51
|
Bata N, Cosford NDP. Cell Survival and Cell Death at the Intersection of Autophagy and Apoptosis: Implications for Current and Future Cancer Therapeutics. ACS Pharmacol Transl Sci 2021; 4:1728-1746. [PMID: 34927007 DOI: 10.1021/acsptsci.1c00130] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 12/25/2022]
Abstract
Autophagy and apoptosis are functionally distinct mechanisms for cytoplasmic and cellular turnover. While these two pathways are distinct, they can also regulate each other, and central components of the apoptosis or autophagy pathway regulate both processes directly. Furthermore, several upstream stress-inducing signaling pathways can influence both autophagy and apoptosis. The crosstalk between autophagy and apoptosis has an integral role in pathological processes, including those related to cancer, homeostasis, and aging. Apoptosis is a form of programmed cell death, tightly regulated by various cellular and biochemical mechanisms, some of which have been the focus of drug discovery efforts targeting cancer therapeutics. Autophagy is a cellular degradation pathway whereby cells recycle macromolecules and organelles to generate energy when subjected to stress. Autophagy can act as either a prodeath or a prosurvival process and is both tissue and microenvironment specific. In this review we describe five groups of proteins that are integral to the apoptosis pathway and discuss their role in regulating autophagy. We highlight several apoptosis-inducing small molecules and biologics that have been developed and advanced into the clinic and discuss their effects on autophagy. For the most part, these apoptosis-inducing compounds appear to elevate autophagy activity. Under certain circumstances autophagy demonstrates cytoprotective functions and is overactivated in response to chemo- or radiotherapy which can lead to drug resistance, representing a clinical obstacle for successful cancer treatment. Thus, targeting the autophagy pathway in combination with apoptosis-inducing compounds may be a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Nicole Bata
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nicholas D P Cosford
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
52
|
Zhou L, Zhang Y, Meads MB, Dai Y, Ning Y, Hu X, Li L, Sharma K, Nkwocha J, Parker R, Bui D, McCarter J, Kramer L, Purcell C, Sudalagunta PR, Canevarolo RR, Coelho Siqueira Silva MD, De Avila G, Alugubelli RR, Silva AS, Kmeiciak M, Ferreira-Gonzalez A, Shain KH, Grant S. IAP and HDAC inhibitors interact synergistically in myeloma cells through noncanonical NF-κB- and caspase-8-dependent mechanisms. Blood Adv 2021; 5:3776-3788. [PMID: 34464977 PMCID: PMC8679669 DOI: 10.1182/bloodadvances.2020003597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
Interactions between the inhibitor of apoptosis protein antagonist LCL161 and the histone deacetylase inhibitor panobinostat (LBH589) were examined in human multiple myeloma (MM) cells. LCL161 and panobinostat interacted synergistically to induce apoptosis in diverse MM cell lines, including those resistant to bortezomib (PS-R). Similar interactions were observed with other histone deacetylase inhibitors (MS-275) or inhibitors of apoptosis protein antagonists (birinapant). These events were associated with downregulation of the noncanonical (but not the canonical) NF-κB pathway and activation of the extrinsic, caspase-8-related apoptotic cascade. Coexposure of MM cells to LCL161/LBH589 induced TRAF3 upregulation and led to TRAF2 and NIK downregulation, diminished expression of BCL-XL, and induction of γH2A.X. Ectopic expression of TRAF2, NIK, or BCL-XL, or short hairpin RNA TRAF3 knock-down, significantly reduced LCL161/LBH589 lethality, as did ectopic expression of dominant-negative FADD. Stromal/microenvironmental factors failed to diminish LCL161/LBH589-induced cell death. The LCL161/LBH589 regimen significantly increased cell killing in primary CD138+ cells (N = 31) and was particularly effective in diminishing the primitive progenitor cell-enriched CD138-/19+/20+/27+ population (N = 23) but was nontoxic to normal CD34+ cells. Finally, combined LCL161/LBH589 treatment significantly increased survival compared with single-agent treatment in an immunocompetent 5TGM1 murine MM model. Together, these findings argue that LCL161 interacts synergistically with LBH589 in MM cells through a process involving inactivation of the noncanonical NF-κB pathway and activation of the extrinsic apoptotic pathway, upregulation of TRAF3, and downregulation of TRAF2/BCL-XL. Notably, this regimen overcomes various forms of resistance, is active against primary MM cells, and displays significant in vivo activity. This strategy warrants further consideration in MM.
Collapse
Affiliation(s)
- Liang Zhou
- Division of Hematology/Oncology, Department of Medicine, and
| | - Yu Zhang
- Division of Hematology/Oncology, Department of Medicine, and
- Division of Molecular Diagnostics, Department of Pathology, Virginia Commonwealth University, Richmond, VA
| | - Mark B. Meads
- Department of Hematology, Moffitt Cancer Center, Tampa, FL
| | - Yun Dai
- Cancer Center, First Hospital of Jilin University, Changchun, China
| | - Yanxia Ning
- Division of Hematology/Oncology, Department of Medicine, and
| | - Xiaoyan Hu
- Division of Hematology/Oncology, Department of Medicine, and
| | - Lin Li
- Division of Hematology/Oncology, Department of Medicine, and
| | - Kanika Sharma
- Division of Hematology/Oncology, Department of Medicine, and
| | - Jewel Nkwocha
- Division of Hematology/Oncology, Department of Medicine, and
| | - Rebecca Parker
- Division of Hematology/Oncology, Department of Medicine, and
| | - Danny Bui
- Division of Hematology/Oncology, Department of Medicine, and
| | | | - Lora Kramer
- Division of Hematology/Oncology, Department of Medicine, and
| | - Cullen Purcell
- Department of Biology, Virginia Commonwealth University, Richmond, VA
| | | | | | | | | | | | | | - Maciej Kmeiciak
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| | - Andrea Ferreira-Gonzalez
- Division of Molecular Diagnostics, Department of Pathology, Virginia Commonwealth University, Richmond, VA
| | | | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, and
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
53
|
Hong J, Yan J, Chen J, Li S, Huang Y, Huang Z, Chen W, Liang A, Ye W. Identification of key potential targets for TNF-α/TNFR1-related intervertebral disc degeneration by bioinformatics analysis. Connect Tissue Res 2021; 62:531-541. [PMID: 32686499 DOI: 10.1080/03008207.2020.1797709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Bioinformatics analysis was performed on gene expression profile microarray data to identify the key genes activated through the TNF-α/TNFR1 signaling pathway in intervertebral disc degeneration (IDD). The common differentially expressed genes (co-DEGs) were calculated in nucleus pulposus (NP) cells and annulus fibrosus (AF) cells under TNF-α treatment or TNFR1 knockdown, which reveals the potential mechanism of TNF-α involvement in IDD and may provide new therapeutic targets for IDD. METHODS Differentially expressed genes (DEGs) in TNF-α-treated or TNFR1-knockdown NP cells and AF cells were identified. Further analysis of the gene ontology (GO), signaling pathways and interaction networks of the DEGs or co-DEGs were conducted using the Database for Annotation, Visualization and Integrated Discovery, STRING Database, and Cytoscape software. The relationship between genes and musculoskeletal diseases, including IDD, was assessed with the Comparative Toxicogenomics Database. The predicted microRNAs corresponding to the co-DEGs were also identified by microRNA Data Integration Portal. RESULTS In NP cells, the DEGs (|log2FoldChange|>2, adj.P < 0.01) were identified including 48 DEGs by TNF-α treatment and 74 DEGs by TNFR1 knockdown; in AF cells, correspondingly, 105 DEGs were identified. The co-DEGs between NP cells and AF cells were calculated including CXCL8, ICAM1, BIRC3, RELB, NFKBIA, and TNFAIP3. They may be the hub genes that were significantly associated with both NP cells and AF cells through the TNF-α/TNFR1 signaling pathway. The co-DEGs and corresponding predicted miRNAs may be potential therapeutic targets for IDD. CONCLUSIONS CXCL8, ICAM1, BIRC3, RELB, NFKBIA, and TNFAIP3 may have a synergistic effect on TNF-α-induced IDD development.Abbreviations: IDD: Intervertebral disc degeneration; NP: Nucleus pulposus; AF: Annulus fibrosus; co-DEG: Common differentially expressed gene; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; PPI: Protein-protein interaction.
Collapse
Affiliation(s)
- Junmin Hong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiansen Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiancong Chen
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuangxing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingjie Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhengqi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weijian Chen
- Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anjing Liang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
54
|
Jeong JH, Kim SH, Kim J. CaBir1 functions as an inhibitor-of-apoptosis and affects caspase-like activitiy in Candida albicans. Fungal Genet Biol 2021; 154:103600. [PMID: 34197920 DOI: 10.1016/j.fgb.2021.103600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
CaMca1 is the only metacaspase in Candida albicans, which shows structural homology to the mammalian caspases. CaMca1 consists of the caspase domain, the P20 and P10 regions, and the conserved catalytic histidine-cysteine dyad that is required for executing apoptosis in C. albicans. However, little is known about the proteolytic processing of CaMca1 or its activation under apoptosis-inducing conditions. To understand the regulation of this process, we characterized CaBir1 which is the single IAP (inhibitor-of-apoptosis protein) in C. albicans. IAPs are a family of proteins whose members all harbor a BIR (baculovirus IAP repeat) domain and negatively regulate apoptosis by inhibiting caspases. We found that the Cabir1/Cabir1 deletion mutant exhibited increased apoptotic phenotypes, such as ROS accumulation, nuclear segmentation, and cell survival, under apoptosis-inducing conditions. Examination of CaMca1 cleavage patterns in response to various apoptotic stresses revealed that these cleavages were stress-specific and dependent on the catalytic histidine-cysteine residues of CaMca1. The Cabir1/Cabir1 mutation was not associated with altered CaMca1 processing with or without apoptotic stimuli, but the Cabir1/Cabir1 mutant exhibited significantly increased caspase-like activities. These results suggest that CaBir1 acts as an apoptosis inhibitor by regulating caspase-like activity, but not CaMca1 processing.
Collapse
Affiliation(s)
- Jeong-Hoon Jeong
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Se Hyeon Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jinmi Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
55
|
Clark MP, Huynh T, Rao S, Mackiewicz L, Mason H, Romal S, Stutz MD, Ahn SH, Earnest L, Sozzi V, Littlejohn M, Tran BM, Wiedemann N, Vincan E, Torresi J, Netter HJ, Mahmoudi T, Revill P, Pellegrini M, Ebert G. Clinical stage drugs targeting inhibitor of apoptosis proteins purge episomal Hepatitis B viral genome in preclinical models. Cell Death Dis 2021; 12:641. [PMID: 34162831 PMCID: PMC8222287 DOI: 10.1038/s41419-021-03924-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
A major unmet clinical need is a therapeutic capable of removing hepatitis B virus (HBV) genome from the liver of infected individuals to reduce their risk of developing liver cancer. A strategy to deliver such a therapy could utilize the ability to target and promote apoptosis of infected hepatocytes. Presently there is no clinically relevant strategy that has been shown to effectively remove persistent episomal covalently closed circular HBV DNA (cccDNA) from the nucleus of hepatocytes. We used linearized single genome length HBV DNA of various genotypes to establish a cccDNA-like reservoir in immunocompetent mice and showed that clinical-stage orally administered drugs that antagonize the function of cellular inhibitor of apoptosis proteins can eliminate HBV replication and episomal HBV genome in the liver. Primary human liver organoid models were used to confirm the clinical relevance of these results. This study underscores a clinically tenable strategy for the potential elimination of chronic HBV reservoirs in patients.
Collapse
Affiliation(s)
- Michelle P Clark
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Thao Huynh
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Shringar Rao
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Liana Mackiewicz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Hugh Mason
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Shahla Romal
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michael D Stutz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
| | - Sang H Ahn
- Department of Internal Medicine, Yonsei University, Seoul, South Korea
| | - Linda Earnest
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Vitina Sozzi
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Bang M Tran
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Elizabeth Vincan
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hans J Netter
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Peter Revill
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Gregor Ebert
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany.
| |
Collapse
|
56
|
Zhang YC, Qin XL, Ma XL, Mo HQ, Qin S, Zhang CX, Wei XW, Liu XQ, Zhang Y, Tian FJ, Lin Y. CLDN1 regulates trophoblast apoptosis and proliferation in preeclampsia. Reproduction 2021; 161:623-632. [PMID: 33784242 PMCID: PMC8111329 DOI: 10.1530/rep-20-0677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023]
Abstract
Preeclampsia is a gestational hypertensive disease; however, preeclampsia remains poorly understood. Bioinformatics analysis was applied to find novel genes involved in the pathogenesis of preeclampsia and identified CLDN1 as one of the most differentially expressed genes when comparing patients with preeclampsia and healthy controls. The results of the qRT-PCR, Western blotting and immunohistochemistry experiments demonstrated that CLDN1 was significantly downregulated in the chorionic villi in samples from patients with preeclampsia. Furthermore, knockdown of CLDN1 in HTR-8/SVneo cells resulted in the inhibition of proliferation and induction of apoptosis, and overexpression of CLDN1 reversed these effects. In addition, RNA-seq assays demonstrated that the gene BIRC3 is potentially downstream of CLDN1 and is involved in the regulation of apoptosis. Knockdown of CLDN1 confirmed that the expression level of BIRC3 was obviously decreased and was associated with a significant increase in cleaved PARP. Interestingly, the apoptotic effect in CLDN1 knockdown cells was rescued after BIRC3 overexpression. Overall, these results indicate that a decrease in CLDN1 inhibits BIRC3 expression and increases cleaved PARP levels thus participating in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Yu-Chen Zhang
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Li Qin
- The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ling Ma
- The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Qin Mo
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University of Medicine, Shanghai, China
| | - Shi Qin
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University of Medicine, Shanghai, China
| | - Cheng-Xi Zhang
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Wei Wei
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Qing Liu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hu Bei, China
| | - Fu-Ju Tian
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
57
|
Wang SD, Fu YY, Han XY, Yong ZJ, Li Q, Hu Z, Liu ZG. Hyperbaric Oxygen Preconditioning Protects Against Cerebral Ischemia/Reperfusion Injury by Inhibiting Mitochondrial Apoptosis and Energy Metabolism Disturbance. Neurochem Res 2021; 46:866-877. [PMID: 33453006 DOI: 10.1007/s11064-020-03219-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 11/30/2022]
Abstract
Hyperbaric oxygen (HBO) therapy is considered a safe and feasible method that to provide neuroprotection against ischemic stroke. However, the therapy mechanisms of HBO have not been fully elucidated. We hypothesized that the mechanism underlying the protective effect of HBO preconditioning (HBO-PC) against cerebral ischemia/reperfusion injury was related to inhibition of mitochondrial apoptosis and energy metabolism disorder. To test this hypothesis, an ischemic stroke model was established by middle cerebral artery occlusion (MCAO) in rats. HBO-PC involved five consecutive days of pretreatment before MCAO. In additional experiments, X chromosome-linked inhibitor of apoptosis protein (XIAP) and second mitochondria-derived activator of caspases (SMAC) shRNA and NC plasmids were intraventricularly injected into rat brains after MCAO (2 h). After 24 h, all rats underwent motor function evaluation, which was assessed by modified Garcia scores. TTC staining for the cerebral infarct and cerebral edema, and TUNEL staining for cell apoptosis, were also analyzed. Reactive oxygen species and antioxidative enzymes in rat brains were detected, as well as mitochondrial complex enzyme activities, ATP levels, and Na+/K+ ATPase activity. Western blot was used to detect apoptotic proteins including Bcl-2, Bax, caspase-3, caspase-9, cyc-c, XIAP, and SMAC. HBO-PC remarkably reduced the infarct volume and improved neurological deficits. Furthermore, HBO-PC alleviated oxidative stress and regulated the expression of apoptosis-related proteins. Moreover, HBO-PC inhibited the decrease in ATP levels, mitochondrial complex enzyme activities, and Na+/K+ ATPase activity to maintain stable energy metabolism. XIAP knockdown weakened the protective effect of HBO, whereas SMAC knockdown strengthened its protective effect. The effects of HBO-PC can be attributed to inhibition of ischemia/hypoxia-induced mitochondrial apoptosis and energy metabolism disturbance. The action of HBO-PC is related to the XIAP and SMAC signaling pathways.
Collapse
Affiliation(s)
- Shun-Da Wang
- Department of Rehabilitation Medicine, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, China
| | - Ying-Ying Fu
- Department of Emergency, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, China
| | - Xin-Yuan Han
- Department of Rehabilitation Medicine, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, China
| | - Zhi-Jun Yong
- Department of Rehabilitation Medicine, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, China
| | - Qing Li
- Department of Rehabilitation Medicine, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, China
| | - Zhen Hu
- Department of Rehabilitation Medicine, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, China
| | - Zhen-Guo Liu
- Intensive Care Unit, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, China.
| |
Collapse
|
58
|
Granqvist V, Holmgren C, Larsson C. Induction of interferon-β and interferon signaling by TRAIL and Smac mimetics via caspase-8 in breast cancer cells. PLoS One 2021; 16:e0248175. [PMID: 33770100 PMCID: PMC7996988 DOI: 10.1371/journal.pone.0248175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer prognosis is frequently good but a substantial number of patients suffer from relapse. The death receptor ligand TRAIL can in combination with Smac mimetics induce apoptosis in some luminal-like ER-positive breast cancer cell lines, such as CAMA-1, but not in MCF-7 cells. Here we show that TRAIL and the Smac mimetic LCL161 induce non-canonical NF-κB and IFN signaling in ER-positive MCF-7 cells and in CAMA-1 breast cancer cells when apoptosis is blocked by caspase inhibition. Levels of p52 are increased and STAT1 gets phosphorylated. STAT1 phosphorylation is induced by TRAIL alone in MCF-7 cells and is independent of non-canonical NF-κB since downregulation of NIK has no effect. The phosphorylation of STAT1 is a rather late event, appearing after 24 hours of TRAIL stimulation. It is preceded by an increase in IFNB1 mRNA levels and can be blocked by siRNA targeting the type I IFN receptor IFNAR1 and by inhibition of Janus kinases by Ruxolitinib. Moreover, downregulation of caspase-8, but not inhibition of caspase activity, blocks TRAIL-mediated STAT1 phosphorylation and induction of IFN-related genes. The data suggest that TRAIL-induced IFNB1 expression in MCF-7 cells is dependent on a non-apoptotic role of caspase-8 and leads to autocrine interferon-β signaling.
Collapse
Affiliation(s)
- Victoria Granqvist
- Lund University, Translational Cancer Research, Medicon Village, Lund, Sweden
| | - Christian Holmgren
- Lund University, Translational Cancer Research, Medicon Village, Lund, Sweden
| | - Christer Larsson
- Lund University, Translational Cancer Research, Medicon Village, Lund, Sweden
- * E-mail:
| |
Collapse
|
59
|
Ebert G, Lopaticki S, O'Neill MT, Steel RWJ, Doerflinger M, Rajasekaran P, Yang ASP, Erickson S, Ioannidis L, Arandjelovic P, Mackiewicz L, Allison C, Silke J, Pellegrini M, Boddey JA. Targeting the Extrinsic Pathway of Hepatocyte Apoptosis Promotes Clearance of Plasmodium Liver Infection. Cell Rep 2021; 30:4343-4354.e4. [PMID: 32234472 DOI: 10.1016/j.celrep.2020.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/30/2020] [Accepted: 03/11/2020] [Indexed: 02/08/2023] Open
Abstract
Plasmodium sporozoites infect the liver and develop into exoerythrocytic merozoites that initiate blood-stage disease. The hepatocyte molecular pathways that permit or abrogate parasite replication and merozoite formation have not been thoroughly explored, and a deeper understanding may identify therapeutic strategies to mitigate malaria. Cellular inhibitor of apoptosis (cIAP) proteins regulate cell survival and are co-opted by intracellular pathogens to support development. Here, we show that cIAP1 levels are upregulated during Plasmodium liver infection and that genetic or pharmacological targeting of cIAPs using clinical-stage antagonists preferentially kills infected hepatocytes and promotes immunity. Using gene-targeted mice, the mechanism was defined as TNF-TNFR1-mediated apoptosis via caspases 3 and 8 to clear parasites. This study reveals the importance of cIAPs to Plasmodium infection and demonstrates that host-directed antimalarial drugs can eliminate liver parasites and induce immunity while likely providing a high barrier to resistance in the parasite.
Collapse
Affiliation(s)
- Gregor Ebert
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Sash Lopaticki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ryan W J Steel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marcel Doerflinger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Pravin Rajasekaran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Annie S P Yang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Sara Erickson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Ioannidis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Philip Arandjelovic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Liana Mackiewicz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Cody Allison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
60
|
Miao X, Deng Z, Wang S, Weng H, Zhang X, Li H, Xie H, Zhang J, Zhong Y, Zhang B, Li Q, Xie M. IAP-1 promoted cisplatin resistance in nasopharyngeal carcinoma via inhibition of caspase-3-mediated apoptosis. Am J Cancer Res 2021; 11:640-667. [PMID: 33791146 PMCID: PMC7994165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023] Open
Abstract
Recurrent/metastatic nasopharyngeal carcinoma (NPC) is known for having a poor prognosis due to its unfavorable response to chemoradiotherapy. However, the specific processes involved remain poorly understood. This study focused on the cisplatin-resistance mechanism in NPC to help understand the occurrence of advanced NPC and aims to explore the potential therapeutic target for cisplatin-resistant NPC. Two cisplatin-resistant NPC cell lines, HNE-1/DDP and CNE-2/DDP, were established and the differentially expressed genes (DEGs) between parental and cisplatin-resistance cell lines, filtering from high-throughput sequencing results, were analyzed. Next, the effects of IAP-1 on cisplatin-resistant nasopharyngeal cancer cell proliferation, apoptosis, drug resistance and associated cell signaling were evaluated in vitro and in vitro. From our bioinformatic results, more than 15,000 differentially expressed genes (DEGs) were found between parental and resistant cell lines. Nine related DEGs were found in the classic platinum resistance pathway, three of which (ATM, IAP-1, and IAP-2) also appeared in the top five differentially expressed pathways, with elevated IAP-1 showing the highest fold change. Further studies revealed that high IAP-1 expression can lead to an increased cisplatin inhibitory concentration and apoptosis inhibition. IAP-1 silencing can induce upregulation of the caspase-3 and enhance the antiproliferation and proapoptotic effects of cisplatin. Clinical data also showed that IAP-1 overexpression was associated with a worse survival status. In summary, in vitro and in vivo experiments demonstrated that IAP-1 plays a vital role in cisplatin resistance by regulating caspase induced apoptosis and serve as a potential novel therapeutic target and a prognostic indicator for advanced NPC.
Collapse
Affiliation(s)
- Xiangwan Miao
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510282, China
| | - Zeyi Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510282, China
| | - Siqi Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510282, China
| | - Huanhuan Weng
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510282, China
| | - Xinting Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510282, China
| | - Hailiang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhuhai People’s HospitalZhuhai 519000, China
| | - Huifen Xie
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510282, China
| | - Juan Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510282, China
| | - Ying Zhong
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhuhai People’s HospitalZhuhai 519000, China
| | - Bohui Zhang
- Department of Pathology, Zhuhai People’s HospitalZhuhai 519000, China
| | - Quanming Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhuhai People’s HospitalZhuhai 519000, China
| | - Minqiang Xie
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical UniversityGuangzhou 510282, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhuhai People’s HospitalZhuhai 519000, China
| |
Collapse
|
61
|
Ma Z, Ji Y, Yu Y, Liang D. Specific non-genetic IAP-based protein erasers (SNIPERs) as a potential therapeutic strategy. Eur J Med Chem 2021; 216:113247. [PMID: 33652355 DOI: 10.1016/j.ejmech.2021.113247] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/29/2022]
Abstract
As a newly emerged technology, PROTAC (proteolysis targeting chimera) is a promising therapeutic strategy for varieties of diseases. Unlike small molecule inhibitors, PROTACs catalytically induce target proteins degradation, including currently "undruggable" target proteins. In addition, PROTACs can be a potentially successful strategy to overcome drug resistance. IAPs can inhibit apoptosis by inhibiting caspase, and also exhibits the activity of E3 ubiquitin ligase. Specific and nongenetic IAP-based protein erasers (SNIPERs) are hybrid molecules that designed based on IAPs, and used to degrade the target proteins closely associated with diseases. Their structures consist of three parts, including target protein ligand, E3 ligase ligand and the linker between them. SNIPERs (PROTACs) degrade diseases-associated proteins through human inherent ubiquitin-proteasome system. So far, many SNIPERs have been developed to treat diseases that difficult to handle by traditional methods, such as radiotherapy, chemotherapy and small molecule inhibitors, and showed promising prospects in application. In this paper, the recent advances of SNIPERs were summarized, and the chances and challenges associated with this area were also highlighted.
Collapse
Affiliation(s)
- Zonghui Ma
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China.
| | - Yu Ji
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Yifan Yu
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Dailin Liang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| |
Collapse
|
62
|
Topal Y, Gyrd-Hansen M. RIPK2 NODs to XIAP and IBD. Semin Cell Dev Biol 2021; 109:144-150. [DOI: 10.1016/j.semcdb.2020.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022]
|
63
|
Bansal R, Reshef R. Revving the CAR - Combination strategies to enhance CAR T cell effectiveness. Blood Rev 2021; 45:100695. [PMID: 32402724 DOI: 10.1016/j.blre.2020.100695] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/22/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is currently approved for treatment of refractory B-cell malignancies. Response rates in these diseases are impressive by historical standards, but most patients do not have a durable response and there remains room for improvement. To date, CAR T cell activity has been even more limited in solid malignancies. These limitations are thought to be due to several pathways of resistance to CAR T cells, including cell-intrinsic mechanisms and the immunosuppressive tumor microenvironment. In this review, we discuss current experimental strategies that combine small molecules and monoclonal antibodies with CAR T cells to overcome these resistance mechanisms. We describe the biological rationale, pre-clinical data and clinical trials in progress that test the efficacy and safety of these combinations.
Collapse
Affiliation(s)
- Rajat Bansal
- Division of Hematology/Oncology, Columbia University Irving Medical Center, 177 Ft. Washington Ave, Floor: 6GN-435, New York, NY 10032, USA.
| | - Ran Reshef
- Division of Hematology/Oncology, Columbia University Irving Medical Center, 630 W. 168(th) Street Mailbox 127, New York, NY 10032, USA.
| |
Collapse
|
64
|
Pflug KM, Sitcheran R. Targeting NF-κB-Inducing Kinase (NIK) in Immunity, Inflammation, and Cancer. Int J Mol Sci 2020; 21:E8470. [PMID: 33187137 PMCID: PMC7696043 DOI: 10.3390/ijms21228470] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/23/2022] Open
Abstract
NF-κB-inducing kinase (NIK), the essential upstream kinase, which regulates activation of the noncanonical NF-κB pathway, has important roles in regulating immunity and inflammation. In addition, NIK is vital for maintaining cellular health through its control of fundamental cellular processes, including differentiation, growth, and cell survival. As such aberrant expression or regulation of NIK is associated with several disease states. For example, loss of NIK leads to severe immune defects, while the overexpression of NIK is observed in inflammatory diseases, metabolic disorders, and the development and progression of cancer. This review discusses recent studies investigating the therapeutic potential of NIK inhibitors in various diseases.
Collapse
Affiliation(s)
- Kathryn M. Pflug
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA;
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77002, USA
| | - Raquel Sitcheran
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA;
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77002, USA
| |
Collapse
|
65
|
Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of Taxane Resistance. Cancers (Basel) 2020; 12:E3323. [PMID: 33182737 PMCID: PMC7697134 DOI: 10.3390/cancers12113323] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.
Collapse
Affiliation(s)
- Sara M. Maloney
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Camden A. Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Lorena V. Morejon-Lasso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Jenifer R. Prosperi
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| |
Collapse
|
66
|
Bae I, Kim D, Choi J, Kim J, Kim M, Park B, Kim YH, Ahn YG, Hyung Kim H, Kim DK. Design, synthesis and biological evaluation of new bivalent quinazoline analogues as IAP antagonists. Bioorg Med Chem Lett 2020; 34:127676. [PMID: 33166687 DOI: 10.1016/j.bmcl.2020.127676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 11/17/2022]
Abstract
We recently reported the biological evaluations of monovalent IAP antagonist 7 with good potency (MDA-MB-231, IC50 = 19 nM). In an effort to increase cellular activity and improve favorable drug-like properties, we newly designed and synthesized bivalent analogues based on quinazoline structure of 7. Optimization of cellular potency and CYP inhibition led to the identification of 27, which showed dramatic increase of over 100-fold (IC50 = 0.14 nM) and caused substantial tumor regressions in MDA-MB-231 xenograft model. These results strongly support 27 as a promising bivalent antagonist for the development of an effective anti-tumor approaches.
Collapse
Affiliation(s)
- Inhwan Bae
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, 84, Heukseok-gu, Seoul 06974, Republic of Korea; Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Daejin Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, 84, Heukseok-gu, Seoul 06974, Republic of Korea; Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Jaeyul Choi
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Jisook Kim
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Minjeong Kim
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Bokyung Park
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, 84, Heukseok-gu, Seoul 06974, Republic of Korea
| | - Young Hoon Kim
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Young Gil Ahn
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84, Heukseok-gu, Seoul 06974, Republic of Korea.
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, 84, Heukseok-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
67
|
XIAP's Profile in Human Cancer. Biomolecules 2020; 10:biom10111493. [PMID: 33138314 PMCID: PMC7692959 DOI: 10.3390/biom10111493] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
XIAP, the X-linked inhibitor of apoptosis protein, regulates cell death signaling pathways through binding and inhibiting caspases. Mounting experimental research associated with XIAP has shown it to be a master regulator of cell death not only in apoptosis, but also in autophagy and necroptosis. As a vital decider on cell survival, XIAP is involved in the regulation of cancer initiation, promotion and progression. XIAP up-regulation occurs in many human diseases, resulting in a series of undesired effects such as raising the cellular tolerance to genetic lesions, inflammation and cytotoxicity. Hence, anti-tumor drugs targeting XIAP have become an important focus for cancer therapy research. RNA-XIAP interaction is a focus, which has enriched the general profile of XIAP regulation in human cancer. In this review, the basic functions of XIAP, its regulatory role in cancer, anti-XIAP drugs and recent findings about RNA-XIAP interactions are discussed.
Collapse
|
68
|
Karvonen H, Arjama M, Kaleva L, Niininen W, Barker H, Koivisto-Korander R, Tapper J, Pakarinen P, Lassus H, Loukovaara M, Bützow R, Kallioniemi O, Murumägi A, Ungureanu D. Glucocorticoids induce differentiation and chemoresistance in ovarian cancer by promoting ROR1-mediated stemness. Cell Death Dis 2020; 11:790. [PMID: 32989221 PMCID: PMC7522257 DOI: 10.1038/s41419-020-03009-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
Glucocorticoids are routinely used in the clinic as anti-inflammatory and immunosuppressive agents as well as adjuvants during cancer treatment to mitigate the undesirable side effects of chemotherapy. However, recent studies have indicated that glucocorticoids may negatively impact the efficacy of chemotherapy by promoting tumor cell survival, heterogeneity, and metastasis. Here, we show that dexamethasone induces upregulation of ROR1 expression in ovarian cancer (OC), including platinum-resistant OC. Increased ROR1 expression resulted in elevated RhoA, YAP/TAZ, and BMI-1 levels in a panel of OC cell lines as well as primary ovarian cancer patient-derived cells, underlining the translational relevance of our studies. Importantly, dexamethasone induced differentiation of OC patient-derived cells ex vivo according to their molecular subtype and the phenotypic expression of cell differentiation markers. High-throughput drug testing with 528 emerging and clinical oncology compounds of OC cell lines and patient-derived cells revealed that dexamethasone treatment increased the sensitivity to several AKT/PI3K targeted kinase inhibitors, while significantly decreasing the efficacy of chemotherapeutics such as taxanes, as well as anti-apoptotic compounds such as SMAC mimetics. On the other hand, targeting ROR1 expression increased the efficacy of taxane drugs and SMAC mimetics, suggesting new combinatorial targeted treatments for patients with OC.
Collapse
Affiliation(s)
- Hanna Karvonen
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Mariliina Arjama
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00290, Helsinki, Finland
| | - Laura Kaleva
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Wilhelmiina Niininen
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland.,Fimlab Ltd., Tampere University Hospital, 33520, Tampere, Finland
| | - Riitta Koivisto-Korander
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Johanna Tapper
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Päivi Pakarinen
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Heini Lassus
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Loukovaara
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Ralf Bützow
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, PO Box 400, 00290, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00290, Helsinki, Finland.,Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, 171 65, Solna, Sweden
| | - Astrid Murumägi
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00290, Helsinki, Finland
| | - Daniela Ungureanu
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland. .,Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland.
| |
Collapse
|
69
|
Nejabat M, Soltani F, Alibolandi M, Nejabat M, Abnous K, Hadizadeh F, Ramezani M. Smac peptide and doxorubicin-encapsulated nanoparticles: design, preparation, computational molecular approach and in vitro studies on cancer cells. J Biomol Struct Dyn 2020; 40:807-819. [PMID: 32912085 DOI: 10.1080/07391102.2020.1819420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The N-terminal sequence of the Smac (second-mitochondria derived activator) protein is known to be involved in binding to the BIR3 (Baculovirus IAP repeat) domain of the IAPs (inhibitors of apoptosis proteins), and antagonized their function. Short peptides derived from N-terminal residues of Smac have shown to sensitize cancer cells to chemotherapeutic agents. In this regard, small library including 6-mer peptides were designed using docking to the BIR3 domain of cIAP1 in silico. Molecular dynamics simulation studies were also done on top-scored hits (SmacAQ, SmacIQ) using Desmond 2017-2 for 150 ns simulation time. These two peptides were conveniently synthesized using solid phase peptide synthesis on Fmoc-Gln (Trt)-Wang resin. Furthermore, we encapsulated DOX (doxorubicin) and synthesized peptides in PLGA: PLGA-PEG (9:1) NPs (nanoparticles) followed by MD (molecular dynamic) studies to understand the NP structure and the interactions between either DOX or peptide with polymeric nanoparticles during 100 ns simulation. Finally, the cytotoxic activity of these peptides in combination with DOX against two cancer cell lines including MCF7 and C26 were investigated. As a result, we found that DOX or peptide-loaded NPs had stable structure during the simulation. MD simulation also showed that alanine at N-terminal of Smac could be replaced with isoleucine without alternation of biological activity which was in agreement with in vitro experiments. Moreover, NPs-SmacIQ and NPs-SmacAQ significantly enhanced the cytotoxicity effect of NPs-DOX in vitro (p < 0.001).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Soltani
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Nejabat
- Department of Biology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
70
|
Altrichter Y, Seitz O. Simultaneous Targeting of Two Master Regulators of Apoptosis with Dual-Action PNA- and DNA-Peptide Conjugates. Bioconjug Chem 2020; 31:1928-1937. [PMID: 32567853 PMCID: PMC7583637 DOI: 10.1021/acs.bioconjchem.0c00284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/21/2020] [Indexed: 01/31/2023]
Abstract
Conjugation of peptides with oligonucleotides offers opportunities for combining the strengths of both biopolymer classes. Herein, we show that the combination of a peptide-based module with an antisense oligonucleotide module provides for enhancements of potency and a widened scope of cell delivery options. The peptide unit comprises a Smac mimetic compound (SMCs) which antagonizes the action of inhibitor of apoptosis proteins (IAPs) frequently overexpressed in cancer cells. To counteract SMC resistance, the antisense module downregulates the cellular FLICE-like protein (c-FLIP), a master regulator of the extrinsic apoptosis pathway. We compared c-FLIP antisense units based on oligophosphorothioate (PSO) and peptide nucleic acid (PNA) architectures. Owing to the ease of synthesis, PNA conjugates combined with a cell penetrating peptide (CPP) offer a seemingly ideal solution for cell delivery of dual activity agents. However, our investigations revealed that such congeners have to be handled with care to avoid off-target effects. By contrast, PSO conjugates provided a more robust and specific activity for inducing death of SMC-resistant A549 cells due to a simultaneous activation of caspases and c-FLIP knockdown. We show that lipofection is a convenient approach for delivery of peptide-PSO conjugates into cells. The results highlight that the combination of the peptide and the DNA world confers properties inaccessible by the unconjugated components.
Collapse
Affiliation(s)
- Yannic Altrichter
- Department of Chemistry, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
71
|
Nejabat M, Eisvand F, Soltani F, Alibolandi M, Mohammad Taghdisi S, Abnous K, Hadizadeh F, Ramezani M. Combination therapy using Smac peptide and doxorubicin-encapsulated MUC 1-targeted polymeric nanoparticles to sensitize cancer cells to chemotherapy: An in vitro and in vivo study. Int J Pharm 2020; 587:119650. [PMID: 32679263 DOI: 10.1016/j.ijpharm.2020.119650] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
Targeting inhibitors of apoptosis proteins (IAPs) family comprising high level expression in many cancer cells, could sensitize tumor cells to conventional chemotherapies. In the present study, we designed both doxorubicin and SmacN6 (an antagonist of the IAPs) encapsulated polymeric nanoparticles (NPs) and investigated their synergistic effect of combination therapy in vitro and in vivo. According to the results, NPs-SmacN6 significantly enhanced the cytotoxicity effect of NPs-DOX and reduced its IC50 in MCF-7, 4T1 and C26 cancer cells. Western blot analysis confirmed mechanism of cell apoptosis via caspase activation through intrinsic and also extrinsic pathways. Moreover, 5TR1 aptamer-modified NPs could effectively deliver DOXor SmacN6 to C26 cancer cells (MUC1 positive) in comparison with the non-targeted one (p < 0.001). However, they could not be efficiently internalized into CHO cells (MUC1 negative), showing less cytotoxicity in this cell line. In vivo experiments in BALB/c mice bearing C26 tumor indicated that Apt-NPs-DOX in combination with Apt-NPs-SmacN6 had significant tumor growth inhibition in comparison with mice receiving either free DOX or Apt-NPs-DOX with p < 0.0001 and p < 0.05, respectively. Our results revealed that combination therapy of DOX and SmacN6 via Apt-modified nanoparticles can lead to improvement of therapeutic index of DOX in MUC1 positive cancer cells.
Collapse
Affiliation(s)
- Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Soltani
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
72
|
Smith HG, Jamal K, Dayal JHS, Tenev T, Kyula‐Currie J, Guppy N, Gazinska P, Roulstone V, Liccardi G, Davies E, Roxanis I, Melcher AA, Hayes AJ, Inman GJ, Harrington KJ, Meier P. RIPK1-mediated immunogenic cell death promotes anti-tumour immunity against soft-tissue sarcoma. EMBO Mol Med 2020; 12:e10979. [PMID: 32419365 PMCID: PMC7278545 DOI: 10.15252/emmm.201910979] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/09/2022] Open
Abstract
Drugs that mobilise the immune system against cancer are dramatically improving care for many people. Dying cancer cells play an active role in inducing anti-tumour immunity but not every form of death can elicit an immune response. Moreover, resistance to apoptosis is a major problem in cancer treatment and disease control. While the term "immunogenic cell death" is not fully defined, activation of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) can induce a type of death that mobilises the immune system against cancer. However, no clinical treatment protocols have yet been established that would harness the immunogenic potential of RIPK1. Here, we report the first pre-clinical application of an in vivo treatment protocol for soft-tissue sarcoma that directly engages RIPK1-mediated immunogenic cell death. We find that RIPK1-mediated cell death significantly improves local disease control, increases activation of CD8+ T cells as well as NK cells, and enhances the survival benefit of immune checkpoint blockade. Our findings warrant a clinical trial to assess the survival benefit of RIPK1-induced cell death in patients with advanced disease at limb extremities.
Collapse
Affiliation(s)
- Henry G Smith
- Targeted Therapy TeamThe Institute of Cancer ResearchLondonUK
| | - Kunzah Jamal
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | | | - Tencho Tenev
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | | | - Naomi Guppy
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Patrycja Gazinska
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | | | - Gianmaria Liccardi
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Emma Davies
- Targeted Therapy TeamThe Institute of Cancer ResearchLondonUK
| | - Ioannis Roxanis
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
- Cancer Research UK Beatson InstituteGlasgowUK
- Division of Molecular PathologyThe Institute of Cancer ResearchLondonUK
- Royal Free London NHS Foundation TrustLondonUK
| | - Alan A Melcher
- The Translational Immunology TeamThe Institute of Cancer ResearchLondonUK
| | - Andrew J Hayes
- The Sarcoma and Melanoma UnitThe Royal Marsden HospitalLondonUK
| | - Gareth J Inman
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | | | - Pascal Meier
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
73
|
Jensen S, Seidelin JB, LaCasse EC, Nielsen OH. SMAC mimetics and RIPK inhibitors as therapeutics for chronic inflammatory diseases. Sci Signal 2020; 13:13/619/eaax8295. [PMID: 32071170 DOI: 10.1126/scisignal.aax8295] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New therapeutic approaches for chronic inflammatory diseases such as inflammatory bowel disease, rheumatoid arthritis, and psoriasis are needed because current treatments are often suboptimal in terms of both efficacy and the risks of serious adverse events. Inhibitor of apoptosis proteins (IAPs) are E3 ubiquitin ligases that inhibit cell death pathways and are themselves inhibited by second mitochondria-derived activator of caspases (SMAC). SMAC mimetics (SMs), small-molecule antagonists of IAPs, are being evaluated as cancer therapies in clinical trials. IAPs are also crucial regulators of inflammatory pathways because they influence both the activation of inflammatory genes and the induction of cell death through the receptor-interacting serine-threonine protein kinases (RIPKs), nuclear factor κB (NF-κB)-inducing kinase, and mitogen-activated protein kinases (MAPKs). Furthermore, there is an increasing interest in specifically targeting the substrates of IAP-mediated ubiquitylation, especially RIPK1, RIPK2, and RIPK3, as druggable nodes in inflammation control. Several studies have revealed an anti-inflammatory potential of RIPK inhibitors that either block inflammatory signaling or block the form of inflammatory cell death known as necroptosis. Expanding research on innate immune signaling through pattern recognition receptors that stimulate proinflammatory NF-κB and MAPK signaling may further contribute to uncovering the complex molecular roles used by IAPs and downstream RIPKs in inflammatory signaling. This may benefit and guide the development of SMs or selective RIPK inhibitors as anti-inflammatory therapeutics for various chronic inflammatory conditions.
Collapse
Affiliation(s)
- Simone Jensen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark
| | - Jakob Benedict Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark.
| | - Eric Charles LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 1 Borgmester Ib Juuls Vej, DK-2730 Herlev, Denmark
| |
Collapse
|
74
|
Schwarzer R, Gramatica A, Greene WC. Reduce and Control: A Combinatorial Strategy for Achieving Sustained HIV Remissions in the Absence of Antiretroviral Therapy. Viruses 2020; 12:v12020188. [PMID: 32046251 PMCID: PMC7077203 DOI: 10.3390/v12020188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) indefinitely persists, despite effective antiretroviral therapy (ART), within a small pool of latently infected cells. These cells often display markers of immunologic memory and harbor both replication-competent and -incompetent proviruses at approximately a 1:100 ratio. Although complete HIV eradication is a highly desirable goal, this likely represents a bridge too far for our current and foreseeable technologies. A more tractable goal involves engineering a sustained viral remission in the absence of ART––a “functional cure.” In this setting, HIV remains detectable during remission, but the size of the reservoir is small and the residual virus is effectively controlled by an engineered immune response or other intervention. Biological precedence for such an approach is found in the post-treatment controllers (PTCs), a rare group of HIV-infected individuals who, following ART withdrawal, do not experience viral rebound. PTCs are characterized by a small reservoir, greatly reduced inflammation, and the presence of a poorly understood immune response that limits viral rebound. Our goal is to devise a safe and effective means for replicating durable post-treatment control on a global scale. This requires devising methods to reduce the size of the reservoir and to control replication of this residual virus. In the following sections, we will review many of the approaches and tools that likely will be important for implementing such a “reduce and control” strategy and for achieving a PTC-like sustained HIV remission in the absence of ART.
Collapse
|
75
|
Bobardt M, Kuo J, Chatterji U, Wiedemann N, Vuagniaux G, Gallay P. The inhibitor of apoptosis proteins antagonist Debio 1143 promotes the PD-1 blockade-mediated HIV load reduction in blood and tissues of humanized mice. PLoS One 2020; 15:e0227715. [PMID: 31978106 PMCID: PMC6980394 DOI: 10.1371/journal.pone.0227715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
The immune checkpoint programmed cell death protein 1 (PD-1) plays a major role in T cell exhaustion in cancer and chronic HIV infection. The inhibitor of apoptosis protein antagonist Debio 1143 (D1143) enhances tumor cell death and synergizes with anti-PD-1 agents to promote tumor immunity and displayed HIV latency reversal activity in vitro. We asked in this study whether D1143 would stimulate the potency of an anti-human PD-1 monoclonal antibody (mAb) to reduce HIV loads in humanized mice. Anti-PD-1 mAb treatment decreased PD-1+ CD8+ cell population by 32.3% after interruption of four weeks treatment, and D1143 co-treatment further reduced it from 32.3 to 73%. Anti-PD-1 mAb administration reduced HIV load in blood by 94%, and addition of D1143 further enhanced this reduction from 94 to 97%. D1143 also more profoundly promoted with the anti-PD-1-mediated reduction of HIV loads in all tissues analyzed including spleen (71 to 96.4%), lymph nodes (64.3 to 80%), liver (64.2 to 94.4), lung (64.3 to 80.1%) and thymic organoid (78.2 to 98.2%), achieving a >5 log reduction of HIV loads in CD4+ cells isolated from tissues 2 weeks after drug treatment interruption. Ex vivo anti-CD3/CD28 stimulation increased the ability to activate exhausted CD8+ T cells in infected mice having received in vivo anti-PD-1 treatment by 7.9-fold (5 to 39.6%), and an additional increase by 1.7-fold upon D1143 co-treatment (39.6 to 67.3%). These findings demonstrate for the first time that an inhibitor of apoptosis protein antagonist enhances in a statistically manner the effects of an immune check point inhibitor on antiviral immunity and on HIV load reduction in tissues of humanized mice, suggesting that the combination of two distinct classes of immunomodulatory agents constitutes a promising anti-HIV immunotherapeutic approach.
Collapse
Affiliation(s)
- Michael Bobardt
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joseph Kuo
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Udayan Chatterji
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | | | | | - Philippe Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
76
|
Mariniello RM, Maria Orlandella F, De Stefano AE, Iervolino PLC, Smaldone G, Luciano N, Cervone N, Munciguerra F, Esposito S, Mirabelli P, Salvatore G. The TUSC2 Tumour Suppressor Inhibits the Malignant Phenotype of Human Thyroid Cancer Cells via SMAC/DIABLO Protein. Int J Mol Sci 2020; 21:ijms21030702. [PMID: 31973107 PMCID: PMC7037188 DOI: 10.3390/ijms21030702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Thyroid carcinoma is the most common endocrine cancer and includes different forms. Among these, anaplastic thyroid carcinoma (ATC) is the rarest but the most lethal subtype, compared to papillary thyroid carcinoma (PTC) which shows an overall good prognosis. We have previously showed that Tumor Suppressor Candidate 2 (TUSC2), a known tumour suppressor gene, is downregulated in human PTC and ATC compared to normal thyroid samples. The aim of this study was to gain insight into the molecular mechanisms induced by TUSC2 in thyroid cancer cells. Here, we stably transfected TUSC2 in papillary (TPC-1) and in anaplastic (8505C) thyroid cancer cell lines and studied its effects on several biological processes, demonstrating that TUSC2 overexpression decreased thyroid cancer cell proliferation, migration and invasion. Through the proteome profiler apoptosis array, we observed that TUSC2 increased sensitivity to apoptosis by increasing the SMAC/DIABLO and CYTOCHROME C proteins. On the other hand, transient silencing of TUSC2, by siRNA, in an immortalized thyroid follicular epithelial cell line (Nthy-ori 3-1) showed the opposite effect. Finally modulation of SMAC/DIABLO partially rescued the biological effects of TUSC2. Thus, our data highlight a tumour suppressor role of TUSC2 in thyroid carcinogenesis, suggesting that it could be a promising target and biomarker for thyroid carcinoma.
Collapse
Affiliation(s)
- Raffaela Mariarosaria Mariniello
- Dipartimento di Scienze Motorie e del Benessere, Universita’ “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | | | - Anna Elisa De Stefano
- Dipartimento di Scienze Motorie e del Benessere, Universita’ “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Paola Lucia Chiara Iervolino
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Dipartimento di Scienze Biomediche Avanzate, Universita’ “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | | | - Neila Luciano
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Nara Cervone
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Francesco Munciguerra
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Silvia Esposito
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | | | - Giuliana Salvatore
- Dipartimento di Scienze Motorie e del Benessere, Universita’ “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Napoli, Italy
- Correspondence:
| |
Collapse
|
77
|
Mita MM, LoRusso PM, Papadopoulos KP, Gordon MS, Mita AC, Ferraldeschi R, Keer H, Oganesian A, Su XY, Jueliger S, Tolcher AW. A Phase I Study of ASTX660, an Antagonist of Inhibitors of Apoptosis Proteins, in Adults with Advanced Cancers or Lymphoma. Clin Cancer Res 2020; 26:2819-2826. [DOI: 10.1158/1078-0432.ccr-19-1430] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/06/2019] [Accepted: 12/27/2019] [Indexed: 11/16/2022]
|
78
|
Wu KJ, Lei PM, Liu H, Wu C, Leung CH, Ma DL. Mimicking Strategy for Protein-Protein Interaction Inhibitor Discovery by Virtual Screening. Molecules 2019; 24:molecules24244428. [PMID: 31817099 PMCID: PMC6943618 DOI: 10.3390/molecules24244428] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
As protein–protein interactions (PPIs) are highly involved in most cellular processes, the discovery of PPI inhibitors that mimic the structure of the natural protein partners is a promising strategy toward the discovery of PPI inhibitors. In this review, we discuss recent advances in the application of virtual screening for identifying mimics of protein partners. The classification and function of the mimicking protein partner inhibitor discovery by virtual screening are described. We anticipate that this review would be of interest to medicinal chemists and chemical biologists working in the field of protein–protein interaction inhibitors or probes.
Collapse
Affiliation(s)
- Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (K.-J.W.); (P.-M.L.)
| | - Pui-Man Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (K.-J.W.); (P.-M.L.)
| | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China; (H.L.); (C.W.)
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China; (H.L.); (C.W.)
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (K.-J.W.); (P.-M.L.)
- Correspondence: (C.-H.L.); (D.-L.M.); Tel.: +(853)-8822-4688 (C.-H.L.); +(852)-3411-7075 (D.-L.M.)
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China; (H.L.); (C.W.)
- Correspondence: (C.-H.L.); (D.-L.M.); Tel.: +(853)-8822-4688 (C.-H.L.); +(852)-3411-7075 (D.-L.M.)
| |
Collapse
|
79
|
Scheurer MJ, Seher A, Steinacker V, Linz C, Hartmann S, Kübler AC, Müller-Richter UD, Brands RC. Targeting inhibitors of apoptosis in oral squamous cell carcinoma in vitro. J Craniomaxillofac Surg 2019; 47:1589-1599. [DOI: 10.1016/j.jcms.2019.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/24/2019] [Accepted: 07/14/2019] [Indexed: 10/26/2022] Open
|
80
|
Carter R, Luchini A, Liotta L, Haymond A. Next Generation Techniques for Determination of Protein-Protein Interactions: Beyond the Crystal Structure. CURRENT PATHOBIOLOGY REPORTS 2019; 7:61-71. [PMID: 33094031 PMCID: PMC7577580 DOI: 10.1007/s40139-019-00198-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW We discuss recent advancements in structural biology methods for investigating sites of protein-protein interactions. We will inform readers outside the field of structural biology about techniques beyond crystallography, and how these different technologies can be utilized for drug development. RECENT FINDINGS Advancements in cryo-electron microscopy (cryoEM) and micro-electron diffraction (microED) may change how we view atomic resolution structural biology, such that well-ordered macrocrystals of protein complexes are not required for interface identification. However, some drug discovery applications, such as lead peptide compound generation, may not require atomic resolution; mass spectrometry techniques can provide an expedited path to generation of lead compounds. New crosslinking compounds, more user-friendly data analysis, and novel protocols such as protein painting can advance drug discovery programs, even in the absence of atomic resolution structural data. Finally, artificial intelligence and machine learning methods, while never truly replacing experimental methods, may provide rational ways to stratify potential druggable regions identified with mass spectrometry into higher and lower priority candidates. SUMMARY Electron diffraction of nanocrystals combines the benefits of both x-ray diffraction and cryoEM, and may prove to be the next generation of atomic resolution protein-protein interface identification. However, in situations such as peptide drug discovery, mass spectrometry techniques supported by advancements in computational methods will likely prove sufficient to support drug discovery efforts. In addition, these methods can be significantly faster than any crystallographic or cryoEM methods for identification of interacting regions.
Collapse
Affiliation(s)
- Rachel Carter
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA
| | - Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA
| |
Collapse
|
81
|
Haymond A, Davis JB, Espina V. Proteomics for cancer drug design. Expert Rev Proteomics 2019; 16:647-664. [PMID: 31353977 PMCID: PMC6736641 DOI: 10.1080/14789450.2019.1650025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022]
Abstract
Introduction: Signal transduction cascades drive cellular proliferation, apoptosis, immune, and survival pathways. Proteins have emerged as actionable drug targets because they are often dysregulated in cancer, due to underlying genetic mutations, or dysregulated signaling pathways. Cancer drug development relies on proteomic technologies to identify potential biomarkers, mechanisms-of-action, and to identify protein binding hot spots. Areas covered: Brief summaries of proteomic technologies for drug discovery include mass spectrometry, reverse phase protein arrays, chemoproteomics, and fragment based screening. Protein-protein interface mapping is presented as a promising method for peptide therapeutic development. The topic of biosimilar therapeutics is presented as an opportunity to apply proteomic technologies to this new class of cancer drug. Expert opinion: Proteomic technologies are indispensable for drug discovery. A suite of technologies including mass spectrometry, reverse phase protein arrays, and protein-protein interaction mapping provide complimentary information for drug development. These assays have matured into well controlled, robust technologies. Recent regulatory approval of biosimilar therapeutics provides another opportunity to decipher the molecular nuances of their unique mechanisms of action. The ability to identify previously hidden protein hot spots is expanding the gamut of potential drug targets. Proteomic profiling permits lead compound evaluation beyond the one drug, one target paradigm.
Collapse
Affiliation(s)
- Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, George Mason University , Manassas , VA , USA
| | - Justin B Davis
- Center for Applied Proteomics and Molecular Medicine, George Mason University , Manassas , VA , USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University , Manassas , VA , USA
| |
Collapse
|
82
|
Park SH, Shin I, Park SH, Kim ND, Shin I. An Inhibitor of the Interaction of Survivin with Smac in Mitochondria Promotes Apoptosis. Chem Asian J 2019; 14:4035-4041. [PMID: 31251464 DOI: 10.1002/asia.201900587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/28/2019] [Indexed: 12/24/2022]
Abstract
Herein we report the first small molecule that disrupts the survivin-Smac interaction taking place in mitochondria. The inhibitor, PZ-6-QN, was identified by initially screening a phenothiazine library using a fluorescence anisotropy assay and then conducting a structure-activity relationship study. Mutagenesis and molecular docking studies suggest that PZ-6-QN binds to survivin similarly to the known Smac peptide, AVPI. The results of the effort also show that PZ-6-QN exhibits good anticancer activity against various cancer cells. Moreover, cell-based mechanistic studies provide evidence for the proposal that PZ-6-QN enters mitochondria to inhibit the survivin-Smac interaction and promotes release of Smac and cytochrome c from mitochondria into the cytosol, a process that induces apoptosis in cancer cells. Overall, the present study suggests that PZ-6-QN can serve as a novel chemical probe for study of processes associated with the mitochondrial survivin-Smac interaction and it will aid the discovery of novel anticancer agents.
Collapse
Affiliation(s)
- Seong-Hyun Park
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Insu Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Sang-Hyun Park
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Nam Doo Kim
- NDBio Therapeutics Inc., Incheon, 21984, Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
83
|
PEG-derivatized birinapant as a nanomicellar carrier of paclitaxel delivery for cancer therapy. Colloids Surf B Biointerfaces 2019; 182:110356. [PMID: 31319226 DOI: 10.1016/j.colsurfb.2019.110356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 02/05/2023]
Abstract
A novel triblock amphiphilic copolymer (PAL-PEG-Birinapant) was designed and synthesized as a dual-functional micellar carrier utilizing birinapant (an inhibitor of inhibitor-of-apoptosis proteins) as a pH-sensitive segment and inhibitor-of-apoptosis proteins-targeting ligand. The mixed micelles comprised of PAL-PEG-Birinapant (PPB) and mPEG2k-PDLLA2k (MPP), named as PPB/MPP (2/1,w/w) micelles were developed for enhanced solubility and antitumor potency of hydrophobic drugs as paclitaxel (PTX). In vitro cell viability and cytotoxicity studies revealed that the PTX-loaded PPB/MPP micelles were more potent than the commercial PTX formulation (Taxol®), as well as the in vitro cell apoptosis study. Clear differences in the intracellular uptake of free coumarin-6 (C6) solution and C6-loaded PPB/MPP micelles were observed and indicated that the PPB/MPP micelles could efficiently deliver chemical compound into tumor cells. PPB copolymer and PTX-loaded PPB/MPP micelles demonstrated an excellent safety profile with a maximum tolerated dose (MTD) of above 1.2 g copolymer/kg and above 100 mg PTX/kg in mice respectively in contrast to 20˜24 mg/kg of Taxol®. The near infrared (NIR) fluorescence imaging showed that PPB/MPP micelles persisted for a relatively long time in the circulation and accumulated preferentially in tumor tissue. Moreover, PTX loaded PPB/MPP micelles significantly inhibited the tumor growth both in MDA-MB-231 and Ramos cancer xenograft mice models without obvious toxicity. Collectively, our study presents a new dual-functional micelles that improve the therapeutic efficacy of PTX in vitro and in vivo.
Collapse
|
84
|
Micewicz ED, Nguyen C, Micewicz A, Waring AJ, McBride WH, Ruchala P. Position of lipidation influences anticancer activity of Smac analogs. Bioorg Med Chem Lett 2019; 29:1628-1635. [PMID: 31047753 PMCID: PMC6625762 DOI: 10.1016/j.bmcl.2019.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
A small group of lipid-conjugated Smac mimetics was synthesized to probe the influence of the position of lipidation on overall anti-cancer activity. Specifically, new compounds were modified with lipid(s) in position 3 and C-terminus. Previously described position 2 lipidated analog M11 was also synthesized. The resulting mini library of Smacs lipidated in positions 2, 3 and C-terminus was screened extensively in vitro against a total number of 50 diverse cancer cell lines revealing that both the position of lipidation as well as the type of lipid, influence their anti-cancer activity and cancer type specificity. Moreover, when used in combination therapy with inhibitor of menin-MLL1 protein interactions, position 2 modified analog SM2 showed strong synergistic anti-cancer properties. The most promising lipid-conjugated analogs SM2 and SM6, showed favorable pharmacokinetics and in vivo activity while administered subcutaneously in the preclinical mouse model. Collectively, our findings suggest that lipid modification of Smacs may be a viable approach in the development of anti-cancer therapeutic leads.
Collapse
Affiliation(s)
- Ewa D Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Christine Nguyen
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Alina Micewicz
- David Geffen School of Medicine at UCLA, Volunteering Program, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Alan J Waring
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA
| | - William H McBride
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Piotr Ruchala
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, Los Angeles, CA 90024, USA.
| |
Collapse
|
85
|
Salah Ayoup M, Wahby Y, Abdel-Hamid H, Ramadan ES, Teleb M, Abu-Serie MM, Noby A. Design, synthesis and biological evaluation of novel α-acyloxy carboxamides via Passerini reaction as caspase 3/7 activators. Eur J Med Chem 2019; 168:340-356. [DOI: 10.1016/j.ejmech.2019.02.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 12/17/2022]
|
86
|
Clinical candidates modulating protein-protein interactions: The fragment-based experience. Eur J Med Chem 2019; 167:76-95. [DOI: 10.1016/j.ejmech.2019.01.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/23/2022]
|
87
|
Abner E, Jordan A. HIV "shock and kill" therapy: In need of revision. Antiviral Res 2019; 166:19-34. [PMID: 30914265 DOI: 10.1016/j.antiviral.2019.03.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 01/05/2023]
Abstract
The implementation of antiretroviral therapy 23 years ago has rendered HIV infection clinically manageable. However, the disease remains incurable, since it establishes latent proviral reservoirs, which in turn can stochastically begin reproducing viral particles throughout the patient's lifetime. Viral latency itself depends in large part on the silencing environment of the infected host cell, which can be chemically manipulated. "Shock and kill" therapy intends to reverse proviral quiescence by inducing transcription with pharmaceuticals and allowing a combination of antiretroviral therapy, host immune clearance and HIV-cytolysis to remove latently infected cells, leading to a complete cure. Over 160 compounds functioning as latency-reversing agents (LRAs) have been identified to date, but none of the candidates has yet led to a promising functional cure. Furthermore, fundamental bioinformatic and clinical research from the past decade has highlighted the complexity and highly heterogeneous nature of the proviral reservoirs, shedding doubt on the "shock and kill" concept. Alternative therapies such as the HIV transcription-inhibiting "block and lock" strategy are therefore being considered. In this review we describe the variety of existing classes of LRAs, discuss their current drawbacks and highlight the potential for combinatorial "shocktail" therapies for potent proviral reactivation. We also suggest investigating LRAs with lesser-known mechanisms of action, and examine the feasibility of "block and lock" therapy.
Collapse
Affiliation(s)
- Erik Abner
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain.
| |
Collapse
|
88
|
Boddu P, Carter BZ, Verstovsek S, Pemmaraju N. SMACmimetics as potential cancer therapeutics in myeloid malignancies. Br J Haematol 2019; 185:219-231. [DOI: 10.1111/bjh.15829] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Prajwal Boddu
- Department of Hematology and Oncology Yale University School of Medicine New Haven CTUSA
| | - Bing Z. Carter
- Department of Leukemia University of Texas MD Anderson Cancer Center Houston TX USA
| | - Srdan Verstovsek
- Department of Leukemia University of Texas MD Anderson Cancer Center Houston TX USA
| | - Naveen Pemmaraju
- Department of Leukemia University of Texas MD Anderson Cancer Center Houston TX USA
| |
Collapse
|
89
|
Bobardt M, Kuo J, Chatterji U, Chanda S, Little SJ, Wiedemann N, Vuagniaux G, Gallay PA. The inhibitor apoptosis protein antagonist Debio 1143 Is an attractive HIV-1 latency reversal candidate. PLoS One 2019; 14:e0211746. [PMID: 30716099 PMCID: PMC6361451 DOI: 10.1371/journal.pone.0211746] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 01/08/2023] Open
Abstract
Antiretroviral therapy (ART) suppresses HIV replication, but does not cure the infection because replication-competent virus persists within latently infected CD4+ T cells throughout years of therapy. These reservoirs contain integrated HIV-1 genomes and can resupply active virus. Thus, the development of strategies to eliminate the reservoir of latently infected cells is a research priority of global significance. In this study, we tested efficacy of a new inhibitor of apoptosis protein antagonist (IAPa) called Debio 1143 at reversing HIV latency and investigated its mechanisms of action. Debio 1143 activates HIV transcription via NF-kB signaling by degrading the ubiquitin ligase baculoviral IAP repeat-containing 2 (BIRC2), a repressor of the non-canonical NF-kB pathway. Debio 1143-induced BIRC2 degradation results in the accumulation of NF-κB-inducing kinase (NIK) and proteolytic cleavage of p100 into p52, leading to nuclear translocation of p52 and RELB. Debio 1143 greatly enhances the binding of RELB to the HIV-1 LTR. These data indicate that Debio 1143 activates the non-canonical NF-kB signaling pathway by promoting the binding of RELB:p52 complexes to the HIV-1 LTR, resulting in the activation of the LTR-dependent HIV-1 transcription. Importantly, Debio 1143 reverses viral latency in HIV-1 latent T cell lines. Using knockdown (siRNA BIRC2), knockout (CRIPSR NIK) and proteasome machinery neutralization (MG132) approaches, we found that Debio 1143-mediated HIV latency reversal is BIRC2 degradation- and NIK stabilization-dependent. Debio 1143 also reverses HIV-1 latency in resting CD4+ T cells derived from ART-treated patients or HIV-1-infected humanized mice under ART. Interestingly, daily oral administration of Debio 1143 in cancer patients at well-tolerated doses elicited BIRC2 target engagement in PBMCs and induced a moderate increase in cytokines and chemokines mechanistically related to NF-kB signaling. In conclusion, we provide strong evidences that the IAPa Debio 1143, by initially activating the non-canonical NF-kB signaling and subsequently reactivating HIV-1 transcription, represents a new attractive viral latency reversal agent (LRA).
Collapse
Affiliation(s)
- Michael Bobardt
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joseph Kuo
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Udayan Chatterji
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sumit Chanda
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States of America
| | - Susan J. Little
- Department of Medicine, University of California, San Diego, California, United States of America
| | | | | | - Philippe A. Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
90
|
Cong H, Xu L, Wu Y, Qu Z, Bian T, Zhang W, Xing C, Zhuang C. Inhibitor of Apoptosis Protein (IAP) Antagonists in Anticancer Agent Discovery: Current Status and Perspectives. J Med Chem 2019; 62:5750-5772. [DOI: 10.1021/acs.jmedchem.8b01668] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hui Cong
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Lijuan Xu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yougen Wu
- College of Tropical Agriculture and Forestry, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Tengfei Bian
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
91
|
Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep 2019; 39:BSR20180992. [PMID: 30530866 PMCID: PMC6340950 DOI: 10.1042/bsr20180992] [Citation(s) in RCA: 569] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022] Open
Abstract
Apoptosis is widely known as programmed cell death eliciting no inflammatory responses. The intricacy of apoptosis has been a focus of an array of researches, accumulating a wealth of knowledge which led to not only a better understanding of the fundamental process, but also potent therapies of diseases. The classic intrinsic and extrinsic signaling pathways of apoptosis, along with regulatory factors have been well delineated. Drugs and therapeutic measures designed based on current understanding of apoptosis have long been employed. Small-molecule apoptosis inducers have been clinically used for eliminating morbid cells and therefore treating diseases, such as cancer. Biologics with improved apoptotic efficacy and selectivity, such as recombinant proteins and antibodies, are being extensively researched and some have been approved by the FDA. Apoptosis also produces membrane-bound vesicles derived from disassembly of apoptotic cells, now known as apoptotic bodies (ApoBDs). These little sealed sacs containing information as well as substances from dying cells were previously regarded as garbage bags until they were discovered to be capable of delivering useful materials to healthy recipient cells (e.g., autoantigens). In this review, current understandings and knowledge of apoptosis were summarized and discussed with a focus on apoptosis-related therapeutic applications and ApoBDs.
Collapse
|
92
|
Otkur W, Wang F, Liu W, Hayashi T, Tashiro SI, Onodera S, Ikejima T. Persistent IKKα phosphorylation induced apoptosis in UVB and Poly I:C co-treated HaCaT cells plausibly through pro-apoptotic p73 and abrogation of IκBα. Mol Immunol 2018; 104:69-78. [PMID: 30445257 DOI: 10.1016/j.molimm.2018.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/19/2018] [Accepted: 10/01/2018] [Indexed: 02/08/2023]
Abstract
Toll-like receptor 3 (TLR3), a member of pattern recognition receptors, is reported to initiate skin inflammation by recognizing double-strand RNA (dsRNA) released from UVB-irradiated cells. Recently, we have discovered the NF-κB pathway activated by TLR3 is involved in apoptosis of UVB-Poly I:C-treated HaCaT cells. The real culprit for apoptosis has not been precisely identified since the system of NF-κB pathway is complex. In this study, we silenced main transcriptional factors in NF-κB family, RelA, RelB and c-Rel, but to our surprise the results show that none of them participate in apoptosis induction in UVB-Poly I:C-treated HaCaT cells. Therefore, we moved to investigate the apoptosis-associated molecules in the upstream of NF-κB pathway. We firstly checked the expression of IκBα, an NF-κB inhibitor. UVB (4.8 mJ/cm2) and Poly I:C (0.3 μg/mL) co-treatment decreased IκBα expression level in a time-dependent manner. Silencing IκBα with siRNA further enhanced UVB-Poly I:C-induced cell death. We then investigated IκB kinase (IKK) complex that contributes to the degradation of IκBα. IKK is composed of IKKα, IKKβ and NEMO. Treatment with IKK-16, an IKKα/β inhibitor, significantly diminished UVB-Poly I:C-induced IκBα degradation and thus apoptosis. Silencing either IKKα or NEMO but not IKKβ with corresponding siRNA inhibited apoptosis. Tumor repressor p73, a homologue of p53, is reported to mediate IKKα-induced apoptosis in DNA damage response. Silencing p73 reduced cell apoptosis in UVB-Poly I:C-treated HaCaT cells. In summary, UVB and Poly I:C co-treatment activates IKKα and NEMO, which diminishes anti-apoptotic IκBα, resulting in enhancement of apoptosis through p73. The findings partially clarify the possible molecular mechanism of pro-apoptotic NF-κB pathway activated by TLR3 in the fate of UVB-irradiated epidermis.
Collapse
Affiliation(s)
- Wuxiyar Otkur
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Fang Wang
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weiwei Liu
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan
| | - Shin-Ichi Tashiro
- Department of Medical Education & Primary Care, Kyoto Prefectural University of Medicine, Kajiicho 465, Kamikyo-ku, Kyoto City, Kyoto, 602-8566, Japan
| | - Satoshi Onodera
- Department of Clinical and Pharmaceutical Sciences, Showa Pharmaceutical University, Tokyo, 194-8543, Japan
| | - Takashi Ikejima
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
93
|
Fu P, Hu B, Ma X, Yang Z, Yu M, Sun H, Huang A, Zhang X, Wang J, Hu Z, Zhou C, Tang W, Ning R, Xu Y, Zhou J. New insight into BIRC3: A novel prognostic indicator and a potential therapeutic target for liver cancer. J Cell Biochem 2018; 120:6035-6045. [PMID: 30368883 DOI: 10.1002/jcb.27890] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/21/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Pei‐Yao Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University Shanghai China
- Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education Shanghai China
| | - Bo Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University Shanghai China
- Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education Shanghai China
| | - Xiao‐Lu Ma
- Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education Shanghai China
- Laboratory Medicine Department Liver Cancer Institute, Zhongshan Hospital of Fudan University Shanghai China
| | - Zhang‐Fu Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University Shanghai China
- Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education Shanghai China
| | - Min‐Cheng Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University Shanghai China
- Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education Shanghai China
| | - Hai‐Xiang Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University Shanghai China
- Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education Shanghai China
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University Shanghai China
- Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education Shanghai China
| | - Xin Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University Shanghai China
- Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education Shanghai China
| | - Jian Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University Shanghai China
- Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education Shanghai China
| | - Zhi‐Qiang Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University Shanghai China
- Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education Shanghai China
| | - Chen‐Hao Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University Shanghai China
- Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education Shanghai China
| | - Wei‐Guo Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University Shanghai China
- Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education Shanghai China
| | - Ren Ning
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University Shanghai China
- Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education Shanghai China
| | - Yang Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University Shanghai China
- Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education Shanghai China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University Shanghai China
- Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education Shanghai China
- State Key Laboratory of Genetic Engineering Fudan University Shanghai China
- Shanghai Key Laboratory of Organ Transplantation Zhongshan Hospital, Fudan University Shanghai China
- Institute of Biomedical Sciences, Fudan University Shanghai China
| |
Collapse
|
94
|
Miles MA, Hawkins CJ. Mutagenic assessment of chemotherapy and Smac mimetic drugs in cells with defective DNA damage response pathways. Sci Rep 2018; 8:14421. [PMID: 30258062 PMCID: PMC6158240 DOI: 10.1038/s41598-018-32517-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022] Open
Abstract
DNA damaging therapies can spur the formation of therapy-related cancers, due to mis-repair of lesions they create in non-cancerous cells. This risk may be amplified in patients with impaired DNA damage responses. We disabled key DNA damage response pathways using genetic and pharmacological approaches, and assessed the impact of these deficiencies on the mutagenicity of chemotherapy drugs or the "Smac mimetic" GDC-0152, which kills tumor cells by targeting XIAP, cIAP1 and 2. Doxorubicin and cisplatin provoked mutations in more surviving cells deficient in ATM, p53 or the homologous recombination effector RAD51 than in wild type cells, but suppressing non-homologous end joining (NHEJ) by disabling DNA-PKcs prevented chemotherapy-induced mutagenesis. Vincristine-induced mutagenesis required p53 and DNA-PKcs but was not affected by ATM status, consistent with it provoking ATM-independent p53-mediated activation of caspases and CAD, which creates DNA lesions in surviving cells that could be mis-repaired by NHEJ. Encouragingly, GDC-0152 failed to stimulate mutations in cells with proficient or defective DNA damage response pathways. This study highlights the elevated oncogenic risk associated with treating DNA repair-deficient patients with genotoxic anti-cancer therapies, and suggests a potential advantage for Smac mimetic drugs over traditional therapies: a reduced risk of therapy-related cancers.
Collapse
Affiliation(s)
- Mark A Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Christine J Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia.
| |
Collapse
|
95
|
Hattori SI, Matsuda K, Tsuchiya K, Gatanaga H, Oka S, Yoshimura K, Mitsuya H, Maeda K. Combination of a Latency-Reversing Agent With a Smac Mimetic Minimizes Secondary HIV-1 Infection in vitro. Front Microbiol 2018; 9:2022. [PMID: 30283406 PMCID: PMC6156138 DOI: 10.3389/fmicb.2018.02022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/09/2018] [Indexed: 01/22/2023] Open
Abstract
Latency-reversing agents (LRAs) are considered a potential tool to cure human immunodeficiency virus type 1 (HIV-1) infection, but when they are taken alone, virus production by reactivated cells and subsequent infection will occur. Hence, it is crucial to simultaneously take appropriate measures to prevent such secondary HIV-1 infection. In this regard, a strategy to minimize the production of infectious viruses from LRA-reactivated cells is worth pursuing. Here, we focused on a second mitochondria-derived activator of caspases (Smac) mimetic, birinapant, to induce apoptosis in latent HIV-1-infected cells. When birinapant was administered alone, it only slightly increased the expression of caspase-3. However, in combination with an LRA (e.g., PEP005), it strongly induced the expression of caspase-3 followed by enhanced apoptosis. Importantly, the combination eliminated reactivated cells and drastically reduced HIV-1 production. Finally, we found that birinapant decreased the mRNA expression of HIV-1 that was induced by PEP005 in the primary CD4+ T-cells from HIV-1-carrying patients as well. These results suggest that the combination of an LRA and an “apoptosis-inducing” agent, such as a Smac mimetic, is a possible treatment option to decrease HIV-1 reservoirs without the occurrence of HIV-1 production by reactivated cells.
Collapse
Affiliation(s)
- Shin-Ichiro Hattori
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kouki Matsuda
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroaki Mitsuya
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan.,Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kenji Maeda
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| |
Collapse
|
96
|
Abstract
Despite the success of antiretroviral therapy (ART), there is currently no HIV cure and treatment is life long. HIV persists during ART due to long-lived and proliferating latently infected CD4+ T cells. One strategy to eliminate latency is to activate virus production using latency reversing agents (LRAs) with the goal of triggering cell death through virus-induced cytolysis or immune-mediated clearance. However, multiple studies have demonstrated that activation of viral transcription alone is insufficient to induce cell death and some LRAs may counteract cell death by promoting cell survival. Here, we review new approaches to induce death of latently infected cells through apoptosis and inhibition of pathways critical for cell survival, which are often hijacked by HIV proteins. Given advances in the commercial development of compounds that induce apoptosis in cancer chemotherapy, these agents could move rapidly into clinical trials, either alone or in combination with LRAs, to eliminate latent HIV infection.
Collapse
|
97
|
Johnson CN, Ahn JS, Buck IM, Chiarparin E, Day JEH, Hopkins A, Howard S, Lewis EJ, Martins V, Millemaggi A, Munck JM, Page LW, Peakman T, Reader M, Rich SJ, Saxty G, Smyth T, Thompson NT, Ward GA, Williams PA, Wilsher NE, Chessari G. A Fragment-Derived Clinical Candidate for Antagonism of X-Linked and Cellular Inhibitor of Apoptosis Proteins: 1-(6-[(4-Fluorophenyl)methyl]-5-(hydroxymethyl)-3,3-dimethyl-1H,2H,3H-pyrrolo[3,2-b]pyridin-1-yl)-2-[(2R,5R)-5-methyl-2-([(3R)-3-methylmorpholin-4-yl]methyl)piperazin-1-yl]ethan-1-one (ASTX660). J Med Chem 2018; 61:7314-7329. [DOI: 10.1021/acs.jmedchem.8b00900] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Christopher N. Johnson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Jong Sook Ahn
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Ildiko M. Buck
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Elisabetta Chiarparin
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - James E. H. Day
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Anna Hopkins
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Steven Howard
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Edward J. Lewis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Vanessa Martins
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Alessia Millemaggi
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Joanne M. Munck
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Lee W. Page
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Torren Peakman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Michael Reader
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Sharna J. Rich
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Gordon Saxty
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Tomoko Smyth
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Neil T. Thompson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - George A. Ward
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Pamela A. Williams
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Nicola E. Wilsher
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Gianni Chessari
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
98
|
Physiologically-based pharmacokinetic and pharmacodynamic models for gemcitabine and birinapant in pancreatic cancer xenografts. J Pharmacokinet Pharmacodyn 2018; 45:733-746. [PMID: 30069744 DOI: 10.1007/s10928-018-9603-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 07/19/2018] [Indexed: 02/08/2023]
Abstract
The anticancer effects of combined gemcitabine and birinapant were demonstrated as synergistic in PANC-1 cells in vitro. In this study, pharmacokinetic information derived from experiments and the literature was utilized to develop full physiologically-based pharmacokinetic (PBPK) models that characterize individual drugs. The predicted intra-tumor drug concentrations were used as the driving force within a linked PBPK/PD model for treatment-mediated changes in tumor volume in a xenograft mouse model. The efficacy of the drug combination in vivo was evaluated mathematically as exhibiting additivity. The network model developed for drug effects in the in vitro cell cultures was applied successfully to link the in vivo tumor drug concentrations with tumor growth inhibition, incorporating more mechanistic features and accounting for disparate drug interaction outcomes in vitro and in vivo.
Collapse
|
99
|
Alimbetov D, Askarova S, Umbayev B, Davis T, Kipling D. Pharmacological Targeting of Cell Cycle, Apoptotic and Cell Adhesion Signaling Pathways Implicated in Chemoresistance of Cancer Cells. Int J Mol Sci 2018; 19:ijms19061690. [PMID: 29882812 PMCID: PMC6032165 DOI: 10.3390/ijms19061690] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Chemotherapeutic drugs target a physiological differentiating feature of cancer cells as they tend to actively proliferate more than normal cells. They have well-known side-effects resulting from the death of highly proliferative normal cells in the gut and immune system. Cancer treatment has changed dramatically over the years owing to rapid advances in oncology research. Developments in cancer therapies, namely surgery, radiotherapy, cytotoxic chemotherapy and selective treatment methods due to better understanding of tumor characteristics, have significantly increased cancer survival. However, many chemotherapeutic regimes still fail, with 90% of the drug failures in metastatic cancer treatment due to chemoresistance, as cancer cells eventually develop resistance to chemotherapeutic drugs. Chemoresistance is caused through genetic mutations in various proteins involved in cellular mechanisms such as cell cycle, apoptosis and cell adhesion, and targeting those mechanisms could improve outcomes of cancer therapy. Recent developments in cancer treatment are focused on combination therapy, whereby cells are sensitized to chemotherapeutic agents using inhibitors of target pathways inducing chemoresistance thus, hopefully, overcoming the problems of drug resistance. In this review, we discuss the role of cell cycle, apoptosis and cell adhesion in cancer chemoresistance mechanisms, possible drugs to target these pathways and, thus, novel therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Dauren Alimbetov
- Laboratory of bioengineering and regenerative medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave, Z05H0P9 Astana, Kazakhstan.
| | - Sholpan Askarova
- Laboratory of bioengineering and regenerative medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave, Z05H0P9 Astana, Kazakhstan.
| | - Bauyrzhan Umbayev
- Laboratory of bioengineering and regenerative medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave, Z05H0P9 Astana, Kazakhstan.
| | - Terence Davis
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - David Kipling
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
100
|
Ward GA, Lewis EJ, Ahn JS, Johnson CN, Lyons JF, Martins V, Munck JM, Rich SJ, Smyth T, Thompson NT, Williams PA, Wilsher NE, Wallis NG, Chessari G. ASTX660, a Novel Non-peptidomimetic Antagonist of cIAP1/2 and XIAP, Potently Induces TNFα-Dependent Apoptosis in Cancer Cell Lines and Inhibits Tumor Growth. Mol Cancer Ther 2018; 17:1381-1391. [PMID: 29695633 DOI: 10.1158/1535-7163.mct-17-0848] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/04/2018] [Accepted: 04/16/2018] [Indexed: 11/16/2022]
Abstract
Because of their roles in the evasion of apoptosis, inhibitor of apoptosis proteins (IAP) are considered attractive targets for anticancer therapy. Antagonists of these proteins have the potential to switch prosurvival signaling pathways in cancer cells toward cell death. Various SMAC-peptidomimetics with inherent cIAP selectivity have been tested clinically and demonstrated minimal single-agent efficacy. ASTX660 is a potent, non-peptidomimetic antagonist of cIAP1/2 and XIAP, discovered using fragment-based drug design. The antagonism of XIAP and cIAP1 by ASTX660 was demonstrated on purified proteins, cells, and in vivo in xenograft models. The compound binds to the isolated BIR3 domains of both XIAP and cIAP1 with nanomolar potencies. In cells and xenograft tissue, direct antagonism of XIAP was demonstrated by measuring its displacement from caspase-9 or SMAC. Compound-induced proteasomal degradation of cIAP1 and 2, resulting in downstream effects of NIK stabilization and activation of noncanonical NF-κB signaling, demonstrated cIAP1/2 antagonism. Treatment with ASTX660 led to TNFα-dependent induction of apoptosis in various cancer cell lines in vitro, whereas dosing in mice bearing breast and melanoma tumor xenografts inhibited tumor growth. ASTX660 is currently being tested in a phase I-II clinical trial (NCT02503423), and we propose that its antagonism of cIAP1/2 and XIAP may offer improved efficacy over first-generation antagonists that are more cIAP1/2 selective. Mol Cancer Ther; 17(7); 1381-91. ©2018 AACR.
Collapse
Affiliation(s)
| | | | | | | | - John F Lyons
- Astex Pharmaceuticals, Cambridge, United Kingdom
| | | | | | | | - Tomoko Smyth
- Astex Pharmaceuticals, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|