51
|
Marcelino MY, Fuoco NL, de Faria CA, Kozma RDLH, Marques LF, Ribeiro-Paes JT. Animal models in chronic obstructive pulmonary disease-an overview. Exp Lung Res 2014; 40:259-71. [PMID: 24785359 DOI: 10.3109/01902148.2014.908250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
ABSTRACT Chronic obstructive pulmonary disease (COPD) is characterized by progressive airway obstruction resultant from an augmented inflammatory response of the respiratory tract to noxious particles and gases. Previous reports present a number of different hypotheses about the etiology and pathophysiology of COPD. The generating mechanisms of the disease are subject of much speculation, and a series of questions and controversies among experts still remain. In this context, several experimental models have been proposed in order to broaden the knowledge on the pathophysiological characteristics of the disease, as well as the search for new therapeutic approaches for acute or chronically injured lung tissue. This review aims to present the main experimental models of COPD, more specifically emphysema, as well as to describe the main characteristics, advantages, disadvantages, possibilities of application, and potential contribution of each of these models for the knowledge on the pathophysiological aspects and to test new treatment options for obstructive lung diseases.
Collapse
Affiliation(s)
- Monica Yonashiro Marcelino
- 1Program of Post-Graduation in Biotechnology, Universidade de São Paulo-Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
52
|
Jobse BN, McCurry CA, Morissette MC, Rhem RG, Stämpfli MR, Labiris NR. Impact of inflammation, emphysema, and smoking cessation on V/Q in mouse models of lung obstruction. Respir Res 2014; 15:42. [PMID: 24730756 PMCID: PMC4021179 DOI: 10.1186/1465-9921-15-42] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 04/01/2014] [Indexed: 01/05/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is known to greatly affect ventilation (V) and perfusion (Q) of the lung through pathologies such as inflammation and emphysema. However, there is little direct evidence regarding how these pathologies contribute to the V/Q mismatch observed in COPD and models thereof. Also, little is known regarding how smoking cessation affects V/Q relationships after inflammation and airspace enlargement have become established. To this end, we have quantified V/Q on a per-voxel basis using single photon emission computed tomography (SPECT) in mouse models of COPD and lung obstruction. Methods Three distinct murine models were used to investigate the impact of different pathologies on V/Q, as measured by SPECT. Lipopolysaccharide (LPS) was used to produce neutrophilic inflammation, porcine pancreatic elastase (PPE) was used to produce emphysema, and long-term cigarette smoke (CS) exposure and cessation were used to investigate the combination of these pathologies. Results CS exposure resulted in an increase in mononuclear cells and neutrophils, an increase in airspace enlargement, and an increase in V/Q mismatching. The inflammation produced by LPS was more robust and predominantly neutrophilic, compared to that of cigarette smoke; nevertheless, inflammation alone caused V/Q mismatching similar to that seen with long-term CS exposure. The emphysematous lesions caused by PPE administration were also capable of causing V/Q mismatch in the absence of inflammation. Following CS cessation, inflammatory cell levels returned to those of controls and, similarly, V/Q measures returned to normal despite evidence of persistent mild airspace enlargement. Conclusions Both robust inflammation and extensive airspace enlargement, on their own, were capable of producing V/Q mismatch. As CS cessation resulted in a return of V/Q mismatching and inflammatory cell counts to control levels, lung inflammation is likely a major contributor to V/Q mismatch observed in the cigarette smoke exposure model as well as in COPD patients. This return of V/Q mismatching to control values also took place in the presence of mild airspace enlargement, indicating that emphysematous lesions must be of a larger volume before affecting the lung significantly. Early smoking cessation is therefore critical before emphysema has an irreversible impact on gas exchange.
Collapse
Affiliation(s)
| | | | | | | | | | - Nancy Renée Labiris
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Canada.
| |
Collapse
|
53
|
Chronic disease burden among cancer survivors in the California Behavioral Risk Factor Surveillance System, 2009-2010. J Cancer Surviv 2014; 8:448-59. [PMID: 24715532 DOI: 10.1007/s11764-014-0350-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 02/08/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE The California Behavioral Risk Factor Surveillance System estimates that 56.6 % of cancer survivors report ever being diagnosed with a chronic disease. Few studies have assessed potential variability in comorbidity by cancer type. METHODS We used data collected from a representative sample of adult participants in the 2009 and 2010 California Behavioral Risk Factor Surveillance System (n = 18,807). Chronic diseases were examined with cancer survivorship in case/non-case and case/case analyses. Prevalence ratios (PR) and corresponding 95 % confidence intervals (95 % CI) were estimated using Cox proportional hazards models, with adjustment on race, sex, age, education, smoking, and drinking. RESULTS Obesity was associated with gynecological cancers (PR 1.74; 95 % CI 1.26-2.41), and being overweight was associated with gynecological (PR 1.40; 95 % CI 1.05-1.86) and urinary (PR 2.19; 95 % CI 1.21-3.95) cancers. Arthritis was associated with infection-related (PR 1.78; 95 % CI 1.12-2.83) and hormone-related (PR 1.20; 95 % CI 1.01-1.42) cancers. Asthma was associated with infection- (PR 2.26; 95 % CI 1.49-3.43), hormone- (PR 1.46; 95 % CI 1.21-1.77), and tobacco- (PR 1.86; 95 % CI 1.25-2.77) related cancers. Chronic obstructive pulmonary disease (COPD) was associated with infection- (PR 2.16; 95 % CI 1.22-3.83) and tobacco-related (PR 2.24; 95 % CI 1.37-3.66) cancers and with gynecological cancers (PR 1.60; 95 % 1.00-2.56). CONCLUSIONS This is the first study to examine chronic disease burden among cancer survivors in California. Our findings suggest that the chronic disease burden varies by cancer etiology. IMPLICATIONS FOR CANCER SURVIVORS A clear need has emerged for future biological and epidemiological studies of the interaction between chronic disease and cancer etiology in survivors.
Collapse
|
54
|
Vlahos R, Bozinovski S. Recent advances in pre-clinical mouse models of COPD. Clin Sci (Lond) 2014; 126:253-65. [PMID: 24144354 PMCID: PMC3878607 DOI: 10.1042/cs20130182] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/17/2013] [Accepted: 08/01/2013] [Indexed: 02/06/2023]
Abstract
COPD (chronic obstructive pulmonary disease) is a major incurable global health burden and will become the third largest cause of death in the world by 2020. It is currently believed that an exaggerated inflammatory response to inhaled irritants, in particular cigarette smoke, causes progressive airflow limitation. This inflammation, where macrophages, neutrophils and T-cells are prominent, leads to oxidative stress, emphysema, small airways fibrosis and mucus hypersecretion. The mechanisms and mediators that drive the induction and progression of chronic inflammation, emphysema and altered lung function are poorly understood. Current treatments have limited efficacy in inhibiting chronic inflammation, do not reverse the pathology of disease and fail to modify the factors that initiate and drive the long-term progression of disease. Therefore there is a clear need for new therapies that can prevent the induction and progression of COPD. Animal modelling systems that accurately reflect disease pathophysiology continue to be essential to the development of new therapies. The present review highlights some of the mouse models used to define the cellular, molecular and pathological consequences of cigarette smoke exposure and whether they can be used to predict the efficacy of new therapeutics for COPD.
Collapse
Key Words
- acute exacerbations of chronic obstructive pulmonary disease (aecopd)
- chronic obstructive pulmonary disease (copd)
- emphysema
- inflammation
- skeletal muscle wasting
- smoking
- aecopd, acute exacerbations of copd
- bal, bronchoalveolar lavage
- balf, bal fluid
- copd, chronic obstructive pulmonary disease
- gm-csf, granulocyte/macrophage colony-stimulating factor
- gold, global initiative on chronic obstructive lung disease
- gpx, glutathione peroxidase
- hdac, histone deacetylation
- il, interleukin
- ltb4, leukotriene b4
- mapk, mitogen-activated protein kinase
- mcp-1, monocyte chemotactic protein-1
- mmp, matrix metalloproteinase
- ne, neutrophil elastase
- nf-κb, nuclear factor κb
- nrf2, nuclear erythroid-related factor 2
- o2•−, superoxide radical
- onoo−, peroxynitrite
- pde, phosphodiesterase
- pi3k, phosphoinositide 3-kinase
- ros, reactive oxygen species
- rv, rhinovirus
- slpi, secretory leucocyte protease inhibitor
- sod, superoxide dismutase
- tgf-β, transforming growth factor-β
- timp, tissue inhibitor of metalloproteinases
- tnf-α, tumour necrosis factor-α
- v/q, ventilation/perfusion
Collapse
Affiliation(s)
- Ross Vlahos
- *Lung Health Research Centre, Department of Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Steven Bozinovski
- *Lung Health Research Centre, Department of Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
55
|
Paisley D, Bevan L, Choy KJ, Gross C. The pneumonectomy model of compensatory lung growth: insights into lung regeneration. Pharmacol Ther 2013; 142:196-205. [PMID: 24333263 DOI: 10.1016/j.pharmthera.2013.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/19/2013] [Indexed: 10/25/2022]
Abstract
Pneumonectomy (PNX) in experimental animals leads to a species- and age-dependent compensatory growth of the remaining lung lobes. PNX mimics the loss of functional gas exchange units observed in a number of chronic destructive lung diseases. However, unlike in disease models, this tissue loss is well defined, reproducible and lacks accompanying inflammation. Furthermore, compensatory responses to the tissue loss can be easily quantified. This makes PNX a potentially useful model for the study of the cellular and molecular events which occur during realveolarisation. It may therefore help to get a better understanding of how to manipulate these pathways, in order to promote the generation of new alveolar tissue as therapies for destructive lung diseases. This review will explore the insights that experimental PNX has provided into the physiological factors which promote compensatory lung growth as well as the importance of age and species in the rate and extent of compensation. In addition, more recent studies which are beginning to uncover the key cellular and molecular pathways involved in realveolarisation will be discussed. The potential relevance of experimental pneumonectomy to novel therapeutic strategies which aim to promote lung regeneration will also be highlighted.
Collapse
Affiliation(s)
- Derek Paisley
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom.
| | - Luke Bevan
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Katherine J Choy
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Carina Gross
- Respiratory Disease Area, Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| |
Collapse
|
56
|
The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models. Clin Sci (Lond) 2013; 126:207-21. [PMID: 23875733 PMCID: PMC3906955 DOI: 10.1042/cs20130117] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby determining the outcome of the studies.
Collapse
|
57
|
Abstract
Oxidative stress plays a role in a variety of diseases but it is even more pertinent in chronic obstructive pulmonary disease (COPD) given the increased oxidant burden in smokers. The increased oxidant burden results from the fact that cigarette smoke contains over 4700 different chemical compounds and more than 10(15) oxidants/free radicals per puff. Other factors, such as air pollutants, infections, and occupational dusts that may exacerbate COPD, also have the potential to produce oxidative stress. These oxidants give rise to Reactive Oxygen Species (ROS) that are generated enzymatically by inflammatory and epithelial cells within the lung as part of an inflammatory immune response towards a pathogen or irritant. Thus, while ROS are necessary for host defence against invading pathogens, increased levels of ROS have been implicated in initiating inflammatory responses in the lungs through the activation of transcriptional factors, signal transduction pathways, chromatin remodelling and gene expression of pro-inflammatory mediators. However, the normal lung has developed defences to ROS-mediated damage, which include antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. In this review we consider the therapeutic potential of the antioxidant enzyme glutathione peroxidase-1 for the treatment of cigarette smoke-induced lung inflammation and damage.
Collapse
Affiliation(s)
- Ross Vlahos
- Department of Pharmacology & TherapeuticsLung Health Research Centre, The University of Melbourne, Parkville, Australia,Correspondence to: Ross Vlahos, Department of Pharmacology & Therapeutics, Lung Health Research Centre, The University of Melbourne, Parkville VIC 3010, Australia.
| | - Steven Bozinovski
- Department of Pharmacology & TherapeuticsLung Health Research Centre, The University of Melbourne, Parkville, Australia
| |
Collapse
|
58
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
59
|
Mast cell mediators cause early allergic bronchoconstriction in guinea-pigs in vivo: a model of relevance to asthma. Clin Sci (Lond) 2013; 125:533-42. [PMID: 23799245 DOI: 10.1042/cs20130092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One feature of allergic asthma, the EAR (early allergic reaction), is not present in the commonly used mouse models. We therefore investigated the mediators involved in EAR in a guinea-pig in vivo model of allergic airway inflammation. Animals were sensitized using a single OVA (ovalbumin)/alum injection and challenged with aerosolized OVA on day 14. On day 15, airway resistance was assessed after challenge with OVA or MCh (methacholine) using the forced oscillation technique, and lung tissue was prepared for histology. The contribution of mast cell mediators was investigated using inhibitors of the main mast cell mediators [histamine (pyrilamine) and CysLTs (cysteinyl-leukotrienes) (montelukast) and prostanoids (indomethacin)]. OVA-sensitized and challenged animals demonstrated AHR (airway hyper-responsiveness) to MCh, and lung tissue eosinophilic inflammation. Antigen challenge induced a strong EAR in the sensitized animals. Treatment with a single compound, or indomethacin together with pyrilamine or montelukast, did not reduce the antigen-induced airway resistance. In contrast, dual treatment with pyrilamine together with montelukast, or triple inhibitor treatment, attenuated approximately 70% of the EAR. We conclude that, as in humans, the guinea-pig allergic inflammation model exhibits both EAR and AHR, supporting its suitability for in vivo identification of mast cell mediators that contribute to the development of asthma. Moreover, the known mast cell mediators histamine and leukotrienes were major contributors of the EAR. The data also lend further support to the concept that combination therapy with selective inhibitors of key mediators could improve asthma management.
Collapse
|
60
|
Langen R, Gosker H, Remels A, Schols A. Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease. Int J Biochem Cell Biol 2013; 45:2245-56. [DOI: 10.1016/j.biocel.2013.06.015] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/09/2013] [Accepted: 06/14/2013] [Indexed: 11/29/2022]
|
61
|
Kimura G, Ueda K, Eto S, Watanabe Y, Masuko T, Kusama T, Barnes PJ, Ito K, Kizawa Y. Toll-like receptor 3 stimulation causes corticosteroid-refractory airway neutrophilia and hyperresponsiveness in mice. Chest 2013; 144:99-105. [PMID: 23348232 DOI: 10.1378/chest.12-2610] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND RNA virus infections, such as rhinovirus and respiratory syncytial virus, induce exacerbations in patients with COPD and asthma, and the inflammation is corticosteroid refractory. The main aim of this study is to establish a murine model induced by a Toll-like receptor 3 (TLR3) agonist, an RNA virus mimic, and investigate the response to corticosteroid. METHODS A/J mice were given polyinosinic-polycytidylic acid (poly[I:C]), a TLR3 agonist, intranasally, in the presence or absence of cigarette smoke exposure. Inflammatory cell accumulation and C-X-C motif chemokine (CXCL) 1, interferon (IFN), and CXCL10 production in BAL fluid (BALF) were determined by flow cytometry and enzyme-linked immunosorbent assay, respectively, and airway hyperresponsiveness (AHR) to histamine/methacholine was determined by a two-chambered, double-flow plethysmography system. BALB/c and C57BL/6J mice were also used for comparisons. RESULTS Intranasal treatment of poly(I:C) significantly induced airway neutrophilia; production of CXCL1, IFN-β, and CXCL10; and necrotic cell accumulation in BALF. It also increased airway responsiveness to histamine or methacholine inhalation. This poly(I:C)-dependent airway inflammation and AHR was not inhibited by the corticosteroid fluticasone propionate (FP) (up to 0.5 mg/mL intranasal), although FP strongly inhibited lipopolysaccharide (TLR4 agonist)-induced airway neutrophilia. Furthermore, cigarette smoke exposure significantly increased TLR3 expression in murine lung tissue and exacerbated poly(I:C)-induced neutrophilia and AHR. CONCLUSIONS These results suggest that TLR3 stimulation is involved in corticosteroid-refractory airway inflammation in lung, which is enhanced by cigarette smoking, and this may provide a model for understanding virus-induced exacerbations in COPD and their therapy.
Collapse
Affiliation(s)
- Genki Kimura
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Chiba, Japan
| | - Keitaro Ueda
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Chiba, Japan
| | - Shouichi Eto
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Chiba, Japan
| | - Yuji Watanabe
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Chiba, Japan
| | - Takashi Masuko
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Chiba, Japan
| | - Tadashi Kusama
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Chiba, Japan
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, England
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, England
| | - Yasuo Kizawa
- Department of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Chiba, Japan.
| |
Collapse
|
62
|
Nemmar A, Yuvaraju P, Beegam S, John A, Raza H, Ali BH. Cardiovascular effects of nose-only water-pipe smoking exposure in mice. Am J Physiol Heart Circ Physiol 2013; 305:H740-6. [PMID: 23812392 DOI: 10.1152/ajpheart.00200.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Water-pipe smoking (WPS) is a major type of smoking in Middle Eastern countries and is increasing in popularity in Western countries and is perceived as relatively safe. However, data on the adverse cardiovascular effects of WPS are scarce. Here, we assessed the cardiovascular effects of nose-only exposure to mainstream WPS generated by commercially available honey-flavored "moasel" tobacco in BALB/c mice. The duration of the session was 30 min/day for 1 mo. Control mice were exposed to air. WPS caused a significant increase of systolic blood pressure (SBP) in vivo (+13 mmHg) and plasma concentrations of IL-6 (+30%) but not that of TNF-α. Heart concentrations of IL-6 (+184%) and TNF-α (+54%) were significantly increased by WPS. Concentrations of ROS (+95%) and lipid peroxidation (+27%) were significantly increased, whereas those of GSH were decreased (-21%). WPS significantly shortened the thrombotic occlusion time in pial arterioles (-46%) and venules (40%). Plasma von Willebrand factor concentrations were significantly increased (+14%) by WPS. Erythrocyte numbers (+15%) and hematocrit (+17%) were significantly increased. Blood samples taken from mice exposed to WPS and exposed to ADP showed significant platelet aggregation compared with air-exposed mice. WPS caused a significant shortening of activated partial thromboplastin time (-45%) and prothrombin time (-13%). We conclude that 1-mo nose-only exposure to WPS increased SBP and caused cardiac inflammation, oxidative stress, and prothrombotic events. Our findings provide plausible elucidation that WPS is injurious to the cardiovascular system.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | | | | | | | |
Collapse
|
63
|
Longitudinal characterization of a model of chronic allergic lung inflammation in mice using imaging, functional and immunological methods. Clin Sci (Lond) 2013; 125:555-64. [DOI: 10.1042/cs20130086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present study investigated the role that imaging could have for assessing lung inflammation in a mouse model of HDM (house dust mite)-provoked allergic inflammation. Inflammation is usually assessed using terminal procedures such as BAL (bronchoalveolar lavage) and histopathology; however, MRI (magnetic resonance imaging) and CT (computed tomography) methods have the potential to allow longitudinal, repeated study of individual animals. Female BALB/c mice were administered daily either saline, or a solution of mixed HDM proteins sufficient to deliver a dose of 12 or 25 μg total HDM protein±budesonide (1 mg/kg of body weight, during weeks 5–7) for 7 weeks. AHR (airway hyper-responsiveness) and IgE measurements were taken on weeks 3, 5 and 7. Following imaging sessions at weeks 3, 5 and 7 lungs were prepared for histology. BAL samples were taken at week 7 and lungs prepared for histology. MRI showed a gradual weekly increase in LTI (lung tissue intensity) in animals treated with HDM compared with control. The 25 μg HDM group showed a continual significant increase in LTI between weeks 3 and 7, the 12 μg HDM-treated group showed a similar rate of increase, and plateaued by week 5. A corresponding increase in AHR, cell counts and IgE were observed. CT showed significant increases in lung tissue density from week 1 of HDM exposure and this was maintained throughout the 7 weeks. Budesonide treatment reversed the increase in tissue density. MRI and CT therefore provide non-invasive sensitive methods for longitudinally assessing lung inflammation. Lung tissue changes could be compared directly with the classical functional and inflammatory readouts, allowing more accurate assessments to be made within each animal and providing a clinically translatable approach.
Collapse
|
64
|
Nemmar A, Raza H, Yuvaraju P, Beegam S, John A, Yasin J, Hameed RS, Adeghate E, Ali BH. Nose-only water-pipe smoking effects on airway resistance, inflammation, and oxidative stress in mice. J Appl Physiol (1985) 2013; 115:1316-23. [PMID: 23869065 DOI: 10.1152/japplphysiol.00194.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Water-pipe smoking (WPS) is a common practice in the Middle East and is now gaining popularity in Europe and the United States. However, there is a limited number of studies on the respiratory effects of WPS. More specifically, the underlying pulmonary pathophysiological mechanisms related to WPS exposure are not understood. Presently, we assessed the respiratory effects of nose-only exposure to mainstream WPS generated by commercially available honey flavored "moasel" tobacco. The duration of the session was 30 min/day and 5 days/wk for 1 mo. Control mice were exposed to air only. Here, we measured in BALB/c mice the airway resistance using forced-oscillation technique. Lung inflammation was assessed histopathologically and by biochemical analysis of bronchoalveolar lavage (BAL) fluid, and oxidative stress was evaluated biochemically by measuring lipid peroxidation, reduced glutathione and several antioxidant enzymes. Pulmonary inflammation assessment showed an increase in neutrophil and lymphocyte numbers. Likewise, airway resistance was significantly increased in the WPS group compared with controls. Tumor necrosis factor α and interleukin 6 concentrations were significantly increased in BAL fluid. Lipid peroxidation in lung tissue was significantly increased whereas the level and activity of antioxidants including reduced glutathione, glutathione S transferase, and superoxide dismutase were all significantly decreased following WPS exposure, indicating the occurrence of oxidative stress. Moreover, carboxyhemoglobin levels were significantly increased in the WPS group. We conclude that 1-mo nose-only exposure to WPS significantly increased airway resistance, inflammation, and oxidative stress. Our results provide a mechanistic explanation for the limited clinical studies that reported the detrimental respiratory effects of WPS.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Dothel G, Vasina V, Barbara G, De Ponti F. Animal models of chemically induced intestinal inflammation: predictivity and ethical issues. Pharmacol Ther 2013; 139:71-86. [PMID: 23563278 DOI: 10.1016/j.pharmthera.2013.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 02/08/2023]
Abstract
The debate about the ethical and scientific issues regarding the use of animals in research is mainly focused on these questions: a) whether preclinical studies in animals are still ethically acceptable; b) whether it is possible to establish more soundly their predictivity; c) what measures should be taken to reduce the clinical attrition often due to biased preclinical assessment of potential efficacy of new drugs. This review aims at a critical revision of animal models of chemically induced intestinal inflammation in drug development. These models, notwithstanding differences among species, still represent a major source of information about biological systems and can have undisputable translational value, provided that appropriate measures are taken to ensure that experiments are both scientifically and ethically justified. These measures include: a) more stringent application to preclinical experiments of standards used in clinical studies (such as sample size, randomization, inclusion/exclusion criteria, blinding); b) selection of the animal model after careful pathophysiological scrutiny bearing in mind inherent limitations of each model (e.g. acute self-limiting vs chronic disease, animal species, role of the intestinal immune system and microbiome); and c) experimental design duly considering the specific pharmacological profile of each agent to be screened (such as bioavailability, route of administration, full consideration of the pharmacological spectrum). In this perspective, the new European legislation is an opportunity to fully apply these standards so that in vivo animal models can provide an invaluable mean to study complex physiological and biochemical interactions, which cannot be completely simulated in silico and/or in vitro.
Collapse
Affiliation(s)
- Giovanni Dothel
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
66
|
Luks V, Burkett A, Turner L, Pakhale S. Effect of physical training on airway inflammation in animal models of asthma: a systematic review. BMC Pulm Med 2013; 13:24. [PMID: 23617952 PMCID: PMC3691924 DOI: 10.1186/1471-2466-13-24] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/27/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND There is little data on the effect of exercise on markers of airway inflammation in human asthmatics. The main objective of this review is to determine the effects of physical training on markers of airway inflammation in animal models of asthma. METHODS A peer reviewed search was applied to Medline, Embase, Web of Science, Cochrane, and DARE databases. Data extraction was performed in a blinded fashion. RESULTS From the initial 2336 studies, a total of 10 studies were selected for the final analysis. All were randomized controlled trials with low to moderate intensity training on ovalbumin-sensitized mice. In the exercised group of mice, there was a reduction in BAL eosinophils and Th-2 cytokines, no change in Th-1 cytokines, an increase in IL-10, and a reversal of airway remodeling. The data was not pooled owing to significant heterogeneity between studies, and a funnel plot test for publication bias was not performed because there were few studies reporting on any one outcome measure. The asthma models differed between studies in age and gender of mice, as well as in timing of physical training after sensitization. The risk of bias was unclear for some studies though this may not influence outcome measures. The accuracy of data extracted from graphics is unknown. CONCLUSIONS Physical training improves airway inflammation in animal asthma models.
Collapse
Affiliation(s)
- Vanessa Luks
- Division of Respirology, The Ottawa Hospital, University of Ottawa, Ottawa, Canada
| | - Andrew Burkett
- Division of Respirology, The Ottawa Hospital, University of Ottawa, Ottawa, Canada
| | - Lucy Turner
- The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Smita Pakhale
- Divison of Respirology, The Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| |
Collapse
|
67
|
Lei Y, Gregory JA, Nilsson GP, Adner M. Insights into mast cell functions in asthma using mouse models. Pulm Pharmacol Ther 2013; 26:532-9. [PMID: 23583635 DOI: 10.1016/j.pupt.2013.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 01/07/2023]
Abstract
Therapeutics targeting specific mechanisms of asthma have shown promising results in mouse models of asthma. However, these successes have not transferred well to the clinic or to the treatment of asthma sufferers. We suggest a reason for this incongruity is that mast cell-dependent responses, which may play an important role in the pathogenesis of both atopic and non-atopic asthma, are not a key component in most of the current asthma mouse models. Two reasons for this are that wild type mice have, in contrast to humans, a negligible number of mast cells localized in the smaller airways and in the parenchyma, and that only specific protocols show mast cell-dependent reactions. The development of mast cell-deficient mice and the reconstitution of mast cells within these mice have opened up the possibility to generate mouse models of asthma with a marked role of mast cells. In addition, mast cell-deficient mice engrafted with mast cells have a distribution of mast cells more similar to humans. In this article we review and highlight the mast cell-dependent and -independent responses with respect to airway hyperresponsiveness and inflammation in asthma models using mast cell-deficient and mast cell-engrafted mice.
Collapse
Affiliation(s)
- Ying Lei
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
68
|
Katsumoto TR, Kudo M, Chen C, Sundaram A, Callahan EC, Zhu JW, Lin J, Rosen CE, Manz BN, Lee JW, Matthay MA, Huang X, Sheppard D, Weiss A. The phosphatase CD148 promotes airway hyperresponsiveness through SRC family kinases. J Clin Invest 2013; 123:2037-48. [PMID: 23543053 DOI: 10.1172/jci66397] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 02/07/2013] [Indexed: 01/10/2023] Open
Abstract
Increased airway smooth muscle (ASM) contractility and the development of airway hyperresponsiveness (AHR) are cardinal features of asthma, but the signaling pathways that promote these changes are poorly understood. Tyrosine phosphorylation is tightly regulated by the opposing actions of protein tyrosine kinases and phosphatases, but little is known about whether tyrosine phosphatases influence AHR. Here, we demonstrate that genetic inactivation of receptor-like protein tyrosine phosphatase J (Ptprj), which encodes CD148, protected mice from the development of increased AHR in two different asthma models. Surprisingly, CD148 deficiency minimally affected the inflammatory response to allergen, but significantly altered baseline pulmonary resistance. Mice specifically lacking CD148 in smooth muscle had decreased AHR, and the frequency of calcium oscillations in CD148-deficient ASM was substantially attenuated, suggesting that signaling pathway alterations may underlie ASM contractility. Biochemical analysis of CD148-deficient ASM revealed hyperphosphorylation of the C-terminal inhibitory tyrosine of SRC family kinases (SFKs), implicating CD148 as a critical positive regulator of SFK signaling in ASM. The effect of CD148 deficiency on ASM contractility could be mimicked by treatment of both mouse trachea and human bronchi with specific SFK inhibitors. Our studies identify CD148 and the SFKs it regulates in ASM as potential targets for the treatment of AHR.
Collapse
Affiliation(s)
- Tamiko R Katsumoto
- Division of Rheumatology and Rosalind Russell Medical Research Center for Arthritis, University of California San Francisco (UCSF), San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Anti-inflammatory dimethylfumarate: a potential new therapy for asthma? Mediators Inflamm 2013; 2013:875403. [PMID: 23606796 PMCID: PMC3625606 DOI: 10.1155/2013/875403] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 01/21/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the airways, which results from the deregulated interaction of inflammatory cells and tissue forming cells. Beside the derangement of the epithelial cell layer, the most prominent tissue pathology of the asthmatic lung is the hypertrophy and hyperplasia of the airway smooth muscle cell (ASMC) bundles, which actively contributes to airway inflammation and remodeling. ASMCs of asthma patients secrete proinflammatory chemokines CXCL10, CCL11, and RANTES which attract immune cells into the airways and may thereby initiate inflammation. None of the available asthma drugs cures the disease—only symptoms are controlled. Dimethylfumarate (DMF) is used as an anti-inflammatory drug in psoriasis and showed promising results in phase III clinical studies in multiple sclerosis patients. In regard to asthma therapy, DMF has been anecdotally reported to reduce asthma symptoms in patients with psoriasis and asthma. Here we discuss the potential use of DMF as a novel therapy in asthma on the basis of in vitro studies of its inhibitory effect on ASMC proliferation and cytokine secretion in ASMCs.
Collapse
|
70
|
Eltom S, Stevenson C, Birrell MA. Cigarette smoke exposure as a model of inflammation associated with COPD. CURRENT PROTOCOLS IN PHARMACOLOGY 2013; Chapter 5:Unit5.64. [PMID: 23456614 DOI: 10.1002/0471141755.ph0564s60] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by progressive airflow limitation resulting from inflammation-driven pathologies in the lungs that are a consequence of smoking over many years. Given that the disease is increasing globally, understanding the mechanism by which cigarette smoke (CS) causes lung inflammation and exploiting that knowledge to develop effective treatments is urgently required. Animal models of CS exposure are commonly used to examine the inflammatory processes that may be involved in the development of COPD. The protocols described in this unit detail the development of preclinical models of CS-driven lung inflammation. These systems can be utilized to investigate the role of various biological pathways in CS-mediated inflammation and to assess the efficacy of new therapeutic strategies for treating COPD.
Collapse
Affiliation(s)
- Suffwan Eltom
- Respiratory Pharmacology, Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | | |
Collapse
|
71
|
Jobse BN, Rhem RG, Wang IQ, Counter WB, Stämpfli MR, Labiris NR. Detection of lung dysfunction using ventilation and perfusion SPECT in a mouse model of chronic cigarette smoke exposure. J Nucl Med 2013; 54:616-23. [PMID: 23397007 DOI: 10.2967/jnumed.112.111419] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Chronic obstructive pulmonary disease is a leading cause of morbidity and mortality worldwide. Exposure to cigarette smoke (CS) is a major risk factor for developing this chronic airflow impairment, but the early progression of disease is not well defined or understood. Ventilation/perfusion (V/Q) SPECT provides a noninvasive assessment of lung function to further our current understanding of how CS affects the lung. METHODS BALB/c mice were imaged with V/Q SPECT and CT after 8 and 24 wk of whole-body exposure to mainstream CS. Bronchoalveolar lavage was collected and cell differentials produced to determine inflammatory patterns. Histologic lung sections were collected, and a semiautomated quantitative analysis of airspace enlargement was applied to whole histology slices. RESULTS Exposure to CS induced an inflammatory response that included increases in the numbers of both mononuclear cells and neutrophils. Airspace enlargement was also significantly increased at 8 wk of CS exposure and was still more pronounced at 24 wk. Ventilation and perfusion correlation at the voxel level depicted a significant decrease in matching at 8 wk of CS exposure that was also apparent after 24 wk. The standard deviation (SD) of the log(V/Q) curve, a basic measure of heterogeneity, was increased from 0.44 ± 0.02 in age-matched controls to 0.62 ± 0.05 with CS exposure at 24 wk, indicating an increase in V/Q mismatching between 8 and 24 wk of CS exposure. CT, however, was not capable of discriminating control from CS-exposed animals at either time point, even with greater resolution and respiratory gating. CONCLUSION This study demonstrated that, before CT detection of structural changes, V/Q imaging detected changes in gas-exchange potential. This functional impairment corresponded to increased lung inflammation and increased airspace enlargement. In vivo V/Q imaging can detect early changes to the lung caused by CS exposure and thus provides a noninvasive method of longitudinally studying lung dysfunction in preclinical models. In the future, these measures could be applied clinically to study and diagnose the early stages of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Brian N Jobse
- Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
72
|
Dias PM, Banerjee G. The Role of Th17/IL-17 on Eosinophilic Inflammation. J Autoimmun 2013; 40:9-20. [DOI: 10.1016/j.jaut.2012.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/07/2012] [Accepted: 07/19/2012] [Indexed: 01/21/2023]
|
73
|
Daan de Boer J, Roelofs JJTH, de Vos AF, de Beer R, Schouten M, Hommes TJ, Hoogendijk AJ, de Boer OJ, Stroo I, van der Zee JS, Veer CV, van der Poll T. Lipopolysaccharide inhibits Th2 lung inflammation induced by house dust mite allergens in mice. Am J Respir Cell Mol Biol 2012; 48:382-9. [PMID: 23239494 DOI: 10.1165/rcmb.2012-0331oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The complex biology of asthma compels the use of more relevant human allergens, such as house dust mite (HDM), to improve the translation of animal models into human asthma. LPS exposure is associated with aggravations of asthma, but the mechanisms remain unclear. Here, we studied the effects of increasing LPS doses on HDM-evoked allergic lung inflammation. To this end, mice were intranasally sensitized and challenged with HDM with or without increasing doses of LPS (0.001-10 μg). LPS dose-dependently inhibited HDM-induced eosinophil recruitment into the lungs and mucus production in the airways. LPS attenuated the production of Th2 cytokines (IL-4, IL-5, IL-10, and IL-13) in HDM-challenged lungs, while enhancing the HDM-induced release of IL-17, IL-33, IFN-γ, and TNF-α. The shift toward a Th1 inflammatory response was further illustrated by predominant neutrophilic lung inflammation after LPS administration at higher doses. LPS did not influence HDM-induced plasma IgE concentrations. Although LPS did not significantly affect the activation of coagulation or complement in HDM-challenged lungs, it reduced HDM-initiated endothelial cell activation. This study is the first to provide insights into the effects of LPS in an allergic lung inflammation model making use of a clinically relevant allergen without a systemic adjuvant, revealing that LPS dose-dependently inhibits HDM-induced pulmonary Th2 responses.
Collapse
Affiliation(s)
- J Daan de Boer
- Center of Infection and Immunity Amsterdam and Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Nemmar A, Raza H, Subramaniyan D, John A, Elwasila M, Ali BH, Adeghate E. Evaluation of the pulmonary effects of short-term nose-only cigarette smoke exposure in mice. Exp Biol Med (Maywood) 2012; 237:1449-56. [DOI: 10.1258/ebm.2012.012103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Much is known about the chronic effects of cigarette smoke (CS) on lung function and inflammation and development of chronic obstructive pulmonary disease. However, the underlying pathophysiological mechanisms related to the short-term exposure to CS are not fully understood. Here, we assessed the effect of CS generated by nine consecutive cigarettes per day for four days in a nose-only exposure system on airway resistance measured using forced oscillation technique, lung inflammation and oxidative stress in BALB/c mice. Control mice were exposed to air. Mice exposed to CS showed a significant increase of neutrophils and lymphocytes numbers in bronchoalveolar lavage (BAL). The total protein and endothelin levels in BAL fluid were significantly augmented suggesting an increase of alveolar-capillary barrier permeability. Similarly, airway resistance was significantly increased in the CS group compared with controls. Furthermore, reactive oxygen species and lipid peroxidation levels in lung tissue were significantly increased. The antioxidant activities of reduced glutathione, glutathione S transferase and superoxide dismutase were all significantly increased following CS exposure, indicating that CS could trigger adaptive responses that counterbalance the potentially damaging activity of oxygen radicals induced by CS exposure. In conclusion, our data indicate that short-term nose-only exposure to CS causes lung inflammation and increase of airway resistance mediated at least partly through the oxidative stress.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Haider Raza
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Deepa Subramaniyan
- Department of Physiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Annie John
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Mohamed Elwasila
- Department of Pharmacology, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, PO Box 35, Muscat 123, Al-Khod, Sultanate of Oman
| | - Ernest Adeghate
- Department of Anatomy, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| |
Collapse
|
75
|
van Noort JM, Bsibsi M, Nacken PJ, Gerritsen WH, Amor S, Holtman IR, Boddeke E, van Ark I, Leusink-Muis T, Folkerts G, Hennink WE, Amidi M. Activation of an immune-regulatory macrophage response and inhibition of lung inflammation in a mouse model of COPD using heat-shock protein alpha B-crystallin-loaded PLGA microparticles. Biomaterials 2012; 34:831-40. [PMID: 23117214 DOI: 10.1016/j.biomaterials.2012.10.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
As an extracellular protein, the small heat-shock protein alpha B-crystallin (HSPB5) has anti-inflammatory effects in several mouse models of inflammation. Here, we show that these effects are associated with the ability of HSPB5 to activate an immune-regulatory response in macrophages via endosomal/phagosomal CD14 and Toll-like receptors 1 and 2. Humans, however, possess natural antibodies against HSPB5 that block receptor binding. To protect it from these antibodies, we encapsulated HSPB5 in porous PLGA microparticles. We document here size, morphology, protein loading and release characteristics of such microparticles. Apart from effectively protecting HSPB5 from neutralization, PLGA microparticles also strongly promoted macrophage targeting of HSPB via phagocytosis. As a result, HSPB5 in porous PLGA microparticles was more than 100-fold more effective in activating macrophages than free soluble protein. Yet, the immune-regulatory nature of the macrophage response, as documented here by microarray transcript profiling, remained the same. In mice developing cigarette smoke-induced COPD, HSPB5-loaded PLGA microparticles were selectively taken up by alveolar macrophages upon intratracheal administration, and significantly suppressed lung infiltration by lymphocytes and neutrophils. In contrast, 30-fold higher doses of free soluble HSPB5 remained ineffective. Our data indicate that porous HSPB5-PLGA microparticles hold considerable promise as an anti-inflammatory biomaterial for humans.
Collapse
|
76
|
Nie YC, Wu H, Li PB, Luo YL, Zhang CC, Shen JG, Su WW. Characteristic comparison of three rat models induced by cigarette smoke or combined with LPS: to establish a suitable model for study of airway mucus hypersecretion in chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2012; 25:349-56. [PMID: 22732689 DOI: 10.1016/j.pupt.2012.06.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022]
Abstract
There is a need of in vivo COPD models for mucus hypersecretion study. The current study compared three rat models induced by cigarette smoke (CS) exposure alone or combined with pre- or post-treatment with lipopolysaccharide (LPS). Forty rats were randomly divided into the four following groups: control group, LPS + CS group (CS exposure for 4-wk combined with LPS pretreatment), CS group (CS exposure for 6-wk), CS + LPS group (CS exposure for 6-wk combined with LPS post-treatment). The results showed that both CS and CS + LPS groups had more severe pro-inflammatory cytokines secretion, inflammatory cells infiltration, and emphysema as compared to that in LPS + CS group animals. From the PAS staining sections, we found a remarkable hyperplasia of goblet-cell in epitheliums of trachea, bronchi, and bronchiole of all of three modeling groups, especially in CS and CS + LPS groups. From the western-blotting results, there were significant increase in the activities of NF-κB, AP-1, EGFR, TLR4, and MAPKs in all of three modeling groups, while HDAC2 activity was remarkably repressed in CS group only. Moreover, the expression and secretion of MUC5AC were exhibited significant increase in all of three modeling groups, which correlated well with the total transcription activity integration of NF-κB, AP-1, and HDAC2 (r = 0.946, p < 0.01). These results indicated that MUC5AC hypersecretion is consistent with activation of EGFR-AP-1/NF-κB and TLR4-AP-1/NF-κB signaling pathways, as well as repression of HDAC2 activity. Based on these results, we speculated that the 6-wk CS exposure rat model is a reliable COPD rat model, while the 6-wk CS exposure combined with LPS post-treatment rat model is a suitable COPD exacerbation model for mucus hypersecretion study.
Collapse
Affiliation(s)
- Yi-Chu Nie
- Key Laboratory of Gene Engineering of the Ministry of Education, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xingangxi Street, Guangzhou 510275, PR China
| | | | | | | | | | | | | |
Collapse
|
77
|
Beasley V, Joshi PV, Singanayagam A, Molyneaux PL, Johnston SL, Mallia P. Lung microbiology and exacerbations in COPD. Int J Chron Obstruct Pulmon Dis 2012; 7:555-69. [PMID: 22969296 PMCID: PMC3437812 DOI: 10.2147/copd.s28286] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the most common chronic respiratory condition in adults and is characterized by progressive airflow limitation that is not fully reversible. The main etiological agents linked with COPD are cigarette smoking and biomass exposure but respiratory infection is believed to play a major role in the pathogenesis of both stable COPD and in acute exacerbations. Acute exacerbations are associated with more rapid decline in lung function and impaired quality of life and are the major causes of morbidity and mortality in COPD. Preventing exacerbations is a major therapeutic goal but currently available treatments for exacerbations are not very effective. Historically, bacteria were considered the main infective cause of exacerbations but with the development of new diagnostic techniques, respiratory viruses are also frequently detected in COPD exacerbations. This article aims to provide a state-of-the art review of current knowledge regarding the role of infection in COPD, highlight the areas of ongoing debate and controversy, and outline emerging technologies and therapies that will influence future diagnostic and therapeutic pathways in COPD.
Collapse
|
78
|
Jiang H, Hener P, Li J, Li M. Skin thymic stromal lymphopoietin promotes airway sensitization to inhalant house dust mites leading to allergic asthma in mice. Allergy 2012; 67:1078-82. [PMID: 22687045 DOI: 10.1111/j.1398-9995.2012.02857.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2012] [Indexed: 01/27/2023]
Abstract
Asthma is often preceded by atopic dermatitis (AD), a phenomenon known as 'atopic march'. It has been suggested that sensitization to common inhalant allergens, which is developed in a majority of patients with AD and often during the course of AD, may play a critical role in triggering the atopic march. Yet, what signal(s) delivered by AD skin could promote sensitization to inhalant allergens remains elusive. Here, by employing an experimental mouse asthma protocol, which is induced by airway sensitization and challenge to inhalant house dust mite (HDM), we demonstrate that the overproduction of cytokine thymic stromal lymphopoietin (TSLP) by AD skin promotes airway sensitization to HDM, thereby triggering subsequently an allergic asthma. Together, this study provides, for the first time, the experimental proof that TSLP represents an AD skin-delivered signal to promote sensitization to inhalant aeroallergen, which may account for one mechanism underlying the 'atopic march'.
Collapse
Affiliation(s)
- H. Jiang
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; Centre National de la Recherche Scientifique/Institut National de la Santé́ et de la Recherche Médicale/Université́ de Strasbourg; Illkirch Cedex; France
| | - P. Hener
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; Centre National de la Recherche Scientifique/Institut National de la Santé́ et de la Recherche Médicale/Université́ de Strasbourg; Illkirch Cedex; France
| | - J. Li
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; Centre National de la Recherche Scientifique/Institut National de la Santé́ et de la Recherche Médicale/Université́ de Strasbourg; Illkirch Cedex; France
| | - M. Li
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; Centre National de la Recherche Scientifique/Institut National de la Santé́ et de la Recherche Médicale/Université́ de Strasbourg; Illkirch Cedex; France
| |
Collapse
|
79
|
Kim JWS, Lee S, Lui N, Choi H, Mulvihill M, Fang LT, Kang HC, Kwon YW, Jablons D, Kim IJ. A somatic TSHR mutation in a patient with lung adenocarcinoma with bronchioloalveolar carcinoma, coronary artery disease and severe chronic obstructive pulmonary disease. Oncol Rep 2012; 28:1225-30. [PMID: 22842620 DOI: 10.3892/or.2012.1938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/14/2012] [Indexed: 11/06/2022] Open
Abstract
In a screen for thoracic malignancy-associated markers, thyroid stimulating hormone receptor (TSHR) was identified as a candidate as it binds to the previously-characterized lung cancer marker NKX2-1. We screened for mutations in all coding regions of the TSHR gene in 96 lung adenocarcinoma samples and their matched adjacent normal lung samples. We found one patient with a somatic mutation at codon 458 (exon 10), which is located at the transmembrane domain where most TSHR mutations have been found in thyroid-related diseases. This patient had lung adenocarcinoma with BAC (bronchioloalveolar carcinoma) features in the setting of a prior medical history significant for carotid stenosis and severe chronic obstructive pulmonary disease (COPD). In order to characterize the genetic features of TSHR in lung cancer, we checked for TSHR expression and copy number in the 96 lung cancer tissues. TSHR protein expression was generally overexpressed in multiple thoracic malignancies (adenocarcinoma, squamous cell carcinoma and malignant pleural mesothelioma) by immunohistochemistry. Our data suggest that aberrant TSHR function may contribute to lung cancer development or a subgroup of lung cancer with specific clinical phenotypes.
Collapse
Affiliation(s)
- James Wan Soo Kim
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Cho WCS. [Proteome profiling for the identification of lung cancer signatures]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2012; 15:C4-7. [PMID: 23676999 PMCID: PMC6134411 DOI: 10.3779/j.issn.1009-3419.2012.07.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
在新近蛋白质组学的发展中,对疾病蛋白质组的综合和深入研究已成为重要议题。已有研究报道了在包括肺癌在内的不同疾病中发现的一些生物标志物,有一些在肺癌诊断和预测中有潜在价值。然而,它们很少作为器官特异性生物标志物以充分比较不同肿瘤类别的模型。本文评价了最近发表的一项在不同基因工程小鼠模型中进行比较蛋白质组的研究,并阐明已发现标志物在人肺癌诊断中的有效性及应用。
Collapse
Affiliation(s)
- William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong.
| |
Collapse
|
81
|
Polosukhin VV, Degryse AL, Newcomb DC, Jones BR, Ware LB, Lee JW, Loyd JE, Blackwell TS, Lawson WE. Intratracheal bleomycin causes airway remodeling and airflow obstruction in mice. Exp Lung Res 2012; 38:135-46. [PMID: 22394287 DOI: 10.3109/01902148.2012.658595] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In addition to parenchymal fibrosis, fibrotic remodeling of the distal airways has been reported in interstitial lung diseases. Mechanisms of airway wall remodeling, which occurs in a variety of chronic lung diseases, are not well defined and current animal models are limited. The authors quantified airway remodeling in lung sections from subjects with idiopathic pulmonary fibrosis (IPF) and controls. To investigate intratracheal bleomycin as a potential animal model for fibrotic airway remodeling, the authors evaluated lungs from C57BL/6 mice after bleomycin treatment by histologic scoring for fibrosis and peribronchial inflammation, morphometric evaluation of subepithelial connective tissue volume density, TUNEL (terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling) assay, and immunohistochemistry for transforming growth factor β1 (TGFβ1), TGFβ2, and the fibroblast marker S100A4. Lung mechanics were determined at 3 weeks post bleomycin. IPF lungs had small airway remodeling with increased bronchial wall thickness compared to controls. Similarly, bleomycin-treated mice developed dose-dependent airway wall inflammation and fibrosis and greater airflow resistance after high-dose bleomycin. Increased TUNEL(+) bronchial epithelial cells and peribronchial inflammation were noted by 1 week, and expression of TGFβ1 and TGFβ2 and accumulation of S100A4(+) fibroblasts correlated with airway remodeling in a bleomycin dose-dependent fashion. IPF is characterized by small airway remodeling in addition to parenchymal fibrosis, a pattern also seen with intratracheal bleomycin. Bronchial remodeling from intratracheal bleomycin follows a cascade of events including epithelial cell injury, airway inflammation, profibrotic cytokine expression, fibroblast accumulation, and peribronchial fibrosis. Thus, this model can be utilized to investigate mechanisms of airway remodeling.
Collapse
Affiliation(s)
- Vasiliy V Polosukhin
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2650, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
A shorter and more specific oral sensitization-based experimental model of food allergy in mice. J Immunol Methods 2012; 381:41-9. [PMID: 22542400 DOI: 10.1016/j.jim.2012.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 12/16/2022]
Abstract
Cow's milk protein allergy (CMPA) is one of the most prevalent human food-borne allergies, particularly in children. Experimental animal models have become critical tools with which to perform research on new therapeutic approaches and on the molecular mechanisms involved. However, oral food allergen sensitization in mice requires several weeks and is usually associated with unspecific immune responses. To overcome these inconveniences, we have developed a new food allergy model that takes only two weeks while retaining the main characters of allergic response to food antigens. The new model is characterized by oral sensitization of weaned Balb/c mice with 5 doses of purified cow's milk protein (CMP) plus cholera toxin (CT) for only two weeks and posterior challenge with an intraperitoneal administration of the allergen at the end of the sensitization period. In parallel, we studied a conventional protocol that lasts for seven weeks, and also the non-specific effects exerted by CT in both protocols. The shorter protocol achieves a similar clinical score as the original food allergy model without macroscopically affecting gut morphology or physiology. Moreover, the shorter protocol caused an increased IL-4 production and a more selective antigen-specific IgG1 response. Finally, the extended CT administration during the sensitization period of the conventional protocol is responsible for the exacerbated immune response observed in that model. Therefore, the new model presented here allows a reduction not only in experimental time but also in the number of animals required per experiment while maintaining the features of conventional allergy models. We propose that the new protocol reported will contribute to advancing allergy research.
Collapse
|
83
|
Cho WCS. Proteome profiling for the identification of lung cancer signatures. Expert Rev Proteomics 2012; 8:689-92. [PMID: 22087654 DOI: 10.1586/epr.11.65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Comprehensive and in-depth discovery of the disease proteome is an important issue in recent proteomics developments. Previous studies have shown a number of biomarkers discovered in various diseases, including lung cancer. Some of them are potentially useful in lung cancer diagnostics and prognostics. However, few of them can act as organ-specific biomarkers to extensively compare multiple cancer models. This article evaluates a recently published study employing comparative proteomics on multiple genetically engineered mouse models and sheds light on the usefulness and application of the discovered marker panel for human lung cancer diagnostics.
Collapse
Affiliation(s)
- William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Room 1305, 13/F, Block R, 30 Gascoigne Road, Kowloon, Hong Kong.
| |
Collapse
|
84
|
Barrett EG, Day KC, Gigliotti AP, Reed MD, McDonald JD, Mauderly JL, Seilkop SK. Effects of simulated downwind coal combustion emissions on pre-existing allergic airway responses in mice. Inhal Toxicol 2012; 23:792-804. [PMID: 22035121 DOI: 10.3109/08958378.2011.609917] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Coal-fired power plant emissions can contribute a significant portion of the ambient air pollution in many parts of the world. OBJECTIVE We hypothesized that exposure to simulated downwind coal combustion emissions (SDCCE) may exacerbate pre-existing allergic airway responses. METHODS Mice were sensitized and challenged with ovalbumin (OVA). Parallel groups were sham-sensitized with saline. Mice were exposed 6 h/day for 3 days to air (control, C) or SDCCE containing particulate matter (PM) at low (L; 100 μg/m³), medium (M; 300 μg/m³), or high (H; 1000 μg/m³) concentrations, or to the H level with PM removed by filtration (high-filtered, HF). Immediately after SDCCE exposure, mice received another OVA challenge (pre-OVA protocol). In a second (post-OVA) protocol, mice were similarly sensitized but only challenged to OVA before air/SDCCE. Measurement of airway hyperresponsiveness (AHR), bronchoalveolar lavage (BAL), and blood collection were performed ~24 h after the last exposure. RESULTS SDCCE significantly increased BAL macrophages and eosinophils in OVA-sensitized mice from the post-OVA protocol. However, there was no effect of SDCCE on BAL macrophages or eosinophils in OVA-sensitized mice from the pre-OVA protocol. BAL neutrophils were elevated following SDCCE in both protocols in nonsensitized mice. These changes were not altered by filtering out the PM. In the post-OVA protocol, SDCCE decreased OVA-specific IgG₁ in OVA-sensitized mice but increased levels of total IgE, OVA-specific IgE and OVA-specific IgG₁ and IgG(2a) in non-sensitized animals. In the pre-OVA protocol, SDCCE increased OVA-specific IgE in both sensitized and non-sensitized animals. Additionally, BAL IL-4, IL-13, and IFN-γ levels were elevated in sensitized mice. CONCLUSION These results suggest that acute exposure to either the particulate or gaseous phase of SDCCE can exacerbate various features of allergic airway responses depending on the timing of exposure in relation to allergen challenge.
Collapse
Affiliation(s)
- Edward G Barrett
- Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA.
| | | | | | | | | | | | | |
Collapse
|
85
|
Rinaldi M, Maes K, De Vleeschauwer S, Thomas D, Verbeken EK, Decramer M, Janssens W, Gayan-Ramirez GN. Long-term nose-only cigarette smoke exposure induces emphysema and mild skeletal muscle dysfunction in mice. Dis Model Mech 2012; 5:333-41. [PMID: 22279084 PMCID: PMC3339827 DOI: 10.1242/dmm.008508] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mouse models of chronic obstructive pulmonary disease (COPD) focus on airway inflammation and lung histology, but their use has been hampered by the lack of pulmonary function data in their assessment. Systemic effects such as muscle dysfunction are also poorly modeled in emphysematous mice. We aimed to develop a cigarette-smoke-induced emphysema mouse model in which serial lung function and muscular dysfunction could be assessed, allowing the disease to be monitored more appropriately. C57Bl6 mice were nose-only exposed to cigarette smoke or filtered air for 3–6 months. Lung function tests were repeated in the same mice after 3 and 6 months of cigarette smoke or air exposure and compared with lung histological changes. Contractile properties of skeletal muscles and muscle histology were also determined at similar time points in separate groups of mice. Serial lung function measurements documented hyperinflation after 3 and 6 months of cigarette smoke exposure, with a significant 31–37% increase in total lung capacity (TLC) and a significant 26–35% increase in compliance (Cchord) when compared with animals exposed to filtered air only (P<0.001 after 3 and after 6 months). These functional changes preceded the changes in mean linear intercept, which became only significant after 6 months of cigarette smoke exposure and which correlated very well with TLC (r=0.74, P=0.004) and Cchord (r=0.79, P=0.001). After 6 months of cigarette smoke exposure, a significant fiber-type shift from IIa to IIx/b was also observed in the soleus muscle (P<0.05), whereas a 20% reduction of force was present at high stimulation frequencies (80 Hz; P=0.09). The extensor digitorum longus (EDL) muscle was not affected by cigarette smoke exposure. These serial pulmonary function variables are sensitive outcomes to detect emphysema progression in a nose-only cigarette-smoke-exposed animal model of COPD. In this model, muscular changes became apparent only after 6 months, particularly in muscles with a mixed fiber-type composition.
Collapse
Affiliation(s)
- Manuela Rinaldi
- Respiratory Muscle Research Unit, Katholieke Universiteit Leuven, Herestraat 49, Onderwijs en Navorsing 1, bus 706, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Allen IC, Lich JD, Arthur JC, Jania CM, Roberts RA, Callaway JB, Tilley SL, Ting JPY. Characterization of NLRP12 during the development of allergic airway disease in mice. PLoS One 2012; 7:e30612. [PMID: 22291998 PMCID: PMC3264608 DOI: 10.1371/journal.pone.0030612] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/22/2011] [Indexed: 11/19/2022] Open
Abstract
Among the 22 members of the nucleotide binding-domain, leucine rich repeat-containing (NLR) family, less than half have been functionally characterized. Of those that have been well studied, most form caspase-1 activating inflammasomes. NLRP12 is a unique NLR that has been shown to attenuate inflammatory pathways in biochemical assays and mediate the lymph node homing of activated skin dendritic cells in contact hypersensitivity responses. Since the mechanism between these two important observations remains elusive, we further evaluated the contribution of NLRP12 to organ specific adaptive immune responses by focusing on the lung, which, like skin, is exposed to both exogenous and endogenous inflammatory agents. In models of allergic airway inflammation induced by either acute ovalbumin (OVA) exposure or chronic house dust mite (HDM) antigen exposure, Nlrp12(-/-) mice displayed subtle differences in eosinophil and monocyte infiltration into the airways. However, the overall development of allergic airway disease and airway function was not significantly altered by NLRP12 deficiency. Together, the combined data suggest that NLRP12 does not play a vital role in regulating Th2 driven airway inflammation using common model systems that are physiologically relevant to human disease. Thus, the allergic airway inflammation models described here should be appropriate for subsequent studies that seek to decipher the contribution of NLRP12 in mediating the host response to agents associated with asthma exacerbation.
Collapse
Affiliation(s)
- Irving C. Allen
- Lineberger Comprehensive Cancer Center, Institute of Inflammatory Diseases and Center for Translational Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John D. Lich
- Lineberger Comprehensive Cancer Center, Institute of Inflammatory Diseases and Center for Translational Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Janelle C. Arthur
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Corey M. Jania
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Reid A. Roberts
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Justin B. Callaway
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephen L. Tilley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jenny P.-Y. Ting
- Lineberger Comprehensive Cancer Center, Institute of Inflammatory Diseases and Center for Translational Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
87
|
Helyes Z, Hajna Z. Endotoxin-Induced Airway Inflammation and Asthma Models. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2012. [DOI: 10.1007/978-1-62703-077-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
88
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) control cell growth, proliferation, cell survival, metabolic activity, vesicular trafficking, degranulation, and migration. Through these processes, PI3Ks modulate vital physiology. When over-activated in disease, PI3K promotes tumor growth, angiogenesis, metastasis or excessive immune cell activation in inflammation, allergy and autoimmunity. This chapter will introduce molecular activation and signaling of PI3Ks, and connections to target of rapamycin (TOR) and PI3K-related protein kinases (PIKKs). The focus will be on class I PI3Ks, and extend into current developments to exploit mechanistic knowledge for therapy.
Collapse
Affiliation(s)
- Matthias Wymann
- Institute Biochemistry & Genetics, Department Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland,
| |
Collapse
|
89
|
Mosgoeller W, Prassl R, Zimmer A. Nanoparticle-Mediated Treatment of Pulmonary Arterial Hypertension. Methods Enzymol 2012; 508:325-54. [DOI: 10.1016/b978-0-12-391860-4.00017-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
90
|
Berndt A, Savage HS, Stearns TM, Paigen B. Genetic analysis of lung function in inbred mice suggests vitamin D receptor as a candidate gene. Mol Genet Genomics 2011; 286:237-46. [PMID: 21850575 PMCID: PMC3175031 DOI: 10.1007/s00438-011-0642-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 08/04/2011] [Indexed: 01/25/2023]
Abstract
Vitamin D receptor (VDR) polymorphisms are associated with an increased asthma incidence in human populations; however, observations in Vdr knockout mice are unclear. The aim of our study was to determine the influence of the genetic variation in Vdr among inbred strains on lung resistance (i.e., dynamic and airway resistance). In an intercross between the strains C57BL/6J (B6) and KK/HlJ (KK), we identified that a significant QTL for dynamic resistance on Chr X was interacting with a QTL on Chr 15. The Chr 15 QTL peak was located in close proximity to the Vdr locus. We further examined if phenotypes of several inbred strains with varying Vdr genotypes differed. Strains with a B6-like genotype on the Vdr locus had significantly lower airway resistance than strains with a KK-like genotype. Vdr knockout mice were examined for dynamic resistance and showed significantly higher resistance than mice with one (i.e., heterozygous) or both copies (i.e., wild-type) of the Vdr. In comparison to B6, the strain A/J is more resistant but carries the same genotype at the Vdr locus. Dietary vitamin D manipulation in the strain A/J did not rescue the high airway resistance phenotype. Finally, we observed that serum vitamin D does not correlate significantly with lung resistance parameters in a survey of 18 strains. Conclusively, Vdr contributes to the phenotypic variation of lung resistance in inbred mice but other molecules in the Vdr pathway and extended network [i.e., Chr X gene(s)] may contribute as well.
Collapse
|
91
|
Models and approaches to understand the role of airway remodelling in disease. Pulm Pharmacol Ther 2011; 24:478-86. [PMID: 21824523 DOI: 10.1016/j.pupt.2011.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/19/2011] [Accepted: 07/21/2011] [Indexed: 11/23/2022]
Abstract
Airway remodelling is a collective term for changes in the amount or organisation of the cellular and molecular constituents of the airway wall. Remodelling occurs in and is associated with the pathophysiology of airways diseases including asthma and chronic obstructive pulmonary disease. The remodelling that occurs in these diseases exhibits both shared and distinct features. Remodelling is generally considered to be deleterious to airway function but recent studies also indicate potential protective effects. However, the true impact of different aspects of the remodelling process on lung function, both negative and positive, is poorly understood. In addition, the genetic susceptibility and processes by which environmental insults drive the cell and molecular events which result in airway remodelling and the potential for therapeutic reversibility are also incompletely understood. The last 10-15 years has seen the development of animal models of airway remodelling which have been refined and modified as new factors such as exacerbations and early life influences have been recognised as being of importance. In addition, invertebrate models have been put forward and complex in vitro culture systems and lung slice preparations developed. In parallel, imaging technology has developed to an extent where it is feasible using a combination of techniques to image structural components, cells and proteins in the airway wall as well as to analyse biological processes, cell and receptor activation non-invasively over time. The integration of data from in vivo and in vitro models together with use of imaging techniques in man and animals should allow validation of models, further our understanding of the pathophysiology of airway remodelling and potentially improve predictive accuracy for the translation of novel therapeutic agents into the clinic.
Collapse
|