51
|
Gunn BG, Baram TZ. Stress and Seizures: Space, Time and Hippocampal Circuits. Trends Neurosci 2017; 40:667-679. [PMID: 28916130 DOI: 10.1016/j.tins.2017.08.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
Abstract
Stress is a major trigger of seizures in people with epilepsy. Exposure to stress results in the release of several stress mediators throughout the brain, including the hippocampus, a region sensitive to stress and prone to seizures. Stress mediators interact with their respective receptors to produce distinct effects on the excitability of hippocampal neurons and networks. Crucially, these stress mediators and their actions exhibit unique spatiotemporal profiles, generating a complex combinatorial output with time- and space-dependent effects on hippocampal network excitability and seizure generation.
Collapse
Affiliation(s)
- B G Gunn
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - T Z Baram
- Department of Pediatrics, University of California, Irvine, CA, USA; Department of Anatomy & Neurobiology, University of California, Irvine, CA, USA; Department of Neurology, University of California, Irvine, CA, USA.
| |
Collapse
|
52
|
Jensen JP, Nipper MA, Helms ML, Ford MM, Crabbe JC, Rossi DJ, Finn DA. Ethanol withdrawal-induced dysregulation of neurosteroid levels in plasma, cortex, and hippocampus in genetic animal models of high and low withdrawal. Psychopharmacology (Berl) 2017; 234:2793-2811. [PMID: 28664280 PMCID: PMC5990276 DOI: 10.1007/s00213-017-4671-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022]
Abstract
RATIONALE Endogenous γ-aminobutyric acidA receptor (GABAAR)-active neurosteroids (e.g., allopregnanolone) regulate central nervous system excitability and many physiological functions, so fluctuations are implicated in several neuropsychiatric disorders. Pertinently, evidence supports an inverse relationship between endogenous GABAAR-active neurosteroid levels and behavioral changes in excitability during ethanol withdrawal (WD). OBJECTIVES The present studies determined mouse genotype differences in ten neurosteroid levels in plasma, cortex, and hippocampus over the time course of ethanol WD in the WD Seizure-Prone (WSP) and WD Seizure-Resistant (WSR) selected lines and in the DBA/2J (DBA) inbred strain. METHODS Gas chromatography-mass spectrometry was utilized to simultaneously quantify neurosteroid levels from control-treated male WSP-1, WSR-1, and DBA mice and during 8 and 48 h of WD. RESULTS Combined with our prior work, there was a consistent decrease in plasma allopregnanolone levels at 8 h WD in all three genotypes, an effect that persisted at 48 h WD only in DBA mice. WSR-1 and WSP-1 mice exhibited unexpected divergent changes in cortical neurosteroids at 8 h WD, with the majority of neurosteroids (including allopregnanolone) being significantly decreased in WSR-1 mice, but unaffected or significantly increased in WSP-1 mice. In DBA mice, hippocampal allopregnanolone and tetrahydrodeoxycorticosterone were significantly decreased at 8 h WD. The pattern of significant correlations between allopregnanolone and other GABAAR-active neurosteroid levels differed between controls and withdrawing mice. CONCLUSIONS Ethanol WD dysregulated neurosteroid synthesis. Results in WSP-1 mice suggest that diminished GABAAR function is more important for their high WD phenotype than fluctuations in neurosteroid levels.
Collapse
Affiliation(s)
- Jeremiah P Jensen
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Melinda L Helms
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Matthew M Ford
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - John C Crabbe
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Portland Alcohol Research Center, VA Portland Health Care System, Portland, OR, USA
| | - David J Rossi
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
- Portland Alcohol Research Center, VA Portland Health Care System, Portland, OR, USA.
- , 3710 SW US Veterans Hospital Road (R&D-49), Portland, OR, 97239, USA.
| |
Collapse
|
53
|
A 6-Year Posttreatment Follow-up of Panic Disorder Patients: Treatment With Clonazepam Predicts Lower Recurrence Than Treatment With Paroxetine. J Clin Psychopharmacol 2017; 37:429-434. [PMID: 28609307 DOI: 10.1097/jcp.0000000000000740] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND The aim of this study was to identify factors associated with relapse in panic disorder (PD). METHODS This was an observational study conducted in the outpatient clinic of a psychiatric hospital in Rio de Janeiro, Brazil. In a previous study, 120 patients diagnosed as having PD according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria were randomized to receive clonazepam or paroxetine. After 3 years, treatment was discontinued in patients who had achieved remission. These subjects were included in the current study and were followed up for 6 years. The follow-up assessments were made at 1, 2, 3, 5, and 6 years after treatment discontinuation. Assessment included the number of panic attacks per month, Clinical Global Impression-Severity, and other measures. Patients who had initiated psychotherapy or pharmacological treatment because of PD symptoms or who had Clinical Global Impression-Severity scores greater than 1 or panic attacks in the month preceding the assessment were considered relapse cases. Data were collected from January 2003 to August 2012. RESULTS Eighty-five patients completed the follow-up. Cumulative relapse rates were 50% (n = 33) at 1 year and 89.4% (n = 76) at 6 years. One-year relapse rates were lower in patients previously treated with clonazepam (P = 0.001) compared with those treated with paroxetine. Low 6-year relapse rates were associated with high Hamilton Anxiety Rating Scale scores before treatment (P = 0.016) and previous treatment with clonazepam. CONCLUSIONS Relapse is a frequent problem in PD, and long-term treatment does not protect these patients in the long run. Treatment with clonazepam predicts lower relapse when compared with paroxetine.
Collapse
|
54
|
Nik AM, Pressly B, Singh V, Antrobus S, Hulsizer S, Rogawski MA, Wulff H, Pessah IN. Rapid Throughput Analysis of GABA A Receptor Subtype Modulators and Blockers Using DiSBAC 1(3) Membrane Potential Red Dye. Mol Pharmacol 2017; 92:88-99. [PMID: 28428226 PMCID: PMC5452057 DOI: 10.1124/mol.117.108563] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/12/2017] [Indexed: 02/03/2023] Open
Abstract
Fluorometric imaging plate reader membrane potential dye (FMP-Red-Dye) is a proprietary tool for basic discovery and high-throughput drug screening for G-protein-coupled receptors and ion channels. We optimized and validated this potentiometric probe to assay functional modulators of heterologous expressed GABAA receptor (GABAAR) isoforms (synaptic α1β3γ2, extrasynaptic α4β3δ, and β3 homopentomers). High-resolution mass spectrometry identified FMP-Red-Dye as 5,5'-(1-propen-1-yl-3-ylidene)bis[1,3-dimethyl-2-thio-barbituric acid]. GABAAR-expressing cells equilibrated with FMP-Red-Dye exhibited depolarized equilibrium membrane potentials compared with GABAAR-null cells. The channel blockers picrotoxin, fipronil, and tetramethylenedisulfotetramine, and the competitive antagonist bicuculline reduced fluorescence near the levels in GABAAR-null cells indicating that FMR-Red-Dye, a barbiturate derivative, activates GABAAR-mediated outward Cl- current in the absence of GABA. GABA caused concentration-dependent increases in fluorescence with rank order of potencies among GABAAR isoforms consistent with results from voltage-clamp experiments (EC50 values for α4β3δ, α1β3γ2, and β3 homopentamers were 6 ± 1, 40 ± 11, and >18 mM, respectively), whereas GABAAR-null cells were unresponsive. Neuroactive steroids (NAS) increased fluorescence of GABAAR expressing cells in the absence of GABA and demonstrated positive allosteric modulation in the presence of GABA, whereas benzodiazepines only exhibited positive allosteric modulator (PAM) activity. Of 20 NAS tested, allopregnanolone, (3α,5α,20E)-3-hydroxy-13,24-cyclo-18-norcholan-20-ene-21-carbonitrile, eltanolone, 5β-pregnan-3α,21-diol-20-one, and ganaxolone showed the highest potency. The FMP-Red-Dye-based assay described here provides a sensitive and quantitative method of assessing the activity of GABAAR agonists, antagonists, and PAMs on diverse GABAAR isoforms. The assay has a wide range of applications, including screening for antiseizure agents and identifying channel blockers of interest to insecticide discovery or biosecurity.
Collapse
Affiliation(s)
- Atefeh Mousavi Nik
- Department of Molecular Biosciences, School of Veterinary Medicine (A.M.N., S.A., S.H., I.N.P.), and Department of Pharmacology (B.P., V.S., M.A.R., H.W.), School of Medicine, University of California Davis, Davis, California; Department of Neurology, School of Medicine, University of California Davis, Sacramento, California (M.A.R.); and The Medical Investigation of Neurodevelopmental Disorders Institute, Sacramento, California (I.N.P.)
| | - Brandon Pressly
- Department of Molecular Biosciences, School of Veterinary Medicine (A.M.N., S.A., S.H., I.N.P.), and Department of Pharmacology (B.P., V.S., M.A.R., H.W.), School of Medicine, University of California Davis, Davis, California; Department of Neurology, School of Medicine, University of California Davis, Sacramento, California (M.A.R.); and The Medical Investigation of Neurodevelopmental Disorders Institute, Sacramento, California (I.N.P.)
| | - Vikrant Singh
- Department of Molecular Biosciences, School of Veterinary Medicine (A.M.N., S.A., S.H., I.N.P.), and Department of Pharmacology (B.P., V.S., M.A.R., H.W.), School of Medicine, University of California Davis, Davis, California; Department of Neurology, School of Medicine, University of California Davis, Sacramento, California (M.A.R.); and The Medical Investigation of Neurodevelopmental Disorders Institute, Sacramento, California (I.N.P.)
| | - Shane Antrobus
- Department of Molecular Biosciences, School of Veterinary Medicine (A.M.N., S.A., S.H., I.N.P.), and Department of Pharmacology (B.P., V.S., M.A.R., H.W.), School of Medicine, University of California Davis, Davis, California; Department of Neurology, School of Medicine, University of California Davis, Sacramento, California (M.A.R.); and The Medical Investigation of Neurodevelopmental Disorders Institute, Sacramento, California (I.N.P.)
| | - Susan Hulsizer
- Department of Molecular Biosciences, School of Veterinary Medicine (A.M.N., S.A., S.H., I.N.P.), and Department of Pharmacology (B.P., V.S., M.A.R., H.W.), School of Medicine, University of California Davis, Davis, California; Department of Neurology, School of Medicine, University of California Davis, Sacramento, California (M.A.R.); and The Medical Investigation of Neurodevelopmental Disorders Institute, Sacramento, California (I.N.P.)
| | - Michael A Rogawski
- Department of Molecular Biosciences, School of Veterinary Medicine (A.M.N., S.A., S.H., I.N.P.), and Department of Pharmacology (B.P., V.S., M.A.R., H.W.), School of Medicine, University of California Davis, Davis, California; Department of Neurology, School of Medicine, University of California Davis, Sacramento, California (M.A.R.); and The Medical Investigation of Neurodevelopmental Disorders Institute, Sacramento, California (I.N.P.)
| | - Heike Wulff
- Department of Molecular Biosciences, School of Veterinary Medicine (A.M.N., S.A., S.H., I.N.P.), and Department of Pharmacology (B.P., V.S., M.A.R., H.W.), School of Medicine, University of California Davis, Davis, California; Department of Neurology, School of Medicine, University of California Davis, Sacramento, California (M.A.R.); and The Medical Investigation of Neurodevelopmental Disorders Institute, Sacramento, California (I.N.P.)
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine (A.M.N., S.A., S.H., I.N.P.), and Department of Pharmacology (B.P., V.S., M.A.R., H.W.), School of Medicine, University of California Davis, Davis, California; Department of Neurology, School of Medicine, University of California Davis, Sacramento, California (M.A.R.); and The Medical Investigation of Neurodevelopmental Disorders Institute, Sacramento, California (I.N.P.)
| |
Collapse
|
55
|
Shaw JC, Palliser HK, Palazzi K, Hirst JJ. Administration of Progesterone Throughout Pregnancy Increases Maternal Steroids Without Adverse Effect on Mature Oligodendrocyte Immunostaining in the Guinea Pig. Reprod Sci 2017. [PMID: 28631553 DOI: 10.1177/1933719117715125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Progesterone is administered to pregnant women at risk of premature labor, despite systematic reviews showing conflicting outcomes regarding its use, highlighting doubt over the effectiveness of the therapy. Progesterone can be rapidly metabolized into a number of steroids, but to date, there has been a lack of investigation into the fetal steroid profiles following administration and whether this impacts fetal neurodevelopment. The objective of this study was to determine the effect of progesterone treatment on allopregnanolone and cortisol levels in the fetus and on a marker of myelination in the fetal brain. We used a guinea pig model where pregnant dams were administered vehicle (β-cyclodextrin) or progesterone orally throughout pregnancy (GA29-61). Maternal and fetal fluids and tissues were collected at both preterm (GA61) and term (GA68) ages. Maternal and fetal progesterone and cortisol were analyzed by enzyme immunoassay and allopregnanolone by radioimmunoassay. Measurement of myelination of fetal brains (hippocampus, cingulum, and subcortical white matter) at preterm and term ages was performed by immunohistochemistry staining for myelin basic protein. We found that dams receiving progesterone had significantly elevated progesterone and cortisol concentrations, but there was no effect on allopregnanolone. Interestingly, the increased cortisol concentrations were not reflected in the fetuses, and there was no effect of progesterone treatment on myelination. Therefore, we conclude that in our guinea pig model, maternal administration of progesterone has no effect on cortisol levels or markers of mature oligodendrocytes in the fetus and suggest this is potentially due to the protective cortisol barrier in the placenta.
Collapse
Affiliation(s)
- Julia C Shaw
- 1 School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia.,2 Mothers and Babies Research Centre, Hunter Medical Research Institute, New South Wales, Australia
| | - Hannah K Palliser
- 1 School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia.,2 Mothers and Babies Research Centre, Hunter Medical Research Institute, New South Wales, Australia
| | - Kerrin Palazzi
- 3 Clinical Research Design, Information Technology and Statistical Support, Hunter Medical Research Institute, New South Wales, Australia
| | - Jonathan J Hirst
- 1 School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia.,2 Mothers and Babies Research Centre, Hunter Medical Research Institute, New South Wales, Australia
| |
Collapse
|
56
|
Locci A, Porcu P, Talani G, Santoru F, Berretti R, Giunti E, Licheri V, Sanna E, Concas A. Neonatal estradiol exposure to female rats changes GABA A receptor expression and function, and spatial learning during adulthood. Horm Behav 2017; 87:35-46. [PMID: 27769760 DOI: 10.1016/j.yhbeh.2016.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/04/2016] [Accepted: 10/14/2016] [Indexed: 12/27/2022]
Abstract
Exposure of female rats to estradiol during the perinatal period has profound effects on GABAergic neurotransmission that are crucial to establish sexually dimorphic brain characteristics. We previously showed that neonatal β-estradiol 3-benzoate (EB) treatment decreases brain concentrations of the neurosteroid allopregnanolone, a potent positive modulator of extrasynaptic GABAA receptors (GABAAR). We thus evaluated whether neonatal EB treatment affects GABAAR expression and function in the hippocampus of adult female rats. Neonatal EB administration increased the expression of extrasynaptic α4/δ subunit-containing GABAARs and the modulatory action of THIP on tonic currents mediated by these receptors. The same treatment decreased the expression of synaptic α1/α4/γ2 subunit-containing receptors, as well as phasic currents. These effects of neonatal EB treatment are not related to ambient allopregnanolone concentrations per se, given that vehicle-treated rats in diestrus, which have opposite neurosteroid levels than EB-treated rats, show similar changes in GABAARs. Rather, these changes may represent a compensatory mechanism to counteract the long-term reduction in allopregnanolone concentrations, induced by neonatal EB. Given that both α4/δ receptors and allopregnanolone are involved in memory consolidation, we evaluated whether neonatal EB treatment alters performance in the Morris water maze test during adulthood. Neonatal EB treatment decreased the latency and the cumulative search error to reach the platform, as well as thigmotaxis, suggesting improved learning, and also enhanced memory performance during the probe trial. These enduring changes in GABAAR plasticity may be relevant for the regulation of neuronal excitability in the hippocampus and for the etiology of psychiatric disorders that originate in development and show sex differences.
Collapse
Affiliation(s)
- Andrea Locci
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Giuseppe Talani
- Neuroscience Institute, National Research Council of Italy (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Francesca Santoru
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Roberta Berretti
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Elisa Giunti
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Valentina Licheri
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Enrico Sanna
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Alessandra Concas
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
57
|
Lai F, Fagernes CE, Jutfelt F, Nilsson GE. Expression of genes involved in brain GABAergic neurotransmission in three-spined stickleback exposed to near-future CO 2. CONSERVATION PHYSIOLOGY 2016; 4:cow068. [PMID: 28066553 PMCID: PMC5196030 DOI: 10.1093/conphys/cow068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/02/2016] [Accepted: 11/16/2016] [Indexed: 05/28/2023]
Abstract
Change in the activity of the main inhibitory receptor, GABAA, has been suggested to be a general mechanism behind the behavioural alterations reported in ocean acidification studies on fish. It has been proposed that regulatory acid-base mechanisms in response to high CO2 alter the neuronal Cl- and HCO3- gradients that are important for GABAA receptor function. Here, we report a comprehensive analysis of gene expression of GABAA receptor subunits and of genes involved in GABAergic transmission in the brain of fish exposed to near-future CO2. Altogether, 56 mRNA transcripts were quantified in brains of three-spined stickleback (Gasterosteus aculeatus) kept in control pCO2 (333 ± 30 μatm CO2) or at high pCO2 levels (991 ± 57 μatm) for 43 days. The gene expression analysis included GABAA receptor subunits (α1-6, β1-3, γ1-3, δ, π and ρ1-3), enzymes and transporters involved in GABA metabolism (GAD1-2, GABAT and GAT1-3), GABAA receptor-associated proteins (GABARAP and GABARAPL), ion cotransporters (KCC1-4, NKCC1, ClC21-3, AE3 and NDAE) and carbonic anhydrase (CAII). Exposure to high CO2 had only minor effects on the expression of genes involved in GABAergic neurotransmission. There were significant increases in the mRNA levels of α family subunits of the GABAA receptor, with a more pronounced expression of α12, α3, α4 and α6b. No changes were detected in the expression of other GABAA subunits or in genes related to receptor turnover, GABA metabolism or ion transport. Although the minor changes seen for mRNA levels might reflect compensatory mechanisms in the high-CO2 conditions, these were apparently insufficient to restore normal neural function, because the behavioural changes persisted within the time frame studied.
Collapse
Affiliation(s)
- Floriana Lai
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Norway
| | - Cathrine E Fagernes
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Norway
| | - Fredrik Jutfelt
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Göran E Nilsson
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
58
|
Silva AF, Sousa DS, Medeiros AM, Macêdo PT, Leão AH, Ribeiro AM, Izídio GS, Silva RH. Sex and estrous cycle influence diazepam effects on anxiety and memory: Possible role of progesterone. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:68-76. [PMID: 27208614 DOI: 10.1016/j.pnpbp.2016.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/10/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Studies with rodents and humans show the relationship between female sex hormones and cognitive/emotional tasks. However, despite the greater incidence of anxiety disorders in women, the data are still inconclusive regarding the mechanisms related to this phenomenon. We evaluated the effects of a classical anxiolytic/amnestic drug (diazepam; DZP) on female (at different estrous cycle phases) and male rats tested in the plus-maze discriminative avoidance task (PMDAT), that allows the concomitant evaluation of memory and anxiety-like behavior. Further, in order to investigate the role of progesterone and its metabolites in the effects of DZP in the PMDAT, female rats were pre-treated with the progesterone receptor antagonist mifepristone or the 5-alpha-reductase inhibitor finasteride. The main findings were: (1) DZP caused memory impairment and anxiolysis in both sexes, but only the highest dose induced the anxiolytic effect in females; (2) females in proestrus did not present the amnestic and anxiolytic effects of DZP (at 2.0 and 4.0mg/kg, respectively) and (3) the co-administration of mifepristone reestablished both amnestic and anxiolytic effects of DZP, while finasteride reinstated the amnestic effect in proestrus female rats. These results suggest that changes in the endogenous levels of progesterone and its metabolites are important in the modulation of emotional/cognitive behavior in female rats. Based on the influence on different aspects of DZP action, the mechanisms related to this modulation are probably linked to GABAergic transmission, but this point remains to be investigated. Further, the variation in therapeutic and adverse effects of DZP depending on sex and hormonal state is of great relevance considering the higher prevalence of anxiety disorders in women.
Collapse
Affiliation(s)
- Anatildes Feitosa Silva
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Diego Silveira Sousa
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - André Macêdo Medeiros
- Laboratory of Behavioral Neuroscience, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Priscila Tavares Macêdo
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Anderson Henrique Leão
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Alessandra Mussi Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Biosciences Department, Universidade Federal de São Paulo, Santos, Brazil
| | - Geison Souza Izídio
- Laboratory of Behavioral Genetics, Cell Biology, Embryology and Genetics Department, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Regina Helena Silva
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do Norte, Natal, Brazil; Laboratory of Behavioral Neuroscience, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
59
|
Gunter BW, Jones SA, Paul IA, Platt DM, Rowlett JK. Benzodiazepine and neuroactive steroid combinations in rats: anxiolytic-like and discriminative stimulus effects. Psychopharmacology (Berl) 2016; 233:3237-47. [PMID: 27356519 PMCID: PMC6334648 DOI: 10.1007/s00213-016-4369-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
RATIONALE Benzodiazepines are effective anxiolytics, hypnotics, and anticonvulsants but unwanted side effects, including abuse potential, limit their use. A possible strategy to increase the therapeutic index of this drug class is to combine benzodiazepines with neuroactive steroids. OBJECTIVES The present study evaluated the extent to which combinations of benzodiazepines (triazolam, clonazepam) and neuroactive steroids (pregnanolone, ganaxolone) induced additive, supra-additive, or infra-additive effects in an elevated zero maze and a drug discrimination procedure in rats. METHODS Male Sprague-Dawley rats (N = 7/group) were placed into an elevated zero maze apparatus following injections of multiple doses of triazolam and pregnanolone, alone and combined, or clonazepam and ganaxolone, alone and combined. These drugs/drug combinations also were evaluated in rats (N = 8) trained to discriminate triazolam (0.1 mg/kg, i.p.) from vehicle. Drug interactions were evaluated using isobolographic and dose-addition analysis. RESULTS In the elevated zero maze, all drugs engendered dose-dependent increases in time spent in the open quadrant when administered alone. Triazolam and pregnanolone, as well as clonazepam and ganaxolone combinations produced additive or supra-additive effects depending on the fixed-proportion that was tested. In triazolam discrimination, all drugs engendered dose-dependent increases in triazolam-lever responding. In combination, triazolam and pregnanolone and clonazepam and ganaxolone produced predominantly additive discriminative stimulus effects, except for one fixed proportion of clonazepam and ganaxolone which had supra-additive effects. CONCLUSIONS Although drug interactions depended on the constituent drugs, the combination tested, and the behavioral endpoint; a combination was identified that would be predicted to result in supra-additive anxiolytic-like effects with predominantly additive discriminative stimulus effects.
Collapse
Affiliation(s)
- Barak W Gunter
- Department of Psychiatry and Human Behavior, Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Program in Neuroscience, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Sherman A Jones
- Department of Psychiatry and Human Behavior, Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Program in Neuroscience, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ian A Paul
- Department of Psychiatry and Human Behavior, Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Program in Neuroscience, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Donna M Platt
- Department of Psychiatry and Human Behavior, Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Program in Neuroscience, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - James K Rowlett
- Department of Psychiatry and Human Behavior, Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Program in Neuroscience, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA.
| |
Collapse
|
60
|
TSPO PIGA Ligands Promote Neurosteroidogenesis and Human Astrocyte Well-Being. Int J Mol Sci 2016; 17:ijms17071028. [PMID: 27367681 PMCID: PMC4964404 DOI: 10.3390/ijms17071028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 01/05/2023] Open
Abstract
The steroidogenic 18 kDa translocator protein (TSPO) is an emerging, attractive therapeutic tool for several pathological conditions of the nervous system. Here, 13 high affinity TSPO ligands belonging to our previously described N,N-dialkyl-2-phenylindol-3-ylglyoxylamide (PIGA) class were evaluated for their potential ability to affect the cellular Oxidative Metabolism Activity/Proliferation index, which is used as a measure of astrocyte well-being. The most active PIGA ligands were also assessed for steroidogenic activity in terms of pregnenolone production, and the values were related to the metabolic index in rat and human models. The results showed a positive correlation between the increase in the Oxidative Metabolism Activity/Proliferation index and the pharmacologically induced stimulation of steroidogenesis. The specific involvement of steroid molecules in mediating the metabolic effects of the PIGA ligands was demonstrated using aminoglutethimide, a specific inhibitor of the first step of steroid biosynthesis. The most promising steroidogenic PIGA ligands were the 2-naphthyl derivatives that showed a long residence time to the target, in agreement with our previous data. In conclusion, TSPO ligand-induced neurosteroidogenesis was involved in astrocyte well-being.
Collapse
|
61
|
do Rego JL, Vaudry H. Comparative aspects of neurosteroidogenesis: From fish to mammals. Gen Comp Endocrinol 2016; 227:120-9. [PMID: 26079790 DOI: 10.1016/j.ygcen.2015.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/24/2022]
Abstract
It is now clearly established that the central and peripheral nervous systems have the ability to synthesize de novo steroids referred to as neurosteroids. The major evidence for biosynthesis of neuroactive steroids by nervous tissues is based on the expression of enzymes implicated in the formation of steroids in neural cells. The aim of the present review is to summarize the current knowledge regarding the presence of steroidogenic enzymes in the brain of vertebrates and to highlight the very considerable contribution of Professor Kazuyoshi Tsutsui in this domain. The data indicate that expression of steroid-producing enzymes in the brain appeared early during vertebrate evolution and has been preserved from fish to mammals.
Collapse
Affiliation(s)
- Jean Luc do Rego
- Institute for Research and Innovation in Biomedicine (IRIB), Institut National de la Santé et de la Recherche Médicale (INSERM), University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Hubert Vaudry
- Institute for Research and Innovation in Biomedicine (IRIB), Institut National de la Santé et de la Recherche Médicale (INSERM), University of Rouen, 76821 Mont-Saint-Aignan, France; Neurotrophic Factors and Neuronal Differentiation Team, Inserm U982, University of Rouen, 76821 Mont-Saint-Aignan, France.
| |
Collapse
|
62
|
Rahmani B, Ghasemi R, Dargahi L, Ahmadiani A, Haeri A. Neurosteroids; potential underpinning roles in maintaining homeostasis. Gen Comp Endocrinol 2016; 225:242-250. [PMID: 26432100 DOI: 10.1016/j.ygcen.2015.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022]
Abstract
The neuroactive steroids which are synthesized in the brain and nervous system are known as "Neurosteroids". These steroids have crucial functions such as contributing to the myelination and organization of the brain connectivity. Under the stressful circumstances, the concentrations of neurosteroid products such as allopregnanolone (ALLO) and allotetrahydrodeoxycorticosterone (THDOC) alter. It has been suggested that these stress-derived neurosteroids modulate the physiological response to stress. Moreover, it has been demonstrated that the hypothalamic-pituitary-adrenal (HPA) axis mediates the physiological adaptation following stress in order to maintain homeostasis. Although several regulatory pathways have been introduced, the exact role of neurosteroids in controlling HPA axis is not clear to date. In this review, we intend to discern specific pathways associated with regulation of HPA axis in which neuroactive steroids have the main role. In this respect, we propose pathways that may be initiated after neurosteroidogenesis in different brain subregions following acute stress which are potentially capable of activating or inhibiting the HPA axis.
Collapse
Affiliation(s)
- Behrouz Rahmani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Haeri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
63
|
Araki R, Nishida S, Hiraki Y, Matsumoto K, Yabe T. DNA methylation of the GC box in the promoter region mediates isolation rearing-induced suppression of srd5a1 transcription in the prefrontal cortex. Neurosci Lett 2015; 606:135-9. [DOI: 10.1016/j.neulet.2015.08.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 01/01/2023]
|
64
|
Gunter BW, Platt DM, Rowlett JK. Differential interactions engendered by benzodiazepine and neuroactive steroid combinations on schedule-controlled responding in rats. Pharmacol Biochem Behav 2015; 137:53-9. [PMID: 26255153 DOI: 10.1016/j.pbb.2015.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/21/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
Benzodiazepines are positive allosteric modulators of the GABAA receptor and are prescribed as anxiolytics, hypnotics, and anticonvulsants. While these drugs clearly have clinical value, their use is associated with unwanted side effects such as sedation and motor impairment. Neuroactive steroids are endogenous modulators of GABAA receptors and recent evidence has shown that combinations of the triazolo-benzodiazepine triazolam and the endogenous neuroactive steroid pregnanolone can produce both supra-additive anxiolytic effects and infra-additive reinforcing effects. In the present study, we investigated these same combinations as well as combinations of two clinically-relevant drugs from different chemical classes, the 1, 4 substituted (7-nitro) benzodiazepine clonazepam and the synthetic neuroactive steroid ganaxolone, in rats trained under a 10-response, fixed ratio (FR) schedule of food reinforcement. All four drugs induced a significant and dose-dependent suppression of food-maintained responding. From the dose-response functions, ED50s (i.e., the doses that engendered 50% of the maximum rate-decreasing effect) were generated for each drug. Dose-response functions for combinations of triazolam/pregnanolone, clonazepam/ganaxolone, triazolam/ganaxolone, and clonazepam/pregnanolone were then determined. Isobolographic analysis of the rate-decreasing effects of these combinations revealed that the potencies of the triazolam/pregnanolone combinations were supra-additive while the clonazepam/ganaxolone combinations were additive or infra-additive in relation to predicted values based on dose-additive effects. Furthermore, mixtures of clonazepam/pregnanolone were supra-additive while triazolam/ganaxolone combinations were additive, infra-additive and supra-additive. These results suggest that the ability of benzodiazepine and neuroactive steroid combinations to attenuate rates of food-maintained responding depends critically on both the constituent drugs and the dose of drug in the mixtures.
Collapse
Affiliation(s)
- Barak W Gunter
- University of Mississippi Medical Center, Department of Psychiatry and Human Behavior, Department of Neurobiology and Anatomical Sciences, Program in Neuroscience, 2500 North State Street, Jackson, MS 39216, United States
| | - Donna M Platt
- University of Mississippi Medical Center, Department of Psychiatry and Human Behavior, Department of Neurobiology and Anatomical Sciences, Program in Neuroscience, 2500 North State Street, Jackson, MS 39216, United States
| | - James K Rowlett
- University of Mississippi Medical Center, Department of Psychiatry and Human Behavior, Department of Neurobiology and Anatomical Sciences, Program in Neuroscience, 2500 North State Street, Jackson, MS 39216, United States; Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA 70433, United States.
| |
Collapse
|
65
|
Hammer H, Bader BM, Ehnert C, Bundgaard C, Bunch L, Hoestgaard-Jensen K, Schroeder OHU, Bastlund JF, Gramowski-Voß A, Jensen AA. A Multifaceted GABAA Receptor Modulator: Functional Properties and Mechanism of Action of the Sedative-Hypnotic and Recreational Drug Methaqualone (Quaalude). Mol Pharmacol 2015; 88:401-20. [PMID: 26056160 PMCID: PMC4518083 DOI: 10.1124/mol.115.099291] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023] Open
Abstract
In the present study, we have elucidated the functional characteristics and mechanism of action of methaqualone (2-methyl-3-o-tolyl-4(3H)-quinazolinone, Quaalude), an infamous sedative-hypnotic and recreational drug from the 1960s-1970s. Methaqualone was demonstrated to be a positive allosteric modulator at human α1,2,3,5β2,3γ2S GABAA receptors (GABAARs) expressed in Xenopus oocytes, whereas it displayed highly diverse functionalities at the α4,6β1,2,3δ GABAAR subtypes, ranging from inactivity (α4β1δ), through negative (α6β1δ) or positive allosteric modulation (α4β2δ, α6β2,3δ), to superagonism (α4β3δ). Methaqualone did not interact with the benzodiazepine, barbiturate, or neurosteroid binding sites in the GABAAR. Instead, the compound is proposed to act through the transmembrane β((+))/α((-)) subunit interface of the receptor, possibly targeting a site overlapping with that of the general anesthetic etomidate. The negligible activities displayed by methaqualone at numerous neurotransmitter receptors and transporters in an elaborate screening for additional putative central nervous system (CNS) targets suggest that it is a selective GABAAR modulator. The mode of action of methaqualone was further investigated in multichannel recordings from primary frontal cortex networks, where the overall activity changes induced by the compound at 1-100 μM concentrations were quite similar to those mediated by other CNS depressants. Finally, the free methaqualone concentrations in the mouse brain arising from doses producing significant in vivo effects in assays for locomotion and anticonvulsant activity correlated fairly well with its potencies as a modulator at the recombinant GABAARs. Hence, we propose that the multifaceted functional properties exhibited by methaqualone at GABAARs give rise to its effects as a therapeutic and recreational drug.
Collapse
Affiliation(s)
- Harriet Hammer
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Benjamin M Bader
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Corina Ehnert
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Christoffer Bundgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Kirsten Hoestgaard-Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Olaf H-U Schroeder
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Jesper F Bastlund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Alexandra Gramowski-Voß
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (H.H., L.B., K.H.-J., A.A.J.); NeuroProof, Rostock, Germany (B.M.B., C.E., O.H.-U.S., A.G.-V.); and H. Lundbeck A/S, Valby, Denmark (C.B., J.F.B.)
| |
Collapse
|
66
|
Abstract
Eclampsia, clinically defined as unexplained seizure in a woman with preeclampsia, is a life threatening complication unique to the pregnant state. However, a subpopulation of women with seemingly uncomplicated pregnancies experience de novo seizure without preeclamptic signs or symptoms, suggesting pregnancy alone may predispose the brain to seizure. Here, we hypothesized that normal pregnancy lowers seizure threshold and investigated mechanisms by which pregnancy may affect seizure susceptibility, including neuroinflammation and plasticity of gamma-aminobutyric acid type A receptor (GABAAR) subunit expression. Seizure threshold was determined by quantifying the amount of pentylenetetrazole (PTZ) required to elicit electrical seizure in Sprague Dawley rats that were either nonpregnant (Nonpreg, n = 7) or pregnant (Preg; d20, n = 6). Seizure-induced vasogenic edema was also measured. Further, activation of microglia, a measure of neuroinflammation (n = 6-8/group), and GABAAR δ- and γ2-subunit protein expression in the cerebral cortex and hippocampus (n = 6/group) was determined. Seizure threshold was lower in Preg compared to Nonpreg rats (36.7±9.6 vs. 65.0±14.5 mg/kg PTZ; p<0.01) that was associated with greater vasogenic edema formation (78.55±0.11 vs. 78.04±0.19% water; p<0.05). The % of active microglia was similar between groups; however, pregnancy was associated with downregulation of cortical GABAAR-δ and hippocampal GABAAR-γ2 expression. Overall, pregnancy appears to be a state of increased seizure susceptibility that is not due to neuroinflammation, but rather is associated with reduced expression of GABAAR subunits and greater edema. Understanding neurophysiological changes occurring in normal pregnancy could allow for better prevention and management of de novo seizure, including pathologic states such as eclampsia.
Collapse
Affiliation(s)
- Abbie Chapman Johnson
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
| | - Keith J. Nagle
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
| | - Sarah M. Tremble
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
| | - Marilyn J. Cipolla
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
- * E-mail:
| |
Collapse
|
67
|
Bruun DA, Cao Z, Inceoglu B, Vito ST, Austin AT, Hulsizer S, Hammock BD, Tancredi DJ, Rogawski MA, Pessah IN, Lein PJ. Combined treatment with diazepam and allopregnanolone reverses tetramethylenedisulfotetramine (TETS)-induced calcium dysregulation in cultured neurons and protects TETS-intoxicated mice against lethal seizures. Neuropharmacology 2015; 95:332-42. [PMID: 25882826 DOI: 10.1016/j.neuropharm.2015.03.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/15/2015] [Accepted: 03/31/2015] [Indexed: 01/09/2023]
Abstract
Tetramethylenedisulfotetramine (TETS) is a potent convulsant GABAA receptor blocker. Mice receiving a lethal dose of TETS (0.15 mg/kg i.p.) are rescued from death by a high dose of diazepam (5 mg/kg i.p.) administered shortly after the second clonic seizure (∼20 min post-TETS). However, this high dose of diazepam significantly impairs blood pressure and mobility, and does not prevent TETS-induced neuroinflammation in the brain. We previously demonstrated that TETS alters synchronous Ca(2+) oscillations in primary mouse hippocampal neuronal cell cultures and that pretreatment with the combination of diazepam and allopregnanolone at concentrations having negligible effects individually prevents TETS effects on intracellular Ca(2+) dynamics. Here, we show that treatment with diazepam and allopregnanolone (0.1 μM) 20 min after TETS challenge normalizes synchronous Ca(2+) oscillations when added in combination but not when added singly. Similarly, doses (0.03-0.1 mg/kg i.p.) of diazepam and allopregnanolone that provide minimal protection when administered singly to TETS intoxicated mice increase survival from 10% to 90% when given in combination either 10 min prior to TETS or following the second clonic seizure. This therapeutic combination has negligible effects on blood pressure or mobility. Combined treatment with diazepam and allopregnanolone also decreases TETS-induced microglial activation. Diazepam and allopregnanolone have distinct actions as positive allosteric modulators of GABAA receptors that in combination enhance survival and mitigate neuropathology following TETS intoxication without the adverse side effects associated with high dose benzodiazepines. Combination therapy with a benzodiazepine and neurosteroid represents a novel neurotherapeutic strategy with potentially broad application.
Collapse
Affiliation(s)
- Donald A Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Zhengyu Cao
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Bora Inceoglu
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Stephen T Vito
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA
| | | | - Susan Hulsizer
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA 95616, USA; Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | | | - Michael A Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, Davis, CA 95616, USA.
| |
Collapse
|
68
|
Hengen KB, Nelson NR, Stang KM, Johnson SM, Smith SM, Watters JJ, Mitchell GS, Behan M. Daily isoflurane exposure increases barbiturate insensitivity in medullary respiratory and cortical neurons via expression of ε-subunit containing GABA ARs. PLoS One 2015; 10:e0119351. [PMID: 25748028 PMCID: PMC4352015 DOI: 10.1371/journal.pone.0119351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/12/2015] [Indexed: 11/23/2022] Open
Abstract
The parameters governing GABAA receptor subtype expression patterns are not well understood, although significant shifts in subunit expression may support key physiological events. For example, the respiratory control network in pregnant rats becomes relatively insensitive to barbiturates due to increased expression of ε-subunit-containing GABAARs in the ventral respiratory column. We hypothesized that this plasticity may be a compensatory response to a chronic increase in inhibitory tone caused by increased central neurosteroid levels. Thus, we tested whether increased inhibitory tone was sufficient to induce ε-subunit upregulation on respiratory and cortical neurons in adult rats. Chronic intermittent increases in inhibitory tone in male and female rats was induced via daily 5-min exposures to 3% isoflurane. After 7d of treatment, phrenic burst frequency was less sensitive to barbiturate in isoflurane-treated male and female rats in vivo. Neurons in the ventral respiratory group and cortex were less sensitive to pentobarbital in vitro following 7d and 30d of intermittent isoflurane-exposure in both male and female rats. The pentobarbital insensitivity in 7d isoflurane-treated rats was reversible after another 7d. We hypothesize that increased inhibitory tone in the respiratory control network and cortex causes a compensatory increase in ε-subunit-containing GABAARs.
Collapse
Affiliation(s)
- Keith B. Hengen
- Neuroscience Training Program, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Nathan R. Nelson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Kyle M. Stang
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Stephen M. Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Stephanie M. Smith
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Jyoti J. Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Gordon S. Mitchell
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Mary Behan
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
69
|
Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Twelfth Eilat Conference (EILAT XII). Epilepsy Res 2015; 111:85-141. [PMID: 25769377 DOI: 10.1016/j.eplepsyres.2015.01.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/09/2015] [Indexed: 10/24/2022]
|
70
|
5α-Reduced neurosteroids sex-dependently reverse central prenatal programming of neuroendocrine stress responses in rats. J Neurosci 2015; 35:666-77. [PMID: 25589761 PMCID: PMC4293416 DOI: 10.1523/jneurosci.5104-13.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Maternal social stress during late pregnancy programs hypothalamo-pituitary-adrenal (HPA) axis hyper-responsiveness to stressors, such that adult prenatally stressed (PNS) offspring display exaggerated HPA axis responses to a physical stressor (systemic interleukin-1β; IL-1β) in adulthood, compared with controls. IL-1β acts via a noradrenergic relay from the nucleus tractus solitarii (NTS) to corticotropin releasing hormone neurons in the paraventricular nucleus (PVN). Neurosteroids can reduce HPA axis responses, so allopregnanolone and 3β-androstanediol (3β-diol; 5α-reduced metabolites of progesterone and testosterone, respectively) were given subacutely (over 24 h) to PNS rats to seek reversal of the "programmed" hyper-responsive HPA phenotype. Allopregnanolone attenuated ACTH responses to IL-1β (500 ng/kg, i.v.) in PNS females, but not in PNS males. However, 3β-diol normalized HPA axis responses to IL-1β in PNS males. Impaired testosterone and progesterone metabolism or increased secretion in PNS rats was indicated by greater plasma testosterone and progesterone concentrations in male and female PNS rats, respectively. Deficits in central neurosteroid production were indicated by reduced 5α-reductase mRNA levels in both male and female PNS offspring in the NTS, and in the PVN in males. In PNS females, adenovirus-mediated gene transfer was used to upregulate expression of 5α-reductase and 3α-hydroxysteroid dehydrogenase mRNAs in the NTS, and this normalized hyperactive HPA axis responses to IL-1β. Thus, downregulation of neurosteroid production in the brain may underlie HPA axis hyper-responsiveness in prenatally programmed offspring, and administration of 5α-reduced steroids acutely to PNS rats overrides programming of hyperactive HPA axis responses to immune challenge in a sex-dependent manner.
Collapse
|
71
|
GABAA receptor-acting neurosteroids: a role in the development and regulation of the stress response. Front Neuroendocrinol 2015; 36:28-48. [PMID: 24929099 PMCID: PMC4349499 DOI: 10.1016/j.yfrne.2014.06.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/26/2014] [Accepted: 06/01/2014] [Indexed: 12/22/2022]
Abstract
Regulation of hypothalamic-pituitary-adrenocortical (HPA) axis activity by stress is a fundamental survival mechanism and HPA-dysfunction is implicated in psychiatric disorders. Adverse early life experiences, e.g. poor maternal care, negatively influence brain development and programs an abnormal stress response by encoding long-lasting molecular changes, which may extend to the next generation. How HPA-dysfunction leads to the development of affective disorders is complex, but may involve GABAA receptors (GABAARs), as they curtail stress-induced HPA axis activation. Of particular interest are endogenous neurosteroids that potently modulate the function of GABAARs and exhibit stress-protective properties. Importantly, neurosteroid levels rise rapidly during acute stress, are perturbed in chronic stress and are implicated in the behavioural changes associated with early-life adversity. We will appraise how GABAAR-active neurosteroids may impact on HPA axis development and the orchestration of the stress-evoked response. The significance of these actions will be discussed in the context of stress-associated mood disorders.
Collapse
|
72
|
Nakamura Y, Darnieder LM, Deeb TZ, Moss SJ. Regulation of GABAARs by phosphorylation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 72:97-146. [PMID: 25600368 PMCID: PMC5337123 DOI: 10.1016/bs.apha.2014.11.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) are the principal mediators of fast synaptic inhibition in the brain as well as the low persistent extrasynaptic inhibition, both of which are fundamental to proper brain function. Thus unsurprisingly, deficits in GABAARs are implicated in a number of neurological disorders and diseases. The complexity of GABAAR regulation is determined not only by the heterogeneity of these receptors but also by its posttranslational modifications, the foremost, and best characterized of which is phosphorylation. This review will explore the details of this dynamic process, our understanding of which has barely scratched the surface. GABAARs are regulated by a number of kinases and phosphatases, and its phosphorylation plays an important role in governing its trafficking, expression, and interaction partners. Here, we summarize the progress in understanding the role phosphorylation plays in the regulation of GABAARs. This includes how phosphorylation can affect the allosteric modulation of GABAARs, as well as signaling pathways that affect GABAAR phosphorylation. Finally, we discuss the dysregulation of GABAAR phosphorylation and its implication in disease processes.
Collapse
|
73
|
Adams JM, Thomas P, Smart TG. Modulation of neurosteroid potentiation by protein kinases at synaptic- and extrasynaptic-type GABAA receptors. Neuropharmacology 2015; 88:63-73. [PMID: 25278033 PMCID: PMC4239298 DOI: 10.1016/j.neuropharm.2014.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/08/2014] [Accepted: 09/18/2014] [Indexed: 01/21/2023]
Abstract
GABAA receptors are important for inhibition in the CNS where neurosteroids and protein kinases are potent endogenous modulators. Acting individually, these can either enhance or depress receptor function, dependent upon the type of neurosteroid or kinase and the receptor subunit combination. However, in vivo, these modulators probably act in concert to fine-tune GABAA receptor activity and thus inhibition, although how this is achieved remains unclear. Therefore, we investigated the relationship between these modulators at synaptic-type α1β3γ2L and extrasynaptic-type α4β3δ GABAA receptors using electrophysiology. For α1β3γ2L, potentiation of GABA responses by tetrahydro-deoxycorticosterone was reduced after inhibiting protein kinase C, and enhanced following its activation, suggesting this kinase regulates neurosteroid modulation. In comparison, neurosteroid potentiation was reduced at α1β3(S408A,S409A)γ2L receptors, and unaltered by PKC inhibitors or activators, indicating that phosphorylation of β3 subunits is important for regulating neurosteroid activity. To determine whether extrasynaptic-type GABAA receptors were similarly modulated, α4β3δ and α4β3(S408A,S409A)δ receptors were investigated. Neurosteroid potentiation was reduced at both receptors by the kinase inhibitor staurosporine. By contrast, neurosteroid-mediated potentiation at α4(S443A)β3(S408A,S409A)δ receptors was unaffected by protein kinase inhibition, strongly suggesting that phosphorylation of α4 and β3 subunits is required for regulating neurosteroid activity at extrasynaptic receptors. Western blot analyses revealed that neurosteroids increased phosphorylation of β3(S408,S409) implying that a reciprocal pathway exists for neurosteroids to modulate phosphorylation of GABAA receptors. Overall, these findings provide important insight into the regulation of GABAA receptors in vivo, and into the mechanisms by which GABAergic inhibitory transmission may be simultaneously tuned by two endogenous neuromodulators.
Collapse
Affiliation(s)
- Joanna M Adams
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Philip Thomas
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
74
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: ligand-gated ion channels. Br J Pharmacol 2014; 170:1582-606. [PMID: 24528238 PMCID: PMC3892288 DOI: 10.1111/bph.12446] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ligand-gated ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
5α-reductase type I expression is downregulated in the prefrontal cortex/Brodmann's area 9 (BA9) of depressed patients. Psychopharmacology (Berl) 2014; 231:3569-80. [PMID: 24781515 PMCID: PMC6223254 DOI: 10.1007/s00213-014-3567-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/28/2014] [Indexed: 12/27/2022]
Abstract
RATIONALE The implications of the neurosteroid 3α-hydroxy-5α-pregnan-20-one [allopregnanolone (Allo)] in neuropsychiatric disorders have been highlighted in several recent clinical investigations. For instance, Allo levels are decreased in the cerebrospinal fluid (CSF) of patients with posttraumatic stress disorder (PTSD) and major unipolar depression. Neurosteroidogenic antidepressants [i.e., selective brain steroidogenic stimulants (SBSSs)], including fluoxetine and analogs, correct this decrease in a manner that correlates with improved depressive symptoms. Allo positively and allosterically modulates GABA action at postsynaptic and extrasynaptic GABAA receptors. It is synthesized in both the human and rodent brain cortices by principal glutamatergic pyramidal neurons from progesterone by the sequential action of 5α-reductase type I (5α-RI), which is the rate-limiting step enzyme in Allo biosynthesis, and 3α-hydroxysteroid dehydrogenase (3α-HSD), which converts 5α-dehydroprogesterone into Allo. HYPOTHESIS We thus hypothesized that decreased CSF levels of Allo in depressed patients could reflect a brain dysfunction of 5α-RI. METHODS In a pilot study of samples from six patients per group [six depressed patients and six nonpsychiatric subjects (NPS)], we studied the expression of 5α-RI messenger RNA (mRNA) in prefrontal cortex Brodmann's area 9 (BA9) and cerebellum from depressed patients obtained from the Maryland Brain Collection at the Maryland Psychiatric Research Center (Baltimore, MD) that were age-matched with NPS. RESULTS The levels of 5α-RI mRNA were decreased from 25 ± 5.8 in NPS to 9.1 ± 3.1 fmol/pmol neuronal specific enolase (NSE) (t1,10 = 2.7, P = 0.02) in depressed patients. These differences are absent in the cerebellum of the same patients. The levels of neurosteroids were determined in the prefrontal cortex BA9 of depressed patients obtained from the Stanley Foundation Brain Bank Neuropathology Consortium, Bethesda (MD). The BA9 levels of Allo in male depressed patients failed to reach statistical difference from the levels of NPS (1.63 ± 1.01 pg/mg, n = 8, in NPS and 0.82 ± 0.33 pg/mg, n = 5, in nontreated depressed patients). However, depressed patients who had received antidepressant treatment (three patients SSRI and one TCA) exhibited increased BA9 Allo levels (6.16 ± 2.5 pg/mg, n = 4, t1,9 = 2.4, P = 0.047) when compared with nontreated depressed patients. CONCLUSIONS Although in a small number of patients, this finding is in-line with previous reports in the field that have observed an increase of Allo levels in CSF and plasma of depressed patients following antidepressant treatment. Hence, the molecular mechanisms underlying major depression may include a GABAergic neurotransmission deficit caused by a brain Allo biosynthesis downregulation, which can be normalized by SBSSs.
Collapse
|
76
|
Neurosteroid, GABAergic and hypothalamic pituitary adrenal (HPA) axis regulation: what is the current state of knowledge in humans? Psychopharmacology (Berl) 2014; 231:3619-34. [PMID: 24756763 PMCID: PMC4135030 DOI: 10.1007/s00213-014-3572-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/06/2014] [Indexed: 11/25/2022]
Abstract
RATIONALE A robust epidemiological literature suggests an association between chronic stress and the development of affective disorders. However, the precise biological underpinnings of this relationship remain elusive. Central to the human response and adaptation to stress, activation and inhibition of the hypothalamic pituitary adrenal (HPA) axis involves a multi-level, multi-system, neurobiological stress response which is as comprehensive in its complexity as it is precarious. Dysregulation in this complex system has implications for human stress related illness. OBJECTIVES The pioneering research of Robert Purdy and colleagues has laid the groundwork for advancing our understanding of HPA axis regulation by stress-derived steroid hormones and their neuroactive metabolites (termed neurosteroids), which are potent allosteric modulators of GABAA receptor function in the central nervous system. This review will describe what is known about neurosteroid modulation of the HPA axis in response to both acute and chronic stress, particularly with respect to the current state of our knowledge of this process in humans. RESULTS Implications of this research to the development of human stress-related illness are discussed in the context of two human stress-related psychiatric disorders - major depressive disorder and premenstrual dysphoric disorder. CONCLUSIONS Neurosteroid-mediated HPA axis dysregulation is a potential pathophysiologic mechanism which may cross traditional psychiatric diagnostic classifications. Future research directions are identified.
Collapse
|
77
|
Porcu P, Morrow AL. Divergent neuroactive steroid responses to stress and ethanol in rat and mouse strains: relevance for human studies. Psychopharmacology (Berl) 2014; 231:3257-72. [PMID: 24770626 PMCID: PMC4135033 DOI: 10.1007/s00213-014-3564-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/25/2014] [Indexed: 01/09/2023]
Abstract
RATIONALE Neuroactive steroids are endogenous or synthetic steroids that rapidly alter neuronal excitability via membrane receptors, primarily γ-aminobutyric acid type A (GABAA) receptors. Neuroactive steroids regulate many physiological processes including hypothalamic-pituitary-adrenal (HPA) axis function, ovarian cycle, pregnancy, aging, and reward. Moreover, alterations in neuroactive steroid synthesis are implicated in several neuropsychiatric disorders. OBJECTIVES This review will summarize the pharmacological properties and physiological regulation of neuroactive steroids, with a particular focus on divergent neuroactive steroid responses to stress and ethanol in rats, mice, and humans. RESULTS GABAergic neuroactive steroids exert a homeostatic regulation of the HPA axis in rats and humans, whereby the increase in neuroactive steroid levels following acute stress counteracts HPA axis hyperactivity and restores homeostasis. In contrast, in C57BL/6J mice, acute stress decreases neurosteroidogenesis and neuroactive steroids exert paradoxical excitatory effects upon the HPA axis. Rats, mice, and humans also differ in the neuroactive steroid responses to ethanol. Genetic variation in neurosteroidogenesis may explain the different neuroactive steroid responses to stress or ethanol. CONCLUSIONS Rats and mouse strains show divergent effects of stress and ethanol on neuroactive steroids in both plasma and brain. The study of genetic variation in the various processes that determine neuroactive steroids levels as well as their effects on cell signaling may underlie these differences and may play a relevant role for the potential therapeutic benefits of neuroactive steroids.
Collapse
Affiliation(s)
- Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy,
| | | |
Collapse
|
78
|
Cook JB, Nelli SM, Neighbors MR, Morrow DH, O'Buckley TK, Maldonado-Devincci AM, Morrow AL. Ethanol alters local cellular levels of (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) independent of the adrenals in subcortical brain regions. Neuropsychopharmacology 2014; 39:1978-87. [PMID: 24566803 PMCID: PMC4059907 DOI: 10.1038/npp.2014.46] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/14/2014] [Accepted: 02/03/2014] [Indexed: 11/09/2022]
Abstract
The neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP or allopregnanolone) is a positive modulator of GABAA receptors synthesized in the brain, adrenal glands, and gonads. In rats, ethanol activates the hypothalamic-pituitary-adrenal axis and elevates 3α,5α-THP in plasma, cerebral cortex, and hippocampus. In vivo, these effects are dependent on both the pituitary and adrenal glands. In vitro, however, ethanol locally increases 3α,5α-THP in hippocampal slices, in the absence of adrenal influence. Therefore, it is not known whether ethanol can change local brain levels of 3α,5α-THP in vivo, independent of the adrenals. To directly address this controversy, we administered ethanol (2 g/kg) or saline to rats that underwent adrenalectomy (ADX) or received sham surgery and performed immunohistochemistry for 3α,5α-THP. In the medial prefrontal cortex (mPFC), ethanol increased 3α,5α-THP after sham surgery, compared with saline controls, with no ethanol-induced change in 3α,5α-THP following ADX. In subcortical regions, 3α,5α-THP was increased independent of adrenals in the CA1 pyramidal cell layer, dentate gyrus polymorphic layer, bed nucleus of the stria terminalis, and paraventricular nucleus of the hypothalamus. Furthermore, ethanol decreased 3α,5α-THP labeling in the nucleus accumbens shore and central nucleus of the amygdala, independent of the adrenal glands. These data indicate that ethanol dynamically regulates local 3α,5α-THP levels in several subcortical regions; however, the adrenal glands contribute to 3α,5α-THP elevations in the mPFC. Using double immunofluorescent labeling we determined that adrenal dependence of 3α,5α-THP induction by ethanol is not due to a lack of colocalization of 3α,5α-THP with the cholesterol transporters steroidogenic acute regulatory protein (StAR) or translocator protein (TSPO).
Collapse
Affiliation(s)
- Jason B Cook
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie M Nelli
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mackenzie R Neighbors
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danielle H Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - A Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Psychiatry and Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Psychiatry and Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles CB no. 7178, Chapel Hill, NC 27599, USA, Tel: +1 919 966 7682, Fax: +1 919 966 9099, E-mail:
| |
Collapse
|
79
|
Role of GABA-active neurosteroids in the efficacy of metyrapone against cocaine addiction. Behav Brain Res 2014; 271:269-76. [PMID: 24959859 DOI: 10.1016/j.bbr.2014.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 01/29/2023]
Abstract
Previous research has demonstrated a complicated role for stress and HPA axis activation in potentiating various cocaine-related behaviors in preclinical models of drug dependence. However, the investigation of several antiglucocorticoid therapies has yielded equivocal results in reducing cocaine-related behaviors, possibly because of varying mechanisms of actions. Specifically, research suggests that metyrapone (a corticosterone synthesis inhibitor) may reduce cocaine self-administration in rats via a nongenomic, extra-adrenal mechanism without altering plasma corticosterone. In the current experiments, male rats were trained to self-administer cocaine infusions and food pellets in a multiple, alternating schedule of reinforcement. Metyrapone pretreatment dose-dependently decreased cocaine self-administration as demonstrated previously. Pharmacological inhibition of neurosteroid production by finasteride had significant effects on cocaine self-administration, regardless of metyrapone pretreatment. However, metyrapone's effects on cocaine self-administration were significantly attenuated with bicuculline pretreatment, suggesting a role for GABA-active neurosteroids in cocaine-reinforced behaviors. In vitro binding data also confirmed that metyrapone does not selectively bind to GABA-related proteins. The results of these experiments support the hypothesis that metyrapone may increase neurosteroidogenesis to produce effects on cocaine-related behaviors.
Collapse
|
80
|
Overexpression of the steroidogenic enzyme cytochrome P450 side chain cleavage in the ventral tegmental area increases 3α,5α-THP and reduces long-term operant ethanol self-administration. J Neurosci 2014; 34:5824-34. [PMID: 24760842 DOI: 10.1523/jneurosci.4733-13.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.
Collapse
|
81
|
Cushman JD, Moore MD, Olsen RW, Fanselow MS. The role of the δ GABA(A) receptor in ovarian cycle-linked changes in hippocampus-dependent learning and memory. Neurochem Res 2014; 39:1140-6. [PMID: 24667980 DOI: 10.1007/s11064-014-1282-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/05/2014] [Accepted: 03/13/2014] [Indexed: 02/04/2023]
Abstract
The δ subunit of the GABAAR is highly expressed in the dentate gyrus of the hippocampus where it mediates a tonic extrasynaptic inhibitory current that is sensitive to neurosteroids. In female mice, the expression level of the δ subunit within the dentate gyrus is elevated in the diestrous relative to estrous phase of the estrous cycle. Previous work in our lab found that female δ-GABAAR KO mice showed enhanced hippocampus-dependent trace but normal hippocampus-independent delay fear conditioning. Wild-type females in this study showed a wide range of freezing levels, whereas δ-GABAAR KO mice expressed only high levels of fear. We hypothesized that the variability in the wild-type mice may have been due to estrous cycle-mediated changes in the expression of the δ-GABAAR, with low levels of freezing in mice that were in the diestrous phase when dentate gyrus tonic inhibition is high. In the present study we tested this hypothesis by utilizing contextual, delay, and trace fear conditioning protocols in mice that were trained and tested in either the diestrous or estrous phases. Consistent with our hypothesis, we found a significant impairment of hippocampus-dependent learning and memory during diestrus relative to estrus in wild-type mice and this impairment was absent in δ-GABAAR mice. These findings argue that the δ-GABAAR plays an important role in estrous cycle-mediated fluctuations in hippocampus-dependent learning and memory.
Collapse
Affiliation(s)
- Jesse D Cushman
- Department of Psychology, Brain Research Institute, University of California Los Angeles, 8578 Franz Hall, Los Angeles, CA, 90095-1563, USA,
| | | | | | | |
Collapse
|
82
|
Marowsky A, Vogt KE. Delta-subunit-containing GABAA-receptors mediate tonic inhibition in paracapsular cells of the mouse amygdala. Front Neural Circuits 2014; 8:27. [PMID: 24723854 PMCID: PMC3971179 DOI: 10.3389/fncir.2014.00027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/04/2014] [Indexed: 11/13/2022] Open
Abstract
The intercalated paracapsular cells (pcs) are small GABAergic interneurons that form densely populated clusters surrounding the basolateral (BLA) complex of the amygdala. Their main task in the amygdala circuitry appears to be the control of information flow, as they act as an inhibitory interface between input and output nuclei. Modulation of their activity is thus thought to affect amygdala output and the generation of fear and anxiety. Recent evidence indicates that pcs express benzodiazepine (BZ)-sensitive GABAA receptor (GABAAR) variants containing the α2- and α3-subunit for transmission of post-synaptic currents, yet little is known about the expression of extrasynaptic GABAARs, mediating tonic inhibition and regulating neuronal excitability. Here, we show that pcs from the lateral and medial intercalated cell cluster (l- and mITC, respectively) express a tonic GABAergic conductance that could be significantly increased in a concentration-dependent manner by the δ-preferring GABAAR agonist THIP (0.5-10 μM), but not by the BZ diazepam (1 μM). The neurosteroid THDOC (300 nM) also increased tonic currents in pcs significantly, but only in the presence of additional GABA (5 μM). Immunohistochemical stainings revealed that both the δ-GABAAR and the α4-GABAAR subunit are expressed throughout all ITCs, while no staining for the α5-GABAAR subunit could be detected. Moreover, 1 μM THIP dampened excitability in pcs most likely by increasing shunting inhibition. In line with this, THIP significantly decreased lITC-generated inhibition in target cells residing in the BLA nucleus by 30%. Taken together these results demonstrate for the first time that pcs express a tonic inhibitory conductance mediated most likely by α4/δ-containing GABAARs. This data also suggest that δ-GABAAR targeting compounds might possibly interfere with pcs-related neuronal processes such as fear extinction.
Collapse
Affiliation(s)
- Anne Marowsky
- Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| | - Kaspar E Vogt
- International Institute for Integrative Sleep Medicine, University of Tsukuba Tsukuba, Japan
| |
Collapse
|
83
|
Brunton PJ, Russell JA, Hirst JJ. Allopregnanolone in the brain: protecting pregnancy and birth outcomes. Prog Neurobiol 2014; 113:106-36. [PMID: 24012715 DOI: 10.1016/j.pneurobio.2013.08.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/12/2013] [Accepted: 08/25/2013] [Indexed: 01/09/2023]
Abstract
A successful pregnancy requires multiple adaptations in the mother's brain that serve to optimise foetal growth and development, protect the foetus from adverse prenatal programming and prevent premature delivery of the young. Pregnancy hormones induce, organise and maintain many of these adaptations. Steroid hormones play a critical role and of particular importance is the progesterone metabolite and neurosteroid, allopregnanolone. Allopregnanolone is produced in increasing amounts during pregnancy both in the periphery and in the maternal and foetal brain. This review critically examines a role for allopregnanolone in both the maternal and foetal brain during pregnancy and development in protecting pregnancy and birth outcomes, with particular emphasis on its role in relation to stress exposure at this time. Late pregnancy is associated with suppressed stress responses. Thus, we begin by considering what is known about the central mechanisms in the maternal brain, induced by allopregnanolone, that protect the foetus(es) from exposure to harmful levels of maternal glucocorticoids as a result of stress during pregnancy. Next we discuss the central mechanisms that prevent premature secretion of oxytocin and consider a role for allopregnanolone in minimising the risk of preterm birth. Allopregnanolone also plays a key role in the foetal brain, where it promotes development and is neuroprotective. Hence we review the evidence about disruption to neurosteroid production in pregnancy, through prenatal stress or other insults, and the immediate and long-term adverse consequences for the offspring. Finally we address whether progesterone or allopregnanolone treatment can rescue some of these deficits in the offspring.
Collapse
Affiliation(s)
- Paula J Brunton
- Division of Neurobiology, The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Scotland, UK.
| | - John A Russell
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Scotland, UK
| | - Jonathan J Hirst
- Mothers and Babies Research Centre, School of Biomedical Sciences, University of Newcastle, Newcastle, N.S.W., Australia
| |
Collapse
|
84
|
Abstract
There is a growing public awareness that hormones can have a significant impact on most biological systems, including the control of breathing. This review will focus on the actions of two broad classes of hormones on the neuronal control of breathing: sex hormones and stress hormones. The majority of these hormones are steroids; a striking feature is that both groups are derived from cholesterol. Stress hormones also include many peptides which are produced primarily within the paraventricular nucleus of the hypothalamus (PVN) and secreted into the brain or into the circulatory system. In this article we will first review and discuss the role of sex hormones in respiratory control throughout life, emphasizing how natural fluctuations in hormones are reflected in ventilatory metrics and how disruption of their endogenous cycle can predispose to respiratory disease. These effects may be mediated directly by sex hormone receptors or indirectly by neurotransmitter systems. Next, we will discuss the origins of hypothalamic stress hormones and their relationship with the respiratory control system. This relationship is 2-fold: (i) via direct anatomical connections to brainstem respiratory control centers, and (ii) via steroid hormones released from the adrenal gland in response to signals from the pituitary gland. Finally, the impact of stress on the development of neural circuits involved in breathing is evaluated in animal models, and the consequences of early stress on respiratory health and disease is discussed.
Collapse
Affiliation(s)
- Mary Behan
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, USA.
| | | |
Collapse
|
85
|
Ye Z, McGee TP, Houston CM, Brickley SG. The contribution of δ subunit-containing GABAA receptors to phasic and tonic conductance changes in cerebellum, thalamus and neocortex. Front Neural Circuits 2013; 7:203. [PMID: 24391550 PMCID: PMC3870274 DOI: 10.3389/fncir.2013.00203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022] Open
Abstract
We have made use of the δ subunit-selective allosteric modulator DS2 (4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridine-3-yl benzamide) to assay the contribution of δ-GABAARs to tonic and phasic conductance changes in the cerebellum, thalamus and neocortex. In cerebellar granule cells, an enhancement of the tonic conductance was observed for DS2 and the orthosteric agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol). As expected, DS2 did not alter the properties of GABAA receptor-mediated inhibitory postsynaptic synaptic conductances (IPSCs) supporting a purely extrasynaptic role for δ-GABAARs in cerebellar granule cells. DS2 also enhanced the tonic conductance recorded from thalamic relay neurons of the visual thalamus with no alteration in IPSC properties. However, in addition to enhancing the tonic conductance DS2 also slowed the decay of IPSCs recorded from layer II/III neocortical neurons. A slowing of the IPSC decay also occurred in the presence of the voltage-gated sodium channel blocker TTX. Moreover, under conditions of reduced GABA release the ability of DS2 to enhance the tonic conductance was attenuated. These results indicate that δ-GABAARs can be activated following vesicular GABA release onto neocortical neurons and that the actions of DS2 on the tonic conductance may be influenced by the ambient GABA levels present in particular brain regions.
Collapse
Affiliation(s)
- Zhiwen Ye
- Biophysics Section, Department of Life Sciences, Imperial College London London, UK
| | - Thomas P McGee
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | - Catriona M Houston
- Biophysics Section, Department of Life Sciences, Imperial College London London, UK
| | - Stephen G Brickley
- Biophysics Section, Department of Life Sciences, Imperial College London London, UK
| |
Collapse
|
86
|
Bright DP, Smart TG. Methods for recording and measuring tonic GABAA receptor-mediated inhibition. Front Neural Circuits 2013; 7:193. [PMID: 24367296 PMCID: PMC3852068 DOI: 10.3389/fncir.2013.00193] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/18/2013] [Indexed: 01/12/2023] Open
Abstract
Tonic inhibitory conductances mediated by GABAA receptors have now been identified and characterized in many different brain regions. Most experimental studies of tonic GABAergic inhibition have been carried out using acute brain slice preparations but tonic currents have been recorded under a variety of different conditions. This diversity of recording conditions is likely to impact upon many of the factors responsible for controlling tonic inhibition and can make comparison between different studies difficult. In this review, we will firstly consider how various experimental conditions, including age of animal, recording temperature and solution composition, are likely to influence tonic GABAA conductances. We will then consider some technical considerations related to how the tonic conductance is measured and subsequently analyzed, including how the use of current noise may provide a complementary and reliable method for quantifying changes in tonic current.
Collapse
Affiliation(s)
- Damian P Bright
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| |
Collapse
|
87
|
Carver CM, Reddy DS. Neurosteroid interactions with synaptic and extrasynaptic GABA(A) receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology (Berl) 2013; 230:151-88. [PMID: 24071826 PMCID: PMC3832254 DOI: 10.1007/s00213-013-3276-5] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/29/2013] [Indexed: 12/25/2022]
Abstract
RATIONALE Neurosteroids are steroids synthesized within the brain with rapid effects on neuronal excitability. Allopregnanolone, allotetrahydrodeoxycorticosterone, and androstanediol are three widely explored prototype endogenous neurosteroids. They have very different targets and functions compared to conventional steroid hormones. Neuronal γ-aminobutyric acid (GABA) type A (GABA(A)) receptors are one of the prime molecular targets of neurosteroids. OBJECTIVE This review provides a critical appraisal of recent advances in the pharmacology of endogenous neurosteroids that interact with GABA(A) receptors in the brain. Neurosteroids possess distinct, characteristic effects on the membrane potential and current conductance of the neuron, mainly via potentiation of GABA(A) receptors at low concentrations and direct activation of receptor chloride channel at higher concentrations. The GABA(A) receptor mediates two types of inhibition, now characterized as synaptic (phasic) and extrasynaptic (tonic) inhibition. Synaptic release of GABA results in the activation of low-affinity γ2-containing synaptic receptors, while high-affinity δ-containing extrasynaptic receptors are persistently activated by the ambient GABA present in the extracellular fluid. Neurosteroids are potent positive allosteric modulators of synaptic and extrasynaptic GABA(A) receptors and therefore enhance both phasic and tonic inhibition. Tonic inhibition is specifically more sensitive to neurosteroids. The resulting tonic conductance generates a form of shunting inhibition that controls neuronal network excitability, seizure susceptibility, and behavior. CONCLUSION The growing understanding of the mechanisms of neurosteroid regulation of the structure and function of the synaptic and extrasynaptic GABA(A) receptors provides many opportunities to create improved therapies for sleep, anxiety, stress, epilepsy, and other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Chase Matthew Carver
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, 2008 Medical Research and Education Building, 8447 State Highway 47, Bryan, TX, 77807-3260, USA
| | | |
Collapse
|
88
|
Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, Sitruk-Ware R, De Nicola AF, Guennoun R. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2013; 113:6-39. [PMID: 24172649 DOI: 10.1016/j.pneurobio.2013.09.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/15/2013] [Accepted: 09/21/2013] [Indexed: 02/08/2023]
Abstract
Progesterone is commonly considered as a female reproductive hormone and is well-known for its role in pregnancy. It is less well appreciated that progesterone and its metabolite allopregnanolone are also male hormones, as they are produced in both sexes by the adrenal glands. In addition, they are synthesized within the nervous system. Progesterone and allopregnanolone are associated with adaptation to stress, and increased production of progesterone within the brain may be part of the response of neural cells to injury. Progesterone receptors (PR) are widely distributed throughout the brain, but their study has been mainly limited to the hypothalamus and reproductive functions, and the extra-hypothalamic receptors have been neglected. This lack of information about brain functions of PR is unexpected, as the protective and trophic effects of progesterone are much investigated, and as the therapeutic potential of progesterone as a neuroprotective and promyelinating agent is currently being assessed in clinical trials. The little attention devoted to the brain functions of PR may relate to the widely accepted assumption that non-reproductive actions of progesterone may be mainly mediated by allopregnanolone, which does not bind to PR, but acts as a potent positive modulator of γ-aminobutyric acid type A (GABA(A) receptors. The aim of this review is to critically discuss effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABA(A) receptors, with main focus on the brain.
Collapse
Affiliation(s)
- M Schumacher
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France.
| | - C Mattern
- M et P Pharma AG, Emmetten, Switzerland
| | - A Ghoumari
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - J P Oudinet
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - P Liere
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Sitruk-Ware
- Population Council and Rockefeller University, New York, USA
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Guennoun
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| |
Collapse
|
89
|
Cook JB, Dumitru AMG, O'Buckley TK, Morrow AL. Ethanol administration produces divergent changes in GABAergic neuroactive steroid immunohistochemistry in the rat brain. Alcohol Clin Exp Res 2013; 38:90-9. [PMID: 23906006 DOI: 10.1111/acer.12223] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The 5α-reduced pregnane neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP or allopregnanolone) is a potent positive modulator of GABAA receptors capable of modulating neuronal activity. In rats, systemic ethanol (EtOH) administration increases cerebral cortical and hippocampal levels of 3α,5α-THP, but the effects of EtOH on 3α,5α-THP levels in other brain regions are unknown. There is a large body of evidence suggesting that 3α,5α-THP enhances EtOH sensitivity, contributes to some behavioral effects of EtOH, and modulates EtOH reinforcement and motivation to drink. In this study, we used immunohistochemistry (IHC) to determine EtOH-induced changes in cellular 3α,5α-THP expression in brain regions associated with EtOH actions and responses. METHODS Male Wistar rats were administered EtOH (2 g/kg) or saline intraperitoneally and after 60 minutes transcardially perfused. IHC was performed on free-floating sections (3 to 4 sections/animal/brain region) using an affinity purified anti-3α,5α-THP primary antibody, and immunoreactivity was visualized with 3,3'-diaminobenzidine. RESULTS EtOH significantly increased 3α,5α-THP immunoreactivity by 24 ± 6% in the medial prefrontal cortex, 32 ± 12% in the hippocampal Cornu Ammonis area 1 (CA1) pyramidal cell layer, 52 ± 5% in the polymorph cell layer of the dentate gyrus (DG), 44 ± 15% in the bed nucleus of the stria terminalis, and 36 ± 6% in the paraventricular nucleus of the hypothalamus. In contrast, EtOH administration significantly reduced 3α,5α-THP immunoreactivity by 25 ± 5% in the nucleus accumbens "shore" and 21 ± 3% in the central nucleus of the amygdala. No changes were observed in the ventral tegmental area, dorsomedial striatum, granule cell layer of the DG, or the lateral and basolateral amygdala. CONCLUSIONS The results suggest acute EtOH (2 g/kg) produces divergent, brain region specific, effects on cellular 3α,5α-THP levels. Regional differences in the effects of EtOH suggest there may be regional brain synthesis of 3α,5α-THP independent of the adrenal glands and novel mechanisms that reduce cellular 3α,5α-THP. Regional differences in EtOH-induced changes in 3α,5α-THP levels likely contribute to EtOH effects on neuronal function in brain.
Collapse
Affiliation(s)
- Jason B Cook
- Departments of Psychiatry and Pharmacology , Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
90
|
Bazyan AS, van Luijtelaar G. Neurochemical and behavioral features in genetic absence epilepsy and in acutely induced absence seizures. ISRN NEUROLOGY 2013; 2013:875834. [PMID: 23738145 PMCID: PMC3664506 DOI: 10.1155/2013/875834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 02/08/2023]
Abstract
The absence epilepsy typical electroencephalographic pattern of sharp spikes and slow waves (SWDs) is considered to be due to an interaction of an initiation site in the cortex and a resonant circuit in the thalamus. The hyperpolarization-activated cyclic nucleotide-gated cationic I h pacemaker channels (HCN) play an important role in the enhanced cortical excitability. The role of thalamic HCN in SWD occurrence is less clear. Absence epilepsy in the WAG/Rij strain is accompanied by deficiency of the activity of dopaminergic system, which weakens the formation of an emotional positive state, causes depression-like symptoms, and counteracts learning and memory processes. It also enhances GABAA receptor activity in the striatum, globus pallidus, and reticular thalamic nucleus, causing a rise of SWD activity in the cortico-thalamo-cortical networks. One of the reasons for the occurrence of absences is that several genes coding of GABAA receptors are mutated. The question arises: what the role of DA receptors is. Two mechanisms that cause an infringement of the function of DA receptors in this genetic absence epilepsy model are proposed.
Collapse
Affiliation(s)
- A. S. Bazyan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Russian Federation, 5A Butlerov Street, Moscow 117485, Russia
| | - G. van Luijtelaar
- Biological Psychology, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands
| |
Collapse
|
91
|
Tanchuck MA, Cozzoli DK, He I, Kaufman KR, Snelling C, Crabbe JC, Mark GP, Finn DA. Local changes in neurosteroid levels in the substantia nigra reticulata and the ventral tegmental area alter chronic ethanol withdrawal severity in male withdrawal seizure-prone mice. Alcohol Clin Exp Res 2013; 37:784-93. [PMID: 23278716 PMCID: PMC3620817 DOI: 10.1111/acer.12027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/17/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Allopregnanolone (ALLO) is a potent positive modulator of γ-aminobutyric acidA receptors (GABAA Rs) that affects ethanol (EtOH) withdrawal. Finasteride (FIN), a 5α-reductase inhibitor that blocks the formation of ALLO and other GABAergic neurosteroids, alters EtOH sensitivity. Recently, we found that Withdrawal Seizure-Prone mice from the first genetic replicate (WSP-1) exhibited behavioral tolerance to the anticonvulsant effect of intrahippocampal ALLO during EtOH withdrawal and that intrahippocampal FIN significantly increased EtOH withdrawal severity. The purpose of this study was to determine whether neurosteroid manipulations in the substantia nigra reticulata (SNR) and ventral tegmental area (VTA) produced effects during EtOH withdrawal comparable to those seen with intrahippocampal ALLO and FIN. METHODS Male WSP-1 mice were surgically implanted with bilateral guide cannulae aimed at the SNR or VTA at 2 weeks prior to EtOH vapor or air exposure for 72 hours. Initial studies examined the anticonvulsant effect of a single ALLO infusion (0, 100, or 400 ng/side) at a time corresponding to peak withdrawal in the air- and EtOH-exposed mice. Separate studies examined the effect of 4 FIN infusions (0 or 10 μg/side/d) during the development of physical dependence on the expression of EtOH withdrawal. RESULTS ALLO infusion exerted a potent anticonvulsant effect in EtOH-naïve mice, but a diminished anticonvulsant effect during EtOH withdrawal. Administration of FIN into the SNR exerted a delayed proconvulsant effect in EtOH-naïve mice, whereas infusion into the VTA increased EtOH withdrawal duration. CONCLUSIONS Activation of local GABAA Rs in the SNR and VTA via ALLO infusion is sufficient to exert an anticonvulsant effect in naïve mice and to produce behavioral tolerance to the anticonvulsant effect of ALLO infusion during EtOH withdrawal. Thus, EtOH withdrawal reduced sensitivity of GABAA Rs to GABAergic neurosteroids in 2 neuroanatomical substrates within the basal ganglia in WSP-1 male mice.
Collapse
Affiliation(s)
- Michelle A Tanchuck
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
di Michele F, Luchetti S, Bernardi G, Romeo E, Longone P. Neurosteroid and neurotransmitter alterations in Parkinson's disease. Front Neuroendocrinol 2013; 34:132-42. [PMID: 23563222 DOI: 10.1016/j.yfrne.2013.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/17/2013] [Accepted: 03/25/2013] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) is associated with a massive loss of dopaminergic cells in the substantia nigra leading to dopamine hypofunction and alteration of the basal ganglia circuitry. These neurons, are under the control, among others, of the excitatory glutamatergic and inhibitory γ-aminobutyric acid (GABA) systems. An imbalance between these systems may contribute to excitotoxicity and dopaminergic cell death. Neurosteroids, a group of steroid hormones synthesized in the brain, modulate the function of several neurotransmitter systems. The substantia nigra of the human brain expresses high concentrations of allopregnanolone (3α, 5αtetrahydroprogesterone), a neurosteroid that positively modulates the action of GABA at GABAA receptors and of 5α-dihydroprogesterone, a neurosteroid acting at the genomic level. This article reviews the roles of NS acting as neuroprotectants and as GABAA receptor agonists in the physiology and pathophysiology of the basal ganglia, their impact on dopaminergic cell activity and survival, and potential therapeutic application in PD.
Collapse
|
93
|
Iwata S, Wakita M, Shin MC, Fukuda A, Akaike N. Modulation of allopregnanolone on excitatory transmitters release from single glutamatergic terminal. Brain Res Bull 2013; 93:39-46. [DOI: 10.1016/j.brainresbull.2012.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/02/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
|
94
|
Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Eleventh Eilat Conference (EILAT XI). Epilepsy Res 2013; 103:2-30. [DOI: 10.1016/j.eplepsyres.2012.10.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022]
|
95
|
Ferando I, Mody I. GABAAreceptor modulation by neurosteroids in models of temporal lobe epilepsies. Epilepsia 2012; 53 Suppl 9:89-101. [DOI: 10.1111/epi.12038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
96
|
Neurosteroids, stress and depression: potential therapeutic opportunities. Neurosci Biobehav Rev 2012; 37:109-22. [PMID: 23085210 DOI: 10.1016/j.neubiorev.2012.10.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/28/2012] [Accepted: 10/02/2012] [Indexed: 12/19/2022]
Abstract
Neurosteroids are potent and effective neuromodulators that are synthesized from cholesterol in the brain. These agents and their synthetic derivatives influence the function of multiple signaling pathways including receptors for γ-aminobutyric acid (GABA) and glutamate, the major inhibitory and excitatory neurotransmitters in the central nervous system (CNS). Increasing evidence indicates that dysregulation of neurosteroid production plays a role in the pathophysiology of stress and stress-related psychiatric disorders, including mood and anxiety disorders. In this paper, we review the mechanisms of neurosteroid action in brain with an emphasis on those neurosteroids that potently modulate the function of GABA(A) receptors. We then discuss evidence indicating a role for GABA and neurosteroids in stress and depression, and focus on potential strategies that can be used to manipulate CNS neurosteroid synthesis and function for therapeutic purposes.
Collapse
|
97
|
Samba Reddy D, Ramanathan G. Finasteride inhibits the disease-modifying activity of progesterone in the hippocampus kindling model of epileptogenesis. Epilepsy Behav 2012; 25:92-7. [PMID: 22835430 PMCID: PMC3444667 DOI: 10.1016/j.yebeh.2012.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/24/2012] [Accepted: 05/26/2012] [Indexed: 11/19/2022]
Abstract
Progesterone (P) plays an important role in seizure susceptibility in women with epilepsy. Preclinical and experimental studies suggest that P appears to interrupt epileptogenesis, which is a process whereby a normal brain becomes progressively susceptible to recurrent, unprovoked seizures due to precipitating risk factors. Progesterone has not been investigated widely for its potential disease-modifying activity in epileptogenic models. Recently, P has been shown to exert disease-modifying effects in the kindling model of epileptogenesis. However, the mechanisms underlying the protective effects of P against epileptogenesis remain unclear. In this study, we investigated the role of P-derived neurosteroids in the disease-modifying activity of P. It is hypothesized that 5α-reductase converts P to allopregnanolone and related neurosteroids that retard epileptogenesis in the brain. To test this hypothesis, we utilized the mouse hippocampus kindling model of epileptogenesis and investigated the effect of finasteride, a 5α-reductase and neurosteroid synthesis inhibitor. Progesterone markedly retarded the development of epileptogenesis and inhibited the rate of kindling acquisition to elicit stage 5 seizures. Pretreatment with finasteride led to complete inhibition of the P-induced retardation of the limbic epileptogenesis in mice. Finasteride did not significantly influence the acute seizure expression in fully kindled mice expressing stage 5 seizures. Thus, neurosteroids that potentiate phasic and tonic inhibition in the hippocampus, such as allopregnanolone, may mediate the disease-modifying effect of P, indicating a new role of neurosteroids in acquired limbic epileptogenesis and temporal lobe epilepsy.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| | | |
Collapse
|
98
|
Pavlov I, Walker MC. Tonic GABA(A) receptor-mediated signalling in temporal lobe epilepsy. Neuropharmacology 2012; 69:55-61. [PMID: 22538087 DOI: 10.1016/j.neuropharm.2012.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/27/2012] [Accepted: 04/02/2012] [Indexed: 11/25/2022]
Abstract
The tonic activation of extrasynaptic GABAA receptors by extracellular GABA provides a powerful means of regulating neuronal excitability. A consistent finding from studies that have used various models of temporal lobe epilepsy is that tonic GABAA receptor-mediated conductances are largely preserved in epileptic brain (in contrast to synaptic inhibition which is often reduced). Tonic inhibition is therefore an attractive target for antiepileptic drugs. However, the network consequences of a commonly used approach to augment tonic GABAA receptor-mediated conductances by global manipulation of extracellular GABA are difficult to predict without understanding how epileptogenesis alters the pharmacology and GABA sensitivity of tonic inhibition, and how manipulation of tonic conductances modulates the output of individual neurons. Here we review the current literature on epilepsy-associated changes in tonic GABAA receptor-mediated signalling, and speculate about possible effects they have at the network level. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Ivan Pavlov
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London WC1N3BG, UK.
| | | |
Collapse
|
99
|
Brunton PJ, Bales J, Russell JA. Allopregnanolone and induction of endogenous opioid inhibition of oxytocin responses to immune stress in pregnant rats. J Neuroendocrinol 2012; 24:690-700. [PMID: 22340139 DOI: 10.1111/j.1365-2826.2012.02295.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In virgin rats, systemic administration of interleukin (IL)-1β (i.e. to mimic infection), increases oxytocin secretion and the firing rate of oxytocin neurones in the supraoptic nucleus (SON). However, in late pregnancy, stimulated oxytocin secretion is inhibited by an endogenous opioid mechanism, preserving the expanded neurohypophysial oxytocin stores for parturition and minimising the risk of preterm labour. Central levels of the neuroactive metabolite of progesterone, allopregnanolone, increase during pregnancy and allopregnanolone acting on GABA(A) receptors on oxytocin neurones enhances inhibitory transmission. In the present study, we tested whether allopregnanolone induces opioid inhibition of the oxytocin system in response to IL-1β in late pregnancy. Inhibition of 5α-reductase (an allopregnanolone-synthesising enzyme) with finasteride potentiated IL-1β-evoked oxytocin secretion in late pregnant rats, whereas allopregnanolone reduced the oxytocin response in virgin rats. IL-1β increased the number of magnocellular neurones in the SON and paraventricular nucleus (PVN) expressing Fos (an indicator of neuronal activation) in virgin but not pregnant rats. In immunoreactive oxytocin neurones in the SON and PVN, finasteride increased IL-1β-induced Fos expression in pregnant rats. Conversely, allopregnanolone reduced the number of magnocellular oxytocin neurones activated by IL-1β in virgin rats. Treatment with naloxone (an opioid antagonist) greatly enhanced the oxytocin response to IL-1β in pregnancy, and finasteride did not enhance this effect, indicating that allopregnanolone and the endogenous opioid mechanisms do not act independently. Indeed, allopregnanolone induced opioid inhibition over oxytocin responses to IL-1β in virgin rats. Thus, in late pregnancy, allopregnanolone induces opioid inhibition over magnocellular oxytocin neurones and hence on oxytocin secretion in response to immune challenge. This mechanism will minimise the risk of preterm labour and prevent the depletion of neurohypophysial oxytocin stores, which are required for parturition.
Collapse
Affiliation(s)
- P J Brunton
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | | | | |
Collapse
|
100
|
Mechanisms Underlying Tolerance after Long-Term Benzodiazepine Use: A Future for Subtype-Selective GABA(A) Receptor Modulators? Adv Pharmacol Sci 2012; 2012:416864. [PMID: 22536226 PMCID: PMC3321276 DOI: 10.1155/2012/416864] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/10/2011] [Accepted: 11/02/2011] [Indexed: 01/01/2023] Open
Abstract
Despite decades of basic and clinical research, our understanding of how benzodiazepines tend to lose their efficacy over time (tolerance) is at least incomplete. In appears that tolerance develops relatively quickly for the sedative and anticonvulsant actions of benzodiazepines, whereas tolerance to anxiolytic and amnesic effects probably does not develop at all. In light of this evidence, we review the current evidence for the neuroadaptive mechanisms underlying benzodiazepine tolerance, including changes of (i) the GABA(A) receptor (subunit expression and receptor coupling), (ii) intracellular changes stemming from transcriptional and neurotrophic factors, (iii) ionotropic glutamate receptors, (iv) other neurotransmitters (serotonin, dopamine, and acetylcholine systems), and (v) the neurosteroid system. From the large variance in the studies, it appears that either different (simultaneous) tolerance mechanisms occur depending on the benzodiazepine effect, or that the tolerance-inducing mechanism depends on the activated GABA(A) receptor subtypes. Importantly, there is no convincing evidence that tolerance occurs with α subunit subtype-selective compounds acting at the benzodiazepine site.
Collapse
|