51
|
Ding Y, Lv Y, Pan Y, Li J, Yan K, Yu Z, Shang Q. A masked gene concealed hand in glove in the forkhead protein crocodile regulates the predominant detoxification CYP6DA1 in Aphis gossypii Glover. Int J Biol Macromol 2023; 253:126824. [PMID: 37690634 DOI: 10.1016/j.ijbiomac.2023.126824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Cytochrome P450-mediated metabolism is an important mechanism of insecticide resistance, most studies show upregulated transcript levels of P450s in resistant insect strains. Our previous studies illustrated that some upregulated P450s were associated with cyantraniliprole resistance, and it is more comprehensive to use the tissue specificity of transcriptomes to compare resistant (CyR) and susceptible (SS) strains. In this study, the expression profiles of P450s in a CyR strain compared with a SS strain in remaining carcass or midgut were investigated by RNA sequencing, and candidate genes were selected for functional study. Drosophila melanogaster bioassays suggested that ectopic overexpression of CYP4CK1, CYP6CY5, CYP6CY9, CYP6CY19, CYP6CZ1 and CYP6DA1 in flies was sufficient to confer cyantraniliprole resistance, among which CYP6DA1 was the predominant contributor to resistance (12.24-fold). RNAi suppression of CYP4CK1, CYP6CY5, CYP6CY9 and CYP6DA1 significantly increased CyR aphid sensitivity to cyantraniliprole. The CYP6DA1 promoter had two predicted binding sites for crocodile (CROC), an intron-free ORF with bidirectional transcription yielding CROC (+) and CROC (-). Y1H, RNAi and EMSA found that CROC (-) was a transcription factor directly regulating CYP6DA1 expression. In conclusion, P450 genes contribute to cyantraniliprole resistance, and the transcription factor CROC (-) regulates the expression of CYP6DA1 in A. gossypii.
Collapse
Affiliation(s)
- Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Zihan Yu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
52
|
Zhu J, Qu R, Wang Y, Ni R, Tian K, Yang C, Li M, Kristensen M, Qiu X. Up-regulation of CYP6G4 mediated by a CncC/maf binding-site-containing insertion confers resistance to multiple classes of insecticides in the house fly Musca domestica. Int J Biol Macromol 2023; 253:127024. [PMID: 37769776 DOI: 10.1016/j.ijbiomac.2023.127024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Populations of many insect species have evolved a variety of resistance mechanisms in response to insecticide selection. Current knowledge about mutations responsible for insecticide resistance is largely achieved from studies on target-site resistance, while much less is known about metabolic resistance. Although it is well known that P450 monooxygenases are one of the major players involved in insecticide metabolism and resistance, understanding mutation(s) responsible for CYP-mediated resistance has been a big challenge. In this study, we used the house fly to pursue a better understanding of P450 mediated insecticide resistance at the molecular level. Metabolism studies illustrated that CYP6G4 had a broad-spectrum metabolic activity in metabolizing insecticides. Population genotyping revealed that the CYP6G4v1 allele harboring a DNA insertion (MdIS1) had been selected in many house fly populations on different continents. Dual luciferase reporter assays identified that the MdIS1 contained a CncC/Maf binding site, and electrophoretic mobility shift assay confirmed that transcription factor CncC was involved in the MdIS1-mediated regulation. This study highlights the common involvement of the CncC pathway in adaptive evolution, and provides an interesting case supportive of parallel evolution in P450-mediated insecticide resistance in insects.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruinan Qu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoyao Ni
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chan Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
53
|
Wu P, Huang Y, Zheng J, Zhang Y, Qiu L. Regulation of CncC in insecticide-induced expression of cytochrome P450 CYP9A14 and CYP6AE11 in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105707. [PMID: 38072560 DOI: 10.1016/j.pestbp.2023.105707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The expression of many detoxification genes can be regulated by CncC pathway and contributes to insecticide tolerance in insects. Our previous study has demonstrated that the transcripts of CncC and cytochrome P450s (CYP9A14, CYP6AE11) were significantly up-regulated after different insecticides treatment in Helicoverpa armigera. Further study indicated that H2O2, GSH, and MDA contents and antioxidant enzyme activities of H. armigera were enhanced after chlorantraniliprole, cyantraniliprole, indoxacarb, and spinosad exposure. Silencing CncC by RNA interference significantly down-regulated the expression levels of CYP9A14 and CYP6AE11, and increased the susceptibility of dsRNA-injected larvae to λ-cyhalothrin, chlorantraniliprole, and cyantraniliprole. On the contrary, applying CncC agonist curcumin on H. armigera induced the expression of CYP9A14 and CYP6AE11, and enhanced the tolerance of H. armigera to insecticides. Treatment of ROS scavenger N-acetylcysteine on H. armigera reduced the H2O2 content and antioxidant enzyme activities, suppressed the transcripts of CncC, CYP9A14, and CYP6AE11, and decreased the larval tolerance to insecticides. These results demonstrated that the induced-expression of CYP9A14 and CYP6AE11 related with insecticides tolerance in H. armigera was regulated by CncC, which may be activated by ROS generated by insecticides. This study will help to better understand the underlying regulation mechanisms of CncC pathway in H. armigera tolerance to insecticides.
Collapse
Affiliation(s)
- Peizhuo Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yun Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
54
|
Yang XY, Yang W, Zhao H, Wang BJ, Shi Y, Wang MY, Liu SQ, Liao XL, Shi L. Functional analysis of UDP-glycosyltransferase genes conferring indoxacarb resistance in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105589. [PMID: 37945240 DOI: 10.1016/j.pestbp.2023.105589] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 11/12/2023]
Abstract
UDP-glycosyltransferase (UGT) is the major detoxification enzymes of phase II involved in xenobiotics metabolism, which potentially mediates the formation of insect resistance. Previous transcriptome sequencing studies have found that several UGT genes were upregulated in indoxacarb resistant strains of Spodoptera litura, but whether these UGT genes were involved in indoxacarb resistance and their functions in resistance were unclear. In this study, the UGTs inhibitor, 5-nitrouracil, enhanced the toxicity of indoxacarb against S. litura, preliminarily suggesting that UGTs were participated in indoxacarb resistance. Two UGT genes, UGT33J17 and UGT41D10 were upregulated in the resistant strains and could be induced by indoxacarb. Alignment of UGT protein sequences revealed two conserved donor-binding regions with several key residues that interact with catalytic sites and sugar donors. Further molecular modeling and docking analysis indicated that two UGT proteins were able to stably bind indoxacarb and N-decarbomethoxylated metabolite (DCJW). Furthermore, knockdown of UGT33J17 and UGT41D10 decreased viability of Spli-221 cells and enhanced susceptibility of larvae to indoxacarb. Transgenic overexpression of these genes reduced the toxicity of indoxacarb in Drosophila melanogaster. This work revealed that upregulation of UGT genes significantly contributes to indoxacarb resistance in S. litura, and is of great significance for the development of integrated and sustainable management strategies for resistant pests in the field.
Collapse
Affiliation(s)
- Xi-Yu Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wen Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Hui Zhao
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Bing-Jie Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yao Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Meng-Yu Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shuang-Qing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiao-Lan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| | - Li Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
55
|
Liu J, Wu HH, Zhang YC, Zhang JZ, Ma EB, Zhang XY. Transcription factors, cap 'n' collar isoform C regulates the expression of CYP450 genes involving in insecticides susceptibility in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105627. [PMID: 37945261 DOI: 10.1016/j.pestbp.2023.105627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/12/2023] [Accepted: 09/17/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The cap 'n' collar (Cnc) belongs to the Basic Leucine Zipper (bZIP) transcription factor super family. Cap 'n' collar isoform C (CncC) is highly conserved in the animal kingdom. CncC contributes to the regulation of growth, development, and aging and takes part in the maintenance of homeostasis and the defense against endogenous and environmental stress. Insect CncC participates in the regulation of various kinds of stress-responsive genes and is involved in the development of insecticide resistance. RESULTS In this study, one full-length CncC sequence of Locusta migratoria was identified and characterized. Upon RNAi silencing of LmCncC, insecticide bioassays showed that LmCncC played an essential role in deltamethrin and imidacloprid susceptibility. To fully investigate the downstream genes regulated by LmCncC and further identify the LmCncC-regulated genes involved in deltamethrin and imidacloprid susceptibility, a comparative transcriptome was constructed. Thirty-five up-regulated genes and 73 down-regulated genes were screened from dsLmCncC-knockdown individuals. We selected 22 LmCncC-regulated genes and verified their gene expression levels using RT-qPCR. Finally, six LmCYP450 genes belonging to the CYP6 family were selected as candidate detoxification genes, and LmCYP6FD1 and LmCYP6FE1 were further validated as detoxification genes of insecticides via RNAi, insecticide bioassays, and metabolite identification. CONCLUSIONS Our data suggest that the locust CncC gene is associated with deltamethrin and imidacloprid susceptibility via the regulation of LmCYP6FD1 and LmCYP6FE1, respectively.
Collapse
Affiliation(s)
- Jiao Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China
| | - Hai-Hua Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China
| | - Yi-Chao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China
| | - Jian-Zhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China
| | - En-Bo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China
| | - Xue-Yao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; Shanxi Key Laboratory of Nucleic Acid Biopesticides, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China.
| |
Collapse
|
56
|
Mappin F, Bellantuono AJ, Ebrahimi B, DeGennaro M. Odor-evoked transcriptomics of Aedes aegypti mosquitoes. PLoS One 2023; 18:e0293018. [PMID: 37874813 PMCID: PMC10597520 DOI: 10.1371/journal.pone.0293018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Modulation of odorant receptors mRNA induced by prolonged odor exposure is highly correlated with ligand-receptor interactions in Drosophila as well as mammals of the Muridae family. If this response feature is conserved in other organisms, this presents an intriguing initial screening tool when searching for novel receptor-ligand interactions in species with predominantly orphan olfactory receptors. We demonstrate that mRNA modulation in response to 1-octen-3-ol odor exposure occurs in a time- and concentration-dependent manner in Aedes aegypti mosquitoes. To investigate gene expression patterns at a global level, we generated an odor-evoked transcriptome associated with 1-octen-3-ol odor exposure. Transcriptomic data revealed that ORs and OBPs were transcriptionally responsive whereas other chemosensory gene families showed little to no differential expression. Alongside chemosensory gene expression changes, transcriptomic analysis found that prolonged exposure to 1-octen-3-ol modulated xenobiotic response genes, primarily members of the cytochrome P450, insect cuticle proteins, and glucuronosyltransferases families. Together, these findings suggest that mRNA transcriptional modulation of olfactory receptors caused by prolonged odor exposure is pervasive across taxa and can be accompanied by the activation of xenobiotic responses.
Collapse
Affiliation(s)
- Fredis Mappin
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Anthony J. Bellantuono
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Babak Ebrahimi
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| | - Matthew DeGennaro
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
57
|
Xiao T, Wang W, Deng M, Yang Z, Peng H, Huang Z, Sun Z, Lu K. CYP321A Subfamily P450s Contribute to the Detoxification of Phytochemicals and Pyrethroids in Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14989-15002. [PMID: 37792742 DOI: 10.1021/acs.jafc.3c05423] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Although the induction of cytochrome P450 monooxygenases involved in insect detoxification has been well documented, the underlying regulatory mechanisms remain obscure. In Spodoptera litura, CYP321A subfamily members were effectively induced by exposure to flavone, xanthotoxin, curcumin, and λ-cyhalothrin, while knockdown of the CYP321A genes increased larval susceptibility to these xenobiotics. Homology modeling and molecular docking analyses showed that these four xenobiotics could stably bind to the CYP321A enzymes. Furthermore, two transcription factor genes, CncC and MafK, were significantly induced by the xenobiotics. Knockdown of CncC or MafK reduced the expression of four CYP321A genes and increased larval susceptibility to the xenobiotics. Dual-luciferase reporter assays showed that cotransfection of reporter plasmids carrying the CYP321A promoter with CncC and/or MafK-expressing constructs significantly magnified the promoter activity. These results indicate that the induction of CYP321A subfamily members conferring larval detoxification capability to xenobiotics is mediated by the activation of CncC and MafK.
Collapse
Affiliation(s)
- Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haoxue Peng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zifan Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhongxiang Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
58
|
Abendroth JA, Moural TW, Wei H, Zhu F. Roles of insect odorant binding proteins in communication and xenobiotic adaptation. FRONTIERS IN INSECT SCIENCE 2023; 3:1274197. [PMID: 38469469 PMCID: PMC10926425 DOI: 10.3389/finsc.2023.1274197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/15/2023] [Indexed: 03/13/2024]
Abstract
Odorant binding proteins (OBPs) are small water-soluble proteins mainly associated with olfaction, facilitating the transport of odorant molecules to their relevant receptors in the sensillum lymph. While traditionally considered essential for olfaction, recent research has revealed that OBPs are engaged in a diverse range of physiological functions in modulating chemical communication and defense. Over the past 10 years, emerging evidence suggests that OBPs play vital roles in purifying the perireceptor space from unwanted xenobiotics including plant volatiles and pesticides, potentially facilitating xenobiotic adaptation, such as host location, adaptation, and pesticide resistance. This multifunctionality can be attributed, in part, to their structural variability and effectiveness in transporting, sequestering, and concealing numerous hydrophobic molecules. Here, we firstly overviewed the classification and structural properties of OBPs in diverse insect orders. Subsequently, we discussed the myriad of functional roles of insect OBPs in communication and their adaptation to xenobiotics. By synthesizing the current knowledge in this field, our review paper contributes to a comprehensive understanding of the significance of insect OBPs in chemical ecology, xenobiotic adaptation, paving the way for future research in this fascinating area of study.
Collapse
Affiliation(s)
- James A. Abendroth
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Timothy W. Moural
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Hongshuang Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
59
|
Mack LK, Attardo GM. Time-series analysis of transcriptomic changes due to permethrin exposure reveals that Aedes aegypti undergoes detoxification metabolism over 24 h. Sci Rep 2023; 13:16564. [PMID: 37783800 PMCID: PMC10545687 DOI: 10.1038/s41598-023-43676-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023] Open
Abstract
Insecticide resistance is a multifaceted response and an issue across taxa. Aedes aegypti, the mosquito that vectors Zika, dengue, chikungunya, and yellow fever, demonstrates high levels of pyrethroid resistance across the globe, presenting a challenge to public health officials. To examine the transcriptomic shifts across time after exposure to permethrin, a 3'Tag-Seq analysis was employed on samples 6, 10, and 24 h after exposure along with controls. Differential expression analysis revealed significant shifts in detoxifying enzymes and various energy-producing metabolic processes. These findings indicate significant alterations in gene expression associated with key energy mobilization pathways within the system. These changes encompass a coordinated response involving lipolysis, beta-oxidation, and the citric acid cycle, required for the production of energetic molecules such as ATP, NADH, NADPH, and FADH. These findings highlight a complex interplay of metabolic processes that may have broader implications for understanding insect physiology and response to environmental stimuli. Among the upregulated detoxifying enzymes are cytochrome P450s, glutathione s-transferases and peroxidases, and ATP-binding cassette transporters. Additionally, eight heat shock genes or genes with heat shock domains exhibit the highest fold change across time. Twenty-four hours after exposure, samples indicate a global downregulation of these processes, though principal component analysis suggests lasting signatures of the response. Understanding the recovery response to insecticide exposure provides information on possible new genetic and synergist targets to explore.
Collapse
Affiliation(s)
- Lindsey K Mack
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
60
|
An J, Dou Y, Dang Z, Guo J, Gao Z, Li Y. Detoxification enzyme is involved in the temperature effect on the toxicity of tetrachlorantraniliprole to Plutella xylostella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105536. [PMID: 37666608 DOI: 10.1016/j.pestbp.2023.105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 09/06/2023]
Abstract
The efficacy of insecticides is usually influenced by temperature. Insecticides can be divided into "positive", "negative" and "non-effect" temperature coefficient insecticides (TCI). To assess the temperature-dependent effect of tetrachlorantraniliprole (TET) on Plutella xylostella Linnaeus and to elucidate the mechanism of temperature affects TET toxicity, we determined the toxicity of TET against P. xylostella from 15 °C to 35 °C by leaf dipping method. Moreover, we compared the transcriptome data of the third-instar larvae treated by TET, chlorfenapyr (CHL, non-effect TCI), and the control group at 15, 25, 35 °C, respectively. The results showed that the toxicity of TET against P. xylostella increased with increasing temperature from 15 °C to 35 °C. A total of 21 differential expressed genes (DEGs) of detoxification enzymes were screened by RNA-seq, in which 10 up-regulated genes (3 UGTs, 2 GSTs, 5 P450s) may involve the positive temperature effect of TET, and their expression patterns were consistent with qPCR results. Furthermore, the enzyme activities of GSTs and UGTs significantly increased after TET was treated at 15 °C. Especially, the temperature coefficient (TC) of TET was significantly reduced mixed with UGTs enzyme inhibitor 5-NI. Overall, TET showed higher insecticidal activity with increasing temperature, in which detoxifying enzymes associated with regulation of the positive temperature effect of TET on P. xylostella, such as UGTs, GSTs and P450s, are strongly involved. The transcriptome data provide in-depth information to understand the TET mechanism against diamondback moth. Most importantly, we identified detoxification enzymes that might be involved in regulating TET's positive temperature effect process, and contributed to efficient pest management.
Collapse
Affiliation(s)
- Jingjie An
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences / IPM Center of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, China
| | - Ya'nan Dou
- Agricultural Specialty Industry Development Center of Baoding, Baoding 071000, China
| | - Zhihong Dang
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences / IPM Center of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, China
| | - Jianglong Guo
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences / IPM Center of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, China
| | - Zhanlin Gao
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences / IPM Center of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, China
| | - Yaofa Li
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences / IPM Center of Hebei Province/ Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, China.
| |
Collapse
|
61
|
Amezian D, Fricaux T, de Sousa G, Maiwald F, Huditz HI, Nauen R, Le Goff G. Investigating the role of the ROS/CncC signaling pathway in the response to xenobiotics in Spodoptera frugiperda using Sf9 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105563. [PMID: 37666619 DOI: 10.1016/j.pestbp.2023.105563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 09/06/2023]
Abstract
Spodoptera frugiperda (fall armyworm, FAW) is an invasive polyphagous lepidopteran pest that has developed sophisticated resistance mechanisms involving detoxification enzymes to eliminate toxic compounds it encounters in its diet including insecticides. Although its inventory of detoxification enzymes is known, the mechanisms that enable an adapted response depending on the toxic compound remain largely unexplored. Sf9 cells were used to investigate the role of the transcription factors, Cap n' collar isoform C (CncC) and musculoaponeurotic fibrosarcoma (Maf) in the regulation of the detoxification response. We overexpressed CncC, Maf or both genes, and knocked out (KO) CncC or its repressor Kelch-like ECH associated protein 1 (Keap1). Joint overexpression of CncC and Maf is required to confer increased tolerance to indole 3-carbinol (I3C), a plant secondary metabolite, and to methoprene, an insecticide. Both molecules induce reactive oxygen species (ROS) pulses in the different cell lines. The use of an antioxidant reversed ROS pulses and restored the tolerance to I3C and methoprene. The activity of detoxification enzymes varied according to the cell line. Suppression of Keap1 significantly increased the activity of cytochrome P450s, carboxylesterases and glutathione S-transferases. RNAseq experiments showed that CncC mainly regulates the expression of detoxification genes but is also at the crossroads of several signaling pathways (reproduction and immunity) maintaining homeostasis. We present new data in Sf9 cell lines suggesting that the CncC:Maf pathway plays a central role in FAW response to natural and synthetic xenobiotics. This knowledge helps to better understand detoxification gene expression and may help to design next-generation pest insect control measures.
Collapse
Affiliation(s)
- Dries Amezian
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Thierry Fricaux
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Georges de Sousa
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Frank Maiwald
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | | | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany.
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France.
| |
Collapse
|
62
|
Wen X, Feng K, Qin J, Wei P, Cao P, Zhang Y, Yuchi Z, He L. A detoxification pathway initiated by a nuclear receptor TcHR96h in Tetranychus cinnabarinus (Boisduval). PLoS Genet 2023; 19:e1010911. [PMID: 37708138 PMCID: PMC10501649 DOI: 10.1371/journal.pgen.1010911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Understanding the mechanism of detoxification initiation in arthropods after pesticide exposure is crucial. Although the identity of transcription factors that induce and regulate the expression of detoxification genes in response to pesticides is beginning to emerge, whether transcription factors directly interact with xenobiotics is unclear. The findings of this study revealed that a nuclear hormone receptor, Tetranychus cinnabarinus hormone receptor (HR) TcHR96h, regulates the overexpression of the detoxification gene TcGSTm02, which is involved in cyflumetofen resistance. The nuclear translocation of TcHR96h increased after cyflumetofen exposure, suggesting direct binding with cyflumetofen. The direct binding of TcHR96h and cyflumetofen was supported by several independent proteomic assays that quantify interactions with small molecules. Together, this study proposes a model for the initiation of xenobiotic detoxification in a polyphagous agricultural pest. These insights not only provide a better understanding of the mechanisms of xenobiotic detoxification and metabolism in arthropods, but also are crucial in understanding adaptation in polyphagous herbivores.
Collapse
Affiliation(s)
- Xiang Wen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Kaiyang Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Juan Qin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Youjun Zhang
- Department of Plants and Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
63
|
Wu P, Zheng J, Huang Y, Zhang Y, Qiu L. Effects of different insecticides on transcripts of key genes in CncC pathway and detoxification genes in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105541. [PMID: 37666612 DOI: 10.1016/j.pestbp.2023.105541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 09/06/2023]
Abstract
The CncC pathway regulates the expression of multiple detoxification genes and contributes to the detoxification and antioxidation in insects. Many studies have focused on the impacts of plant allelochemicals on the CncC pathway, whereas studies on the effects of pesticides on key genes involved in this pathway are very limited. In this study, the effects of different types of commonly used insecticides on the transcripts of CncC, Keap1, and Maf and multiple detoxification genes of Helicoverpa armigera were evaluated using real-time quantitative polymerase chain reaction. The results showed that 8 insecticides (bifenthrin, λ-cyhalothrin, chlorantraniliprole, cyantraniliprole, spinosad, indoxacarb, chlorfenapyr, tolfenpyrad, and thiacloprid) significantly induced the expression of CncC and 4 insecticides (cypermethrin, acetamiprid, thiacloprid, and indoxacarb) suppressed the expression of Keap1 both at 24 h and 48 h; meanwhile, the expression levels of Maf were induced by 5 insecticides (fenvalerate, chlorantraniliprole, cyantraniliprole, lufenuron, and tolfenpyrad) at 24 h or 48 h. Multiple detoxification genes, especially cytochrome P450s genes, showed different up-regulation after bifenthrin, λ-cyhalothrin, chlorantraniliprole, cyantraniliprole, indoxacarb, and spinosad treatment for 48 h. Our results suggest that the CncC pathway and detoxification genes can be activated by different insecticides in H. armigera. These results establish a foundation for further studies on the relationship between the CncC pathway and the detoxification genes in H. armigera.
Collapse
Affiliation(s)
- Peizhuo Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yun Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
64
|
Ji M, Vandenhole M, De Beer B, De Rouck S, Villacis-Perez E, Feyereisen R, Clark RM, Van Leeuwen T. A nuclear receptor HR96-related gene underlies large trans-driven differences in detoxification gene expression in a generalist herbivore. Nat Commun 2023; 14:4990. [PMID: 37591878 PMCID: PMC10435515 DOI: 10.1038/s41467-023-40778-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
The role, magnitude, and molecular nature of trans-driven expression variation underlying the upregulation of detoxification genes in pesticide resistant arthropod populations has remained enigmatic. In this study, we performed expression quantitative trait locus (eQTL) mapping (n = 458) between a pesticide resistant and a susceptible strain of the generalist herbivore and crop pest Tetranychus urticae. We found that a single trans eQTL hotspot controlled large differences in the expression of a subset of genes in different detoxification gene families, as well as other genes associated with host plant use. As established by additional genetic approaches including RNAi gene knockdown, a duplicated gene with a nuclear hormone receptor HR96-related ligand-binding domain was identified as causal for the expression differences between strains. The presence of a large family of HR96-related genes in T. urticae may enable modular control of detoxification and host plant use genes, facilitating this species' known and rapid evolution to diverse pesticides and host plants.
Collapse
Affiliation(s)
- Meiyuan Ji
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Berdien De Beer
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sander De Rouck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ernesto Villacis-Perez
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - René Feyereisen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
65
|
De Rouck S, İnak E, Dermauw W, Van Leeuwen T. A review of the molecular mechanisms of acaricide resistance in mites and ticks. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103981. [PMID: 37391089 DOI: 10.1016/j.ibmb.2023.103981] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/12/2023] [Accepted: 06/11/2023] [Indexed: 07/02/2023]
Abstract
The Arachnida subclass of Acari comprises many harmful pests that threaten agriculture as well as animal health, including herbivorous spider mites, the bee parasite Varroa, the poultry mite Dermanyssus and several species of ticks. Especially in agriculture, acaricides are often used intensively to minimize the damage they inflict, promoting the development of resistance. Beneficial predatory mites used in biological control are also subjected to acaricide selection in the field. The development and use of new genetic and genomic tools such as genome and transcriptome sequencing, bulked segregant analysis (QTL mapping), and reverse genetics via RNAi or CRISPR/Cas9, have greatly increased our understanding of the molecular genetic mechanisms of resistance in Acari, especially in the spider mite Tetranychus urticae which emerged as a model species. These new techniques allowed to uncover and validate new resistance mutations in a larger range of species. In addition, they provided an impetus to start elucidating more challenging questions on mechanisms of gene regulation of detoxification associated with resistance.
Collapse
Affiliation(s)
- Sander De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Emre İnak
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapı, 06110, Ankara, Turkiye
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, 9820 Merelbeke, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
66
|
Zhang Z, Wang D, Shan Y, Chen J, Hu H, Song X, Ma X, Ren X, Ma Y. Knockdown of CYP9A9 increases the susceptibility to lufenuron, methoxyfenozide and a mixture of both in Spodoptera exigua. INSECT MOLECULAR BIOLOGY 2023; 32:263-276. [PMID: 36582185 DOI: 10.1111/imb.12829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/27/2022] [Indexed: 05/15/2023]
Abstract
Lufenuron (LUF) and Methoxyfenozide (MET) as Insect Growth Regulators (IGRs) contribute to the current control of the catastrophic crop pest, Spodoptera exigua (Lepidoptera, Noctuidae). Yet S. exigua has evolved resistance to LUF and MET, which is possibly mediated by cytochrome P450 monooxygenases (P450s), particularly from the CYP3 clade family, as it plays a key role in the detoxification of insecticides. However, a mixture of LUF and MET (MML) (optimal ratio: 6:4) remains highly insecticidal. Here, we analysed the response of S. exigua to sublethal concentrations of LUF, MET, and MML via transcriptomics. Twelve differentially expressed genes (DEGs) encoding CYP3 clade members were observed in transcriptomes and CYP9A9 was significantly upregulated after treatment with LUF, MET, and MML. Further, CYP9A9 was most highly expressed in the midgut of L4 S. exigua larvae. RNAi-mediated knockdown of CYP9A9 reduced the activity of CYP450 and increased the susceptibility of S. exigua larvae to LUF, MET, and MML. Thus, CYP9A9 plays a key role in the detoxification of LUF, MET, and MML in S. exigua. These findings provide new insights into insecticidal actions of IGRs, which can be applied to the establishment of novel pest management strategies.
Collapse
Affiliation(s)
- Zhixian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yongpan Shan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jixiang Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
67
|
Wu Z, Gao T, Liang Z, Hao J, Liu P, Liu X. Dynamic Changes in Plant Secondary Metabolites Induced by Botrytis cinerea Infection. Metabolites 2023; 13:metabo13050654. [PMID: 37233695 DOI: 10.3390/metabo13050654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
In response to pathogen infection, some plants increase production of secondary metabolites, which not only enhance plant defense but also induce fungicide resistance, especially multidrug resistance (MDR) in the pathogen through preadaptation. To investigate the cause of MDR in Botrytis cinerea, grapes 'Victoria' (susceptible to B. cinerea) and 'Shine Muscat' (resistant to B. cinerea) were inoculated into seedling leaves with B. cinerea, followed by extraction of metabolites from the leaves on days 3, 6, and 9 after inoculation. The extract was analyzed using gas chromatography/quadrupole time-of-flight mass (GC/QTOF) combined with solid-phase microextraction (SPME) for volatile and nonvolatile metabolomic components. Nonvolatile metabolites γ-aminobutyric acid (GABA), resveratrol, piceid, and some carbohydrates or amino acids, coupled with volatile metabolites β-ocimene, α-farnesene, caryophyllene, germacrene D, β-copaene, and alkanes, accumulated at a higher level in grape leaves infected with B. cinerea compared to in noninoculated leaves. Among the established metabolic pathways, seven had greater impacts, including aminoacyl-tRNA biosynthesis, galactose metabolism, valine, leucine, and isoleucine biosynthesis. Furthermore, isoquinoline alkaloid biosynthesis; phenylpropanoid biosynthesis; monobactam biosynthesis; tropane, piperidine, and pyridine alkaloid biosynthesis; phenylalanine metabolism; and glucosinolate biosynthesis were related to antifungal activities. Based on liquid chromatography/quadrupole time-of-flight mass (LC/QTOF) detection and bioassay, B. cinerea infection induced production of plant secondary metabolites (PSMs) including eugenol, flavanone, reserpine, resveratrol, and salicylic acid, which all have inhibitory activity against B. cinerea. These compounds also promoted overexpression of ATP-binding cassette (ABC) transporter genes, which are involved in induction of MDR in B. cinerea.
Collapse
Affiliation(s)
- Zhaochen Wu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Tuqiang Gao
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhengya Liang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Pengfei Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
68
|
Lou F, Okoye CO, Gao L, Jiang H, Wu Y, Wang Y, Li X, Jiang J. Whole-genome sequence analysis reveals phenanthrene and pyrene degradation pathways in newly isolated bacteria Klebsiella michiganensis EF4 and Klebsiella oxytoca ETN19. Microbiol Res 2023; 273:127410. [PMID: 37178499 DOI: 10.1016/j.micres.2023.127410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are diverse pollutants of significant environmental concerns, requiring effective biodegradation. This study used different bioinformatics tools to conduct whole-genome sequencing of two novel bacterial strains, Klebsiella michiganensis EF4 and K. oxytoca ETN19, to improve our understanding of their many genomic functions and degradation pathways of phenanthrene and pyrene. After 28 days of cultivation, strain EF4 degraded approximately 80% and 60% of phenanthrene and pyrene, respectively. However, their combinations (EF4 +ETN19) showed tremendous phenanthrene degradation efficiency, supposed to be at the first-level kinetic model with a t1/2 value of approximately 6 days. In addition, the two bacterial genomes contained carbohydrate-active enzymes and secondary metabolites biosynthetic gene clusters associated with PAHs degradation. The two genomes contained the bZIP superfamily of transcription factors, primarily the cAMP-response element-binding protein (CREB), which could regulate the expression of several PAHs degradation genes and enzymes. Interestingly, the two genomes were found to uniquely degrade phenanthrene through a putative pathway that catabolizes 2-carboxybenzalpyruvate into the TCA cycle. An operon containing multicomponent proteins, including a novel gene (JYK05_14550) that could initiate the beginning step of phenanthrene and pyrene degradation, was found in the EF4 genome. However, the degradation pathway of ETN19 showed that the yhfP gene encoding putative quinone oxidoreductase was associated with phenanthrene and pyrene catabolic processes. Furthermore, the significant expression of catechol 1,2-dioxygenase and quinone oxidoreductase genes in EF4 +ETN19 and ETN19 following the quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis confirmed the ability of the bacteria combination to degrade pyrene and phenanthrene effectively. These findings present new insight into the possible co-metabolism of the two bacterial species in the rapid biodegradation of phenanthrene and pyrene in soil environments.
Collapse
Affiliation(s)
- Feiyue Lou
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Charles Obinwanne Okoye
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Lu Gao
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huifang Jiang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanfang Wu
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongli Wang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xia Li
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianxiong Jiang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
69
|
Maiwald F, Haas J, Hertlein G, Lueke B, Roesner J, Nauen R. Expression profile of the entire detoxification gene inventory of the western honeybee, Apis mellifera across life stages. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105410. [PMID: 37105637 DOI: 10.1016/j.pestbp.2023.105410] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The western honeybee, Apis mellifera, is a managed pollinator of many crops and potentially exposed to a wide range of foreign compounds, including pesticides throughout its life cycle. Honeybees as well as other insects recruit molecular defense mechanisms to facilitate the detoxification of xenobiotic compounds. The inventory of detoxification genes (DETOXome) is comprised of five protein superfamilies: cytochrome P450 monooxygenases (P450), carboxylesterases, glutathione S-transferases (GST), UDP-glycosyl transferases (UGT) and ATP-binding cassette (ABC) transporters. Here we characterized the gene expression profile of the entire honeybee DETOXome by analyzing 47 transcriptomes across the honeybee life cycle, including different larval instars, pupae, and adults. All life stages were well separated by principal component analysis, and K-means clustering revealed distinct temporal patterns of gene expression. Indeed, >50% of the honeybee detoxification gene inventory is found in one cluster and follows strikingly similar expression profiles, i.e., increased expression during larval development, followed by a sharp decline after pupation and a steep increase again in adults. This cluster includes 29 P450 genes dominated by CYP3 and CYP4 clan members, 15 ABC transporter genes mostly belonging to the ABCC subfamily and 13 carboxylesterase genes including almost all members involved in dietary/detox and hormone/semiochemical processing. RT-qPCR analysis of selected detoxification genes from all families revealed high expression levels in various tissues, especially Malpighian tubules, fatbody and midgut, supporting the view that these tissues are essential for metabolic clearance of environmental toxins and pollutants in honeybees. Our study is meant to spark further research on the molecular basis of detoxification in this critical pollinator to better understand and evaluate negative impacts from potentially toxic substances. Additionally, the entire gene set of 47 transcriptomes collected and analyzed provides a valuable resource for future honeybee research across different disciplines.
Collapse
Affiliation(s)
- Frank Maiwald
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Julian Haas
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Gillian Hertlein
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Bettina Lueke
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Janin Roesner
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany.
| |
Collapse
|
70
|
Li ET, Wu HJ, Wang ZM, Li KB, Zhang S, Cao YZ, Yin J. PI3K/Akt/CncC signaling pathway mediates the response to EPN-Bt infection in Holotrichia parallela larvae. PEST MANAGEMENT SCIENCE 2023; 79:1660-1673. [PMID: 36565065 DOI: 10.1002/ps.7337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/28/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Combining the entomopathogenic nematode (EPN), Heterorhabditis beicherriana LF strain, and Bacillus thuringiensis (Bt) HBF-18 strain is a practical strategy to manage the larvae of Holotrichia parallela Motschulsky (white grubs). However, the mechanisms underlying the larval defense response to this combined biocontrol strategy are unknown. RESULTS The activities of some antioxidant enzymes (SOD, POD, CAT) and some detoxifying enzymes (AChE, P-450, CarE, GST) in grubs showed an activation-inhibition trend throughout the EPN-Bt exposure time course. Eight potentially key antioxidant and detoxifying enzyme genes in response to EPN-Bt infection were identified from the midgut of grubs through RNA sequencing. After silencing CAT, CarE18, and GSTs1, the enzyme activities were significantly decreased by 30.29%, 68.80%, and 34.63%, respectively. Meanwhile, the mortality of grubs was increased by 18.40%, 46.30%, and 42.59% after exposure to EPN-Bt for 1 day. Interestingly, the PI3K/Akt signaling pathway was significantly enriched in KEGG enrichment analysis, and the expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), cap 'n' collar isoform-C (CncC), kelch-like ECH-associated protein 1 (Keap1), and CarE18 were all up-regulated when exposed to EPN-Bt for 1 day. Furthermore, RNAi-mediated PI3K silencing showed a similar down-regulated trend between PI3K/Akt/CncC and CarE18. Moreover, silencing PI3K rendered grubs more susceptible to EPN-Bt and accelerated symbiotic bacteria multiplication in grubs. CONCLUSION These results suggest that the PI3K/Akt/CncC pathway mediates the expression of CarE18 and participates in the defense response of H. parallela larvae against EPN-Bt infection. Our data provide valuable insights into the design of appropriate management strategies for this well-known agricultural pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Er-Tao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han-Jia Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-Min Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ke-Bin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ya-Zhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
71
|
Haberkorn C, David J, Henri H, Delpuech J, Lasseur R, Vavre F, Varaldi J. A major 6 Mb superlocus is involved in pyrethroid resistance in the common bed bug Cimex lectularius. Evol Appl 2023; 16:1012-1028. [PMID: 37216030 PMCID: PMC10197226 DOI: 10.1111/eva.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023] Open
Abstract
In the last few years, the bed bug Cimex lectularius has been an increasing problem worldwide, mainly due to the development of insecticide resistance to pyrethroids. The characterization of resistance alleles is a prerequisite to improve surveillance and resistance management. To identify genomic variants associated with pyrethroid resistance in Cimex lectularius, we compared the genetic composition of two recent and resistant populations with that of two ancient-susceptible strains using a genome-wide pool-seq design. We identified a large 6 Mb "superlocus" showing particularly high genetic differentiation and association with the resistance phenotype. This superlocus contained several clustered resistance genes and was also characterized by a high density of structural variants (inversions, duplications). The possibility that this superlocus constitutes a resistance "supergene" that evolved after the clustering of alleles adapted to insecticide and after reduction in recombination is discussed.
Collapse
Affiliation(s)
- Chloé Haberkorn
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie ÉvolutiveUniversité de Lyon, Université Lyon 1VilleurbanneFrance
- IZInovationLyonFrance
| | - Jean‐Philippe David
- Laboratoire d'Écologie AlpineUMR UGA‐USMB‐CNRS 5553 Université Grenoble Alpes CS 40700Grenoble cedex 9France
| | - Hélène Henri
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie ÉvolutiveUniversité de Lyon, Université Lyon 1VilleurbanneFrance
| | - Jean‐Marie Delpuech
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie ÉvolutiveUniversité de Lyon, Université Lyon 1VilleurbanneFrance
| | | | - Fabrice Vavre
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie ÉvolutiveUniversité de Lyon, Université Lyon 1VilleurbanneFrance
| | - Julien Varaldi
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie ÉvolutiveUniversité de Lyon, Université Lyon 1VilleurbanneFrance
| |
Collapse
|
72
|
Yang Z, Xiao T, Deng M, Wang W, Peng H, Lu K. Nuclear receptors potentially regulate phytochemical detoxification in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105417. [PMID: 37105640 DOI: 10.1016/j.pestbp.2023.105417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Phytochemicals are a class of potential pesticides for pest control. Our previous studies have demonstrated that the development of Spodoptera litura is suppressed by two phytochemicals, flavone and xanthotoxin. Generally, phytochemical is metabolized by insect detoxification enzyme systems. Nuclear receptor (NR) is the ligand-activated transcription factor that involved in the regulation of detoxification gene expressions. To explore how NR responds to phytochemical to mediate detoxification gene expression, in the present study, 19 NRs were firstly identified in S. litura genome. The transcriptional levels of most NRs were significantly induced in the midgut of S. litura larvae after exposure to flavone and xanthotoxin. RNAi-mediated knockdown of FTZF1, EcR, Dsf, and HR3 remarkably reduced the larval tolerance to flavone or xanthotoxin. In addition, many crucial detoxification genes were downregulated by dsNR administrations, which might be responsible for the high sensitivity of S. litura to phytochemicals. Molecular docking indicated that phytochemicals as the potential ligands had high affinity to bind to NRs. This study suggested that NR potentially regulated the transcriptional expression of detoxification genes in response to phytochemical stresses, which partially elucidated the mechanism of extensive host adaptation in S. litura and provided the theoretical evidences for the development of NR-targeted insecticides.
Collapse
Affiliation(s)
- Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haoxue Peng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
73
|
Hu C, Liu YX, Zhang SP, Wang YQ, Gao P, Li YT, Yang XQ. Transcription Factor AhR Regulates Glutathione S-Transferases Conferring Resistance to lambda-Cyhalothrin in Cydia pomonella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5230-5239. [PMID: 36943249 DOI: 10.1021/acs.jafc.3c00002] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aryl hydrocarbon receptor (AhR) enhances insect resistance to insecticides by regulating the detoxification network. Our previous studies have confirmed that overexpressions of cytochrome P450 monooxygenases (P450s) and glutathione S-transferases (GSTs) are involved in lambda-cyhalothrin resistance in Cydia pomonella. Here, we report that CpAhR regulates the expression of GST and P450 genes, thus conferring resistance. Expression patterns indicated that the expression of CpAhR was highly induced by lambda-cyhalothrin exposure and upregulated in a lambda-cyhalothrin-resistant population. RNA interference (RNAi) of CpAhR decreases the expression of key resistance-related genes (CpGSTe3, CpCYP9A121, and CpCYP9A122) and the activity of the GST enzyme, reducing the tolerance to lambda-cyhalothrin. Furthermore, β-naphthoflavone, a novel agonist of AhR, was first proven to be effective in increasing CpAhR expression and larval tolerance to lambda-cyhalothrin. These results demonstrate that CpAhR regulates the expression of key detoxifying genes and GST activity, resulting in the development of resistance to lambda-cyhalothrin in C. pomonella.
Collapse
Affiliation(s)
- Chao Hu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Yu-Xi Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Shi-Pang Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Ya-Qi Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Ping Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Yu-Ting Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Xue-Qing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| |
Collapse
|
74
|
Zhang C, Wang X, Tai S, Qi L, Yu X, Dai W. Transcription factor CncC potentially regulates cytochrome P450 CYP321A1-mediated flavone tolerance in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105360. [PMID: 36963951 DOI: 10.1016/j.pestbp.2023.105360] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Insect P450s play crucial roles in metabolizing insecticides and toxic plant allelochemicals. In this study, our results demonstrate that Helicoverpa armigera can adapt to a lower concentration of flavone (a flavonoid phytochemical), and P450 activities and CYP321A1 transcript levels significantly increase after exposure to flavone. RNAi-mediated knockdown of CYP321A1 significantly reduced the tolerance of H. armigera larvae to flavone. In addition, the regulatory mechanisms driving CYP321A1 induction following exposure to flavone were investigated. Flavone exposure significantly increased H2O2 generation in the larval midgut. The mRNA levels of HaCncC and HaMaf-s significantly increased in the midgut of H. armigera after exposure to flavone. Knockdown of HaCncC significantly inhibited expression of flavone-induced CYP321A1 and resulted in a decrease in flavone induction of CYP321A1. HaCncC knockdown significantly reduced the tolerance of H. armigera larvae to flavone. Taken together, these results indicate that HaCncC regulates expression of the CYP321A1 gene responsible for flavone tolerance in H. armigera.
Collapse
Affiliation(s)
- Chunni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xinxiang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shulei Tai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lijun Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoting Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
75
|
Li PR, Shi Y, Ju D, Liu YX, Wang W, He YS, Zhang YY, Yang XQ. Metabolic functional redundancy of the CYP9A subfamily members leads to P450-mediated lambda-cyhalothrin resistance in Cydia pomonella. PEST MANAGEMENT SCIENCE 2023; 79:1452-1466. [PMID: 36519662 DOI: 10.1002/ps.7317] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The evolution of insect resistance to pesticides poses a continuing threat to sustainable pest management. While much is known about the molecular mechanisms that confer resistance in model insects and few agricultural pests, far less is known about fruit pests. Field-evolved resistance to synthetic insecticides such as lambda-cyhalothrin has been widely documented in Cydia pomonella, a major invasive pest of pome fruit worldwide, and the increased production of cytochrome P450 monooxygenases (P450s) has been linked to resistance in field-evolved resistant populations. However, the underlying molecular mechanisms of P450-mediated insecticide resistance remain largely unknown. RESULTS Here we found that functional redundancy and preference of metabolism by P450s genes in the CYP9A subfamily confer resistance to lambda-cyhalothrin in Cydia pomonella. A total of four CYP9A genes, including CYP9A61, CYP9A120, CYP9A121, and CYP9A122, were identified from Cydia pomonella. Among these, CYP9A120, CYP9A121, and CYP9A122 were predominantly expressed in the midgut of larvae. The expression levels of these P450 genes were significantly induced by a lethal dose that would kill 10% (LD10 ) of lambda-cyhalothrin and were overexpressed in a field-evolved lambda-cyhalothrin resistant population. Knockdown of CYP9A120 and CYP9A121 by RNA-mediated interference (RNAi) increased the susceptibility of larvae to lambda-cyhalothrin. In vitro assays demonstrated that recombinant P450s expressed in Sf9 cells can metabolize lambda-cyhalothrin, but with functional redundancy and divergence through regioselectivity of metabolism. CYP9A121 preferred to convert lambda-cyhalothrin to 2'-hydroxy-lambda-cyhalothrin, whereas CYP9A122 only generated 4'-hydroxy metabolite of lambda-cyhalothrin. Although possesses a relatively low metabolic capability, CYP9A120 balanced catalytic competence to generate both 2'- and 4'-metabolites. CONCLUSION Collectively, these results reveal that metabolic functional redundancy of three members of the CYP9A subfamily leads to P450-mediated lambda-cyhalothrin resistance in Cydia pomonella, thus representing a potential adaptive evolutionary strategy during its worldwide expansion. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pei-Rong Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, China
| | - Yu Shi
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Di Ju
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, China
| | - Yu-Xi Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, China
| | - Wei Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, China
| | - Ying-Shi He
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yu-Yun Zhang
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xue-Qing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, China
| |
Collapse
|
76
|
Huang X, Kaufman PE, Athrey GN, Fredregill C, Alvarez C, Shetty V, Slotman MA. Potential key genes involved in metabolic resistance to malathion in the southern house mosquito, Culex quinquefasciatus, and functional validation of CYP325BC1 and CYP9M12 as candidate genes using RNA interference. BMC Genomics 2023; 24:160. [PMID: 36991322 PMCID: PMC10061707 DOI: 10.1186/s12864-023-09241-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Metabolic detoxification is one of the major mechanisms contributing to the development of resistance in mosquitoes, including the southern house mosquito, Culex quinquefasciatus. The three major detoxification supergene families, cytochrome P450s, glutathione S-transferases and general esterases, have been demonstrated to play an important role in metabolic resistance. In this study, we performed differential gene expression analysis based on high-throughput transcriptome sequencing on samples from four experimental groups to give insight into key genes involved in metabolic resistance to malathion in Cx. quinquefasciatus. We conducted a whole transcriptome analysis of field captured wild Cx. quinquefasciatus from Harris County (WI), Texas and a malathion susceptible laboratory-maintained Sebring colony (CO) to investigate metabolic insecticide resistance. Field captured mosquitoes were also phenotypically classified into the malathion resistant and malathion susceptible groups following a mortality response measure conducted using a Centers for Disease Control and Prevention (CDC) bottle assay. The live (MR) and dead (MS) specimens from the bottle assay, along with an unselected WI sample and a CO sample were processed for total RNA extraction and subjected to whole-transcriptome sequencing. RESULTS We demonstrated that the genes coding for detoxification enzymes, particularly cytochrome P450s, were highly up-regulated in the MR group compared to the MS group with similar up-regulation observed in the WI group compared to the CO group. A total of 1,438 genes were differentially expressed in comparison between MR and MS group, including 614 up-regulated genes and 824 down-regulated genes. Additionally, 1,871 genes were differentially expressed in comparison between WI and CO group, including 1,083 up-regulated genes and 788 down-regulated genes. Further analysis on differentially expressed genes from three major detoxification supergene families in both comparisons resulted in 16 detoxification genes as candidates potentially associated with metabolic resistance to malathion. Knockdown of CYP325BC1 and CYP9M12 using RNA interference on the laboratory-maintained Sebring strain significantly increased the mortality of Cx. quinquefasciatus after exposure to malathion. CONCLUSION We generated substantial transcriptomic evidence on metabolic detoxification of malathion in Cx. quinquefasciatus. We also validated the functional roles of two candidate P450 genes identified through DGE analysis. Our results are the first to demonstrate that knockdown of CYP325BC1 and CYP9M12 both significantly increased malathion susceptibility in Cx. quinquefasciatus, indicating involvement of these two genes in metabolic resistance to malathion.
Collapse
Affiliation(s)
- Xinyue Huang
- Department of Entomology, Texas A&M University Minnie Bell Heep Center, TAMU 2475 370 Olsen Blvd College Station, College Station, TX 77843 USA
| | - Phillip E. Kaufman
- Department of Entomology, Texas A&M University Minnie Bell Heep Center, TAMU 2475 370 Olsen Blvd College Station, College Station, TX 77843 USA
| | - Giridhar N. Athrey
- Department of Poultry Science, Texas A&M University, College Station, TX 77843 USA
| | - Chris Fredregill
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX 77021 USA
| | - Christina Alvarez
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX 77021 USA
| | - Vinaya Shetty
- Department of Entomology, Texas A&M University Minnie Bell Heep Center, TAMU 2475 370 Olsen Blvd College Station, College Station, TX 77843 USA
| | - Michel A. Slotman
- Department of Entomology, Texas A&M University Minnie Bell Heep Center, TAMU 2475 370 Olsen Blvd College Station, College Station, TX 77843 USA
| |
Collapse
|
77
|
Zhang C, Zhou T, Li Y, Dai W, Du S. Activation of the CncC pathway is involved in the regulation of P450 genes responsible for clothianidin resistance in Bradysia odoriphaga. PEST MANAGEMENT SCIENCE 2023. [PMID: 36974603 DOI: 10.1002/ps.7482] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Insect cytochrome P450 monooxygenases (P450s) play a key role in the detoxification metabolism of insecticides and their overexpression is often associated with insecticide resistance. Our previous research showed that the overexpression of four P450 genes is responsible for clothianidin resistance in B. odoriphaga. In this study, we characterized another P450 gene, CYP6FV21, associated with clothianidin resistance. However, the molecular basis for the overexpression of P450 genes in clothianidin-resistant strain remains obscure in B. odoriphaga. RESULTS In this study, the CYP6FV21 gene was significantly overexpressed in the clothianidin-resistant (CL-R) strain. Clothianidin exposure significantly increased the expression level of CYP6FV21. Knockdown of CYP6FV21 significantly increased the susceptibility of B. odoriphaga larvae to clothianidin. The transcription factor Cap 'n' Collar isoform-C (CncC) was highly expressed in the midgut of larvae in B. odoriphaga. The expression level of CncC was higher in the CL-R strain compared with the susceptible (SS) strain. Clothianidin exposure caused reactive oxygen species (ROS) accumulation and significantly increased the expression level of CncC. Knockdown of CncC caused a significant decrease in the expression of CYP3828A1 and CYP6FV21, and P450 enzyme activity, and led to a significant increase in mortality after exposure to lethal concentration at 30% (LC30 ) of clothianidin. After treatment with CncC agonist curcumin, the P450 activity and the expression levels of CYP3828A1 and CYP6FV21 significantly increased, and larval sensitivity to clothianidin decreased. The ROS scavenger N-acetylcysteine (NAC) treatment significantly inhibited the expression levels of CncC, CYP3828A1 and CYP6FV21 in response to clothianidin exposure and increased larval sensitivity to clothianidin. CONCLUSION Taken together, these results indicate that activation of the CncC pathway by the ROS burst plays a critical role in clothianidin resistance by regulating the expression of CYP3828A1 and CYP6FV21 genes in B. odoriphaga. This study provides more insight into the mechanisms underlying B. odoriphaga larval resistance to clothianidin. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Taoling Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shaokai Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
78
|
Mappin F, Bellantuono AJ, Ebrahimi B, DeGennaro M. Odor-evoked transcriptomics of Aedes aegypti mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.532230. [PMID: 36993705 PMCID: PMC10055012 DOI: 10.1101/2023.03.12.532230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Modulation of odorant receptors mRNA induced by prolonged odor exposure is highly correlated with ligand-receptor interactions in Drosophila as well as mammals of the Muridae family. If this response feature is conserved in other organisms, this presents a potentially potent initial screening tool when searching for novel receptor-ligand interactions in species with predominantly orphan olfactory receptors. We demonstrate that mRNA modulation in response to 1-octen-3-ol odor exposure occurs in a time- and concentration-dependent manner in Aedes aegypti mosquitoes. To investigate gene expression patterns at a global level, we generated an odor-evoked transcriptome associated with 1-octen-3-ol odor exposure. Transcriptomic data revealed that ORs and OBPs were transcriptionally responsive whereas other chemosensory gene families showed little to no differential expression. Alongside chemosensory gene expression changes, transcriptomic analysis found that prolonged exposure to 1-octen-3-ol modulated xenobiotic response genes, primarily members of the cytochrome P450, insect cuticle proteins, and glucuronosyltransferases families. Together, these findings suggest that mRNA transcriptional modulation caused by prolonged odor exposure is pervasive across taxa and accompanied by the activation of xenobiotic responses. Furthermore, odor-evoked transcriptomics create a potential screening tool for filtering and identification of chemosensory and xenobiotic targets of interest.
Collapse
Affiliation(s)
- Fredis Mappin
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Anthony J. Bellantuono
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Babak Ebrahimi
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Matthew DeGennaro
- Department of Biological Sciences & Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
79
|
Cruse C, Moural TW, Zhu F. Dynamic Roles of Insect Carboxyl/Cholinesterases in Chemical Adaptation. INSECTS 2023; 14:194. [PMID: 36835763 PMCID: PMC9958613 DOI: 10.3390/insects14020194] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Insects have evolved several intricate defense mechanisms to adapt to their chemical environment. Due to their versatile capabilities in hydrolytic biotransformation, insect carboxyl/cholinesterases (CCEs) play vital roles in the development of pesticide resistance, facilitating the adaptation of insects to their host plants, and manipulating insect behaviors through the olfaction system. CCEs confer insecticide resistance through the mechanisms of qualitative or quantitative changes of CCE-mediated enhanced metabolism or target-site insensitivity, and may contribute to the host plant adaptation. CCEs represent the first odorant-degrading enzymes (ODEs) discovered to degrade insect pheromones and plant odors and remain the most promising ODE candidates. Here, we summarize insect CCE classification, currently characterized insect CCE protein structure characteristics, and the dynamic roles of insect CCEs in chemical adaptation.
Collapse
Affiliation(s)
- Casey Cruse
- Department of Entomology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Timothy Walter Moural
- Department of Entomology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
| |
Collapse
|
80
|
You C, Zhang L, Song J, Zhang L, Zhen C, Gao X. The variation of a cytochrome P450 gene, CYP6G4, drives the evolution of Musca domestica L. (Diptera: Muscidae) resistance to insecticides in China. Int J Biol Macromol 2023; 236:123399. [PMID: 36775219 DOI: 10.1016/j.ijbiomac.2023.123399] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023]
Abstract
Long term and excessive insecticide use has resulted in some environmental problems and especially, insecticide resistance evolution in insect pests. The variation of cytochrome P450 monooxygenases (P450s), associated with the metabolic detoxification of toxic xenobiotics, is often involved in insecticide resistance. Here, we found that the variation in a P450 gene, CYP6G4, is the most important driver of carbamates resistance in the house fly (Musca domestica). Deciphering the detailed molecular mechanisms of the insecticide resistance is critical for performing suitable insecticide resistance management strategies. Our research results revealed that the combination of amino acid mutations (110C-330E-360N/S, 110C-330E-360S) of CYP6G4 could improve the resistance to propoxur. The nucleotide variations in the promoter region of CYP6G4 significantly increased the luciferase activity by the reporter gene assays. Additionally, miR-281-1-5p was confirmed to post-transcriptionally down-regulate the expression of CYP6G4. These findings suggest that three independent mechanisms; amino acid mutations of the P450 protein, mutations in the promoter region and low expression of post-trans-regulatory factors, as the powerful strategies for the insect resistance to toxic compounds, play a crucial role in the evolutionary processes of insecticide resistance.
Collapse
Affiliation(s)
- Chunmei You
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Lulu Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jiajia Song
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Lei Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Congai Zhen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
81
|
Pang R, Chen B, Wang S, Chi Y, Huang S, Xing D, Yao Q. Decreased cuticular penetration minimizes the impact of the pyrethroid insecticide λ-cyhalothrin on the insect predator Eocanthecona furcellata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114369. [PMID: 36508800 DOI: 10.1016/j.ecoenv.2022.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The use of broad-spectrum pesticides may reduce the biological control efficacy of predatory arthropods. Hence, the risks of pesticides to predators need to be evaluated. Here, we assessed the effects of a broad spectrum pyrethroid λ-cyhalothrin on a polyphagous predatory insect Eocanthecona furcellata via contact exposure route. The recommended application rate of λ-cyhalothrin was lower than the LR50 and HQ (in-field) was equal to 0.57, indicating the risk of λ-cyhalothrin to E. furcellata was low. Dried λ-cyhalothrin residue had no effect on the mortality, body weight, protein content of cuticle, or activities of major detoxification enzymes in E. furcellata. Residual of λ-cyhalothrin was only detected in the cuticle and legs of E. furcellata with a decreasing trend as time went by and no λ-cyhalothrin was detected inside the body. Additionally, a comparative transcriptome analysis was conducted to study global changes in gene expression in E. furcellata at different time points following exposure to λ-cyhalothrin-contaminated environment. A total of 57,839 unigenes with an average length of 1044 bp and an N50 of 1820 bp were obtained. In total, 118 and 109 differentially expressed genes (DEGs) at 12 h, and 60 h were identified between two groups. The DEGs were largely enriched in functional categories related to the structural constituent of cuticle. Accordingly, multiple cuticle protein-coding genes were up-regulated at 12 h after pesticide exposure. The present study stressed the importance of evaluating the compatibility between a specific pesticide (λ-cyhalothrin) and E. furcellata via simulating the releasing predators after insecticide application. The data could help optimize the pesticide use, optimizing the ecological services of E. furcellata as a BCA, and expanding its use into more areas of agriculture.
Collapse
Affiliation(s)
- Rui Pang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China; South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, China
| | - Bingxu Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Siwei Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yanyan Chi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Shixuan Huang
- South China Agricultural University, Guangzhou 510642, China
| | - Dongxu Xing
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Qiong Yao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China.
| |
Collapse
|
82
|
Bueno EM, McIlhenny CL, Chen YH. Cross-protection interactions in insect pests: Implications for pest management in a changing climate. PEST MANAGEMENT SCIENCE 2023; 79:9-20. [PMID: 36127854 PMCID: PMC10092685 DOI: 10.1002/ps.7191] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 05/20/2023]
Abstract
Agricultural insect pests display an exceptional ability to adapt quickly to natural and anthropogenic stressors. Emerging evidence suggests that frequent and varied sources of stress play an important role in driving protective physiological responses; therefore, intensively managed agroecosystems combined with climatic shifts might be an ideal crucible for stress adaptation. Cross-protection, where responses to one stressor offers protection against another type of stressor, has been well documented in many insect species, yet the molecular and epigenetic underpinnings that drive overlapping protective responses in insect pests remain unclear. In this perspective, we discuss cross-protection mechanisms and provide an argument for its potential role in increasing tolerance to a wide range of natural and anthropogenic stressors in agricultural insect pests. By drawing from existing literature on single and multiple stressor studies, we outline the processes that facilitate cross-protective interactions, including epigenetic modifications, which are understudied in insect stress responses. Finally, we discuss the implications of cross-protection for insect pest management, focusing on the consequences of cross-protection between insecticides and elevated temperatures associated with climate change. Given the multiple ways that insect pests are intensively managed in agroecosystems, we suggest that examining the role of multiple stressors can be important in understanding the wide adaptability of agricultural insect pests. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Erika M. Bueno
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
| | - Casey L. McIlhenny
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
| | - Yolanda H. Chen
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
- Gund Institute for EnvironmentUniversity of VermontBurlingtonVTUSA
| |
Collapse
|
83
|
Adamo S. The Integrated Defense System: Optimizing Defense against Predators, Pathogens, and Poisons. Integr Comp Biol 2022; 62:1536-1546. [PMID: 35511215 DOI: 10.1093/icb/icac024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
Insects, like other animals, have evolved defense responses to protect against predators, pathogens, and poisons (i.e., toxins). This paper provides evidence that these three defense responses (i.e., fight-or-flight, immune, and detoxification responses) function together as part of an Integrated Defense System (IDS) in insects. The defense responses against predators, pathogens, and poisons are deeply intertwined. They share organs, resources, and signaling molecules. By connecting defense responses into an IDS, animals gain flexibility, and resilience. Resources can be redirected across fight-or-flight, immune, and detoxification defenses to optimize an individual's response to the current challenges facing it. At the same time, the IDS reconfigures defense responses that are losing access to resources, allowing them to maintain as much function as possible despite decreased resource availability. An IDS perspective provides an adaptive explanation for paradoxical phenomena such as stress-induced immunosuppression, and the observation that exposure to a single challenge typically leads to an increase in the expression of genes for all three defense responses. Further exploration of the IDS will require more studies examining how defense responses to a range of stressors are interconnected in a variety of species. Such studies should target pollinators and agricultural pests. These studies will be critical for predicting how insects will respond to multiple stressors, such as simultaneous anthropogenic threats, for example, climate change and pesticides.
Collapse
Affiliation(s)
- Shelley Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
84
|
Identification and Functional Characterization of the Transcription Factors AhR/ARNT in Dendroctonus armandi. Cells 2022; 11:cells11233856. [PMID: 36497113 PMCID: PMC9736963 DOI: 10.3390/cells11233856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) belong to the bHLH-PAS (basic Helix-Loop-Helix-Period/ARNT/Single-minded) family of transcription factors, which participate in the sensing and transmitting stimuli of exogenous and endogenous chemical substances, and subsequently activates genes transcription involved in various detoxification and physiological functions. However, they have not been identified in Dendroctonus armandi, and their roles in the detoxification metabolism are unclear. In the present study, AhR and ARNT of D. armandi were characterized. Spatiotemporal expression profiling indicated that DaAhR and DaARNT were highly expressed in the adult and larval stages of D. armandi and mainly expressed in the midgut and Malpighian tubules of adults. Additionally, the expression of DaAhR and DaARNT significantly increased after exposure to (-)-𝛽-pinene, (+)-3-carene, and (±)-limonene. Silencing DaAhR and DaARNT increased the susceptibility of D. armandi to (-)-𝛽-pinene, (+)-3-carene, and (±)-limonene, and the activities of detoxification enzyme were also remarkably reduced. Moreover, DaCYP6DF1 and DaGSTs2 were significantly down-regulated after injections of dsAhR and dsARNT in the male and female adults, with the expression of DaCYP6DF1 decreasing by higher than 70%. The present study revealed that the transcription factors AhR and ARNT of D. armandi were induced by terpenoids and participated in the regulation of DaCYP6DF1 expression, which was associated with D. armandi's susceptibility to (-)-𝛽-pinene and (±)-limonene. These results may provide a theoretical basis for the integrated control of D. armandi and improve our comprehension of insect toxicology.
Collapse
|
85
|
Trans-driven variation in expression is common among detoxification genes in the extreme generalist herbivore Tetranychus urticae. PLoS Genet 2022; 18:e1010333. [DOI: 10.1371/journal.pgen.1010333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/28/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022] Open
Abstract
The extreme adaptation potential of the generalist herbivore Tetranychus urticae (the two-spotted spider mite) to pesticides as well as diverse host plants has been associated with clade-specific gene expansions in known detoxifying enzyme families, and with extensive and rapid transcriptional responses. However, how this broad transcriptional potential is regulated remains largely unknown. Using a parental/F1 design in which four inbred strains were crossed to a common inbred strain, we assessed the genetic basis and inheritance of gene expression variation in T. urticae. Mirroring known phenotypic variation in the progenitor strains of the inbreds, we confirmed that the inbred strains we created were genetically distinct, varied markedly in pesticide resistance, and also captured variation in host plant fitness as is commonly observed in this species. By examining differences in gene expression between parents and allele-specific expression in F1s, we found that variation in RNA abundance was more often explained in trans as compared to cis, with the former associated with dominance in inheritance. Strikingly, in a gene ontology analysis, detoxification genes of the cytochrome P450 monooxygenase (CYP) family, as well as dioxygenases (DOGs) acquired from horizontal gene transfer from fungi, were specifically enriched at the extremes of trans-driven up- and downregulation. In particular, multiple CYPs and DOGs with broad substrate-specificities for pesticides or plant specialized compounds were exceptionally highly upregulated as a result of trans-regulatory variation, or in some cases synergism of cis and trans, in the most multi-pesticide resistant strains. Collectively, our findings highlight the potential importance of trans-driven expression variation in genes associated with xenobiotic metabolism and host plant use for rapid adaptation in T. urticae, and also suggests modular control of these genes, a regulatory architecture that might ameliorate negative pleiotropic effects.
Collapse
|
86
|
De Beer B, Vandenhole M, Njiru C, Spanoghe P, Dermauw W, Van Leeuwen T. High-Resolution Genetic Mapping Combined with Transcriptome Profiling Reveals That Both Target-Site Resistance and Increased Detoxification Confer Resistance to the Pyrethroid Bifenthrin in the Spider Mite Tetranychus urticae. BIOLOGY 2022; 11:1630. [PMID: 36358331 PMCID: PMC9687926 DOI: 10.3390/biology11111630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/24/2023]
Abstract
Pyrethroids are widely applied insecticides in agriculture, but their frequent use has provoked many cases of resistance, in which mutations in the voltage-gated sodium channel (VGSC), the pyrethroid target-site, were shown to play a major role. However, for the spider mite Tetranychus urticae, it has also been shown that increased detoxification contributes to resistance against the pyrethroid bifenthrin. Here, we performed QTL-mapping to identify the genomic loci underlying bifenthrin resistance in T. urticae. Two loci on chromosome 1 were identified, with the VGSC gene being located near the second QTL and harboring the well-known L1024V mutation. In addition, the presence of an L925M mutation in the VGSC of a highly bifenthrin-resistant strain and its loss in its derived, susceptible, inbred line indicated the importance of target-site mutations in bifenthrin resistance. Further, RNAseq experiments revealed that genes encoding detoxification enzymes, including carboxyl/choline esterases (CCEs), cytochrome P450 monooxygenases and UDP-glycosyl transferases (UGTs), were overexpressed in resistant strains. Toxicity bioassays with bifenthrin (ester pyrethroid) and etofenprox (non-ester pyrethroid) also indicated a possible role for CCEs in bifenthrin resistance. A selection of CCEs and UGTs were therefore functionally expressed, and CCEinc18 was shown to metabolize bifenthrin, while teturUGT10 could glycosylate bifenthrin-alcohol. To conclude, our findings suggest that both target-site and metabolic mechanisms underlie bifenthrin resistance in T. urticae, and these might synergize high levels of resistance.
Collapse
Affiliation(s)
- Berdien De Beer
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Christine Njiru
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Pieter Spanoghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burg. Van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
87
|
Liu T, Xu X, An F, Zhu W, Luo D, Liu S, Wei G, Wang L. Functional analysis of nuclear receptor HR96 gene in Bombyx mori exposed to phoxim. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21910. [PMID: 35470488 DOI: 10.1002/arch.21910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The nuclear receptor (NRs) gene family functions as ligand-dependent transcription factors in a variety of animals, which participates in a variety of biological processes, such as cell differentiation, metabolic regulation, reproduction, development, insect metamorphosis. In this study, a nuclear receptor HR96 gene in silkworm Bombyx mori (BmHR96) was identified, and the responses of BmHR96 gene to 20-hydroxyecdysone (20E), three insecticides, and two disinfectants were analyzed and its function in phoxim exposure was explored. Quantitative real-time polymerase chain reaction indicated that the expression of BmHR96 mRNA was the highest in ovary of 5th instar Day 3 silkworm larvae and in silk gland of the wandering stage. The expression patterns of BmHR96 gene in ovary, head, testis, and midgut of different stages were different. After injecting 20E into B. mori, the expression of BmHR96 mRNA had no significant difference compared with control. Three insecticides and two disinfectants were used to treat B. mori, respectively, and it was found that they had different influence patterns on the expression level of BmHR96. siRNA of BmHR96 was injected into silkworm larvae and the expression of BmHR96 was decreased significantly after injecting 72 h. After silencing of BmHR96, B. mori was fed with phoxim-treated leaves. The results showed that the mortality of B. mori after silencing of BmHR96 was significantly higher than the control. Our results indicated that HR96 plays an important role in regulating the stress response of phoxim.
Collapse
Affiliation(s)
- Tianrun Liu
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Xinyue Xu
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Fudong An
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Weihao Zhu
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Dongling Luo
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Shuo Liu
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Guoqing Wei
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Lei Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
88
|
Xu S, Hao Z, Li Y, Zhou Y, Shao R, Chen R, Zheng M, Xu Y, Wang H. Biochemical toxicity and transcriptome aberration induced by dinotefuran in Bombyx mori. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119562. [PMID: 35659910 DOI: 10.1016/j.envpol.2022.119562] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Dinotefuran is a third-generation neonicotinoid pesticide and is increasingly used in agricultural production, which has adverse effects on nontarget organisms. However, the research on the impact of dinotefuran on nontarget organisms is still limited. Here the toxic effects of dinotefuran on an important economic species and a model lepidopteran insect, Bombyx mori, were investigated. Exposure to different doses of dinotefuran caused physiological disorders or death. Cytochrome P450, glutathione S-transferase, carboxylesterase, and UDP glycosyl-transferase activities were induced in the fat body at early stages after dinotefuran exposure. By contrast, only glutathione S-transferase activity was increased in the midgut. To overcome the lack of sensitivity of the biological assays at the individual organism level, RNA sequencing was performed to measure differential expressions of mRNA from silkworm larvae after dinotefuran exposure. Differential gene expression profiling revealed that various detoxification enzyme genes were significantly increased after dinotefuran exposure, which was consistent with the upregulation of the detoxifying enzyme. The global transcriptional pattern showed that the physiological responses induced by dinotefuran toxicity involved multiple cellular processes, including energy metabolism, oxidative stress, detoxification, and other fundamental physiological processes. Many metabolism processes, such as carbon metabolism, fatty acid biosynthesis, pyruvate metabolism, and the citrate cycle, were partially repressed in the midgut or fat body. Furthermore, dinotefuran significantly activated the MAPK/CREB, CncC/Keap1, PI3K/Akt, and Toll/IMD pathways. The links between physiological, biochemical toxicity and comparative transcriptomic analysis facilitated the systematic understanding of the integrated biological toxicity of dinotefuran. This study provides a holistic view of the toxicity and detoxification metabolism of dinotefuran in silkworm and other organisms.
Collapse
Affiliation(s)
- Shiliang Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhihua Hao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yinghui Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanyan Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruixi Shao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rui Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meidan Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
89
|
Lu K, Li Y, Xiao T, Sun Z. The metabolic resistance of Nilaparvata lugens to chlorpyrifos is mainly driven by the carboxylesterase CarE17. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113738. [PMID: 35679727 DOI: 10.1016/j.ecoenv.2022.113738] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the function of specific CarE gene in chlorpyrifos resistance and the transcriptional regulatory mechanism are obscure. Herein, the expression patterns of 29 CarE genes in the susceptible and chlorpyrifos-resistant strains were analyzed. Among them, CarE3, CarE17 and CarE19 were overexpressed in the resistant strain, and knockdown of either CarE gene by RNA interference significantly increased the susceptibility to chlorpyrifos. Remarkably, knockdown of CarE17 reduced the enzymatic activity of CarE by 88.63 % and showed a much greater effect on increasing chlorpyrifos toxicity than silencing other two CarE genes. Overexpression of CarE17 in Drosophila melanogaster decreased the toxicity of chlorpyrifos to transgenic fruit flies. Furthermore, the region between - 205 to + 256 of CarE17 promoter sequence showed the highest promoter activity, and 16 transcription factors (TFs) were predicted from this region. Among these TFs, Lim1β and C15 were overexpressed in the resistant strain. Knockdown of either TF resulted in reduced CarE17 expression and a decrease in resistance of N. lugens to chlorpyrifos. These results indicate that the constitutive overexpression of Lim1β and C15 induces CarE17 expression thus conferring chlorpyrifos resistance in N. lugens.
Collapse
Affiliation(s)
- Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yimin Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhongxiang Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
90
|
El-Samad LM, El-Gerbed MS, Hussein HS, Flaven-Pouchon J, El Wakil A, Moussian B. Imidacloprid-induced pathophysiological damage in the midgut of Locusta migratoria (Orthoptera: Acrididae) in the field. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57644-57655. [PMID: 35353308 DOI: 10.1007/s11356-022-19804-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Neonicotinoids are modern insecticides widely used in agriculture worldwide. Their impact on target (nervous system) and non-target (midgut) tissues has been well studied in beneficial insects including honeybees under controlled conditions. However, their detailed effects on pest insects on the field are missing to date. Here, we have studied the effects of the neonicotinoid imidacloprid on the midgut of the pest insect Locusta migratoria caught in the field. We found that in the midgut of imidacloprid-exposed locusts the activity of enzymes involved in reactive oxygen metabolism was perturbed. By contrast, the activity of P450 enzymes that have been shown to be activated in a detoxification response and that were also reported to produce reactive oxygen species was elevated. Probably as a consequence, markers of oxidative stress including protein carbonylation and lipid peroxidation accumulated in midgut samples of these locusts. Histological analyses revealed that their midgut epithelium is disorganized and that the brush border of the epithelial cells is markedly reduced. Indeed, microvilli are significantly shorter, misshapen and possibly non-functional in imidacloprid-treated locusts. We hypothesize that imidacloprid induces oxidative stress in the locust midgut, thereby changing the shape of midgut epithelial cells and probably in turn compromising their physiological function. Presumably, these effects reduce the survival rate of imidacloprid-treated locusts and the damage they cause in the field.
Collapse
Affiliation(s)
- Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed S El-Gerbed
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Hanaa S Hussein
- Department of Applied Entomology and Zoology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Justin Flaven-Pouchon
- Interfaculty Institute for Cell Biology, Eberhard-Karls Universität Tübingen, Tübingen, Germany
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Bernard Moussian
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|
91
|
Yang ZK, Li DW, Peng L, Liu CF, Wang ZY. Transcriptomic responses of the zearalenone (ZEN)-detoxifying yeast Apiotrichum mycotoxinivorans to ZEN exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113756. [PMID: 35691196 DOI: 10.1016/j.ecoenv.2022.113756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Zearalenone (ZEN) is a potent oestrogenic mycotoxin that is mainly produced by Fusarium species and is a serious environmental pollutant in animal feeds. Apiotrichum mycotoxinivorans has been widely used as a feed additive to detoxify ZEN. However, the effects of ZEN on A. mycotoxinivorans and its detoxification mechanisms remain unclear. In this study, transcriptomic and bioinformatic analyses were used to investigate the molecular responses of A. mycotoxinivorans to ZEN exposure and the genetic basis of ZEN detoxification. We detected 1424 significantly differentially expressed genes (DEGs), of which 446 were upregulated and 978 were downregulated. Functional and enrichment analyses showed that ZEN-induced genes were significantly associated with xenobiotic metabolism, oxidative stress response, and active transport systems. However, ZEN-inhibited genes were mainly related to cell division, cell cycle, and fungal development. Subsequently, bioinformatic analysis identified candidate ZEN-detoxification enzymes. The Baeyer-Villiger monooxygenases and carboxylesterases, which are responsible for the formation and subsequent hydrolysis of a new ZEN lactone, respectively, were significantly upregulated. In addition, the expression levels of genes related to conjugation and transport involved in the xenobiotic detoxification pathway were significantly upregulated. Moreover, the expression levels of genes encoding enzymatic antioxidants and those related to growth and apoptosis were significantly upregulated and downregulated, respectively, which made it possible for A. mycotoxinivorans to survive in a highly toxic environment and efficiently detoxify ZEN. This is the first systematic report of ZEN tolerance and detoxification in A. mycotoxinivorans. We identified the metabolic enzymes that were potentially involved in detoxifying ZEN in the GMU1709 strain and found that ZEN-induced transcriptional regulation of genes is key to withstanding highly toxic environments. Hence, our results provide valuable information for developing enzymatic detoxification systems or engineering this detoxification pathway in other species.
Collapse
Affiliation(s)
- Zhi-Kai Yang
- Innovation centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liang Peng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chen-Fei Liu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Yuan Wang
- Innovation Centre for Translational Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
92
|
Transcriptomic modulation in response to an intoxication with deltamethrin in a population of Triatoma infestans with low resistance to pyrethroids. PLoS Negl Trop Dis 2022; 16:e0010060. [PMID: 35767570 PMCID: PMC9275713 DOI: 10.1371/journal.pntd.0010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/12/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Triatoma infestans is the main vector of Chagas disease in the Southern Cone. The resistance to pyrethroid insecticides developed by populations of this species impairs the effectiveness of vector control campaigns in wide regions of Argentina. The study of the global transcriptomic response to pyrethroid insecticides is important to deepen the knowledge about detoxification in triatomines.
Methodology and findings
We used RNA-Seq to explore the early transcriptomic response after intoxication with deltamethrin in a population of T. infestans which presents low resistance to pyrethroids. We were able to assemble a complete transcriptome of this vector and found evidence of differentially expressed genes belonging to diverse families such as chemosensory and odorant-binding proteins, ABC transporters and heat-shock proteins. Moreover, genes related to transcription and translation, energetic metabolism and cuticle rearrangements were also modulated. Finally, we characterized the repertoire of previously uncharacterized detoxification-related gene families in T. infestans and Rhodnius prolixus.
Conclusions and significance
Our work contributes to the understanding of the detoxification response in vectors of Chagas disease. Given the absence of an annotated genome from T. infestans, the analysis presented here constitutes a resource for molecular and physiological studies in this species. The results increase the knowledge on detoxification processes in vectors of Chagas disease, and provide relevant information to explore undescribed potential insecticide resistance mechanisms in populations of these insects.
Collapse
|
93
|
Bras A, Roy A, Heckel DG, Anderson P, Karlsson Green K. Pesticide resistance in arthropods: Ecology matters too. Ecol Lett 2022; 25:1746-1759. [PMID: 35726578 PMCID: PMC9542861 DOI: 10.1111/ele.14030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 12/22/2022]
Abstract
Pesticide resistance development is an example of rapid contemporary evolution that poses immense challenges for agriculture. It typically evolves due to the strong directional selection that pesticide treatments exert on herbivorous arthropods. However, recent research suggests that some species are more prone to evolve pesticide resistance than others due to their evolutionary history and standing genetic variation. Generalist species might develop pesticide resistance especially rapidly due to pre‐adaptation to handle a wide array of plant allelochemicals. Moreover, research has shown that adaptation to novel host plants could lead to increased pesticide resistance. Exploring such cross‐resistance between host plant range evolution and pesticide resistance development from an ecological perspective is needed to understand its causes and consequences better. Much research has, however, been devoted to the molecular mechanisms underlying pesticide resistance while both the ecological contexts that could facilitate resistance evolution and the ecological consequences of cross‐resistance have been under‐studied. Here, we take an eco‐evolutionary approach and discuss circumstances that may facilitate cross‐resistance in arthropods and the consequences cross‐resistance may have for plant–arthropod interactions in both target and non‐target species and species interactions. Furthermore, we suggest future research avenues and practical implications of an increased ecological understanding of pesticide resistance evolution.
Collapse
Affiliation(s)
- Audrey Bras
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.,Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Suchdol, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Suchdol, Czech Republic
| | - David G Heckel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Kristina Karlsson Green
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
94
|
Gong C, Ruan Y, Zhang Y, Wang Q, Wu Y, Zhan X, He Y, Liu X, Liu X, Pu J, Wang X. Resistance of Sogatella furcifera to triflumezopyrim mediated with the overexpression of CYPSF01 which was regulated by nuclear receptor USP. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113575. [PMID: 35500402 DOI: 10.1016/j.ecoenv.2022.113575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Sogatella furcifera is one of the main agricultural pests in many Asian countries, bringing about enormous injury. A triflumezopyrim-resistant (Tri) strain of S. furcifera was established through continuous screening in laboratory. The determination of synergist and enzyme activity indicated that P450s, especially for the upregulation expression of CYPSF01, played a key role in the increased resistance, confirmed by RNAi, and the recombinant protein of CYPSF01 and NADPH-P450 reductase was able to degrade triflumezopyrim. CYPSF01 had an obviously co-expression relationship with nuclear receptor ultraspiracle (USP), which were all significantly up-regulated when exposed to triflumezopyrim. Further, a USP-binding motif MA0534.1 was enriched from the upregulated peaks by Assay for Transposase Accessible Chromatin (ATAC-seq) analysis, which exited in the peaks located on the promoter of CYPSF01; the yeast one-hybrid experiments confirmed that USP could bind to the CYPSF01 promoter. And the USP interference significantly down-regulated CYPSF01 expression, and resulted in the significantly increasing sensitivity to triflumezopyrim, its mortality rate increased 28.37%. Therefore, the overexpression of USP could cause to the overexpression of CYPSF01, ultimately resulting in the resistance to triflumezopyrim in S. furcifera.
Collapse
Affiliation(s)
- Changwei Gong
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanwei Ruan
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuming Zhang
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiulin Wang
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yutong Wu
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxu Zhan
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunfeng He
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinxian Liu
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Liu
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Pu
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuegui Wang
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
95
|
De Beer B, Villacis-Perez E, Khalighi M, Saalwaechter C, Vandenhole M, Jonckheere W, Ismaeil I, Geibel S, Van Leeuwen T, Dermauw W. QTL mapping suggests that both cytochrome P450-mediated detoxification and target-site resistance are involved in fenbutatin oxide resistance in Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 145:103757. [PMID: 35301092 DOI: 10.1016/j.ibmb.2022.103757] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/17/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The organotin acaricide fenbutatin oxide (FBO) - an inhibitor of mitochondrial ATP-synthase - has been one of the most extensively used acaricides for the control of spider mites, and is still in use today. Resistance against FBO has evolved in many regions around the world but only few studies have investigated the molecular and genetic mechanisms of resistance to organotin acaricides. Here, we found that FBO resistance is polygenic in two genetically distant, highly resistant strains of the spider mite Tetranychus urticae, MAR-AB and MR-VL. To identify the loci underlying FBO resistance, two independent bulked segregant analysis (BSA) based QTL mapping experiments, BSA MAR-AB and BSA MR-VL, were performed. Two QTLs on chromosome 1 were associated with FBO resistance in each mapping experiment. At the second QTL of BSA MAR-AB, several cytochrome P450 monooxygenase (CYP) genes were located, including CYP392E4, CYP392E6 and CYP392E11, the latter being overexpressed in MAR-AB. Synergism tests further implied a role for CYPs in FBO resistance. Subunit c of mitochondrial ATP-synthase was located near the first QTL of both mapping experiments and harbored a unique V89A mutation enriched in the resistant parents and selected BSA populations. Marker-assisted introgression into a susceptible strain demonstrated a moderate but significant effect of the V89A mutation on toxicity of organotin acaricides. The impact of the mutation on organotin inhibition of ATP synthase was also functionally confirmed by ATPase assays on mitochondrial preparations. To conclude, our findings suggest that FBO resistance in the spider mite T. urticae is a complex interplay between CYP-mediated detoxification and target-site resistance.
Collapse
Affiliation(s)
- Berdien De Beer
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ernesto Villacis-Perez
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), Science Park 904, 1908, XH, Amsterdam, the Netherlands
| | - Mousaalreza Khalighi
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | | | - Marilou Vandenhole
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wim Jonckheere
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ibrahim Ismaeil
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sven Geibel
- Bayer AG, CropScience Division, 40789, Monheim, Germany
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Burgemeester Van Gansberghelaan 96, 9820, Merelbeke, Belgium.
| |
Collapse
|
96
|
Haj Darwich CM, Chrzanowski MM, Bernatowicz PP, Polanska MA, Joachimiak E, Bebas P. Molecular Oscillator Affects Susceptibility of Caterpillars to Insecticides: Studies on the Egyptian Cotton Leaf Worm- Spodoptera littoralis (Lepidoptera: Noctuidae). INSECTS 2022; 13:insects13050488. [PMID: 35621821 PMCID: PMC9147166 DOI: 10.3390/insects13050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The molecular oscillator is the core of the biological clock and is formed by genes and proteins whose cyclic expression is regulated in the transcriptional-translational feedback loops (TTFLs). Proteins of the TTFLs are regulators of both their own and executive genes involved in the control of many processes in insects (e.g., rhythmic metabolism of xenobiotics, including insecticides). We disrupted the clock operation in S. littoralis larvae by injecting the dsRNA of clock genes into their body cavity and culturing the larvae under continuous light. As a result, the daily susceptibility of larvae to insecticides was abolished and the susceptibility itself increased (in most cases). In the fat body, midgut, and Malpighian tubules (the main organs metabolizing xenobiotics) of the larvae treated with injected-dsRNA, the daily activity profiles of enzymes involved in detoxification-cytochrome P450 monooxygenases, Glutathione-S-transferase, and esterase-have changed significantly. The presented results prove the role of the molecular oscillator in the regulation of larvae responses to insecticides and provide grounds for rational use of these compounds (at suitable times of the day), and may indicate clock genes as potential targets of molecular manipulation to produce plant protection compounds based on the RNAi method.
Collapse
Affiliation(s)
- Choukri M. Haj Darwich
- Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (C.M.H.D.); (P.P.B.); (M.A.P.)
| | - Marcin M. Chrzanowski
- Biology Teaching Laboratory, Faculty’s Independent Centers, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Piotr P. Bernatowicz
- Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (C.M.H.D.); (P.P.B.); (M.A.P.)
| | - Marta A. Polanska
- Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (C.M.H.D.); (P.P.B.); (M.A.P.)
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland;
| | - Piotr Bebas
- Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (C.M.H.D.); (P.P.B.); (M.A.P.)
- Correspondence: ; Tel.: +48-22-554-1030
| |
Collapse
|
97
|
Dong B, Liu XY, Li B, Li MY, Li SG, Liu S. A heat shock protein protects against oxidative stress induced by lambda-cyhalothrin in the green peach aphid Myzus persicae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:104995. [PMID: 35082025 DOI: 10.1016/j.pestbp.2021.104995] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/24/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Lambda-cyhalothrin (LCT) is a pyrethroid insecticide widely used to control insect pests. Insect exposure to LCT may cause abnormal accumulation of reactive oxygen species (ROS) and result in oxidative damage. Heat shock proteins (HSPs) may help protect against oxidative stress. However, little is known about the role of HSPs in response to LCT in the green peach aphid, Myzus persicae. This insect is an important agricultural pest causing severe yield losses in crops. In this study, we characterized a cDNA sequence (MpHsp70) encoding a member of the HSP70 family in M. persicae. MpHsp70 encoded a 623 amino acid protein putatively localized in the cytosol. The highest expression level of MpHsp70 occurred in fourth-instar nymphs. Treatment of M. persicae with LCT resulted in oxidative stress and significantly increased H2O2 and malondialdehyde levels. This led to an elevated transcription level of MpHsp70. Injection of H2O2 into M. persicae also upregulated the MpHsp70 expression level, suggesting that MpHsp70 is responsive to ROS, particularly H2O2, induced by LCT. Recombinant MpHSP70 protein was expressed in Escherichia coli. E. coli cells overexpressing MpHSP70 exhibited significant tolerance to H2O2 and the ROS generators, cumene hydroperoxide and paraquat. This indicated that MpHSP70 protects against oxidative stress. Furthermore, knockdown of MpHsp70 by RNA interference resulted in increased susceptibility in apterous adults of M. persicae to LCT. These findings indicate that MpHsp70 plays an important role in defense against LCT-induced oxidative stress and insecticide susceptibility in M. persicae.
Collapse
Affiliation(s)
- Bao Dong
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xi-Ya Liu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bin Li
- Department of Science and Technology, Sichuan Provincial Branch of China National Tobacco Corporation, Chengdu 610041, China.
| | - Mao-Ye Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shi-Guang Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Su Liu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
98
|
Xu L, Zhao J, Xu D, Xu G, Gu Z, Xiao Z, Dewer Y, Zhang Y. Application of transcriptomic analysis to unveil the toxicity mechanisms of fall armyworm response after exposure to sublethal chlorantraniliprole. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113145. [PMID: 34979309 DOI: 10.1016/j.ecoenv.2021.113145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The anthranilic diamide insecticide chlorantraniliprole is highly effective against Lepidoptera pests, but the underlying mechanisms of toxic effects of chlorantraniliprole exposures for adapting to the chemical environment are poorly known in fall armyworm (FAW), Spodoptera frugiperda (J.E.Smith). FAW being one of the most pests of maize in Latin America, suddenly appeared in China in 2019 and spread rapidly. In this study, using bioassay and transcriptomic and biochemical analyses, we comprehensively investigated gene expression changes of third instar larvae in response to different sublethal concentrations (LC10 and LC30) of chlorantraniliprole in this insect. Exposure to LC10 chlorantraniliprole (0.73 mg/L) causes 1266 differentially expressed genes (DEGs), of which 578 are up-regulated and 688 down-regulated. Exposure to LC30 (2.49 mg/L) causes differential expression of 3637 DEGs (1545 up-, 2092 down-regulated). Interestingly, the LC30 treatment led to a significant increase in the number of DEGs compared to that of the LC10, indicating a concentration effect manner. Moreover, enrichment analysis identified important DEGs belonging to specific categories, such as amino acid, carbohydrate, lipid, energy, xenobiotics metabolisms, signal transduction, and posttranslational modification pathways, and enzymes activities in enriched pathways were significantly altered at the LC10 and LC30, which matched transcriptome analysis to mediate toxic mechanisms. The DEGs encoding detoxification-related genes were identified and validated by quantitative real-time PCR (qRT-PCR), which correlated with the RNA-sequencing (RNA-seq) data. To our knowledge, these findings provide the first toxicity mechanisms for a better understanding of chlorantraniliprole action and detoxification in FAW and other insect pests at molecular level.
Collapse
Affiliation(s)
- Lu Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jun Zhao
- Key Laboratory of Green Preservation and Control of Tobacco Diseases and Pests in the Huanghuai Growing Area, Institute of Tobacco Research, Henan Academy of Agricultural Sciences, Xuchang 461000, China
| | - Dejin Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guangchun Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhongyan Gu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zheng Xiao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape Architecture, Zhejiang A & F University, Hangzhou 311300, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki 12618, Giza, Egypt
| | - Yanan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
99
|
Torres-Banda V, Obregón-Molina G, Viridiana Soto-Robles L, Albores-Medina A, Fernanda López M, Zúñiga G. Gut transcriptome of two bark beetle species stimulated with the same kairomones reveals molecular differences in detoxification pathways. Comput Struct Biotechnol J 2022; 20:3080-3095. [PMID: 35782727 PMCID: PMC9233182 DOI: 10.1016/j.csbj.2022.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Dendroctonus bark beetles are the most destructive agents in coniferous forests. These beetles come into contact with the toxic compounds of their host's chemical defenses throughout their life cycle, some of which are also used by the insects as kairomones to select their host trees during the colonization process. However, little is known about the molecular mechanisms by which the insects counteract the toxicity of these compounds. Here, two sibling species of bark beetles, D. valens and D. rhizophagus, were stimulated with vapors of a blend of their main kairomones (α-pinene, β-pinene and 3-carene), in order to compare the transcriptional response of their gut. A total of 48 180 unigenes were identified in D. valens and 43 704 in D. rhizophagus, in response to kairomones blend. The analysis of differential gene expression showed a transcriptional response in D. valens (739 unigenes, 0.58–10.36 Log2FC) related to digestive process and in D. rhizophagus (322 unigenes 0.87–13.08 Log2FC) related to xenobiotics metabolism. The expression profiles of detoxification genes mainly evidenced the up-regulation of COEs and GSTs in D. valens, and the up-regulation of P450s in D. rhizophagus. Results suggest that terpenes metabolism comes accompanied by an integral hormetic response, result of compensatory mechanisms, including the activation of other metabolic pathways, to ensure the supply of energy and the survival of organisms which is specific for each species, according to its life history and ecological strategy.
Collapse
Affiliation(s)
- Verónica Torres-Banda
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - Gabriel Obregón-Molina
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - L. Viridiana Soto-Robles
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - Arnulfo Albores-Medina
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City, CP 07360, Mexico
| | - María Fernanda López
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
- Corresponding authors.
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
- Corresponding authors.
| |
Collapse
|
100
|
Amezian D, Mehlhorn S, Vacher-Chicane C, Nauen R, Le Goff G. Spodoptera frugiperda Sf9 cells as a model system to investigate the role of detoxification gene expression in response to xenobiotics. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100037. [PMID: 36003261 PMCID: PMC9387494 DOI: 10.1016/j.cris.2022.100037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 05/05/2023]
Abstract
Spodoptera frugiperda (fall armyworm) is a highly destructive invasive pest that feeds on numerous crops including maize and rice. It has developed sophisticated mechanisms to detoxify xenobiotics such as secondary plant metabolites as well as manmade insecticides. The aim of the study was to explore the detoxification response to plant secondary metabolites and insecticides employing a S. frugiperda Sf9 cell model exposed to indole 3-carbinol (I3C) and methoprene. The cell Inhibitory Concentration 50 (IC50) for these molecules was determined and IC10, IC20 and IC30 doses were used to monitor the induction profiles of detoxification genes. Cytochrome P450 monooxygenases (P450s) of the CYP9A subfamily were the most inducible genes of the seven examined. Our results also showed the induction of the transcription factor Cap'n'collar isoform C (CncC). Transient transformation of Sf9 cells overexpressing CncC and its partner muscle aponeurosis fibromatosis (Maf) induces overexpression of CYP4M14, CYP4M15, CYP321A9 and GSTE1 while CYP9As were not induced. Next, we determined the capacity of recombinantly expressed CYP9A30, CYP9A31 and CYP9A32 to interact with methoprene and I3C. Fluorescence-based biochemical assays revealed an interaction of methoprene with functionally expressed CYP9A30, CYP9A31 and CYP9A32 whereas almost no interaction was detected for I3C, suggesting the ability of CYP9As to metabolize methoprene. Our results showed that Sf9 cells could be a useful model to decipher detoxification pathways of S. frugiperda.
Collapse
Affiliation(s)
- Dries Amezian
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Sonja Mehlhorn
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | | | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| |
Collapse
|