51
|
Bruce VJ, Ta AN, McNaughton BR. Minimalist Antibodies and Mimetics: An Update and Recent Applications. Chembiochem 2016; 17:1892-1899. [DOI: 10.1002/cbic.201600303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Virginia J. Bruce
- Department of Chemistry; Colorado State University; Fort Collins CO 80523 USA
| | - Angeline N. Ta
- Department of Chemistry; Colorado State University; Fort Collins CO 80523 USA
| | - Brian R. McNaughton
- Department of Chemistry; Colorado State University; Fort Collins CO 80523 USA
- Department of Biochemistry and Molecular Biology; Colorado State University; Fort Collins CO 80523 USA
| |
Collapse
|
52
|
Pye H, Butt MA, Reinert HW, Maruani A, Nunes JPM, Marklew JS, Qurashi M, Funnell L, May A, Stamati I, Hamoudi R, Baker JR, Smith MEB, Caddick S, Deonarain MP, Yahioglu G, Chudasama V, Lovat LB. A HER2 selective theranostic agent for surgical resection guidance and photodynamic therapy. Photochem Photobiol Sci 2016; 15:1227-1238. [PMID: 27501936 DOI: 10.1039/c6pp00139d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In many cancers early intervention involves surgical resection of small localised tumour masses. Inadequate resection leads to recurrence whereas overzealous treatment can lead to organ damage. This work describes production of a HER2 targeting antibody Fab fragment dual conjugated to achieve both real time near-infrared fluorescent imaging and photodynamic therapy. The use of fluorescence emission from a NIR-dye could be used to guide resection of tumour bulk, for example during endoscopic diagnosis for oesophago-gastric adenocarcinoma, this would then be followed by activation of the photodynamic therapeutic agent to destroy untreated localised areas of cancer infiltration and tumour infiltrated lymph nodes. This theranostic agent was prepared from the Fab fragment of trastuzumab initially by functional disulfide re-bridging and site-specific click reaction of a NIR-dye. This was followed by further reaction with a novel pre-activated form of the photosensitiser chlorin e6 with the exposed fragments' lysine residues. Specific binding of the theranostic agent was observed in vitro with a HER2 positive cell line and cellular near-infrared fluorescence was observed with flow cytometry. Specific photo-activity of the conjugates when exposed to laser light was observed with HER2 positive but not HER2 negative cell lines in vitro, this selectivity was not seen with the unconjugated drug. This theranostic agent demonstrates that two different photo-active functions can be coupled to the same antibody fragment with little interference to their independent activities.
Collapse
Affiliation(s)
- H Pye
- Department for Tissue & Energy, Division of Surgery & Interventional Science, University College London, Cruciform Building, Gower Street, London, WC1E 6AE, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Giddabasappa A, Gupta VR, Norberg R, Gupta P, Spilker ME, Wentland J, Rago B, Eswaraka J, Leal M, Sapra P. Biodistribution and Targeting of Anti-5T4 Antibody-Drug Conjugate Using Fluorescence Molecular Tomography. Mol Cancer Ther 2016; 15:2530-2540. [PMID: 27466353 DOI: 10.1158/1535-7163.mct-15-1012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 07/06/2016] [Indexed: 11/16/2022]
Abstract
Understanding a drug's whole-body biodistribution and tumor targeting can provide important information regarding efficacy, safety, and dosing parameters. Current methods to evaluate biodistribution include in vivo imaging technologies like positron electron tomography and single-photon emission computed tomography or ex vivo quantitation of drug concentrations in tissues using autoradiography and standard biochemical assays. These methods use radioactive compounds or are cumbersome and do not give whole-body information. Here, for the first time, we show the utility of fluorescence molecular tomography (FMT) imaging to determine the biodistribution and targeting of an antibody-drug conjugate (ADC). An anti-5T4-antibody (5T4-Ab) and 5T4-ADC were conjugated with a near-infrared (NIR) fluorophore VivoTag 680XL (VT680). Both conjugated compounds were stable as determined by SEC-HPLC and plasma stability studies. Flow cytometry and fluorescence microscopy studies showed that VT680-conjugated 5T4-ADC specifically bound 5T4-expressing cells in vitro and also exhibited a similar cytotoxicity profile as the unconjugated 5T4-ADC. In vivo biodistribution and tumor targeting in an H1975 subcutaneous xenograft model demonstrated no significant differences between accumulation of VT680-conjugated 5T4-Ab or 5T4-ADC in either normal tissues or tumor. In addition, quantitation of heart signal from FMT imaging showed good correlation with the plasma pharmacokinetic profile suggesting that it (heart FMT imaging) may be a surrogate for plasma drug clearance. These results demonstrate that conjugation of VT680 to 5T4-Ab or 5T4-ADC does not change the behavior of native biologic, and FMT imaging can be a useful tool to understand biodistribution and tumor-targeting kinetics of antibodies, ADCs, and other biologics. Mol Cancer Ther; 15(10); 2530-40. ©2016 AACR.
Collapse
Affiliation(s)
- Anand Giddabasappa
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, California.
| | - Vijay R Gupta
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, California
| | - Rand Norberg
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, California
| | - Parul Gupta
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, California
| | - Mary E Spilker
- Pharmacokinetics Dynamics and Metabolism, Pfizer Inc., San Diego, California
| | - Joann Wentland
- Pharmacokinetics Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut
| | - Brian Rago
- Pharmacokinetics Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut
| | - Jeetendra Eswaraka
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, California
| | - Mauricio Leal
- Pharmacokinetics Dynamics and Metabolism, Pfizer Inc., Pearl River, New York
| | - Puja Sapra
- Oncology Research Unit, Pfizer Inc., Pearl River, New York
| |
Collapse
|
54
|
Marchal S, El Hor A, Millard M, Gillon V, Bezdetnaya L. Anticancer Drug Delivery: An Update on Clinically Applied Nanotherapeutics. Drugs 2016; 75:1601-11. [PMID: 26323338 DOI: 10.1007/s40265-015-0453-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The development of chemotherapy using conventional anticancer drugs has been hindered due to several drawbacks related to their poor water solubility and poor pharmacokinetics, leading to severe adverse side effects and multidrug resistance in patients. Nanocarriers were developed to palliate these problems by improving drug delivery, opening the era of nanomedicine in oncology. Liposomes have been by far the most used nanovectors for drug delivery, with liposomal doxorubicin receiving US FDA approval as early as 1995. Antibody drug conjugates and promising drug delivery systems based on a natural polymer, such as albumin, or a synthetic polymer, are currently undergoing advanced clinical trials or have received approval for clinical applications. However, despite attractive results being obtained in preclinical studies, many well-designed nanodrugs fell short of expectations when tested in patients, evidencing the gap between nanoparticle design and their clinical translation. The aim of this review is to evaluate the extent of nanotherapeutics used in oncology by providing an insight into the most successful concepts. The reasons that prevent nanodrugs from expanding to clinic are discussed, and the efforts that must be taken to take full advantage of the great potential of nanomedicine are highlighted.
Collapse
Affiliation(s)
- Sophie Marchal
- Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, BP 70239, 54506, Vandœuvre-lès-Nancy Cedex, France. .,CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, BP 70239, 54506, Vandœuvre-lès-Nancy Cedex, France. .,Research Department, Institut de Cancérologie de Lorraine, Avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy, France.
| | - Amélie El Hor
- Research Department, Institut de Cancérologie de Lorraine, Avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy, France.,Faculté de Pharmacie, Université de Lorraine, 30 rue Lionnois, 54000, Nancy, France
| | - Marie Millard
- Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, BP 70239, 54506, Vandœuvre-lès-Nancy Cedex, France.,CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, BP 70239, 54506, Vandœuvre-lès-Nancy Cedex, France
| | - Véronique Gillon
- Research Department, Institut de Cancérologie de Lorraine, Avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy, France
| | - Lina Bezdetnaya
- Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, BP 70239, 54506, Vandœuvre-lès-Nancy Cedex, France.,CNRS, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Campus Sciences, BP 70239, 54506, Vandœuvre-lès-Nancy Cedex, France.,Research Department, Institut de Cancérologie de Lorraine, Avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy, France
| |
Collapse
|
55
|
Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci 2016; 107:1039-46. [PMID: 27166974 PMCID: PMC4946713 DOI: 10.1111/cas.12966] [Citation(s) in RCA: 456] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 12/16/2022] Open
Abstract
Antibody–drug conjugates deliver anticancer agents selectively and efficiently to tumor tissue and have significant antitumor efficacy with a wide therapeutic window. DS‐8201a is a human epidermal growth factor receptor 2 (HER2)‐targeting antibody–drug conjugate prepared using a novel linker‐payload system with a potent topoisomerase I inhibitor, exatecan derivative (DX‐8951 derivative, DXd). It was effective against trastuzumab emtansine (T‐DM1)‐insensitive patient‐derived xenograft models with both high and low HER2 expression. In this study, the bystander killing effect of DS‐8201a was evaluated and compared with that of T‐DM1. We confirmed that the payload of DS‐8201a, DXd (1), was highly membrane‐permeable whereas that of T‐DM1, Lys‐SMCC‐DM1, had a low level of permeability. Under a coculture condition of HER2‐positive KPL‐4 cells and negative MDA‐MB‐468 cells in vitro, DS‐8201a killed both cells, whereas T‐DM1 and an antibody–drug conjugate with a low permeable payload, anti‐HER2‐DXd (2), did not. In vivo evaluation was carried out using mice inoculated with a mixture of HER2‐positive NCI‐N87 cells and HER2‐negative MDA‐MB‐468‐Luc cells by using an in vivo imaging system. In vivo, DS‐8201a reduced the luciferase signal of the mice, indicating suppression of the MDA‐MB‐468‐Luc population; however, T‐DM1 and anti‐HER2‐DXd (2) did not. Furthermore, it was confirmed that DS‐8201a was not effective against MDA‐MB‐468‐Luc tumors inoculated at the opposite side of the NCI‐N87 tumor, suggesting that the bystander killing effect of DS‐8201a is observed only in cells neighboring HER2‐positive cells, indicating low concern in terms of systemic toxicity. These results indicated that DS‐8201a has a potent bystander effect due to a highly membrane‐permeable payload and is beneficial in treating tumors with HER2 heterogeneity that are unresponsive to T‐DM1.
Collapse
Affiliation(s)
- Yusuke Ogitani
- Biologics & Immuno-Oncology Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Katsunobu Hagihara
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Masataka Oitate
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Hiroyuki Naito
- Oncology Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Toshinori Agatsuma
- Biologics & Immuno-Oncology Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
56
|
Zagouri F, Terpos E, Kastritis E, Dimopoulos MA. Emerging antibodies for the treatment of multiple myeloma. Expert Opin Emerg Drugs 2016; 21:225-37. [DOI: 10.1080/14728214.2016.1186644] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
57
|
Barth RF, Wu G, Meisen WH, Nakkula RJ, Yang W, Huo T, Kellough DA, Kaumaya P, Turro C, Agius LM, Kaur B. Design, synthesis, and evaluation of cisplatin-containing EGFR targeting bioconjugates as potential therapeutic agents for brain tumors. Onco Targets Ther 2016; 9:2769-81. [PMID: 27274273 PMCID: PMC4869632 DOI: 10.2147/ott.s99242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate four different platinated bioconjugates containing a cisplatin (cis-diamminedichloroplatinum [cis-DDP]) fragment and epidermal growth factor receptor (EGFR)-targeting moieties as potential therapeutic agents for the treatment of brain tumors using a human EGFR-expressing transfectant of the F98 rat glioma (F98EGFR) to assess their efficacy. The first two bioconjugates employed the monoclonal antibody cetuximab (C225 or Erbitux®) as the targeting moiety, and the second two used genetically engineered EGF peptides. C225-G5-Pt was produced by reacting cis-DDP with a fifth-generation polyamidoamine dendrimer (G5) and then linking it to C225 by means of two heterobifunctional reagents. The second bioconjugate (C225-PG-Pt) employed the same methodology except that polyglutamic acid was used as the carrier. The third and fourth bioconjugates used two different EGF peptides, PEP382 and PEP455, with direct coordination to the Pt center of the cis-DDP fragment. In vivo studies with C225-G5-Pt failed to demonstrate therapeutic activity following intracerebral (ic) convection-enhanced delivery (CED) to F98EGFR glioma-bearing rats. The second bioconjugate, C225-PG-Pt, failed to show in vitro cytotoxicity. Furthermore, because of its high molecular weight, we decided that lower molecular weight peptides might provide better targeting and microdistribution within the tumor. Both PEP382-Pt and PEP455-Pt bioconjugates were cytotoxic in vitro and, based on this, a pilot study was initiated using PEP455-Pt. The end point for this study was tumor size at 6 weeks following tumor cell implantation and 4 weeks following ic CED of PEP455-Pt to F98 glioma-bearing rats. Neuropathologic examination revealed that five of seven rats were either tumor-free or only had microscopic tumors at 42 days following tumor implantation compared to a mean survival time of 20.5 and 26.3 days for untreated controls. In conclusion, we have succeeded in reformatting the toxicity profile of cis-DDP and demonstrated the therapeutic efficacy of the PEP455-Pt bioconjugate in F98 glioma-bearing rats.
Collapse
Affiliation(s)
- Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Gong Wu
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - W Hans Meisen
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Robin J Nakkula
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Weilian Yang
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Tianyao Huo
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - David A Kellough
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Pravin Kaumaya
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, USA; Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Lawrence M Agius
- Department of Pathology, Mater Dei Hospital, University of Malta Medical School, Msida, Malta
| | - Balveen Kaur
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
58
|
Yusibov V, Kushnir N, Streatfield SJ. Antibody Production in Plants and Green Algae. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:669-701. [PMID: 26905655 DOI: 10.1146/annurev-arplant-043015-111812] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | - Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | | |
Collapse
|
59
|
Said N, Gahoual R, Kuhn L, Beck A, François YN, Leize-Wagner E. Structural characterization of antibody drug conjugate by a combination of intact, middle-up and bottom-up techniques using sheathless capillary electrophoresis - Tandem mass spectrometry as nanoESI infusion platform and separation method. Anal Chim Acta 2016; 918:50-9. [PMID: 27046210 DOI: 10.1016/j.aca.2016.03.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 12/29/2022]
Abstract
Antibody-drug conjugates (ADCs) represent a fast growing class of biotherapeutic products. Their production leads to a distribution of species exhibiting different number of conjugated drugs overlaying the inherent complexity resulting from the monoclonal antibody format, such as glycoforms. ADCs require an additional level of characterization compared to first generation of biotherapeutics obtained through multiple analytical techniques for complete structure assessment. We report the development of complementary approaches implementing sheathless capillary electrophoresis-mass spectrometry (sheathless CE-MS) to characterize the different aspects defining the structure of brentuximab vedotin. Native MS using sheathless CE-MS instrument as a nanoESI infusion platform enabled accurate mass measurements and estimation of the average drug to antibody ratio alongside to drug load distribution. Middle-up analysis performed after limited IdeS proteolysis allowed to study independently the light chain, Fab and F(ab')2 subunits incorporating 1, 0 to 4 and 0 to 8 payloads respectively. Finally, a CZE-ESI-MS/MS methodology was developed in order to be compatible with hydrophobic drug composing ADCs. From a single injection, complete sequence coverage could be achieved. Using the same dataset, glycosylation and drug-loaded peptides could be simultaneously identified revealing robust information regarding their respective localization and abundance. Drug-loaded peptide fragmentation mass spectra study demonstrated drug specific fragments reinforcing identification confidence, undescribed so far. Results reveal the method ability to characterize ADCs primary structure in a comprehensive manner while reducing tremendously the number of experiments required. Data generated showed that sheathless CZE-ESI-MS/MS characteristics position the methodology developed as a relevant alternative for comprehensive multilevel characterization of these complex biomolecules.
Collapse
Affiliation(s)
- Nassur Said
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France
| | - Rabah Gahoual
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France; Division of BioAnalytical Chemistry, AIMMS Research Group BioMolecular Analysis, VU University Amsterdam, Amsterdam, The Netherlands
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, FRC 1589, CNRS, Université de Strasbourg, Strasbourg, France
| | - Alain Beck
- Centre d'immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Yannis-Nicolas François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France.
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
60
|
Diamantis N, Banerji U. Antibody-drug conjugates--an emerging class of cancer treatment. Br J Cancer 2016; 114:362-7. [PMID: 26742008 PMCID: PMC4815767 DOI: 10.1038/bjc.2015.435] [Citation(s) in RCA: 366] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 01/06/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are an emerging novel class of anticancer treatment agents that combines the selectivity of targeted treatment with the cytotoxic potency of chemotherapy drugs. New linker technology associated with novel highly potent cytotoxic payloads has permitted the development of more effective and safe ADCs. In recent years, two ADCs have been licensed, T-DM1 and brentuximab vedotin, and are already establishing their place in cancer treatment. A plethora of ADCs are being investigated in phases I and II trials, emerging data of which appears promising. As we deepen our understanding of what makes a successful ADC, an increasing number of ADCs will likely become viable treatment options as single agents or in combination with chemotherapy. This review will present the philosophy underlying ADCs, their main characteristics and current research developments with a focus on ADCs in solid tumours.
Collapse
Affiliation(s)
- Nikolaos Diamantis
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden, Downs Road, Sutton, London SM2 5PT, UK
| | - Udai Banerji
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden, Downs Road, Sutton, London SM2 5PT, UK
| |
Collapse
|
61
|
Suzuki R, Omata D, Oda Y, Unga J, Negishi Y, Maruyama K. Cancer Therapy with Nanotechnology-Based Drug Delivery Systems: Applications and Challenges of Liposome Technologies for Advanced Cancer Therapy. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3121-7_23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
62
|
Miura T, Nagamune T, Kawahara M. Ligand-inducible dimeric antibody for selecting antibodies against a membrane protein based on mammalian cell proliferation. Biotechnol Bioeng 2015; 113:1113-23. [DOI: 10.1002/bit.25858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/23/2015] [Accepted: 10/13/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Tomohiro Miura
- Department of Bioengineering; Graduate School of Engineering, The University of Tokyo; Tokyo Japan
| | - Teruyuki Nagamune
- Department of Bioengineering; Graduate School of Engineering, The University of Tokyo; Tokyo Japan
- Department of Chemistry and Biotechnology; Graduate School of Engineering, The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku; Tokyo 113-8656 Japan
| | - Masahiro Kawahara
- Department of Chemistry and Biotechnology; Graduate School of Engineering, The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku; Tokyo 113-8656 Japan
| |
Collapse
|
63
|
Akash MSH, Rehman K, Parveen A, Ibrahim M. Antibody-drug conjugates as drug carrier systems for bioactive agents. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1038818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
64
|
Hinrichs MJM, Dixit R. Antibody Drug Conjugates: Nonclinical Safety Considerations. AAPS J 2015; 17:1055-64. [PMID: 26024656 PMCID: PMC4540738 DOI: 10.1208/s12248-015-9790-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/14/2015] [Indexed: 02/08/2023] Open
Abstract
Antibody drug conjugates (ADCs) are biopharmaceutical molecules consisting of a cytotoxic small molecule covalently linked to a targeted protein carrier via a stable cleavable or noncleavable linker. The process of conjugation yields a highly complex molecule with biochemical properties that are distinct from those of the unconjugated components. The impact of these biochemical differences on the safety and pharmacokinetic (PK) profile of the conjugate must be considered when determining the types of nonclinical safety studies required to support clinical development of ADCs. The hybrid nature of ADCs highlights the need for a science-based approach to safety assessment that incorporates relevant aspects of small and large molecule testing paradigms. This thinking is reflected in current regulatory guidelines, where sections pertaining to conjugates allow for a flexible approach to nonclinical safety testing. The aim of this article is to review regulatory expectations regarding early assessment of nonclinical safety considerations and discuss how recent advances in our understanding of ADC-mediated toxicity can be used to guide the types of nonclinical safety studies needed to support ADC clinical development. The review will also explore nonclinical testing strategies that can be used to streamline ADC development by assessing the safety and efficacy of next generation ADC constructs using a rodent screen approach.
Collapse
Affiliation(s)
- Mary Jane Masson Hinrichs
- Department of Translational Sciences, MedImmune LLC, One MedImmune Way, Gaithersburg, Maryland, 20878, USA,
| | | |
Collapse
|
65
|
Li W, Wei H, Li H, Gao J, Feng SS, Guo Y. Cancer nanoimmunotherapy using advanced pharmaceutical nanotechnology. Nanomedicine (Lond) 2015; 9:2587-605. [PMID: 25490427 DOI: 10.2217/nnm.14.127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy is a promising option for cancer treatment that might cure cancer with fewer side effects by primarily activating the host's immune system. However, the effect of traditional immunotherapy is modest, frequently due to tumor escape and resistance of multiple mechanisms. Pharmaceutical nanotechnology, which is also called cancer nanotechnology or nanomedicine, has provided a practical solution to solve the limitations of traditional immunotherapy. This article reviews the latest developments in immunotherapy and nanomedicine, and illustrates how nanocarriers (including micelles, liposomes, polymer-drug conjugates, solid lipid nanoparticles and biodegradable nanoparticles) could be used for the cellular transfer of immune effectors for active and passive nanoimmunotherapy. The fine engineering of nanocarriers based on the unique features of the tumor microenvironment and extra-/intra-cellular conditions of tumor cells can greatly tip the triangle immunobalance among host, tumor and nanoparticulates in favor of antitumor responses, which shows a promising prospect for nanoimmunotherapy.
Collapse
Affiliation(s)
- Wei Li
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China
| | | | | | | | | | | |
Collapse
|
66
|
Tang L, Tong R, Coyle VJ, Yin Q, Pondenis H, Borst LB, Cheng J, Fan TM. Targeting tumor vasculature with aptamer-functionalized doxorubicin-polylactide nanoconjugates for enhanced cancer therapy. ACS NANO 2015; 9:5072-5081. [PMID: 25938427 DOI: 10.1021/acsnano.5b00166] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An A10 aptamer (Apt)-functionalized, sub-100 nm doxorubicin-polylactide (Doxo-PLA) nanoconjugate (NC) with controlled release profile was developed as an intravenous therapeutic strategy to effectively target and cytoreduce canine hemangiosarcoma (cHSA), a naturally occurring solid tumor malignancy composed solely of tumor-associated endothelium. cHSA consists of a pure population of malignant endothelial cells expressing prostate-specific membrane antigen (PSMA) and is an ideal comparative tumor model system for evaluating the specificity and feasibility of tumor-associated endothelial cell targeting by A10 Apt-functionalized NC (A10 NC). In vitro, A10 NCs were selectively internalized across a panel of PSMA-expressing cancer cell lines, and when incorporating Doxo, A10 Doxo-PLA NCs exerted greater cytotoxic effects compared to nonfunctionalized Doxo-PLA NCs and free Doxo. Importantly, intravenously delivered A10 NCs selectively targeted PSMA-expressing tumor-associated endothelial cells at a cellular level in tumor-bearing mice and dramatically increased the uptake of NCs by endothelial cells within the local tumor microenvironment. By virtue of controlled drug release kinetics and selective tumor-associated endothelial cell targeting, A10 Doxo-PLA NCs possess a desirable safety profile in vivo, being well-tolerated following high-dose intravenous infusion in mice, as supported by the absence of any histologic organ toxicity. In cHSA-implanted mice, two consecutive intravenous infusions of A10 Doxo-PLA NCs exerted rapid and substantial cytoreductive activities within a period of 7 days, resulting in greater than 70% reduction in macroscopic tumor-associated endothelial cell burden as a consequence of enhanced cell death and necrosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Luke B Borst
- §Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina 27607, United States
| | | | | |
Collapse
|
67
|
Singh SK, Luisi DL, Pak RH. Antibody-Drug Conjugates: Design, Formulation and Physicochemical Stability. Pharm Res 2015; 32:3541-71. [PMID: 25986175 DOI: 10.1007/s11095-015-1704-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/23/2015] [Indexed: 01/13/2023]
Abstract
The convergence of advanced understanding of biology with chemistry has led to a resurgence in the development of antibody-drug conjugates (ADCs), especially with two recent product approvals. Design and development of ADCs requires the synergistic combination of the monoclonal antibody, the linker and the payload. Advances in antibody science has enabled identification and generation of high affinity, highly selective, humanized or human antibodies for a given target. Novel linker technologies have been synthesized and highly potent cytotoxic drug payloads have been created. As the first generation of ADCs utilizing lysine and cysteine chemistries moves through the clinic and into commercialization, second generation ADCs involving site specific conjugation technologies are being evaluated and tested. The latter aim to be better characterized and controlled, with wider therapeutic indices as well as improved pharmacokinetic-pharmacodynamic (PK-PD) profiles. ADCs offer some interesting physicochemical properties, due to conjugation itself, and to the (often) hydrophobic payloads that must be considered during their CMC development. New analytical methodologies are required for the ADCs, supplementing those used for the antibody itself. Regulatory filings will be a combination of small molecule and biologics. The regulators have put forth some broad principles but this landscape is still evolving.
Collapse
Affiliation(s)
- Satish K Singh
- Pfizer, Inc., Pharmaceutical R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017, USA
| | - Donna L Luisi
- Pfizer, Inc., Pharmaceutical R&D, 1 Burtt Road, Bldg. K, Andover, Massachusetts, 01810, USA
| | - Roger H Pak
- Pfizer, Inc., Pharmaceutical R&D, 1 Burtt Road, Bldg. K, Andover, Massachusetts, 01810, USA.
| |
Collapse
|
68
|
Tomé-Amat J, Olombrada M, Ruiz-de-la-Herrán J, Pérez-Gómez E, Andradas C, Sánchez C, Martínez L, Martínez-Del-Pozo Á, Gavilanes JG, Lacadena J. Efficient in vivo antitumor effect of an immunotoxin based on ribotoxin α-sarcin in nude mice bearing human colorectal cancer xenografts. SPRINGERPLUS 2015; 4:168. [PMID: 25883890 PMCID: PMC4393403 DOI: 10.1186/s40064-015-0943-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/12/2015] [Accepted: 03/24/2015] [Indexed: 11/17/2022]
Abstract
Tagging of RNases, such as the ribotoxin α-sarcin, with the variable domains of antibodies directed to surface antigens that are selectively expressed on tumor cells endows cellular specificity to their cytotoxic action. A recombinant single-chain immunotoxin based on the ribotoxin α-sarcin (IMTXA33αS), produced in the generally regarded as safe (GRAS) yeast Pichia pastoris, has been recently described as a promising candidate for the treatment of colorectal cancer cells expressing the glycoprotein A33 (GPA33) antigen, due to its high specific and effective cytotoxic effect on in vitro assays against targeted cells. Here we report the in vivo antitumor effectiveness of this immunotoxin on nude mice bearing GPA33-positive human colon cancer xenografts. Two sets of independent assays were performed, including three experimental groups: control (PBS) and treatment with two different doses of immunotoxin (50 or 100 μg/ injection) (n = 8). Intraperitoneal administration of IMTXA33αS resulted in significant dose-dependent tumor growth inhibition. In addition, the remaining tumors excised from immunotoxin-treated mice showed absence of the GPA33 antigen and a clear inhibition of angiogenesis and proliferative capacity. No signs of immunotoxin-induced pathological changes were observed from specimens tissues. Overall these results show efficient and selective cytotoxic action on tumor xenografts, combined with the lack of severe side effects, suggesting that IMTXA33αS is a potential therapeutic agent against colorectal cancer.
Collapse
Affiliation(s)
- Jaime Tomé-Amat
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain ; Present address: Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Miriam Olombrada
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain
| | - Javier Ruiz-de-la-Herrán
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain
| | - Eduardo Pérez-Gómez
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain ; Instituto de Investigación Hospital 12 de Octubre, Madrid, 28041 Spain
| | - Clara Andradas
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain ; Instituto de Investigación Hospital 12 de Octubre, Madrid, 28041 Spain
| | - Cristina Sánchez
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain ; Instituto de Investigación Hospital 12 de Octubre, Madrid, 28041 Spain
| | | | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain
| | - Javier Lacadena
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Madrid, 28040 Spain
| |
Collapse
|
69
|
Ezzatifar F, Majidi J, Baradaran B, Aghebati Maleki L, Abdolalizadeh J, Yousefi M. Large scale generation and characterization of anti-human IgA monoclonal antibody in ascitic fluid of BALB/c mice. Adv Pharm Bull 2015; 5:97-102. [PMID: 25789225 DOI: 10.5681/apb.2015.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Monoclonal antibodies are potentially powerful tools used in biomedical research, diagnosis, and treatment of infectious diseases and cancers. The monoclonal antibody against Human IgA can be used as a diagnostic application to detect infectious diseases. The aim of this study was to improve an appropriate protocol for large-scale production of mAbs against IgA. METHODS For large-scale production of the monoclonal antibody, hybridoma cells that produce monoclonal antibodies against Human IgA were injected intraperitoneally into Balb/c mice that were previously primed with 0.5 ml Pristane. After ten days, ascitic fluid was harvested from the peritoneum of each mouse. The ELISA method was carried out for evaluation of the titration of produced mAbs. The ascitic fluid was investigated in terms of class and subclass by a mouse mAb isotyping kit. MAb was purified from the ascitic fluid by ion exchange chromatography. The purity of the monoclonal antibody was confirmed by SDS-PAGE, and the purified monoclonal antibody was conjugated with HRP. RESULTS Monoclonal antibodies with high specificity and sensitivity against Human IgA were prepared by hybridoma technology. The subclass of antibody was IgG1 and its light chain was the kappa type. CONCLUSION This conjugated monoclonal antibody could have applications in designing ELISA kits in order to diagnose different infectious diseases such as toxoplasmosis and H. Pylori.
Collapse
Affiliation(s)
- Fatemeh Ezzatifar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Tabriz University of Medical Sciences, International Branch Aras, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Majidi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
70
|
Limasale YDP, Tezcaner A, Özen C, Keskin D, Banerjee S. Epidermal growth factor receptor-targeted immunoliposomes for delivery of celecoxib to cancer cells. Int J Pharm 2015; 479:364-73. [PMID: 25595386 DOI: 10.1016/j.ijpharm.2015.01.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/07/2015] [Accepted: 01/10/2015] [Indexed: 12/14/2022]
Abstract
Cyclooxygenase-2 (COX-2) is highly expressed in many different cancers. Therefore, the inhibition of the COX-2 pathway by a selective COX-2 inhibitor, celecoxib (CLX), may be an alternative strategy for cancer prevention and therapy. Liposomal drug delivery systems can be used to increase the therapeutic efficacy of CLX while minimizing its side effects. Previous studies have reported the encapsulation of CLX within the non-targeted long circulating liposomes and functional effect of these formulations against colorectal cancer cell lines. However, the selectivity and internalization of CLX-loaded liposomes can further be improved by grafting targeting ligands on their surface. Cetuximab (anti-epidermal growth factor receptor - EGFR - monoclonal antibody) is a promising targeting ligand since EGFR is highly expressed in a wide range of solid tumors. The aim of this study was to develop EGFR-targeted immunoliposomes for enhancing the delivery of CLX to cancer cells and to evaluate the functional effects of these liposomes in cancer cell lines. EGFR-targeted ILs, having an average size of 120nm, could encapsulate 40% of the CLX, while providing a sustained drug release profile. Cell association studies have also shown that the immunoliposome uptake was higher in EGFR-overexpressing cells compared to the non-targeted liposomes. In addition, the CLX-loaded-anti-EGFR immunoliposomes were significantly more toxic compared to the non-targeted ones in cancer cells with EGFR-overexpression but not in the cells with low EGFR expression, regardless of their COX-2 expression status. Thus, selective targeting of CLX with anti-EGFR immunoliposomes appears to be a promising strategy for therapy of tumors that overexpress EGFR.
Collapse
Affiliation(s)
| | - Ayşen Tezcaner
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Can Özen
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Dilek Keskin
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Sreeparna Banerjee
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey.
| |
Collapse
|
71
|
Filntisi A, Vlachakis D, Matsopoulos GK, Kossida S. Computational Construction of Antibody-Drug Conjugates Using Surface Lysines as the Antibody Conjugation Site and a Non-cleavable Linker. Cancer Inform 2014; 13:179-86. [PMID: 25506200 PMCID: PMC4260860 DOI: 10.4137/cin.s19222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 11/24/2022] Open
Abstract
Antibody–drug conjugates (ADCs) constitute a category of anticancer targeted therapy that has gathered great interest during the last few years because of their potential to kill cancer cells while causing significantly fewer side effects than traditional chemotherapy. In this paper, a process of computational construction of ADCs is described, using the surface lysines of an antibody and a non-covalent linker molecule, as well as a cytotoxic substance, as files in Protein Data Bank format. Also, aspects related to the function, properties, and development of ADCs are discussed.
Collapse
Affiliation(s)
- Arianna Filntisi
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece. ; Bioinformatics and Medical Informatics Team, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios Vlachakis
- Bioinformatics and Medical Informatics Team, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George K Matsopoulos
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Sophia Kossida
- Bioinformatics and Medical Informatics Team, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
72
|
|
73
|
The Chemistry-Biology-Medicine Continuum and the Drug Discovery and Development Process in Academia. ACTA ACUST UNITED AC 2014; 21:1039-45. [DOI: 10.1016/j.chembiol.2014.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/30/2014] [Accepted: 07/21/2014] [Indexed: 12/21/2022]
|
74
|
Cohen R, Vugts DJ, Visser GWM, Stigter-van Walsum M, Bolijn M, Spiga M, Lazzari P, Shankar S, Sani M, Zanda M, van Dongen GAMS. Development of novel ADCs: conjugation of tubulysin analogues to trastuzumab monitored by dual radiolabeling. Cancer Res 2014; 74:5700-10. [PMID: 25145670 DOI: 10.1158/0008-5472.can-14-1141] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tubulysins are highly toxic tubulin-targeting agents with a narrow therapeutic window that are interesting for application in antibody-drug conjugates (ADC). For full control over drug-antibody ratio (DAR) and the effect thereof on pharmacokinetics and tumor targeting, a dual-labeling approach was developed, wherein the drug, tubulysin variants, and the antibody, the anti-HER2 monoclonal antibody (mAb) trastuzumab, are radiolabeled. (131)I-radioiodination of two synthetic tubulysin A analogues, the less potent TUB-OH (IC50 > 100 nmol/L) and the potent TUB-OMOM (IC50, ~1 nmol/L), and their direct covalent conjugation to (89)Zr-trastuzumab were established. Radioiodination of tubulysins was 92% to 98% efficient and conversion to N-hydroxysuccinimide (NHS) esters more than 99%; esters were isolated in an overall yield of 68% ± 5% with radiochemical purity of more than 99.5%. Conjugation of (131)I-tubulysin-NHS esters to (89)Zr-trastuzumab was 45% to 55% efficient, resulting in ADCs with 96% to 98% radiochemical purity after size-exclusion chromatography. ADCs were evaluated for their tumor-targeting potential and antitumor effects in nude mice with tumors that were sensitive or resistant to trastuzumab, using ado-trastuzumab emtansine as a reference. ADCs appeared stable in vivo. An average DAR of 2 and 4 conferred pharmacokinetics and tumor-targeting behavior similar to parental trastuzumab. Efficacy studies using single-dose TUB-OMOM-trastuzumab (DAR 4) showed dose-dependent antitumor effects, including complete tumor eradications in trastuzumab-sensitive tumors in vivo. TUB-OMOM-trastuzumab (60 mg/kg) displayed efficacy similar to ado-trastuzumab emtansine (15 mg/kg) yet more effective than trastuzumab. Our findings illustrate the potential of synthetic tubulysins in ADCs for cancer treatment.
Collapse
Affiliation(s)
- Ruth Cohen
- Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Danielle J Vugts
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Gerard W M Visser
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Marijke Stigter-van Walsum
- Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Marije Bolijn
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Marco Spiga
- KemoTech s.r.l., Parco Scientifico della Sardegna, Edificio 3, Pula, Cagliari, Italy
| | - Paolo Lazzari
- KemoTech s.r.l., Parco Scientifico della Sardegna, Edificio 3, Pula, Cagliari, Italy
| | - Sreejith Shankar
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Monica Sani
- KemoTech s.r.l., Parco Scientifico della Sardegna, Edificio 3, Pula, Cagliari, Italy. Dipartimento C.M.I.C. del Politecnico di Milano and C.N.R.-I.C.R.M., Milano, Italy
| | - Matteo Zanda
- Dipartimento C.M.I.C. del Politecnico di Milano and C.N.R.-I.C.R.M., Milano, Italy. Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Guus A M S van Dongen
- Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands. Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
75
|
Ma AN, Wang H, Guo R, Wang YX, Li W, Cui J, Wang G, Hoffman AR, Hu JF. Targeted gene suppression by inducing de novo DNA methylation in the gene promoter. Epigenetics Chromatin 2014; 7:20. [PMID: 25184003 PMCID: PMC4150861 DOI: 10.1186/1756-8935-7-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 08/01/2014] [Indexed: 11/16/2022] Open
Abstract
Background Targeted gene silencing is an important approach in both drug development and basic research. However, the selection of a potent suppressor has become a significant hurdle to implementing maximal gene inhibition for this approach. We attempted to construct a ‘super suppressor’ by combining the activities of two suppressors that function through distinct epigenetic mechanisms. Results Gene targeting vectors were constructed by fusing a GAL4 DNA-binding domain with a epigenetic suppressor, including CpG DNA methylase Sss1, histone H3 lysine 27 methylase vSET domain, and Kruppel-associated suppression box (KRAB). We found that both Sss1 and KRAB suppressors significantly inhibited the expression of luciferase and copGFP reporter genes. However, the histone H3 lysine 27 methylase vSET did not show significant suppression in this system. Constructs containing both Sss1 and KRAB showed better inhibition than either one alone. In addition, we show that KRAB suppressed gene expression by altering the histone code, but not DNA methylation in the gene promoter. Sss1, on the other hand, not only induced de novo DNA methylation and recruited Heterochromatin Protein 1 (HP1a), but also increased H3K27 and H3K9 methylation in the promoter. Conclusions Epigenetic studies can provide useful data for the selection of suppressors in constructing therapeutic vectors for targeted gene silencing.
Collapse
Affiliation(s)
- Ai-Niu Ma
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.,Stanford University Medical School, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Hong Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.,Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, 519 Dongminzhu Blvd, Changchun 130021, China
| | - Rui Guo
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.,Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, 519 Dongminzhu Blvd, Changchun 130021, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Li
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, 519 Dongminzhu Blvd, Changchun 130021, China
| | - Jiuwei Cui
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, 519 Dongminzhu Blvd, Changchun 130021, China
| | - Guanjun Wang
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, 519 Dongminzhu Blvd, Changchun 130021, China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Ji-Fan Hu
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, 519 Dongminzhu Blvd, Changchun 130021, China.,Stanford University Medical School, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
76
|
Kandušer M, Ušaj M. Cell electrofusion: past and future perspectives for antibody production and cancer cell vaccines. Expert Opin Drug Deliv 2014; 11:1885-98. [DOI: 10.1517/17425247.2014.938632] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
77
|
Qin Y, Liu XJ, Li L, Liu XJ, Li Y, Gao RJ, Shao RG, Zhen YS. MMP-2/9-oriented combinations enhance antitumor efficacy of EGFR/HER2-targeting fusion proteins and gemcitabine. Oncol Rep 2014; 32:121-30. [PMID: 24807584 DOI: 10.3892/or.2014.3169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/02/2014] [Indexed: 11/05/2022] Open
Abstract
To increase the antitumor efficacy, in the present study, we proposed several settings of matrix metalloproteinase (MMP)-2/9-oriented combinations that comprise the MMP-2/9-targeting fusion protein dFv-LDP and the MMP inhibitor doxycycline (DOX) in association with EGFR/HER2-bispecific fusion protein Ec-LDP-Hr, its enediyne-energized analogue Ec-LDP-Hr-AE, and gemcitabine (GEM). The expressions of various fusion proteins were detected by western blot analysis. Proliferation and migration inhibition of cells were determined by MTT and Transwell assay, respectively. The binding capability of dFv-LDP and Ec-LDP-Hr to cancer cells was examined by ELISA, cell immunofluorescence coimmunoprecipitation and confocal assays. Animal experiments were set to investigate the antitumor efficacy of various combinations against colorectal carcinoma HCT-15 xenograft in athymic mice. These two targeting proteins dFv-LDP and Ec-LDP-Hr had strong binding capabilities and antiproliferation effects on various cancer cell lines. Enhanced therapeutic efficacy in vivo was observed in the MMP-2/9-targeting fusion protein dFv-LDP integrated combinations including: i) dFv-LDP and Ec-LDP-Hr, ii) dFv-LDP and enediyne-energized fusion protein Ec-LDP-Hr-AE, iii) dFv-LDP and Ec-LDP-Hr-AE plus DOX, and iv) dFv-LDP and GEM plus DOX against colorectal cancer HCT-15 xenograft in athymic mice. In setting iii, DOX (20 mg/kg), dFv-LDP (20 mg/kg) and Ec-LDP-Hr-AE (0.3 mg/kg) alone suppressed tumor growth by 35, 49.7 and 67.5%, respectively. The combination of dFv-LDP and Ec-LDP-Hr-AE was 75.1%. Furthermore, this combination plus DOX showed stronger efficacy with an inhibitory rate of 82.7%. In setting iv, the combination of dFv-LDP and GEM suppressed tumor growth by 66.3%. Notably, the tumor inhibitory rate of the dFv-LDP/GEM/DOX combination reached 85.5%, producing initial shrinkage after the first administration. The MMP-2/9-oriented combination strategy that employs the MMP-2/9-targeting antibody-based fusion protein and the small molecular inhibitor DOX as the basic composed agents may enhance antitumor efficacy in association with the EGFR/HER2-targeting fusion protein and GEM. This multiple targeting approach may be useful for enhancing antitumor efficacy against colorectal cancer.
Collapse
Affiliation(s)
- Ye Qin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Xiu-Jun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Liang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Xu-Jie Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Rui-Juan Gao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Rong-Guang Shao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Yong-Su Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
78
|
Characteristics and release profiles of MPEG-PCL-MPEG microspheres containing immunoglobulin G. Colloids Surf B Biointerfaces 2014; 117:487-96. [DOI: 10.1016/j.colsurfb.2014.01.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 01/09/2023]
|
79
|
Sapra P, Betts A, Boni J. Preclinical and clinical pharmacokinetic/pharmacodynamic considerations for antibody–drug conjugates. Expert Rev Clin Pharmacol 2014; 6:541-55. [DOI: 10.1586/17512433.2013.827405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
80
|
Hardy PA, Keeley D, Schorn G, Forman E, Ai Y, Venugopalan R, Zhang Z, Bradley LH. Convection enhanced delivery of different molecular weight tracers of gadolinium-tagged polylysine. J Neurosci Methods 2013; 219:169-75. [PMID: 23912025 DOI: 10.1016/j.jneumeth.2013.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 11/17/2022]
Abstract
Convection enhanced delivery (CED) is a powerful method of circumventing the blood-brain barrier (BBB) to deliver therapeutic compounds directly to the CNS. While inferring the CED distribution of a therapeutic compound by imaging a magnetic resonance (MR)-sensitive tracer has many advantages, however how the compound distribution is affected by the features of the delivery system, its target tissue, and its molecular properties, such as its binding characteristics, charge, and molecular weight (MW) are not fully understood. We used MR imaging of gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA)-tagged polylysine compounds of various MW, in vitro and in vivo, to measure the dependence of compounds MW on CED distribution. For the in vitro studies, the correlation between volume of distribution (Vd) as a function of MW was determined by measuring the T1 of the infused tracers, into 0.6% agarose gels through a multiport catheter. The compounds distributed in the gels inversely proportional to their MW, consistent with convection and unobstructed diffusion through a porous media. For the in vivo studies, Gd-DTPA tagged compounds were infused into the non-human primate putamen, via an implanted multiport catheter connected to a MedStream™ pump, programmed to deliver a predetermined volume with alternating on-off periods to take advantage of the convective and diffusive contributions to Vd. Unlike the gel studies, the higher MW polylysine-tracer infusions did not freely distribute from the multiport catheter in the putamen, suggesting that distribution was impeded by other properties that should also be considered in future tracer design and CED infusion protocols.
Collapse
Affiliation(s)
- Peter A Hardy
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, USA.
| | | | | | | | | | | | | | | |
Collapse
|