin gene-related peptide in the sciatic nerve and the increased expression of the pain-related inflammatory mediators, including interleukin (IL)-6, and nerve growth factor in the skin and IL-1β, and IL-6 in the muscle of the post-fracture/cast limb. These data suggest that oxidative stress may contribute to the nociceptive features of the rat CRPS model. PERSPECTIVE Vit C reduced the CRPS-like signs, oxidative stress, and the upregulation of neuropeptide production and inflammatory mediators observed after tibia fracture and casting in rats. Limiting oxidative stress by use of Vit C or alternative strategies could reduce the risk of developing CRPS after surgery or other forms of trauma.
Collapse
Affiliation(s)
- Tian-Zhi Guo
- Palo Alto Veterans Institute for Research, Palo Alto, California
| | - Tzuping Wei
- Palo Alto Veterans Institute for Research, Palo Alto, California.
| | - Ting-Ting Huang
- Department of Neurology, Stanford University School of Medicine, Stanford, California; Health Science, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, Palo Alto, California
| | - John David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California; Department of Anesthesiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
83
|
Therapeutic effects of diclofenac, pregabalin, and duloxetine on disuse-induced chronic musculoskeletal pain in rats. Sci Rep 2018; 8:3311. [PMID: 29459641 PMCID: PMC5818528 DOI: 10.1038/s41598-018-21429-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to clarify the mechanism of disuse-induced muscle hyperalgesia through the evaluation of the pharmacological behaviour of muscle hyperalgesia profiles in chronic post-cast pain (CPCP) rats with acute and chronic-phase mirror-image muscle hyperalgesia treated with diclofenac (NSAID), pregabalin (an inhibitor of Ca2+ channel α2δ), and duloxetine (SNRI). After 2 weeks of cast immobilization, the peak cross-sectional area and muscle wet weight of the ipsilateral soleus and gastrocnemius muscles decreased more significantly in CPCP rats than in untreated rats. Histological findings revealed disuse-induced muscle atrophy in CPCP rats. The blood biochemical parameters of CPCP rats in acute and chronic phases did not differ significantly from those of untreated rats. The diclofenac and pregabalin-treated groups exhibited no improvement in acute or chronic muscle hyperalgesia. In contrast, the duloxetine-treated group exhibited an improvement in acute muscle hyperalgesia, but showed no apparent effect on chronic muscle hyperalgesia on ipsilateral or contralateral sides. However, the chronic muscle hyperalgesia was reversed by intrathecal administration of DAMGO (a μ-opioid receptor agonist). The results suggest that chronic muscle hyperalgesia in CPCP rats did not result from an inflammatory mechanism, and there is only a low probability that it's caused by a neuropathic mechanism.
Collapse
|
84
|
Interaction between astrocytic colony stimulating factor and its receptor on microglia mediates central sensitization and behavioral hypersensitivity in chronic post ischemic pain model. Brain Behav Immun 2018; 68:248-260. [PMID: 29080683 DOI: 10.1016/j.bbi.2017.10.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 02/05/2023] Open
Abstract
Accumulation of microglia occurs in the dorsal horn in the rodent model of chronic post ischemic pain (CPIP), while the mechanism how microglia affects the development of persistent pain largely remains unknown. Here, using a rodent model of CPIP induced by ischemia-reperfusion (IR) injury in the hindpaw, we observed that microglial accumulation occurred in the ipsilateral dorsal horn after ischemia 3h, and in ipsilateral and contralateral dorsal horn in the rats with ischemia 6h. The accumulated microglia released BDNF, increased neuronal excitability in dorsal horn, and produced pain behaviors in the modeled rodents. We also found significantly increased signaling mediated by astrocytic colony-stimulating factor-1 (CSF1) and microglial CSF1 receptor (CSF1R) in dorsal horn in the ischemia 6h modeled rats. While exogenous M-CSF induced microglial activation and proliferation, BDNF production, neuronal hyperactivity in dorsal horn and behavioral hypersensitivity in the naïve rats, inhibition of astrocytic CSF1/microglial CSF1R signaling by fluorocitric or PLX3397 significantly suppressed microglial activation and proliferation, BDNF upregulation, and neuronal activity in dorsal horn, as well as the mechanical allodynia and thermal hyperalgesia, in the rats with ischemia 6h. Collectively, these results demonstrated that glial CSF1/CSF1R pathway mediated the microglial activation and proliferation, which facilitated the nociceptive output and contributed to the chronic pain induced by IR injury.
Collapse
|
85
|
Ross JL, Queme LF, Lamb JE, Green KJ, Jankowski MP. Sex differences in primary muscle afferent sensitization following ischemia and reperfusion injury. Biol Sex Differ 2018; 9:2. [PMID: 29298725 PMCID: PMC5751812 DOI: 10.1186/s13293-017-0163-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Chronic pain conditions are more prevalent in women, but most preclinical studies into mechanisms of pain generation are performed using male animals. Furthermore, whereas group III and IV nociceptive muscle afferents provoke central sensitization more effectively than their cutaneous counterparts, less is known about this critical population of muscle nociceptors. Here, we compare the physiology of individual muscle afferents in uninjured males and females. We then characterize the molecular, physiological, and behavioral effects of transient ischemia and reperfusion injury (I/R), a model we have extensively studied in males and in females. METHODS Response properties and phenotypes to mechanical, thermal, and chemical stimulation were compared using an ex vivo muscle/nerve/dorsal root ganglia (DRG)/spinal cord recording preparation. Analyses of injury-related changes were also performed by assaying evoked and spontaneous pain-related behaviors, as well as mRNA expression of the affected muscle and DRGs. The appropriate analyses of variance and post hoc tests (with false discovery rate corrections when needed) were performed for each measure. RESULTS Females have more mechanically sensitive muscle afferents and show greater mechanical and thermal responsiveness than what is found in males. With I/R, both sexes show fewer cells responsive to an innocuous metabolite solution (ATP, lactic acid, and protons), and lower mechanical thresholds in individual afferents; however, females also possess altered thermal responsiveness, which may be related to sex-dependent changes in gene expression within the affected DRGs. Regardless, both sexes show similar increases in I/R-induced pain-like behaviors. CONCLUSIONS Here, we illustrate a unique phenomenon wherein discrete, sex-dependent mechanisms of primary muscle afferent sensitization after ischemic injury to the periphery may underlie similar behavioral changes between the sexes. Furthermore, although the group III and IV muscle afferents are fully developed functionally, the differential mechanisms of sensitization manifest prior to sexual maturity. Hence, this study illustrates the pressing need for further exploration of sex differences in afferent function throughout the lifespan for use in developing appropriately targeted pain therapies.
Collapse
Affiliation(s)
- Jessica L Ross
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave MLC 6016, Cincinnati, OH, 45229, USA
| | - Luis F Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave MLC 6016, Cincinnati, OH, 45229, USA
| | - Jordan E Lamb
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave MLC 6016, Cincinnati, OH, 45229, USA
| | - Kathryn J Green
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave MLC 6016, Cincinnati, OH, 45229, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave MLC 6016, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA.
| |
Collapse
|
86
|
Upadhyay J, Geber C, Hargreaves R, Birklein F, Borsook D. A critical evaluation of validity and utility of translational imaging in pain and analgesia: Utilizing functional imaging to enhance the process. Neurosci Biobehav Rev 2018; 84:407-423. [PMID: 28807753 PMCID: PMC5729102 DOI: 10.1016/j.neubiorev.2017.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
Assessing clinical pain and metrics related to function or quality of life predominantly relies on patient reported subjective measures. These outcome measures are generally not applicable to the preclinical setting where early signs pointing to analgesic value of a therapy are sought, thus introducing difficulties in animal to human translation in pain research. Evaluating brain function in patients and respective animal model(s) has the potential to characterize mechanisms associated with pain or pain-related phenotypes and thereby provide a means of laboratory to clinic translation. This review summarizes the progress made towards understanding of brain function in clinical and preclinical pain states elucidated using an imaging approach as well as the current level of validity of translational pain imaging. We hypothesize that neuroimaging can describe the central representation of pain or pain phenotypes and yields a basis for the development and selection of clinically relevant animal assays. This approach may increase the probability of finding meaningful new analgesics that can help satisfy the significant unmet medical needs of patients.
Collapse
Affiliation(s)
| | - Christian Geber
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany; DRK Schmerz-Zentrum Mainz, Mainz, Germany
| | - Richard Hargreaves
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States
| | - Frank Birklein
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany
| | - David Borsook
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
87
|
Queme LF, Ross JL, Jankowski MP. Peripheral Mechanisms of Ischemic Myalgia. Front Cell Neurosci 2017; 11:419. [PMID: 29311839 PMCID: PMC5743676 DOI: 10.3389/fncel.2017.00419] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022] Open
Abstract
Musculoskeletal pain due to ischemia is present in a variety of clinical conditions including peripheral vascular disease (PVD), sickle cell disease (SCD), complex regional pain syndrome (CRPS), and even fibromyalgia (FM). The clinical features associated with deep tissue ischemia are unique because although the subjective description of pain is common to other forms of myalgia, patients with ischemic muscle pain often respond poorly to conventional analgesic therapies. Moreover, these patients also display increased cardiovascular responses to muscle contraction, which often leads to exercise intolerance or exacerbation of underlying cardiovascular conditions. This suggests that the mechanisms of myalgia development and the role of altered cardiovascular function under conditions of ischemia may be distinct compared to other injuries/diseases of the muscles. It is widely accepted that group III and IV muscle afferents play an important role in the development of pain due to ischemia. These same muscle afferents also form the sensory component of the exercise pressor reflex (EPR), which is the increase in heart rate and blood pressure (BP) experienced after muscle contraction. Studies suggest that afferent sensitization after ischemia depends on interactions between purinergic (P2X and P2Y) receptors, transient receptor potential (TRP) channels, and acid sensing ion channels (ASICs) in individual populations of peripheral sensory neurons. Specific alterations in primary afferent function through these receptor mechanisms correlate with increased pain related behaviors and altered EPRs. Recent evidence suggests that factors within the muscles during ischemic conditions including upregulation of growth factors and cytokines, and microvascular changes may be linked to the overexpression of these different receptor molecules in the dorsal root ganglia (DRG) that in turn modulate pain and sympathetic reflexes. In this review article, we will discuss the peripheral mechanisms involved in the development of ischemic myalgia and the role that primary sensory neurons play in EPR modulation.
Collapse
Affiliation(s)
- Luis F Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jessica L Ross
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
88
|
Effects of Glutathione on Mechanical Allodynia and Central Sensitization in Chronic Postischemic Pain Rats. Pain Res Manag 2017; 2017:7394626. [PMID: 29209138 PMCID: PMC5676478 DOI: 10.1155/2017/7394626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023]
Abstract
Background The chronic postischemia pain (CPIP) model is an animal model using ischemia/reperfusion injury that mimics the symptoms of complex regional pain syndrome type I. Glutathione (GSH) prevents ischemia/reperfusion injury by scavenging free radicals. We conducted this study to investigate the protective effect of GSH in CPIP rats via changes of mechanical allodynia and phospholyration of the N-methyl-D-aspartate receptor subunit GluN1. Methods We divided 45 rats into 5 groups: sham, CPIP, CPIP + GSH 100 mg/kg, CPIP + GSH 200 mg/kg, and CPIP + GSH 500 mg/kg. Rats in the sham and CPIP groups received normal saline and rats in the other groups received GSH at the designated doses thirty minutes prior to reperfusion. Withdrawal thresholds were evaluated before sugery as well as 1, 3, and 7 days after surgery. pGluN1 level in the spinal cord was also measured. Results GSH treated rats show a significant increase in the withdrawal thresholds of both hind paws as compared with the CPIP group dose-dependently. The expression of pGluN1 in the GSH treated rats significantly decreased as compared to the CPIP group (all P < 0.05). Conclusion These findings suggest that GSH inhibited the development of mechanical allodynia and central sensitization in CPIP rats.
Collapse
|
89
|
Antiallodynic Effects of Bee Venom in an Animal Model of Complex Regional Pain Syndrome Type 1 (CRPS-I). Toxins (Basel) 2017; 9:toxins9090285. [PMID: 28914784 PMCID: PMC5618218 DOI: 10.3390/toxins9090285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 11/17/2022] Open
Abstract
Neuropathic pain in a chronic post-ischaemic pain (CPIP) model mimics the symptoms of complex regional pain syndrome type I (CRPS I). The administration of bee venom (BV) has been utilized in Eastern medicine to treat chronic inflammatory diseases accompanying pain. However, the analgesic effect of BV in a CPIP model remains unknown. The application of a tight-fitting O-ring around the left ankle for a period of 3 h generated CPIP in C57/Bl6 male adult mice. BV (1 mg/kg ; 1, 2, and 3 times) was administered into the SC layer of the hind paw, and the antiallodynic effects were investigated using the von Frey test and by measuring the expression of neurokinin type 1 (NK-1) receptors in dorsal root ganglia (DRG). The administration of BV dose-dependently reduced the pain withdrawal threshold to mechanical stimuli compared with the pre-administration value and with that of the control group. After the development of the CPIP model, the expression of NK-1 receptors in DRG increased and then decreased following the administration of BV. SC administration of BV results in the attenuation of allodynia in a mouse model of CPIP. The antiallodynic effect was objectively proven through a reduction in the increased expression of NK-1 receptors in DRG.
Collapse
|
90
|
Vieira G, Cavalli J, Gonçalves ECD, Gonçalves TR, Laurindo LR, Cola M, Dutra RC. Effects of Simvastatin Beyond Dyslipidemia: Exploring Its Antinociceptive Action in an Animal Model of Complex Regional Pain Syndrome-Type I. Front Pharmacol 2017; 8:584. [PMID: 28928655 PMCID: PMC5591456 DOI: 10.3389/fphar.2017.00584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022] Open
Abstract
Simvastatin is a lipid-lowering agent that blocks the production of cholesterol through inhibition of 3-hydroxy-methyl-glutaryl coenzyme A (HMG-CoA) reductase. In addition, recent evidence has suggested its anti-inflammatory and antinociceptive actions during inflammatory and pain disorders. Herein, we investigated the effects of simvastatin in an animal model of complex regional pain syndrome-type I, and its underlying mechanisms. Chronic post-ischemia pain (CPIP) was induced by ischemia and reperfusion (IR) injury of the left hind paw. Our findings showed that simvastatin inhibited mechanical hyperalgesia induced by CPIP model in single and repeated treatment schedules, respectively; however simvastatin did not alter inflammatory signs during CPIP model. The mechanisms underlying those actions are related to modulation of transient receptor potential (TRP) channels, especially TRMP8. Moreover, simvastatin oral treatment was able to reduce the nociception induced by acidified saline [an acid-sensing ion channels (ASICs) activator] and bradykinin (BK) stimulus, but not by TRPA1, TRPV1 or prostaglandin-E2 (PGE2). Relevantly, the antinociceptive effects of simvastatin did not seem to be associated with modulation of the descending pain circuits, especially noradrenergic, serotoninergic and dopaminergic systems. These results indicate that simvastatin consistently inhibits mechanical hyperalgesia during neuropathic and inflammatory disorders, possibly by modulating the ascending pain signaling (TRPM8/ASIC/BK pathways expressed in the primary sensory neuron). Thus, simvastatin open-up new standpoint in the development of innovative analgesic drugs for treatment of persistent pain, including CRPS-I.
Collapse
Affiliation(s)
- Graziela Vieira
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Center of Araranguá, Federal University of Santa CatarinaAraranguá, Brazil
| | - Juliana Cavalli
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Center of Araranguá, Federal University of Santa CatarinaAraranguá, Brazil.,Post-Graduate Program of Cellular Biology and Developmental, Center of Biological Sciences, Federal University of Santa CatarinaFlorianópolis, Brazil
| | - Elaine C D Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Center of Araranguá, Federal University of Santa CatarinaAraranguá, Brazil.,Post-Graduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa CatarinaFlorianópolis, Brazil
| | - Tainara R Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Center of Araranguá, Federal University of Santa CatarinaAraranguá, Brazil
| | - Larissa R Laurindo
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Center of Araranguá, Federal University of Santa CatarinaAraranguá, Brazil
| | - Maíra Cola
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Center of Araranguá, Federal University of Santa CatarinaAraranguá, Brazil
| | - Rafael C Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Center of Araranguá, Federal University of Santa CatarinaAraranguá, Brazil.,Post-Graduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa CatarinaFlorianópolis, Brazil
| |
Collapse
|
91
|
Berta T, Perrin FE, Pertin M, Tonello R, Liu YC, Chamessian A, Kato AC, Ji RR, Decosterd I. Gene Expression Profiling of Cutaneous Injured and Non-Injured Nociceptors in SNI Animal Model of Neuropathic Pain. Sci Rep 2017; 7:9367. [PMID: 28839165 PMCID: PMC5570923 DOI: 10.1038/s41598-017-08865-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022] Open
Abstract
Nociceptors are a particular subtype of dorsal root ganglion (DRG) neurons that detect noxious stimuli and elicit pain. Although recent efforts have been made to reveal the molecular profile of nociceptors in normal conditions, little is known about how this profile changes in pathological conditions. In this study we exploited laser capture microdissection to specifically collect individual injured and non-injured nociceptive DRG neurons and to define their gene profiling in rat spared nerve injury (SNI) model of neuropathic pain. We found minimal transcriptional changes in non-injured neurons at 7 days after SNI. In contrast, several novel transcripts were altered in injured nociceptors, and the global signature of these LCM-captured neurons differed markedly from that the gene expression patterns found previously using whole DRG tissue following SNI. Pathway analysis of the transcriptomic profile of the injured nociceptors revealed oxidative stress as a key biological process. We validated the increase of caspase-6 (CASP6) in small-sized DRG neurons and its functional role in SNI- and paclitaxel-induced neuropathic pain. Our results demonstrate that the identification of gene regulation in a specific population of DRG neurons (e.g., nociceptors) is an effective strategy to reveal new mechanisms and therapeutic targets for neuropathic pain from different origins.
Collapse
Affiliation(s)
- Temugin Berta
- Pain Center, Department of anesthesiology, Lausanne University Hospital (CHUV) and Faculty of biology and medicine (FBM), University of Lausanne (UNIL), 1011, Lausanne, Switzerland.
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC, 27710, USA.
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267, USA.
| | - Florence E Perrin
- Department of Basic Neuroscience, Faculty of Medicine, 1211, Geneva 4, Geneva, Switzerland
- University of Montpellier, Montpellier, F-34095 France, INSERM, U1198, Montpellier, F-34095 France, EPHE, Paris, F-75014, France
| | - Marie Pertin
- Pain Center, Department of anesthesiology, Lausanne University Hospital (CHUV) and Faculty of biology and medicine (FBM), University of Lausanne (UNIL), 1011, Lausanne, Switzerland
- Department of Fundamental Neurosciences, Faculty of biology and medicine (FBM), University of Lausanne (UNIL), 1005, Lausanne, Switzerland
| | - Raquel Tonello
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267, USA
| | - Yen-Chin Liu
- Department of Anesthesiology, College of Medicine, National Cheng Kung University, Tainan city, Taiwan
| | - Alexander Chamessian
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC, 27710, USA
| | - Ann C Kato
- Department of Basic Neuroscience, Faculty of Medicine, 1211, Geneva 4, Geneva, Switzerland
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, 595 LaSalle Street, Durham, NC, 27710, USA
| | - Isabelle Decosterd
- Pain Center, Department of anesthesiology, Lausanne University Hospital (CHUV) and Faculty of biology and medicine (FBM), University of Lausanne (UNIL), 1011, Lausanne, Switzerland
- Department of Fundamental Neurosciences, Faculty of biology and medicine (FBM), University of Lausanne (UNIL), 1005, Lausanne, Switzerland
| |
Collapse
|
92
|
Tang C, Li J, Tai WL, Yao W, Zhao B, Hong J, Shi S, Wang S, Xia Z. Sex differences in complex regional pain syndrome type I (CRPS-I) in mice. J Pain Res 2017; 10:1811-1819. [PMID: 28831269 PMCID: PMC5548282 DOI: 10.2147/jpr.s139365] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Sex differences have been increasingly highlighted in complex regional pain syndrome (CRPS) in clinical practice. In CRPS type I (CRPS-I), although inflammation and oxidative stress have been implicated in its pathogenesis, whether pain behavior and the underlying mechanism are sex-specific is unclear. In the present study, we sought to explore whether sex differences have an impact on inflammation, oxidative stress, and pain sensitivity in CRPS-I. METHODS Chronic post-ischemia pain (CPIP) was established in both male and female mice as an animal model of CRPS-I. Edema and mechanical allodynia of bilateral hind paws were assessed after reperfusion. Blood samples were analyzed for serum levels of oxidative stress markers and inflammatory cytokines. RESULTS Both male and female mice developed edema. Male mice developed CPIP at day 3 after reperfusion; female mice developed CPIP at day 2 after reperfusion. Female mice displayed significantly earlier and higher mechanical allodynia in the ischemic hind paw, which was associated with higher serum levels of IL-2, TNF-α, isoprostanes, 8 OhdG, and malondialdehyde at day 2 after reperfusion. Moreover, female mice showed significantly lower SOD and IL-4 compared to male mice at day 2 after reperfusion. CONCLUSION Our results indicate that sex differences in inflammatory and oxidative stress states may play a central role in the sex-specific nociceptive hypersensitivity in CRPS-I, and offer a new insight into pharmacology treatments to improve pain management with CRPS.
Collapse
Affiliation(s)
- Chaoliang Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province
| | - Juan Li
- Department of Anesthesiology, Anhui Provincial Hospital of Anhui Medical University, Hefei, Anhui Provence
| | - Wai Lydia Tai
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province
| | - Junmou Hong
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Si Shi
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province
| | - Song Wang
- Department of Anesthesiology, Anhui Provincial Hospital of Anhui Medical University, Hefei, Anhui Provence
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province
| |
Collapse
|
93
|
Chung CY, Chang YW, Huang CJ, Wang PK, Wan HC, Lin YY, Kao MC. Vasculitic peripheral neuropathy induced by ischemia-reperfusion in the rat femoral artery involves activation of proinflammatory signaling pathway in the sciatic nerve. Neurosci Lett 2017; 656:77-82. [PMID: 28732764 DOI: 10.1016/j.neulet.2017.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 11/26/2022]
Abstract
Ischemia-reperfusion (IR) in the rat femoral artery has been proposed as an experimental model of vasculitic peripheral neuropathy (VPN) which presents neuropathic pain and peripheral nerve injury patterns observed clinically. This study investigates the involvement of the proinflammatory signaling pathway underlying the peripheral mechanisms of VPN. Male Sprague-Dawley rats were allocated to receive either a sham operation or IR. IR was induced by occluding the right femoral artery for 4h followed by reperfusion periods from 0 to 72h. The behavioral parameters were assessed at baseline as well as at days 1, 2 and 3 after reperfusion. The time-course analyses of proinflammatory mediators in the sciatic nerves were also performed on rats of the sham group or IR groups with reperfusion periods of 0, 2, 4, 24 and 72h, respectively. The behavioral data confirmed that this VPN model induced hindpaw mechano-allodynia and heat hyperalgesia as well as impaired hindpaw grip strength. The molecular data revealed that IR in the femoral artery activated the expression of nuclear factor-κB (NF-κB) in the sciatic nerve indicating a neuroinflammatory response. Moreover, IR in the femoral artery increased the expression of proinflammatory cytokines TNF-α and IL-1β in the sciatic nerve. This study elucidated the novel time-course expression profiles of NF-κB and proinflammatory cytokines in VPN induced by IR which may be involved in the development of neuropathic pain. Since NF-κB is a key element during neuroinflammation, strategies targeting the NF-κB signaling pathway may provide therapeutic potential against VPN induced by IR.
Collapse
Affiliation(s)
- Chih-Yang Chung
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, ROC; School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Yi-Wei Chang
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC; Department of Rehabilitation Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, ROC
| | - Chun-Jen Huang
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, ROC; School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Po-Kai Wang
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Hung-Chieh Wan
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, ROC
| | - Yi-Ying Lin
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, ROC
| | - Ming-Chang Kao
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, ROC; School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC.
| |
Collapse
|
94
|
Muscle IL1β Drives Ischemic Myalgia via ASIC3-Mediated Sensory Neuron Sensitization. J Neurosci 2017; 36:6857-71. [PMID: 27358445 DOI: 10.1523/jneurosci.4582-15.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/11/2016] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Musculoskeletal pain is a significantly common clinical complaint. Although it is known that muscles are quite sensitive to alterations in blood flow/oxygenation and a number of muscle pain disorders are based in problems of peripheral perfusion, the mechanisms by which ischemic-like conditions generate myalgia remain unclear. We found, using a multidisciplinary experimental approach, that ischemia and reperfusion injury (I/R) in male Swiss Webster mice altered ongoing and evoked pain-related behaviors in addition to activity levels through enhanced muscle interleukin-1 beta (IL1β)/IL1 receptor signaling to group III/IV muscle afferents. Peripheral sensitization depended on acid-sensing ion channels (ASICs) because treatment of sensory afferents in vitro with IL1β-upregulated ASIC3 in single cells, and nerve-specific knock-down of ASIC3 recapitulated the results of inhibiting the enhanced IL1β/IL1r1 signaling after I/R, which was also found to regulate afferent sensitization and pain-related behaviors. This suggests that targeting muscle IL1β signaling may be a potential analgesic therapy for ischemic myalgia. SIGNIFICANCE STATEMENT Here, we have described a novel pathway whereby increased inflammation within the muscle tissue during ischemia/reperfusion injury sensitizes group III and IV muscle afferents via upregulation of acid-sensing ion channel 3 (ASIC3), leading not only to alterations in mechanical and chemical responsiveness in individual afferents, but also to pain-related behavioral changes. Furthermore, these I/R-induced changes can be prevented using an afferent-specific siRNA knock-down strategy targeting either ASIC3 or the upstream mediator of its expression, interleukin 1 receptor 1. Therefore, this knowledge may contribute to the development of alternative therapeutics for muscle pain and may be especially relevant to pain caused by issues of peripheral circulation, which is commonly observed in disorders such as complex regional pain syndrome, sickle cell anemia, or fibromyalgia.
Collapse
|
95
|
Piovezan AP, Batisti AP, Benevides MLACS, Turnes BL, Martins DF, Kanis L, Duarte ECW, Cavalheiro AJ, Bueno PCP, Seed MP, Norling LV, Cooper D, Headland S, Souza PRPS, Perretti M. Hydroalcoholic crude extract of Casearia sylvestris Sw. reduces chronic post-ischemic pain by activation of pro-resolving pathways. JOURNAL OF ETHNOPHARMACOLOGY 2017; 204:179-188. [PMID: 28412216 DOI: 10.1016/j.jep.2017.03.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Casearia sylvestris Sw. is widely used in popular medicine to treat conditions associated with pain. AIM OF THE STUDY The present study investigated the influence of hydroalcoholic crude extract of Casearia sylvestris (HCE-CS) and contribution of pro-resolving mediators on mechanical hyperalgesia in a mouse model of chronic post-ischemia pain (CPIP). METHODS AND RESULTS Male Swiss mice were subjected to ischemia of the right hind paw (3h), then reperfusion was allowed. At 10min, 24h or 48h post-ischemia/reperfusion (I/R), different groups of animals were treated with HCE-CS (30mg/Kg, orally [p.o]), selected agonists at the pro-resolving receptor ALX/FPR2 (natural molecules like resolvin D1 and lipoxin A4 or the synthetic compound BML-111; 0.1-1µg/animal) or vehicle (saline, 10mL/Kg, s.c.), in the absence or presence of the antagonist WRW4 (10µg, s.c.). Mechanical hyperalgesia (paw withdrawal to von Frey filament) was asseseed together with histological and immunostainning analyses. In these settings, pro-resolving mediators reduced mechanical hyperalgesia and HCE-CS or BML-111 displayed anti-hyperalgesic effects which was markedly attenuated in animals treated with WRW4. ALX/FPR2 expression was raised in skeletal muscle or neutrophils after treatment with HCE-CS or BML-111. CONCLUSION These results reveal significant antihyperalgesic effect of HCE-CS on CPIP, mediated at least in part, by the pathway of resolution of inflammation centred on the axis modulated by ALX/FPR2.
Collapse
Affiliation(s)
- Anna P Piovezan
- Post-Graduate Programm in Health Science - Southern Univeristy of Santa Catarina (UNISUL), Brazil; Laboratory of Experimental Neuroscience (LANEX)- UNISUL, Brazil; William Harvey Research Institute - Queen Mary University of London/London, UK.
| | - Ana P Batisti
- Post-Graduate Programm in Health Science - Southern Univeristy of Santa Catarina (UNISUL), Brazil; Laboratory of Experimental Neuroscience (LANEX)- UNISUL, Brazil.
| | - Maria L A C S Benevides
- Laboratory of Experimental Neuroscience (LANEX)- UNISUL, Brazil; Undergraduation in Medicine - UNISUL, Brazil.
| | - Bruna L Turnes
- Laboratory of Neurobiology of Pain and Inflammation - UFSC, Brazil.
| | - Daniel F Martins
- Post-Graduate Programm in Health Science - Southern Univeristy of Santa Catarina (UNISUL), Brazil; Laboratory of Experimental Neuroscience (LANEX)- UNISUL, Brazil.
| | - Luiz Kanis
- Post-Graduate Programm in Health Science - Southern Univeristy of Santa Catarina (UNISUL), Brazil.
| | | | | | - Paula C P Bueno
- Department of Organic Chemistry/Institute of Chemistry - UNESP, Brazil.
| | - Michael P Seed
- Clinical Research Group, School of Health Sport & Bioscience, University of East London, UK.
| | - Lucy V Norling
- William Harvey Research Institute - Queen Mary University of London/London, UK.
| | - Dianne Cooper
- William Harvey Research Institute - Queen Mary University of London/London, UK.
| | - Sarah Headland
- William Harvey Research Institute - Queen Mary University of London/London, UK.
| | | | - Mauro Perretti
- William Harvey Research Institute - Queen Mary University of London/London, UK.
| |
Collapse
|
96
|
Aihara K, Ono T, Umei N, Tsumiyama W, Tasaka A, Ishikura H, Sato Y, Matsumoto T, Oki S. A study of the relationships of changes in pain and gait after tourniquet-induced ischemia-reperfusion in rats. J Phys Ther Sci 2017; 29:98-101. [PMID: 28210050 PMCID: PMC5300816 DOI: 10.1589/jpts.29.98] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/11/2016] [Indexed: 11/26/2022] Open
Abstract
[Purpose] The purpose of this study was to determine the relationships of changes in pain
and gait after ischemia reperfusion was induced by tourniquet in rats. [Subjects and
Methods] The subjects were six ten-week-old male Wistar rats. Ischemia was induced in the
left lower limbs of the experimental rats at a pressure of 300 mmHg for 90 minutes. Pain
behavior evaluations were measured using the von Frey test in all the rats’ hind limbs. A
consistently increasing plantar stimulus was applied until the rats exhibited an escape
behavior. For the evaluation of gait, a two-dimensional motion analysis system was used to
measure the distance from the calcaneus to the floor (DCF) and toe extension angle (TEA)
during gait. The evaluations were performed in the normal state, 3 hours after
ischemia-reperfusion, and daily until 7 days after ischemia-reperfusion. [Results]
Compared with the normal state, the means of the pain threshold showed a significant
decrease until 4 days after ischemia. In addition, both TEA and DCF continued to show a
significant decrease at 7 days after ischemia as compared with the normal state.
[Conclusion] This study revealed that hyperalgesia occurs after ischemia-reperfusion, and
recovery of hyperalgesia occurred earlier than gait dysfunction recovery.
Collapse
Affiliation(s)
- Kazuki Aihara
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Japan
| | - Takeya Ono
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Japan; Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Japan
| | - Namiko Umei
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Japan
| | - Wakako Tsumiyama
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Japan
| | - Atsushi Tasaka
- Department of Rehabilitation Science, Osaka Health Science University, Japan
| | - Hideki Ishikura
- Department of Rehabilitation, Physical Therapist, Faculty of Health Sciences, Hiroshima Cosmopolitan University, Japan
| | - Yuta Sato
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Japan
| | - Tomohiro Matsumoto
- Department of Rehabilitation Science, Kobe University Graduate School of Health Science, Japan
| | - Sadaaki Oki
- Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Japan; Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Japan
| |
Collapse
|
97
|
Kim JH, Kim YC, Nahm FS, Lee PB. The Therapeutic Effect of Vitamin C in an Animal Model of Complex Regional Pain Syndrome Produced by Prolonged Hindpaw Ischemia-Reperfusion in Rats. Int J Med Sci 2017; 14:97-101. [PMID: 28138314 PMCID: PMC5278664 DOI: 10.7150/ijms.17681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/24/2016] [Indexed: 12/18/2022] Open
Abstract
Objectives: It is known that increased free radicals from oxidative stress are one of the major causes of complex regional pain syndrome (CRPS). In this study, we tested the hypothesis that vitamin C has a dose-related treatment effect in a chronic post-ischemic pain (CPIP) model. Methods: A total of 49 male rats weighing 250 to 350 g were used. The 4 treatment groups were control (no medication), group 1.0 (administration of 1 mg/day for vitamin C for 5 days), group 2.5 (administration of 2.5 mg/day vitamin C for 5 days), and group 7.5 (administration of 7.5 mg/day vitamin C for 5 days). The 50% mechanical withdrawal threshold and total blood antioxidant status (TAS) were measured before and after administration of vitamin C. Results: Twenty-eight CPIP model rats were generated from 49 rats. Seven rats were randomly allocated to each group. The 50% mechanical withdrawal threshold of group 2.5 (after the administration of vitamin C) was higher than that of the control group and group 1.0 (P < 0.05). At 1 day of the administration of vitamin C, the 50% mechanical withdrawal threshold of group 1.0 was higher than that of the control group and the blood levels of TAS in groups 2.5 and 7.5 were higher than that in control group (P < 0.05). Twelve days after the administration of vitamin C, the blood levels of TAS in groups 2.5 and 7.5 were lower than that of the control group (P < 0.05). Discussion: The administration of a proper dose of vitamin C can reduce oxidative stress, increase antioxidants, and recover the threshold for mechanical allodynia in the CPIP model.
Collapse
Affiliation(s)
- Jae Hun Kim
- Department of Anesthesiology and Pain Medicine, Konkuk University Medical Center, Konkuk University School of Medicine
| | - Yong Chul Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital
| | - Francis Sahngun Nahm
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital
| | - Pyung Bok Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital
| |
Collapse
|
98
|
Tian G, Luo X, Tang C, Cheng X, Chung SK, Xia Z, Cheung CW, Guo Q. Astrocyte contributes to pain development via MMP2-JNK1/2 signaling in a mouse model of complex regional pain syndrome. Life Sci 2016; 170:64-71. [PMID: 27919822 DOI: 10.1016/j.lfs.2016.11.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND The activation of spinal glial cells (astrocyte and microglia) is reported in patient with complex regional pain syndrome (CRPS). However, the roles of spinal glial activities in the pathophysiology of CRPS are unclear. Here, we explored the roles of spinal astrocyte and microglia and the molecular mechanisms underlying CRPS using a mouse model of chronic post-ischemia pain (CPIP). RESULTS CPIP injury increased the level of glial fibrillary acidic protein (GFAP, reactive astrocyte biomarker), but had no significant impact on ionized calcium binding adaptor molecule 1 (IBA1, reactive microglia biomarker), in the ipsilateral dorsal horn on post-injury day (PID) 3 when the pain threshold started to reduce significantly. Astrocytic inhibition with fluorocitrate but not microglial inhibition with minocycline attenuated the development of allodynia in CPIP-injured mice, which was concomitant with increased spinal levels of phosphorylated c-jun N-terminal kinase 1/2 (pJNK1/2) on PID 3. Furthermore, the intrathecal administration of SP600125 (JNK inhibitor) prevented the development of allodynia in CPIP-injured mice. Double immunofluorescence staining showed that pJNK1/2 was mainly co-localized with GFAP. Subsequently, increased levels of pJNK1/2 were reversed by intrathecal fluorocitrate. Furthermore, the level of spinal matrix metalloproteinase-2 (MMP2) was increased and mainly expressed in NeuN (neuron biomarker) on PID 3 in the CPIP-injured mice, while intrathecal APR 100 (MMP2 inhibitor) delayed the development of allodynia and decreased spinal levels of GFAP and pJNK1/2 on PID 3. CONCLUSION This study shows that activation of astrocyte MMP2/JNK1/2 signaling pathway contributes to the pathogenesis of pain hypersensitivity in the CPIP model.
Collapse
Affiliation(s)
- Guogang Tian
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China; Department of Anesthesiology and Pain Medicine, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, China
| | - Xin Luo
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Chaoliang Tang
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Xiang Cheng
- Department of Anesthesiology and Pain Medicine, Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou, China
| | - Sookja Kim Chung
- Department of Anatomy, The University of Hong Kong, HKSAR, China; Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China
| | - Zhengyuan Xia
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China
| | - Chi Wai Cheung
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, China; Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, HKSAR, China; Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, HKSAR, China.
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
99
|
Adult Complex Regional Pain Syndrome Type I: A Narrative Review. PM R 2016; 9:707-719. [PMID: 27890578 DOI: 10.1016/j.pmrj.2016.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 11/06/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022]
Abstract
Complex regional pain syndrome type I (CRPS I) is a multifactorial painful disorder with a complex pathogenesis. Both peripheral and central mechanisms are involved. Acute CRPS I is considered to be an exaggerated inflammatory disorder; however, over time, because of altered function of the sympathetic nervous system and maladaptive neuroplasticity, CRPS I evolves into a neurological disorder. This review thoroughly describes the pathophysiological aspects of CRPS I and summarizes the potential therapeutic options. The mechanisms and targets of the treatment are different in the early and late stages of the disease. This current review builds on a previous review by this author group by deepening the role of the peripheral classic and neuronal inflammatory component in the acute stage of this painful disorder. LEVEL OF EVIDENCE Not applicable.
Collapse
|
100
|
Hsiao HT, Lin YC, Wang JCF, Tsai YC, Liu YC. Hypoxia inducible factor-1α inhibition produced anti-allodynia effect and suppressed inflammatory cytokine production in early stage of mouse complex regional pain syndrome model. Clin Exp Pharmacol Physiol 2016; 43:355-9. [PMID: 26711019 DOI: 10.1111/1440-1681.12536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 12/27/2022]
Abstract
Complex regional pain syndrome (CRPS) is related to microcirculation impairment associated with tissue hypoxia and peripheral cytokine overproduction in the affected limb. Previous studies suggest that the pathogenesis involves hypoxia inducible factor-1α (HIF-1α) and exaggerated regional inflammatory response. 1-methylpropyl 2-imidazolyl disulfide (PX-12) acts as the thioredoxin-1 (Trx-1) inhibitor and decreases the level of HIF-1α, and can rapidly be metabolized for Trx-1 redox inactivation. This study hypothesized that PX-12 can decrease the cytokine production for nociceptive sensitization in the hypoxia-induced pain model. CD1 mice weighing around 30 g were used. The animal CRPS model was developed via the chronic post-ischaemic pain (CPIP) model. The model was induced by using O-rings on the ankles of the mice hind limbs to produce 3-h ischaemia-reperfusion injury on the paw. PX-12 (25 mg/kg, 5 mg/kg) was given through tail vein injection immediately after ischaemia. Animal behaviour was tested using the von Frey method for 7 days. Local paw skin tissue was harvest from three groups (control, 5 mg/kg, 25 mg/kg) 2 h after injection of PX-12. The protein expression of interleukin-1β (IL-1β) and HIF-1α was analysed with the Western blotting method. Mice significantly present an anti-allodynia effect in a dose-related manner after the PX-12 administration. Furthermore, PX-12 not only decreased the expression of HIF-1α but also decreased the expression of IL-1β over the injured palm. This study, therefore, shows the first evidence of the anti-allodynia effect of PX-12 in a CPIP animal model for pain behaviour. The study concluded that inhibition of HIF-1α may produce an analgesic effect and the associated suppression of inflammatory cytokine IL-1β in a CPIP model.
Collapse
Affiliation(s)
- Hung-Tsung Hsiao
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.,Department of Anesthesiology, E-Da hospital, E-Da University, Kaohsiung City, Taiwan
| | - Ya-Chi Lin
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Jeffrey Chi-Fei Wang
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yu-Chuan Tsai
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yen-Chin Liu
- Department of Anesthesiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|