51
|
Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017; 38:1205-1235. [PMID: 28713158 PMCID: PMC5589967 DOI: 10.1038/aps.2017.28] [Citation(s) in RCA: 1159] [Impact Index Per Article: 144.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022]
Abstract
Amyloid beta peptide (Aβ) is produced through the proteolytic processing of a transmembrane protein, amyloid precursor protein (APP), by β- and γ-secretases. Aβ accumulation in the brain is proposed to be an early toxic event in the pathogenesis of Alzheimer's disease, which is the most common form of dementia associated with plaques and tangles in the brain. Currently, it is unclear what the physiological and pathological forms of Aβ are and by what mechanism Aβ causes dementia. Moreover, there are no efficient drugs to stop or reverse the progression of Alzheimer's disease. In this paper, we review the structures, biological functions, and neurotoxicity role of Aβ. We also discuss the potential receptors that interact with Aβ and mediate Aβ intake, clearance, and metabolism. Additionally, we summarize the therapeutic developments and recent advances of different strategies for treating Alzheimer's disease. Finally, we will report on the progress in searching for novel, potentially effective agents as well as selected promising strategies for the treatment of Alzheimer's disease. These prospects include agents acting on Aβ, its receptors and tau protein, such as small molecules, vaccines and antibodies against Aβ; inhibitors or modulators of β- and γ-secretase; Aβ-degrading proteases; tau protein inhibitors and vaccines; amyloid dyes and microRNAs.
Collapse
Affiliation(s)
- Guo-Fang Chen
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting-Hai Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Yan
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-Ren Zhou
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Jiang
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - H Eric Xu
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
52
|
Patel N, Gluck J. Is Entresto good for the brain? World J Cardiol 2017; 9:594-599. [PMID: 28824789 PMCID: PMC5545143 DOI: 10.4330/wjc.v9.i7.594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/16/2017] [Accepted: 05/24/2017] [Indexed: 02/07/2023] Open
Abstract
The main stay pharmacotherapy for heart failure (HF) is targeted towards rennin-angiotensin-aldosterone (RAAS) and neprilysin pathways (NP). Both therapeutic strategies decreases morbidity and mortality but also carry considerable adverse effects. This review of the literature highlights the new generation of HF drug, sacubitril-valsartan (SV), trade name Entresto (researched as LCZ696, Novartis) which simultaneously blocks RAAS and NP. This dual action of angiotensin receptors blocker and neprilysin inhibitor (NPi) has improved HF prognosis and it is an evolution in the management of HF. Although the initial follow-up of patients treated with SV has yielded promising results, there are concerns regarding potential side effects especially an increase in the risk of Alzheimer’s disease (AD) and young onset of AD. NPi interferes with the breakdown and clearing of beta-amyloid peptides, the plaques seen in AD, raising concern for AD in SV patients. On the other hand, hypertension and cardiovascular diseases are established risk factors for AD which can be decreased by SV therapy. It is therefore essential that SV treated patients are followed up over an extended period of time to detect any adverse cognitive changes.
Collapse
|
53
|
Mizuta N, Yanagida K, Kodama T, Tomonaga T, Takami M, Oyama H, Kudo T, Ikeda M, Takeda M, Tagami S, Okochi M. Identification of Small Peptides in Human Cerebrospinal Fluid upon Amyloid-β Degradation. NEURODEGENER DIS 2017; 17:103-109. [PMID: 28103595 DOI: 10.1159/000453358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 11/10/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Amyloid-β (Aβ) degradation in brains of Alzheimer disease patients is a crucial focus for the clarification of disease pathogenesis. Nevertheless, the mechanisms underlying Aβ degradation in the human brain remain unclear. OBJECTIVE This study aimed to quantify the levels of small C-terminal Aβ fragments generated upon Aβ degradation in human cerebrospinal fluid (CSF). METHODS A fraction containing small peptides was isolated and purified from human CSF by high-pressure liquid chromatography. Degradation products of Aβ C termini were identified and measured by liquid chromatography-tandem mass spectrometry. The C-terminal fragments of Aβ in the conditioned medium of cultured cells transfected with the Swedish variant of βAPP (sw βAPP) were analyzed. These fragments in brains of PS1 I213T knock-in transgenic mice, overexpressing sw βAPP, were also analyzed. RESULTS The peptide fragments GGVV and GVV, produced by the cleavage of Aβ40, were identified in human CSF as well as in the brains of the transgenic mice and in the conditioned medium of the cultured cells. Relative to Aβ40 levels, GGVV and GVV levels were 7.6 ± 0.81 and 1.5 ± 0.18%, respectively, in human CSF. Levels of the GGVV fragment did not increase by the introduction of genes encoding neprilysin and insulin-degrading enzyme to the cultured cells. CONCLUSION Our results indicate that a substantial amount of Aβ40 in human brains is degraded via a neprilysin- or insulin-degrading enzyme-independent pathway.
Collapse
Affiliation(s)
- Naoki Mizuta
- Psychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Asai M, Kawakubo T, Mori R, Iwata N. Elucidating Pathogenic Mechanisms of Early-onset Alzheimer's Disease in Down Syndrome Patients. YAKUGAKU ZASSHI 2017; 137:801-805. [PMID: 28674290 DOI: 10.1248/yakushi.16-00236-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Down syndrome (DS) patients demonstrate the neuropathology of Alzheimer's disease (AD) characterized by the formation of senile plaques and neurofibrillary tangles by age 40-50 years. It has been considered for a number of years that 1.5-fold expression of the gene for the amyloid precursor protein (APP) located on chromosome 21 leading to overproduction of amyloid-β peptide (Aβ) results in the early onset of AD in adults with DS. However, the mean age of onset of familial AD with the Swedish mutation on APP which has high affinity for β-secretase associated with a dramatic increase in Aβ production is about 55 years. This paradox indicates that there is a poor correlation between average ages of AD onset and the theoretical amount of Aβ production and that there are factors exacerbating AD on chromosome 21. We therefore focused on dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), since overexpressing transgenic mice show AD-like brain pathology. The overexpression of DYRK1A caused suppression of the activity of neprilysin (NEP), which is a major Aβ-degrading enzyme in the brain, and phosphorylation at the NEP cytoplasmic domain. NEP activity was markedly reduced in fibroblasts derived from DS patients compared with that in fibroblasts derived from healthy controls. This impaired activity of NEP was rescued by DYRK1A inhibition. These results show that DYRK1A overexpression causes suppression of NEP activity through its phosphorylation in DS patients. Our results suggest that DYRK1A inhibitors could be effective against AD not only in adults with DS but also in sporadic AD patients.
Collapse
Affiliation(s)
- Masashi Asai
- Department of Genome-based Drug Discovery, Graduate School of Biomedical Sciences, Nagasaki University
| | - Takashi Kawakubo
- Department of Genome-based Drug Discovery, Graduate School of Biomedical Sciences, Nagasaki University
| | - Ryotaro Mori
- Department of Genome-based Drug Discovery, Graduate School of Biomedical Sciences, Nagasaki University
| | - Nobuhisa Iwata
- Department of Genome-based Drug Discovery, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
55
|
Kawakubo T, Mori R, Shirotani K, Iwata N, Asai M. Neprilysin Is Suppressed by Dual-Specificity Tyrosine-Phosphorylation Regulated Kinase 1A (DYRK1A) in Down-Syndrome-Derived Fibroblasts. Biol Pharm Bull 2017; 40:327-333. [PMID: 28250274 DOI: 10.1248/bpb.b16-00825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Amyloid-β peptide (Aβ) accumulation is a triggering event leading to the Alzheimer's disease (AD) pathological cascade. Almost all familial AD-linked gene mutations increase Aβ production and accelerate the onset of AD. The Swedish mutation of amyloid precursor protein (APP) affects β-secretase activity and increases Aβ production up to ca. 6-fold in cultured cells; the onset age is around 50. Down syndrome (DS) patients with chromosome 21 trisomy present AD-like pathologies at earlier ages (40s) compared with sporadic AD patients, because APP gene expression is 1.5-fold higher than that in healthy people, thus causing a 1.5-fold increase in Aβ production. However, when comparing the causal relationship of Aβ accumulation with the onset age between the above two populations, early DS pathogenesis does not appear to be accounted for by the increased Aβ production alone. In this study, we found that neprilysin, a major Aβ-degrading enzyme, was downregulated in DS patient-derived fibroblasts, compared with healthy people-derived fibroblasts. Treatment with harmine, an inhibitor of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), which is located in the DS critical region of chromosome 21, and gene knockdown of DYRK1A, upregulated neprilysin in fibroblasts. These results suggest that a decrease in the Aβ catabolic rate may be, at least in part, one of the causes for accelerated AD-like pathogenesis in DS patients if a similar event occurs in the brains, and that neprilysin activity may be regulated directly or indirectly by DYRK1A-mediated phosphorylation. DYRK1A inhibition may be a promising disease-modifying therapy for AD via neprilysin upregulation.
Collapse
Affiliation(s)
- Takashi Kawakubo
- Department of Genome-based Drug Discovery, Graduation School of Biomedical Sciences, Nagasaki University
| | | | | | | | | |
Collapse
|
56
|
Song J, Jung C, Kim OY. The Novel Implication of Androgen in Diabetes-induced Alzheimer's Disease. J Lipid Atheroscler 2017. [DOI: 10.12997/jla.2017.6.2.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju, Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan, Korea
| |
Collapse
|
57
|
Abstract
Neprilysin has a major role in both the generation and degradation of bioactive peptides. LCZ696 (valsartan/sacubitril, Entresto), the first of the new ARNI (dual-acting angiotensin-receptor-neprilysin inhibitor) drug class, contains equimolar amounts of valsartan, an angiotensin-receptor blocker, and sacubitril, a prodrug for the neprilysin inhibitor LBQ657. LCZ696 reduced blood pressure more than valsartan alone in patients with hypertension. In the PARADIGM-HF study, LCZ696 was superior to the angiotensin-converting enzyme inhibitor enalapril for the treatment of heart failure with reduced ejection fraction, and LCZ696 was approved by the FDA for this purpose in 2015. This approval was the first for chronic neprilysin inhibition. The many peptides metabolized by neprilysin suggest many potential consequences of chronic neprilysin inhibitor therapy, both beneficial and adverse. Moreover, LBQ657 might inhibit enzymes other than neprilysin. Chronic neprilysin inhibition might have an effect on angio-oedema, bronchial reactivity, inflammation, and cancer, and might predispose to polyneuropathy. Additionally, inhibition of neprilysin metabolism of amyloid-β peptides might have an effect on Alzheimer disease, age-related macular degeneration, and cerebral amyloid angiopathy. Much of the evidence for possible adverse consequences of chronic neprilysin inhibition comes from studies in animal models, and the relevance of this evidence to humans is unknown. This Review summarizes current knowledge of neprilysin function and possible consequences of chronic neprilysin inhibition that indicate a need for vigilance in the use of neprilysin inhibitor therapy.
Collapse
Affiliation(s)
- Duncan J Campbell
- St Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia.,University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
58
|
Depondt C, Donatello S, Rai M, Wang FC, Manto M, Simonis N, Pandolfo M. MME mutation in dominant spinocerebellar ataxia with neuropathy (SCA43). NEUROLOGY-GENETICS 2016; 2:e94. [PMID: 27583304 PMCID: PMC4991603 DOI: 10.1212/nxg.0000000000000094] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/01/2016] [Indexed: 12/31/2022]
Abstract
Objective: To identify the causative gene mutation in a 5-generation Belgian family with dominantly inherited spinocerebellar ataxia and polyneuropathy, in which known genetic etiologies had been excluded. Methods: We collected DNA samples of 28 family members, including 7 living affected individuals, whose clinical records were reviewed by a neurologist experienced in ataxia. We combined linkage data of 21 family members with whole exome sequencing in 2 affected individuals to identify shared heterozygous variants mapping to potentially linked regions. Variants were screened for rarity and for predicted damaging effect. A candidate mutation was confirmed by Sanger sequencing and tested for cosegregation with the disease. Results: Affected individuals presented with late-onset sensorimotor axonal polyneuropathy; all but one also had cerebellar ataxia. We identified a variant in the MME gene, p.C143Y, that was absent from control databases, cosegregated with the phenotype, and was predicted to have a strong damaging effect on the encoded protein by all algorithms we used. Conclusions: MME encodes neprilysin (NEP), a zinc-dependent metalloprotease expressed in most tissues, including the central and peripheral nervous systems. The mutated cysteine 143 forms a disulfide bridge, which is 100% conserved in NEP and in similar enzymes. The recent identification of recessive MME mutations in 10 unrelated individuals from Japan with axonal polyneuropathy further supports the causality of the mutation, despite the dominant mode of inheritance and the presence of cerebellar involvement in our study family. Functional studies are needed to identify the mechanisms underlying these differences.
Collapse
Affiliation(s)
- Chantal Depondt
- Department of Neurology (C.D., M.M., M.P.), Department of Medical Genetics (N.S.), Hôpital Erasme, Laboratory of Experimental Neurology (C.D., S.D., M.R., M.M.), Université Libre de Bruxelles; Department of Physical Medicine and Rehabilitation (F.C.W.), University of Liège, University Hospital; and Fonds National de la Recherche Scientifique (M.M.), Brussels, Belgium
| | - Simona Donatello
- Department of Neurology (C.D., M.M., M.P.), Department of Medical Genetics (N.S.), Hôpital Erasme, Laboratory of Experimental Neurology (C.D., S.D., M.R., M.M.), Université Libre de Bruxelles; Department of Physical Medicine and Rehabilitation (F.C.W.), University of Liège, University Hospital; and Fonds National de la Recherche Scientifique (M.M.), Brussels, Belgium
| | - Myriam Rai
- Department of Neurology (C.D., M.M., M.P.), Department of Medical Genetics (N.S.), Hôpital Erasme, Laboratory of Experimental Neurology (C.D., S.D., M.R., M.M.), Université Libre de Bruxelles; Department of Physical Medicine and Rehabilitation (F.C.W.), University of Liège, University Hospital; and Fonds National de la Recherche Scientifique (M.M.), Brussels, Belgium
| | - François Charles Wang
- Department of Neurology (C.D., M.M., M.P.), Department of Medical Genetics (N.S.), Hôpital Erasme, Laboratory of Experimental Neurology (C.D., S.D., M.R., M.M.), Université Libre de Bruxelles; Department of Physical Medicine and Rehabilitation (F.C.W.), University of Liège, University Hospital; and Fonds National de la Recherche Scientifique (M.M.), Brussels, Belgium
| | - Mario Manto
- Department of Neurology (C.D., M.M., M.P.), Department of Medical Genetics (N.S.), Hôpital Erasme, Laboratory of Experimental Neurology (C.D., S.D., M.R., M.M.), Université Libre de Bruxelles; Department of Physical Medicine and Rehabilitation (F.C.W.), University of Liège, University Hospital; and Fonds National de la Recherche Scientifique (M.M.), Brussels, Belgium
| | - Nicolas Simonis
- Department of Neurology (C.D., M.M., M.P.), Department of Medical Genetics (N.S.), Hôpital Erasme, Laboratory of Experimental Neurology (C.D., S.D., M.R., M.M.), Université Libre de Bruxelles; Department of Physical Medicine and Rehabilitation (F.C.W.), University of Liège, University Hospital; and Fonds National de la Recherche Scientifique (M.M.), Brussels, Belgium
| | - Massimo Pandolfo
- Department of Neurology (C.D., M.M., M.P.), Department of Medical Genetics (N.S.), Hôpital Erasme, Laboratory of Experimental Neurology (C.D., S.D., M.R., M.M.), Université Libre de Bruxelles; Department of Physical Medicine and Rehabilitation (F.C.W.), University of Liège, University Hospital; and Fonds National de la Recherche Scientifique (M.M.), Brussels, Belgium
| |
Collapse
|
59
|
Chen PT, Chen ZT, Hou WC, Yu LC, Chen RPY. Polyhydroxycurcuminoids but not curcumin upregulate neprilysin and can be applied to the prevention of Alzheimer's disease. Sci Rep 2016; 6:29760. [PMID: 27407064 PMCID: PMC4942833 DOI: 10.1038/srep29760] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 06/20/2016] [Indexed: 12/26/2022] Open
Abstract
Neprilysin (NEP) is the most important Aβ-degrading enzyme. Its expression level decreases with age and inversely correlated with amyloid accumulation, suggesting its correlation with the late-onset of Alzheimer's disease. Recently, many reports showed that upregulating NEP level is a promising strategy in the prevention and therapy of Alzheimer's disease. Here, we used a sensitive fluorescence-based Aβ digestion assay to screen 25 curcumin analogs for their ability to upregulate NEP activity. To our surprise, four compounds, dihydroxylated curcumin, monohydroxylated demethoxycurcumin, and mono- and di-hydroxylated bisdemethoxycurcumin, increased NEP activity, while curcumin did not. The ability of these polyhydroxycurcuminoids to upregulate NEP was further confirmed by mRNA and protein expression levels in the cell and mouse models. Finally, feeding monohydroxylated demethoxycurcumin (also named demethylcurcumin) or dihydroxylated bisdemethoxycurcumin (also named bisdemethylcurcumin) to APPswe/PS1dE9 double transgenic mice upregulated NEP levels in the brain and reduced Aβ accumulation in the hippocampus and cortex. These polyhydroxycurcuminoids offer hope in the prevention of Alzheimer's disease.
Collapse
Affiliation(s)
- Po-Ting Chen
- Institute of Biochemical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei 115, Taiwan
| | - Zih-ten Chen
- Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei 115, Taiwan
| | - Wen-Chi Hou
- Graduate Institute of Pharmacognosy, Taipei Medical University, No. 250, Wuxing St., Taipei 110, Taiwan
| | - Lung-Chih Yu
- Institute of Biochemical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Rita P.-Y. Chen
- Institute of Biochemical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei 115, Taiwan
| |
Collapse
|
60
|
De la Rosa-Prieto C, Saiz-Sanchez D, Ubeda-Banon I, Flores-Cuadrado A, Martinez-Marcos A. Neurogenesis, Neurodegeneration, Interneuron Vulnerability, and Amyloid-β in the Olfactory Bulb of APP/PS1 Mouse Model of Alzheimer's Disease. Front Neurosci 2016; 10:227. [PMID: 27303258 PMCID: PMC4885141 DOI: 10.3389/fnins.2016.00227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 05/06/2016] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, mostly idiopathic and with palliative treatment. Neuropathologically, it is characterized by intracellular neurofibrillary tangles of tau protein and extracellular plaques of amyloid β peptides. The relationship between AD and neurogenesis is unknown, but two facts are particularly relevant. First, early aggregation sites of both proteinopathies include the hippocampal formation and the olfactory bulb (OB), which have been correlated to memory and olfactory deficits, respectively. These areas are well-recognized integration zones of newly-born neurons in the adult brain. Second, molecules, such as amyloid precursor protein (APP) and presenilin-1 are common to both AD etiology and neurogenic development. Adult neurogenesis in AD models has been studied in the hippocampus, but only occasionally addressed in the OB and results are contradictory. To gain insight on the relationship between adult neurogenesis and AD, this work analyzes neurogenesis, neurodegeneration, interneuron vulnerability, and amyloid-β involvement in the OB of an AD model. Control and double-transgenic mice carrying the APP and the presenilin-1 genes, which give rise amyloid β plaques have been used. BrdU-treated animals have been studied at 16, 30, 43, and 56 weeks of age. New-born cell survival (BrdU), neuronal loss (using neuronal markers NeuN and PGP9.5), differential interneuron (calbindin-, parvalbumin-, calretinin- and somatostatin-expressing populations) vulnerability, and involvement by amyloid β have been analyzed. Neurogenesis increases with aging in the granule cell layer of control animals from 16 to 43 weeks. No neuronal loss has been observed after quantifying NeuN or PGP9.5. Regarding interneuron population vulnerability: calbindin-expressing neurons remains unchanged; parvalbumin-expressing neurons trend to increase with aging in transgenic animals; calretinin-expressing neurons increase with aging in transgenic mice and decrease in control animals and neurogenesis is higher in control as compared to transgenic animals at given ages, finally; somatostatin-expressing neurons of transgenic mice decrease with aging and as compared to controls. Amyloid β aggregates with aging in the granule cell layer, which may be related to the particular involvement of somatostatin-expressing cells.
Collapse
Affiliation(s)
- Carlos De la Rosa-Prieto
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, Universidad de Castilla-La Mancha Ciudad Real, Spain
| | - Daniel Saiz-Sanchez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, Universidad de Castilla-La Mancha Ciudad Real, Spain
| | - Isabel Ubeda-Banon
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, Universidad de Castilla-La Mancha Ciudad Real, Spain
| | - Alicia Flores-Cuadrado
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, Universidad de Castilla-La Mancha Ciudad Real, Spain
| | - Alino Martinez-Marcos
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical School, Universidad de Castilla-La Mancha Ciudad Real, Spain
| |
Collapse
|
61
|
Torika N, Asraf K, Danon A, Apte RN, Fleisher-Berkovich S. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies. PLoS One 2016; 11:e0155823. [PMID: 27187688 PMCID: PMC4871324 DOI: 10.1371/journal.pone.0155823] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/04/2016] [Indexed: 12/16/2022] Open
Abstract
The circulating renin-angiotensin system (RAS), including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R)) some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer’s disease (AD) models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker) on tumor necrosis factor-α (TNF-α), interleukin 1-β (IL1-β) and nitric oxide (NO) release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD) mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor). Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS) -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day) for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia) both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the progression of glial activation and AD by using AT1R blockers.
Collapse
Affiliation(s)
- Nofar Torika
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Keren Asraf
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Abraham Danon
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Ron N. Apte
- Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Sigal Fleisher-Berkovich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
- * E-mail:
| |
Collapse
|
62
|
Lamotrigine attenuates cerebral ischemia-induced cognitive impairment and decreases β-amyloid and phosphorylated tau in the hippocampus in rats. Neuroreport 2016; 26:723-7. [PMID: 26164461 DOI: 10.1097/wnr.0000000000000424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lamotrigine (LTG) has shown benefits in animal models of cerebral ischemia, but the mechanism involved was not fully studied. This study was carried out to examine the effects of LTG on cognitive dysfunction, β-amyloid1-42 accumulation, and tau protein hyperphosphorylation in the hippocampus of ischemic rats. Transient ischemic stroke was induced by middle cerebral artery occlusion. The Morris water maze test was used to evaluate the cognitive function of rats. We found that LTG significantly attenuated ischemia-induced cognitive deficits and decreased neuronal injury in the hippocampal CA1 zone. Moreover, LTG reduced β-amyloid1-42 and phosphorylated tau (AT8) in the hippocampus after ischemia. These results suggested that the cognition-protective effects of LTG after cerebral ischemia might involve inhibition of toxic β-amyloid accumulation and tau hyperphosphorylation in the hippocampus.
Collapse
|
63
|
Design of Peptide Substrate for Sensitively and Specifically Detecting Two Aβ-Degrading Enzymes: Neprilysin and Angiotensin-Converting Enzyme. PLoS One 2016; 11:e0153360. [PMID: 27096746 PMCID: PMC4838334 DOI: 10.1371/journal.pone.0153360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 03/29/2016] [Indexed: 12/28/2022] Open
Abstract
Upregulation of neprilysin (NEP) to reduce Aβ accumulation in the brain is a promising strategy for the prevention of Alzheimer's disease (AD). This report describes the design and synthesis of a quenched fluorogenic peptide substrate qf-Aβ(12-16)AAC (with the sequence VHHQKAAC), which has a fluorophore, Alexa-350, linked to the side-chain of its C-terminal cysteine and a quencher, Dabcyl, linked to its N-terminus. This peptide emitted strong fluorescence upon cleavage. Our results showed that qf-Aβ(12-16)AAC is more sensitive to NEP than the previously reported peptide substrates, so that concentrations of NEP as low as 0.03 nM could be detected at peptide concentration of 2 μM. Moreover, qf-Aβ(12-16)AAC had superior enzymatic specificity for both NEP and angiotensin-converting enzyme (ACE), but was inert with other Aβ-degrading enzymes. This peptide, used in conjunction with a previously reported peptide substrate qf-Aβ(1-7)C [which is sensitive to NEP and insulin-degrading enzyme (IDE)], could be used for high-throughput screening of compounds that only upregulate NEP. The experimental results of cell-based activity assays using both qf-Aβ(1-7)C and qf-Aβ(12-16)AAC as the substrates confirm that somatostatin treatment most likely upregulates IDE, but not NEP, in neuroblastoma cells.
Collapse
|
64
|
Feldman AM. Neprilysin Inhibition in the Time of Precision Medicine. JACC. HEART FAILURE 2016; 4:S2213-1779(16)30049-X. [PMID: 27107556 DOI: 10.1016/j.jchf.2016.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Arthur M Feldman
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
65
|
Higuchi Y, Hashiguchi A, Yuan J, Yoshimura A, Mitsui J, Ishiura H, Tanaka M, Ishihara S, Tanabe H, Nozuma S, Okamoto Y, Matsuura E, Ohkubo R, Inamizu S, Shiraishi W, Yamasaki R, Ohyagi Y, Kira JI, Oya Y, Yabe H, Nishikawa N, Tobisawa S, Matsuda N, Masuda M, Kugimoto C, Fukushima K, Yano S, Yoshimura J, Doi K, Nakagawa M, Morishita S, Tsuji S, Takashima H. Mutations in MME cause an autosomal-recessive Charcot-Marie-Tooth disease type 2. Ann Neurol 2016; 79:659-72. [PMID: 26991897 PMCID: PMC5069600 DOI: 10.1002/ana.24612] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/16/2016] [Accepted: 02/03/2016] [Indexed: 01/12/2023]
Abstract
Objective The objective of this study was to identify new causes of Charcot–Marie–Tooth (CMT) disease in patients with autosomal‐recessive (AR) CMT. Methods To efficiently identify novel causative genes for AR‐CMT, we analyzed 303 unrelated Japanese patients with CMT using whole‐exome sequencing and extracted recessive variants/genes shared among multiple patients. We performed mutation screening of the newly identified membrane metalloendopeptidase (MME) gene in 354 additional patients with CMT. We clinically, genetically, pathologically, and radiologically examined 10 patients with the MME mutation. Results We identified recessive mutations in MME in 10 patients. The MME gene encodes neprilysin (NEP), which is well known to be one of the most prominent beta‐amyloid (Aβ)‐degrading enzymes. All patients had a similar phenotype consistent with late‐onset axonal neuropathy. They showed muscle weakness, atrophy, and sensory disturbance in the lower extremities. All the MME mutations could be loss‐of‐function mutations, and we confirmed a lack/decrease of NEP protein expression in a peripheral nerve. No patients showed symptoms of dementia, and 1 patient showed no excess Aβ in Pittsburgh compound‐B positron emission tomography imaging. Interpretation Our results indicate that loss‐of‐function MME mutations are the most frequent cause of adult‐onset AR‐CMT2 in Japan, and we propose that this new disease should be termed AR‐CMT2T. A loss‐of‐function MME mutation did not cause early‐onset Alzheimer's disease. Identifying the MME mutation responsible for AR‐CMT could improve the rate of molecular diagnosis and the understanding of the molecular mechanisms of CMT. Ann Neurol 2016;79:659–672
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Junhui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Tanaka
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ishihara
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Cardiovascular medicine, Nephrology and Neurology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hajime Tanabe
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ryuichi Ohkubo
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Neurology, Fujimoto General Hospital, Miyazaki, Japan
| | - Saeko Inamizu
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Wataru Shiraishi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasumasa Ohyagi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hayato Yabe
- Department of Neurology and Clinical Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Noriko Nishikawa
- Department of Neurology and Clinical Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shinsuke Tobisawa
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Nozomu Matsuda
- Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - Masayuki Masuda
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Chiharu Kugimoto
- Department of Neurology and Stroke Medicine, Yokohama City University, Yokohama, Japan
| | - Kazuhiro Fukushima
- Department of Home-Care Promotion, Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoshi Yano
- Department of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Koichiro Doi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Masanori Nakagawa
- Director of North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
66
|
|
67
|
Jha NK, Jha SK, Kumar D, Kejriwal N, Sharma R, Ambasta RK, Kumar P. Impact of Insulin Degrading Enzyme and Neprilysin in Alzheimer’s Disease Biology: Characterization of Putative Cognates for Therapeutic Applications. J Alzheimers Dis 2015; 48:891-917. [DOI: 10.3233/jad-150379] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Noopur Kejriwal
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Renu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Delhi, India
- Department of Neurology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
68
|
Schmedt auf der Günne W, Zhao Y, Hedderich J, Gohlke P, Culman J. Omapatrilat: penetration across the blood–brain barrier and effects on ischaemic stroke in rats. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:939-51. [DOI: 10.1007/s00210-015-1126-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/08/2015] [Indexed: 12/27/2022]
|
69
|
Nilsson P, Loganathan K, Sekiguchi M, Winblad B, Iwata N, Saido TC, Tjernberg LO. Loss of neprilysin alters protein expression in the brain of Alzheimer's disease model mice. Proteomics 2015; 15:3349-55. [PMID: 26194619 DOI: 10.1002/pmic.201400211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 04/28/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease displaying extracellular plaques formed by the neurotoxic amyloid β-peptide (Aβ), and intracellular neurofibrillary tangles consisting of protein tau. However, how these pathologies relate to the massive neuronal death that occurs in AD brains remain elusive. Neprilysin is the major Aβ-degrading enzyme and a lack thereof increases Aβ levels in the brain twofold. To identify altered protein expression levels induced by increased Aβ levels, we performed a proteomic analysis of the brain of the AD mouse model APPsw and compared it to that of APPsw mice lacking neprilysin. To this end we established an LC-MS/MS method to analyze brain homogenate, using an (18) O-labeled internal standard to accurately quantify the protein levels. To distinguish between alterations in protein levels caused by increased Aβ levels and those induced by neprilysin deficiency independently of Aβ, the brain proteome of neprilysin deficient APPsw mice was also compared to that of neprilysin deficient mice. By this approach we identified approximately 600 proteins and the levels of 300 of these were quantified. Pathway analysis showed that many of the proteins with altered expression were involved in neurological disorders, and that tau, presenilin and APP were key regulators in the identified networks. The data have been deposited to the ProteomeXchange Consortium with identifiers PXD000968 and PXD001786 (http://proteomecentral.proteomexchange.org/dataset/PXD000968 and (http://proteomecentral.proteomexchange.org/dataset/PXD001786). Interestingly, the levels of several proteins, including some not previously reported to be linked to AD, were associated with increased Aβ levels.
Collapse
Affiliation(s)
- Per Nilsson
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan.,Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Huddinge, Sweden
| | - Krishnapriya Loganathan
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan.,Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Huddinge, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Misaki Sekiguchi
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Bengt Winblad
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Huddinge, Sweden
| | - Nobuhisa Iwata
- Dept of Biotechnology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Lars O Tjernberg
- Karolinska Institutet, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Huddinge, Sweden
| |
Collapse
|
70
|
O'Connor DM, Boulis NM. Gene therapy for neurodegenerative diseases. Trends Mol Med 2015; 21:504-12. [PMID: 26122838 DOI: 10.1016/j.molmed.2015.06.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 12/18/2022]
Abstract
Gene therapy is, potentially, a powerful tool for treating neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy, Parkinson's disease (PD) and Alzheimer's disease (AD). To date, clinical trials have failed to show any improvement in outcome beyond the placebo effect. Efforts to improve outcomes are focusing on three main areas: vector design and the identification of new vector serotypes, mode of delivery of gene therapies, and identification of new therapeutic targets. These advances are being tested both individually and together to improve efficacy. These improvements may finally make gene therapy successful for these disorders.
Collapse
Affiliation(s)
- Deirdre M O'Connor
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA.
| |
Collapse
|
71
|
Kulikova AA, Makarov AA, Kozin SA. Roles of zinc ions and structural polymorphism of β-amyloid in the development of Alzheimer’s disease. Mol Biol 2015. [DOI: 10.1134/s0026893315020065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
72
|
Chin-Chan M, Segovia J, Quintanar L, Arcos-López T, Hersh LB, Chow KM, Rodgers DW, Quintanilla-Vega B. Mercury Reduces the Enzymatic Activity of Neprilysin in Differentiated SH-SY5Y Cells. Toxicol Sci 2015; 145:128-37. [PMID: 25673500 DOI: 10.1093/toxsci/kfv037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Levels of amyloid beta (Aβ) in the central nervous system are regulated by the balance between its synthesis and degradation. Neprilysin (NEP) is associated with Alzheimer's disease (AD) by its ability to degrade Aβ. Some studies have involved the exposure to mercury (Hg) in AD pathogenesis; therefore, our aim was to investigate the effects on the anabolism and catabolism of Aβ in differentiated SH-SY5Y cells incubated with 1-20 μM of Hg. Exposure to 20 µM of Hg induced an increase in Aβ-42 secretion, but did not increase the expression of the amyloid precursor protein (APP). Hg incubation (10 and 20 µM) increased NEP protein levels; however, it did not change NEP mRNA levels nor the levels of the amyloid intracellular domain peptide, a protein fragment with transcriptional activity. Interestingly, Hg reduced NEP activity at 10 and 20 µM, and circular dichroism analysis using human recombinant NEP showed conformational changes after incubation with molar equivalents of Hg. This suggests that the Hg-induced inhibition of NEP activity may be mediated by a conformational change resulting in reduced Aβ-42 degradation. Finally, the comparative effects of lead (Pb, 50 μM) were evaluated. We found a significant increase in Aβ-42 levels and a dramatic increase in APP protein levels; however, no alteration in NEP levels was observed nor in the enzymatic activity of this metalloprotease, despite the fact that Pb slightly modified the rhNEP conformation. Overall, our data suggest that Hg and Pb increase Aβ levels by different mechanisms.
Collapse
Affiliation(s)
- Miguel Chin-Chan
- *Department of Toxicology, Ave. IPN 2508, Colonia Zacatenco, Mexico City 07360, Department of Physiology, Biophysics and Neuroscience, Department of Chemistry, CINVESTAV, Mexico City 07360 and Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Biomedical Biological Sciences Research Building, 741 South Limestone St., Lexington, Kentucky 40536-0509
| | - José Segovia
- *Department of Toxicology, Ave. IPN 2508, Colonia Zacatenco, Mexico City 07360, Department of Physiology, Biophysics and Neuroscience, Department of Chemistry, CINVESTAV, Mexico City 07360 and Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Biomedical Biological Sciences Research Building, 741 South Limestone St., Lexington, Kentucky 40536-0509
| | - Liliana Quintanar
- *Department of Toxicology, Ave. IPN 2508, Colonia Zacatenco, Mexico City 07360, Department of Physiology, Biophysics and Neuroscience, Department of Chemistry, CINVESTAV, Mexico City 07360 and Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Biomedical Biological Sciences Research Building, 741 South Limestone St., Lexington, Kentucky 40536-0509
| | - Trinidad Arcos-López
- *Department of Toxicology, Ave. IPN 2508, Colonia Zacatenco, Mexico City 07360, Department of Physiology, Biophysics and Neuroscience, Department of Chemistry, CINVESTAV, Mexico City 07360 and Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Biomedical Biological Sciences Research Building, 741 South Limestone St., Lexington, Kentucky 40536-0509
| | - Louis B Hersh
- *Department of Toxicology, Ave. IPN 2508, Colonia Zacatenco, Mexico City 07360, Department of Physiology, Biophysics and Neuroscience, Department of Chemistry, CINVESTAV, Mexico City 07360 and Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Biomedical Biological Sciences Research Building, 741 South Limestone St., Lexington, Kentucky 40536-0509
| | - K Martin Chow
- *Department of Toxicology, Ave. IPN 2508, Colonia Zacatenco, Mexico City 07360, Department of Physiology, Biophysics and Neuroscience, Department of Chemistry, CINVESTAV, Mexico City 07360 and Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Biomedical Biological Sciences Research Building, 741 South Limestone St., Lexington, Kentucky 40536-0509
| | - David W Rodgers
- *Department of Toxicology, Ave. IPN 2508, Colonia Zacatenco, Mexico City 07360, Department of Physiology, Biophysics and Neuroscience, Department of Chemistry, CINVESTAV, Mexico City 07360 and Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Biomedical Biological Sciences Research Building, 741 South Limestone St., Lexington, Kentucky 40536-0509
| | - Betzabet Quintanilla-Vega
- *Department of Toxicology, Ave. IPN 2508, Colonia Zacatenco, Mexico City 07360, Department of Physiology, Biophysics and Neuroscience, Department of Chemistry, CINVESTAV, Mexico City 07360 and Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Biomedical Biological Sciences Research Building, 741 South Limestone St., Lexington, Kentucky 40536-0509
| |
Collapse
|
73
|
Vodovar N, Paquet C, Mebazaa A, Launay JM, Hugon J, Cohen-Solal A. Neprilysin, cardiovascular, and Alzheimer's diseases: the therapeutic split? Eur Heart J 2015; 36:902-5. [PMID: 25636748 DOI: 10.1093/eurheartj/ehv015] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/13/2015] [Indexed: 12/15/2022] Open
Affiliation(s)
| | - Claire Paquet
- UMRS 942 Inserm, 75010 Paris, France Clinical and Research Memory Center, Lariboisière Hospital, Paris, France
| | - Alexandre Mebazaa
- UMRS 942 Inserm, 75010 Paris, France Department of Anesthesiology and Intensive Care, Lariboisière Hospital, Paris, France Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Jean-Marie Launay
- UMRS 942 Inserm, 75010 Paris, France Department of Biochemistry, Lariboisière Hospital, Paris, France Centre for Biological Resources, Lariboisière Hospital, Paris, France
| | - Jacques Hugon
- UMRS 942 Inserm, 75010 Paris, France Clinical and Research Memory Center, Lariboisière Hospital, Paris, France Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Alain Cohen-Solal
- UMRS 942 Inserm, 75010 Paris, France Paris Diderot University, Sorbonne Paris Cité, Paris, France Department of Cardiology, Lariboisière Hospital, 2, Rue Ambroise Paré, 75475 Paris Cedex 10, France
| |
Collapse
|
74
|
da Cruz CHB, Seabra GM. QM/MM simulations of amyloid-β 42 degradation by IDE in the presence and absence of ATP. J Chem Inf Model 2015; 55:72-83. [PMID: 25539133 DOI: 10.1021/ci500544c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability of the insulin-degrading enzyme (IDE) to degrade amyloid-β 42 (Aβ42), a process regulated by ATP, has been studied as an alternative path in the development of drugs against Alzheimer's disease. In this study, we calculated the potential of mean force for the degradation of Aβ42 by IDE in the presence and absence of ATP by umbrella sampling with hybrid quantum mechanics and molecular mechanics (QM/MM) calculations, using the SCC-DFTB QM Hamiltonian and Amber ff99SB force field. Results indicate that the reaction occurs in two steps: The first step is characterized by the formation of the intermediate. The second step is characterized by breaking the peptide bond of the substrate, the latter being the rate-determining step. In our simulations, the activation energy barrier in the absence of ATP is 15 ± 2 kcal mol(-1), which is 7 kcal mol(-1) lower than in the presence of ATP, indicating that the presence of the nucleotide decreases the reaction rate by about 10(5) times.
Collapse
Affiliation(s)
- Carlos H B da Cruz
- Departamento de Química Fundamental, Universidade Federal de Pernambuco , Av. Jornalista Aníbal Fernandes, s/n, Cidade Universitária, Recife-PE, Brazil , 50.740-560
| | | |
Collapse
|
75
|
Abbasowa L, Heegaard NHH. A systematic review of amyloid-β peptides as putative mediators of the association between affective disorders and Alzheimer׳s disease. J Affect Disord 2014; 168:167-83. [PMID: 25058309 DOI: 10.1016/j.jad.2014.06.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Affective disorders are associated with an increased occurrence of cognitive deficits and have been linked to cognitive impairment and Alzheimer׳s disease. The putative molecular mechanisms involved in these associations are however not clear. The aim of this systematic review was to explore clinically founded evidence for amyloid-β peptides in cerebrospinal fluid and blood as putative biomarkers for affective disorders. METHOD Systematic searches in Embase and PubMed databases yielded 23 eligible, observational studies. RESULTS Despite inconsistencies that were partly ascribed to the application of different assay formats, study results indicate a potentially altered amyloid-β metabolism in affective disorder. LIMITATIONS Since most studies used a cross-sectional design, causality is difficult to establish. Moreover, methodological rigor of included studies varied and several studies were limited by very low sample numbers. Finally, different assays for amyloid-β were utilized in the different studies, thus hampering comparisons. CONCLUSION To unravel possible risk relations and causalities between affective disorder and Alzheimer׳s disease and to determine how amyloid-β concentrations change over time and are associated with cognition as well as affective symptomatology, future research should include prospective, longitudinal studies, implemented in large study populations, where peripheral and central amyloid-β ratios are quantified concomitantly and continuously across various affective phases. Also, to enable inter-survey comparisons, the use of standardized pre-analytical/analytical procedures is crucial.
Collapse
Affiliation(s)
- Leda Abbasowa
- Department of Medicine, Kabbeltoft 25, DK-7100 Vejle, Denmark.
| | - Niels H H Heegaard
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, University of Southern Denmark, Denmark; Department of Clinical Biochemistry, Immunology & Genetics, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
76
|
Sarikurkcu C, Zengin G, Aktumsek A, Ceylan O, Uysal S. Screening of PossibleIn VitroNeuroprotective, Skin Care, Antihyperglycemic, and Antioxidative Effects ofAnchusa undulataL. subsp.hybrida(Ten.) Coutinho from Turkey and Its Fatty Acid Profile. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2014. [DOI: 10.1080/10942912.2014.913182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
77
|
Ginsenoside Rd attenuates tau protein phosphorylation via the PI3K/AKT/GSK-3β pathway after transient forebrain ischemia. Neurochem Res 2014; 39:1363-73. [PMID: 24792734 DOI: 10.1007/s11064-014-1321-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/16/2014] [Accepted: 04/25/2014] [Indexed: 01/17/2023]
Abstract
Phosphorylated tau was found to be regulated after cerebral ischemia and linked to high risk for the development of post-stroke dementia. Our previous study showed that ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, decreased tau phosphorylation in Alzheimer model. As an extending study, here we investigated whether Rd could reduce tau phosphorylation and sequential cognition impairment after ischemic stroke. Sprague-Dawley rats were subjected to focal cerebral ischemia. The tau phosphorylation of rat brains were analyzed following ischemia by Western blot and animal cognitive functions were examined by Morris water maze and Novel object recognition task. Ischemic insults increased the levels of phosphorylated tau protein at Ser199/202 and PHF-1 sites and caused animal memory deficits. Rd treatment attenuated ischemia-induced enhancement of tau phosphorylation and ameliorated behavior impairment. Furthermore, we revealed that Rd inhibited the activity of Glycogen synthase kinase-3β (GSK-3β), the most important kinase involving tau phosphorylation, but enhanced the activity of protein kinase B (PKB/AKT), a key kinase suppressing GSK-3β activity. Moreover, we found that LY294002, an antagonist for phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway, abolished the inhibitory effect of Rd on GSK-3β activity and tau phosphorylation. Taken together, our findings provide the first evidence that Rd may reduce cerebral ischemia-induced tau phosphorylation via the PI3K/AKT/GSK-3β pathway.
Collapse
|
78
|
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease exhibiting amyloid beta (Aβ) peptide accumulation as a key characteristic. Autophagy, which is dysregulated in AD, participates in the metabolism of Aβ. Unexpectedly, we recently found that autophagy, in addition to its degradative function, also mediates the secretion of Aβ. This finding adds Aβ to an increasing number of biomolecules, the secretion of which is mediated by autophagy. We also showed that inhibition of Aβ secretion through genetic deletion of autophagy leads to intracellular Aβ accumulation, which enhanced neurodegeneration induced by autophagy deficiency. Hence, autophagy may play a central role in two pathological hallmarks of AD: Aβ amyloidosis and neurodegeneration. Herein, we summarize the role of autophagy in AD with focus on Aβ metabolism in light of the recently established role of autophagy in protein secretion. We discuss potential routes for autophagy-mediated Aβ secretion and suggest experimental approaches to further elucidate its mechanisms.
Collapse
Affiliation(s)
- Per Nilsson
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Saitama, Japan; KI-Alzheimer's Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Novum, Huddinge, Sweden
| | | |
Collapse
|
79
|
Asai M, Shirotani K, Kondo T, Inoue H, Iwata N. [Cellular models for individualized medicine in Alzheimer's disease using patient-derived induced pluripotent stem cells]. Nihon Yakurigaku Zasshi 2014; 143:23-6. [PMID: 24420133 DOI: 10.1254/fpj.143.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
80
|
Neprilysin is poorly expressed in the prefrontal cortex of aged dogs with cognitive dysfunction syndrome. Int J Alzheimers Dis 2014; 2014:483281. [PMID: 24511411 PMCID: PMC3912887 DOI: 10.1155/2014/483281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/16/2013] [Accepted: 12/21/2013] [Indexed: 12/16/2022] Open
Abstract
Neprilysin (NEP) is the principal amyloid β (A β ) degrading peptidase; this activity may protect against Alzheimer's disease (AD), the most important age-related neurodegenerative process. The aim of this work was to analyze NEP mRNA expression in the frontal cortex of dogs with and without canine cognitive dysfunction syndrome (CDS), which is considered a natural model for AD. Expression of canine cerebral NEP mRNA was assessed by RT-PCR followed by qPCR in young, aged-cognitively unimpaired (CU), and aged-cognitively impaired (CI) dogs. On average, aged-CI dogs showed 80% (P < 0.01) lower expression levels of NEP mRNA than their aged-CU counterparts. Furthermore, the standard deviation of the qPCR measurements was more than 6 times higher in the cognitively healthy animals (young and aged-CU) than in the aged-CI group. Another interesting find is the determination of a positive correlation between NEP expression and the number of cholinergic neurons in basal telencephalon, indicating a probable connection between both events in these types of neurodegeneration processes. These results suggest that high expression levels of NEP might be a protective factor for canine CDS and, most likely, for other A β -associated neurodegenerative diseases, such as AD.
Collapse
|
81
|
Katsuda T, Oki K, Ochiya T. Potential application of extracellular vesicles of human adipose tissue-derived mesenchymal stem cells in Alzheimer's disease therapeutics. Methods Mol Biol 2014; 1212:171-81. [PMID: 25085563 DOI: 10.1007/7651_2014_98] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the last 20 years, extracellular vesicles (EVs) have attracted attention as a versatile cell-cell communication mediator. The biological significance of EVs remains to be fully elucidated, but many reports have suggested that the functions of EVs mirror, at least in part, those of the cells from which they originate. Mesenchymal stem cells (MSCs) are a type of adult stem cell that can be isolated from connective tissue including bone marrow and adipose tissue and have emerged as an attractive candidate for cell therapy applications. Accordingly, an increasing number of reports have shown that EVs derived from MSCs have therapeutic potential in multiple diseases. We recently reported a novel therapeutic potential of EVs secreted from human adipose tissue-derived MSCs (hADSCs) (also known as adipose tissue-derived stem cells; ASCs) against Alzheimer's disease (AD). We found that hADSCs secrete exosomes carrying enzymatically active neprilysin, the most important β-amyloid peptide (Aβ)-degrading enzyme in the brain. In this chapter, we describe a method by which to evaluate the therapeutic potential of hADSC-derived EVs against AD from the point of view of their Aβ-degrading capacity.
Collapse
Affiliation(s)
- Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | | | | |
Collapse
|
82
|
Bloemer J, Bhattacharya S, Amin R, Suppiramaniam V. Impaired insulin signaling and mechanisms of memory loss. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:413-49. [PMID: 24373245 DOI: 10.1016/b978-0-12-800101-1.00013-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Insulin is secreted from the β-cells of the pancreas and helps maintain glucose homeostasis. Although secreted peripherally, insulin also plays a profound role in cognitive function. Increasing evidence suggests that insulin signaling in the brain is necessary to maintain health of neuronal cells, promote learning and memory, decrease oxidative stress, and ultimately increase neuronal survival. This chapter summarizes the different facets of insulin signaling necessary for learning and memory and additionally explores the association between cognitive impairment and central insulin resistance. The role of impaired insulin signaling in the advancement of cognitive dysfunction is relevant to the current debate of whether the shared pathophysiological mechanisms between diabetes and cognitive impairment implicate a direct relationship. Here, we summarize a vast amount of literature that suggests a strong association between impaired brain insulin signaling and cognitive impairment.
Collapse
Affiliation(s)
- Jenna Bloemer
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Subhrajit Bhattacharya
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Rajesh Amin
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Vishnu Suppiramaniam
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
83
|
Lu YQ, Luo Y, He ZF, Chen J, Yan BL, Wang Y, Yu Q. Hydroxysafflor Yellow A Ameliorates Homocysteine-Induced Alzheimer-Like Pathologic Dysfunction and Memory/Synaptic Disorder. Rejuvenation Res 2013; 16:446-52. [PMID: 23837610 DOI: 10.1089/rej.2013.1451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ya-Qin Lu
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou, China
| | - Yu Luo
- Institute of Pathophysiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zhong-Fang He
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou, China
| | - Jun Chen
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou, China
| | - Bo-ling Yan
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou, China
| | - Ying Wang
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou, China
| | - Qin Yu
- Department of Respiratory Medicine, First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
84
|
McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol 2013; 126:479-97. [PMID: 24052108 DOI: 10.1007/s00401-013-1177-7] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 12/14/2022]
Abstract
The amyloid cascade hypothesis is widely accepted as the centerpiece of Alzheimer disease (AD) pathogenesis. It proposes that abnormal production of beta amyloid protein (Abeta) is the cause of AD and that the neurotoxicity is due to Abeta itself or its oligomeric forms. We suggest that this, in itself, cannot be the cause of AD because demonstrating such toxicity requires micromolar concentrations of these Abeta forms, while their levels in brain are a million times lower in the picomolar range. AD probably results from the inflammatory response induced by extracellular Abeta deposits, which later become enhanced by aggregates of tau. The inflammatory response, which is driven by activated microglia, increases over time as the disease progresses. Disease-modifying therapeutic attempts to date have failed and may continue to do so as long as the central role of inflammation is not taken into account. Multiple epidemiological and animal model studies show that NSAIDs, the most widely used antiinflammatory agents, have a substantial sparing effect on AD. These studies provide a proof of concept regarding the anti-inflammatory approach to disease modification. Biomarker studies have indicated that early intervention may be necessary. They have established that disease onset occurs more than a decade before it becomes clinically evident. By combining biomarker and pathological data, it is possible to define six phases of disease development, each separated by about 5 years. Phase one can be identified by decreases in Abeta in the CSF, phase 2 by increases of tau in the CSF plus clear evidence of Abeta brain deposits by PET scanning, phase 3 by slight decreases in brain metabolic rate by PET-FDG scanning, phase 4 by slight decreases in brain volume by MRI scanning plus minimal cognitive impairment, phase 5 by increased scanning abnormalities plus clinical diagnosis of AD, and phase 6 by advanced AD requiring institutional care. Utilization of antiinflammatory agents early in the disease process remains an overlooked therapeutic opportunity. Such agents, while not preventative, have the advantage of being able to inhibit the consequences of both Abeta and tau aggregation. Since there is more than a decade between disease onset and cognitive decline, a window of opportunity exists to introduce truly effective disease-modifying regimens. Taking advantage of this opportunity is the challenge for the future.
Collapse
Affiliation(s)
- Patrick L McGeer
- Kinsmen Laboratory of Neurological Research, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T1Z3, Canada,
| | | |
Collapse
|
85
|
Arbel-Ornath M, Hudry E, Eikermann-Haerter K, Hou S, Gregory JL, Zhao L, Betensky RA, Frosch MP, Greenberg SM, Bacskai BJ. Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer's disease mouse models. Acta Neuropathol 2013; 126:353-64. [PMID: 23818064 DOI: 10.1007/s00401-013-1145-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 12/19/2022]
Abstract
The interstitial fluid (ISF) drainage pathway has been hypothesized to underlie the clearance of solutes and metabolites from the brain. Previous work has implicated the perivascular spaces along arteries as the likely route for ISF clearance; however, it has never been demonstrated directly. The accumulation of amyloid β (Aβ) peptides in brain parenchyma is one of the pathological hallmarks of Alzheimer disease (AD), and it is likely related to an imbalance between production and clearance of the peptide. Aβ drainage along perivascular spaces has been postulated to be one of the mechanisms that mediate the peptide clearance from the brain. We therefore devised a novel method to visualize solute clearance in real time in the living mouse brain using laser guided bolus dye injections and multiphoton imaging. This methodology allows high spatial and temporal resolution and revealed the kinetics of ISF clearance. We found that the ISF drains along perivascular spaces of arteries and capillaries but not veins, and its clearance exhibits a bi-exponential profile. ISF drainage requires a functional vasculature, as solute clearance decreased when perfusion was impaired. In addition, reduced solute clearance was observed in transgenic mice with significant vascular amyloid deposition; we suggest the existence of a feed-forward mechanism, by which amyloid deposition promotes further amyloid deposition. This important finding provides a mechanistic link between cerebrovascular disease and Alzheimer disease and suggests that facilitation of Aβ clearance along the perivascular pathway should be considered as a new target for therapeutic approaches to Alzheimer disease and cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Michal Arbel-Ornath
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Iwata N, Sekiguchi M, Hattori Y, Takahashi A, Asai M, Ji B, Higuchi M, Staufenbiel M, Muramatsu SI, Saido TC. Global brain delivery of neprilysin gene by intravascular administration of AAV vector in mice. Sci Rep 2013; 3:1472. [PMID: 23503602 PMCID: PMC3600598 DOI: 10.1038/srep01472] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/04/2013] [Indexed: 12/21/2022] Open
Abstract
Accumulation of amyloid-β peptide (Aβ) in the brain is closely associated with cognitive decline in Alzheimer's disease (AD). Stereotaxic infusion of neprilysin-encoding viral vectors into the hippocampus has been shown to decrease Aβ in AD-model mice, but more efficient and global delivery is necessary to treat the broadly distributed burden in AD. Here we developed an adeno-associated virus (AAV) vector capable of providing neuronal gene expression throughout the brains after peripheral administration. A single intracardiac administration of the vector carrying neprilysin gene in AD-model mice elevated neprilysin activity broadly in the brain, and reduced Aβ oligomers, with concurrent alleviation of abnormal learning and memory function and improvement of amyloid burden. The exogenous neprilysin was localized mainly in endosomes, thereby effectively excluding Aβ oligomers from the brain. AAV vector-mediated gene transfer may provide a therapeutic strategy for neurodegenerative diseases, where global transduction of a therapeutic gene into the brain is necessary.
Collapse
Affiliation(s)
- Nobuhisa Iwata
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Schmidt M, Finley D. Regulation of proteasome activity in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:13-25. [PMID: 23994620 DOI: 10.1016/j.bbamcr.2013.08.012] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 12/13/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the primary selective degradation system in the nuclei and cytoplasm of eukaryotic cells, required for the turnover of myriad soluble proteins. The hundreds of factors that comprise the UPS include an enzymatic cascade that tags proteins for degradation via the covalent attachment of a poly-ubiquitin chain, and a large multimeric enzyme that degrades ubiquitinated proteins, the proteasome. Protein degradation by the UPS regulates many pathways and is a crucial component of the cellular proteostasis network. Dysfunction of the ubiquitination machinery or the proteolytic activity of the proteasome is associated with numerous human diseases. In this review we discuss the contributions of the proteasome to human pathology, describe mechanisms that regulate the proteolytic capacity of the proteasome, and discuss strategies to modulate proteasome function as a therapeutic approach to ameliorate diseases associated with altered UPS function. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Marion Schmidt
- Albert Einstein College of Medicine, Department of Biochemistry, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
88
|
Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance. Proc Natl Acad Sci U S A 2013; 110:14771-6. [PMID: 23959870 DOI: 10.1073/pnas.1302212110] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Whereas amyloid-β (Aβ) accumulates in the brain of normal animals dosed with low levels of copper (Cu), the mechanism is not completely known. Cu could contribute to Aβ accumulation by altering its clearance and/or its production. Because Cu homeostasis is altered in transgenic mice overexpressing Aβ precursor protein (APP), the objective of this study was to elucidate the mechanism of Cu-induced Aβ accumulation in brains of normal mice and then to explore Cu's effects in a mouse model of Alzheimer's disease. In aging mice, accumulation of Cu in brain capillaries was associated with its reduction in low-density lipoprotein receptor-related protein 1 (LRP1), an Aβ transporter, and higher brain Aβ levels. These effects were reproduced by chronic dosing with low levels of Cu via drinking water without changes in Aβ synthesis or degradation. In human brain endothelial cells, Cu, at its normal labile levels, caused LRP1-specific down-regulation by inducing its nitrotyrosination and subsequent proteosomal-dependent degradation due in part to Cu/cellular prion protein/LRP1 interaction. In APP(sw/0) mice, Cu not only down-regulated LRP1 in brain capillaries but also increased Aβ production and neuroinflammation because Cu accumulated in brain capillaries and, unlike in control mice, in the parenchyma. Thus, we have demonstrated that Cu's effect on brain Aβ homeostasis depends on whether it is accumulated in the capillaries or in the parenchyma. These findings should provide unique insights into preventative and/or therapeutic approaches to control neurotoxic Aβ levels in the aging brain.
Collapse
|
89
|
Somatostatin receptor subtype-4 agonist NNC 26-9100 mitigates the effect of soluble Aβ(42) oligomers via a metalloproteinase-dependent mechanism. Brain Res 2013; 1520:145-56. [PMID: 23669069 DOI: 10.1016/j.brainres.2013.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 02/07/2023]
Abstract
Soluble amyloid-β peptide (Aβ) oligomers have been hypothesized to be primary mediators of Alzheimer's disease progression. In this regard, reduction of soluble Aβ-oligomers levels within the brain may provide a viable means in which to treat the disease. Somatostatin receptor subtype-4 (SSTR4) agonists have been proposed to reduce Aβ levels in the brain via enhancement of enzymatic degradation. Herein we evaluated the effect of selective SSTR4 agonist NNC 26-9100 on the changes in learning and soluble Aβ42 oligomer brain content with and without co-administration of the M13-metalloproteinase family enzyme-inhibitor phosphoramidon, using the senescence-accelerated mouse prone-8 (SAMP8) model. NNC 26-9100 treatment (0.2 µg i.c.v. in 2 µL) improved learning, which was blocked by phosphoramidon (1 and 10mM, respectively). NNC 26-9100 decreased total soluble Aβ42, an effect which was blocked by phosphoramidon (10mM). Extracellular, intracellular, and membrane fractions were then isolated from cortical tissue and assessed for soluble oligomer alterations. NNC 26-9100 decreased the Aβ42 trimeric (12 kDa) form within the extracellular and intracellular fractions, and produced a band-split effect of the Aβ42 hexameric (25 kDa) form within the extracellular fraction. These effects were also blocked by phosphoramdon (1 and 10mM, respectively). Subsequent evaluation of NNC 26-9100 in APPswe Tg2576 transgenic mice showed a similar learning improvement and corresponding reduction in soluble Aβ42 oligomers within extracellular, intracellular, and membrane fractions. These data support the hypothesis that NNC 26-9100 reduces soluble Aβ42 oligomers and enhances learning through a phosphoramidon-sensitive metalloproteinase-dependent mechanism.
Collapse
|
90
|
Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 2013; 3:1197. [PMID: 23378928 PMCID: PMC3561625 DOI: 10.1038/srep01197] [Citation(s) in RCA: 413] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/15/2013] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of β-amyloid peptide (Aβ) in the brain because of an imbalance between Aβ production and clearance. Neprilysin (NEP) is the most important Aβ-degrading enzyme in the brain. Thus, researchers have explored virus-mediated NEP gene delivery. However, such strategies may entail unexpected risks, and thus exploration of a new possibility for NEP delivery is also required. Here, we show that human adipose tissue-derived mesenchymal stem cells (ADSCs) secrete exosomes carrying enzymatically active NEP. The NEP-specific activity level of 1 μg protein from ADSC-derived exosomes was equivalent to that of ~ 0.3 ng of recombinant human NEP. Of note, ADSC-derived exosomes were transferred into N2a cells, and were suggested to decrease both secreted and intracellular Aβ levels in the N2a cells. Importantly, these characteristics were more pronounced in ADSCs than bone marrow-derived mesenchymal stem cells, suggesting the therapeutic relevance of ADSC-derived exosomes for AD.
Collapse
|
91
|
Abstract
Alzheimer's disease (AD) is an incurable degenerative disease of the central nervous system, leading to dementia. The basis of AD is neurodegenerative process that leads to death of neurons in the cerebral cortex. This neurodegenerative process is associated with the formation of neurofibrillary tangles in the brain and the deposition of senile plaques, the main component of which is a beta-amyloid peptide (Ab). Risk factors for AD are age, as well as hypertension, atherosclerosis, diabetes and hypercholesterolemia in the pathogenesis of which involved angiotensin converting enzyme (ACE) – key enzyme of the renin-angiotensin (RAS) and kallikrein-kinin (KKS) systems. Recently it was discovered that ACE, along with other metallopeptidases, participates in the metabolism of Ab, cleaving the bonds at the N-terminal and C-terminal region of the molecule Ab. The role of the ACE in the degradation processes of Ab takes an interest. It is associated with the fact that the using of ACE inhibitors is the main therapeutic approach used in the treatment of various forms of hypertension and other cardiovascular diseases. However, until now not been resolved, can be used antihypertensive drugs that inhibit RAS for the treatment or prevention of AD. Currently, there are numerous studies on finding the relationship between RAS and AD.
Collapse
Affiliation(s)
- E.V. Kugaevskaya
- Institute of Biomedical Chemistry, Russian Academy of Medical Sciences (RAMS)
| |
Collapse
|
92
|
Cocciolo A, Di Domenico F, Coccia R, Fiorini A, Cai J, Pierce WM, Mecocci P, Butterfield DA, Perluigi M. Decreased expression and increased oxidation of plasma haptoglobin in Alzheimer disease: Insights from redox proteomics. Free Radic Biol Med 2012; 53:1868-76. [PMID: 23000119 DOI: 10.1016/j.freeradbiomed.2012.08.596] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/09/2012] [Accepted: 08/28/2012] [Indexed: 11/20/2022]
Abstract
Alzheimer disease (AD) is one of the most disabling disorders of the elderly and the number of people worldwide facing dementia is expected to dramatically increase in the near future. Thus, one of the major concerns of modern society is to identify putative biomarkers that serve as a valuable early diagnostic tool to identify a subset of patients with increased risk to develop AD. An ideal biomarker should be present in blood before dementia is clinically confirmed, have high sensitivity and specificity, and be reproducible. Proteomics platforms offer a powerful strategy to reach these goals and recently have been demonstrated to be promising approaches. However, the high variability of technologies and studied populations has led to contrasting results. To increase specificity, we analyzed both protein expression profiles and oxidative modifications (carbonylation) of plasma proteins in mild cognitive impairment (MCI) and AD subjects compared with age-matched controls. Most of the proteins found to have differential levels in MCI and AD confirmed results already obtained in other cohort studies. Interestingly, we applied for the first time in MCI a redox proteomics approach to specifically identify oxidized proteins. Among them, haptoglobin, one of the most abundantly secreted glycoproteins with chaperone function, was found to be either increasingly downregulated or increasingly oxidized in AD and MCI compared with controls. We also demonstrated that in vitro oxidation of haptoglobin affects the formation of amyloid-β fibrils, thus suggesting that oxidized haptoglobin is not able to act as an extracellular chaperone to prevent or slow formation of amyloid-β aggregates. Another chaperone protein, α2-macroglobulin, was found to be selectively oxidized in AD patients compared with controls. Our findings suggest that alterations in proteins acting as extracellular chaperones may contribute to exacerbating amyloid-β toxicity in the peripheral system and may be considered a putative marker of disease progression.
Collapse
Affiliation(s)
- A Cocciolo
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstracts of the Ninth International Symposium on Functional Neuroreceptor Mapping of the Living Brain. August 9-11, 2012. J Cereb Blood Flow Metab 2012; 32 Suppl 1:S13-196. [PMID: 22872875 PMCID: PMC3421080 DOI: 10.1038/jcbfm.2012.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
94
|
Kakiya N, Saito T, Nilsson P, Matsuba Y, Tsubuki S, Takei N, Nawa H, Saido TC. Cell surface expression of the major amyloid-β peptide (Aβ)-degrading enzyme, neprilysin, depends on phosphorylation by mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) and dephosphorylation by protein phosphatase 1a. J Biol Chem 2012; 287:29362-72. [PMID: 22767595 PMCID: PMC3436156 DOI: 10.1074/jbc.m112.340372] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neprilysin is one of the major amyloid-β peptide (Aβ)-degrading enzymes, the expression of which declines in the brain during aging. The decrease in neprilysin leads to a metabolic Aβ imbalance, which can induce the amyloidosis underlying Alzheimer disease. Pharmacological activation of neprilysin during aging therefore represents a potential strategy to prevent the development of Alzheimer disease. However, the regulatory mechanisms mediating neprilysin activity in the brain remain unclear. To address this issue, we screened for pharmacological regulators of neprilysin activity and found that the neurotrophic factors brain-derived neurotrophic factor, nerve growth factor, and neurotrophins 3 and 4 reduce cell surface neprilysin activity. This decrease was mediated by MEK/ERK signaling, which enhanced phosphorylation at serine 6 in the neprilysin intracellular domain (S6-NEP-ICD). Increased phosphorylation of S6-NEP-ICD in primary neurons reduced the levels of cell surface neprilysin and led to a subsequent increase in extracellular Aβ levels. Furthermore, a specific inhibitor of protein phosphatase-1a, tautomycetin, induced extensive phosphorylation of the S6-NEP-ICD, resulting in reduced cell surface neprilysin activity. In contrast, activation of protein phosphatase-1a increased cell surface neprilysin activity and lowered Aβ levels. Taken together, these results indicate that the phosphorylation status of S6-NEP-ICD influences the localization of neprilysin and affects extracellular Aβ levels. Therefore, maintaining S6-NEP-ICD in a dephosphorylated state, either by inhibition of protein kinases involved in its phosphorylation or by activation of phosphatases catalyzing its dephosphorylation, may represent a new approach to prevent reduction of cell surface neprilysin activity during aging and to maintain physiological levels of Aβ in the brain.
Collapse
Affiliation(s)
- Naomasa Kakiya
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Microglial Amyloid-β1-40 Phagocytosis Dysfunction Is Caused by High-Mobility Group Box Protein-1: Implications for the Pathological Progression of Alzheimer's Disease. Int J Alzheimers Dis 2012; 2012:685739. [PMID: 22645697 PMCID: PMC3357001 DOI: 10.1155/2012/685739] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/24/2012] [Indexed: 12/21/2022] Open
Abstract
In Alzheimer disease (AD) patient brains, the accumulation of amyloid-β (Aβ) peptides is associated with activated microglia. Aβ is derived from the amyloid precursor protein; two major forms of Aβ, that is, Aβ1-40 (Aβ40) and Aβ1-42 (Aβ42), exist. We previously reported that rat microglia phagocytose Aβ42, and high mobility group box protein 1 (HMGB1), a chromosomal protein, inhibits phagocytosis. In the present study, we investigated the effects of exogenous HMGB1 on rat microglial Aβ40 phagocytosis. In the presence of exogenous HMGB1, Aβ40 markedly increased in microglial cytoplasm, and the reduction of extracellular Aβ40 was inhibited. During this period, HMGB1 was colocalized with Aβ40 in the cytoplasm. Furthermore, exogenous HMGB1 inhibited the degradation of Aβ40 induced by the rat microglial cytosolic fraction. Thus, extracellular HMGB1 may internalize with Aβ40 in the microglial cytoplasm and inhibit Aβ40 degradation by microglia. This may subsequently delay Aβ40 clearance. We further confirmed that in AD brains, the parts of senile plaques surrounded by activated microglia are composed of Aβ40, and extracellular HMGB1 is deposited on these plaques. Taken together, microglial Aβ phagocytosis dysfunction may be caused by HMGB1 that accumulates extracellularly on Aβ plaques, and it may be critically involved in the pathological progression of AD.
Collapse
|
96
|
Yamashita A, Fuchs E, Taira M, Yamamoto T, Hayashi M. Somatostatin-immunoreactive senile plaque-like structures in the frontal cortex and nucleus accumbens of aged tree shrews and Japanese macaques. J Med Primatol 2012; 41:147-57. [PMID: 22512242 DOI: 10.1111/j.1600-0684.2012.00540.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Previously, we demonstrated decreased expression of somatostatin mRNA in aged macaque brain, particularly in the prefrontal cortex. To investigate whether or not this age-dependent decrease in mRNA is related to morphological changes, we analyzed somatostatin cells in the cerebra of aged Japanese macaques and compared them with those in rats and tree shrews, the latter of which are closely related to primates. METHODS Brains of aged macaques, tree shrews, and rats were investigated by immunohistochemistry with special emphasis on somatostatin. RESULTS We observed degenerating somatostatin-immunoreactive cells in the cortices of aged macaques and tree shrews. Somatostatin-immunoreactive senile plaque-like structures were found in areas 6 and 8 and in the nucleus accumbens of macaques, as well as in the nucleus accumbens and the cortex of aged tree shrews, where amyloid accumulations were observed. CONCLUSIONS Somatostatin degenerations may be related to amyloid accumulations and may play roles in impairments of cognitive functions during aging.
Collapse
Affiliation(s)
- Akiko Yamashita
- Division of Applied System Neuroscience, Nihon University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
97
|
Kugaevskaya EV. Angiotensin converting enzyme and Alzheimer’s disease. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2012. [DOI: 10.1134/s199075081201009x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
98
|
Mathew A, Aravind A, Brahatheeswaran D, Fukuda T, Nagaoka Y, Hasumura T, Iwai S, Morimoto H, Yoshida Y, Maekawa T, Venugopal K, Kumar DS. Amyloid-Binding Aptamer Conjugated Curcumin–PLGA Nanoparticle for Potential Use in Alzheimer’s Disease. BIONANOSCIENCE 2012. [DOI: 10.1007/s12668-012-0040-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
99
|
Kumar S, Singh S, Hinze D, Josten M, Sahl HG, Siepmann M, Walter J. Phosphorylation of amyloid-β peptide at serine 8 attenuates its clearance via insulin-degrading and angiotensin-converting enzymes. J Biol Chem 2012; 287:8641-51. [PMID: 22267728 DOI: 10.1074/jbc.m111.279133] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Accumulation of amyloid-β peptides (Aβ) in the brain is a common pathological feature of Alzheimer disease (AD). Aggregates of Aβ are neurotoxic and appear to be critically involved in the neurodegeneration during AD pathogenesis. Accumulation of Aβ could be caused by increased production, as indicated by several mutations in the amyloid precursor protein or the γ-secretase components presenilin-1 and presenilin-2 that cause familial early-onset AD. However, recent data also indicate a decreased clearance rate of Aβ in AD brains. We recently demonstrated that Aβ undergoes phosphorylation by extracellular or cell surface-localized protein kinase A, leading to increased aggregation. Here, we provide evidence that phosphorylation of monomeric Aβ at Ser-8 also decreases its clearance by microglial cells. By using mass spectrometry, we demonstrate that phosphorylation at Ser-8 inhibited the proteolytic degradation of monomeric Aβ by the insulin-degrading enzyme, a major Aβ-degrading enzyme released from microglial cells. Phosphorylation also decreased the degradation of Aβ by the angiotensin-converting enzyme. In contrast, Aβ degradation by plasmin was largely unaffected by phosphorylation. Thus, phosphorylation of Aβ could play a dual role in Aβ metabolism. It decreases its proteolytic clearance and also promotes its aggregation. The inhibition of extracellular Aβ phosphorylation, stimulation of protease expression and/or their proteolytic activity could be explored to promote Aβ degradation in AD therapy or prevention.
Collapse
Affiliation(s)
- Sathish Kumar
- Department of Neurology, University of Bonn, 53127 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
100
|
Martel G, Dutar P, Epelbaum J, Viollet C. Somatostatinergic systems: an update on brain functions in normal and pathological aging. Front Endocrinol (Lausanne) 2012; 3:154. [PMID: 23230430 PMCID: PMC3515867 DOI: 10.3389/fendo.2012.00154] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022] Open
Abstract
Somatostatin is highly expressed in mammalian brain and is involved in many brain functions such as motor activity, sleep, sensory, and cognitive processes. Five somatostatin receptors have been described: sst(1), sst(2) (A and B), sst(3), sst(4), and sst(5), all belonging to the G-protein-coupled receptor family. During the recent years, numerous studies contributed to clarify the role of somatostatin systems, especially long-range somatostatinergic interneurons, in several functions they have been previously involved in. New advances have also been made on the alterations of somatostatinergic systems in several brain diseases and on the potential therapeutic target they represent in these pathologies.
Collapse
Affiliation(s)
| | | | | | - Cécile Viollet
- *Correspondence: Cécile Viollet, Inserm UMR894 - Center for Psychiatry and Neuroscience, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d’Alésia, 75014 Paris, France. e-mail:
| |
Collapse
|