51
|
Yang W, Su J, Li M, Li T, Wang X, Zhao M, Hu X. Myricetin Induces Autophagy and Cell Cycle Arrest of HCC by Inhibiting MARCH1-Regulated Stat3 and p38 MAPK Signaling Pathways. Front Pharmacol 2021; 12:709526. [PMID: 34733155 PMCID: PMC8558373 DOI: 10.3389/fphar.2021.709526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Myricetin is a type of natural flavonol known for its anticancer activity. However, the molecular mechanism of myricetin in anti-hepatocellular carcinoma (HCC) is not well defined. Previous studies indicated that downregulation of membrane-associated RING-CH finger protein 1 (MARCH1) contributed to the treatment of a variety of cancers. Whether the anticancer property of myricetin is associated with MARCH1 expression remains to be investigated. This research explored the anti-HCC mechanism of myricetin. Our results indicate that myricetin induces autophagy and arrests cell cycle at the G2/M phase to suppress the proliferation of HCC cells by downregulating MARCH1. Myricetin reduces MARCH1 protein in Hep3B and HepG2 cells. Interestingly, myricetin upregulates the MARCH1 mRNA level in Hep3B cells but downregulates it in HepG2 cells. The knockdown of MARCH1 by siRNAs (small interfering RNAs) decreases the phosphorylated p38 MAPK (p-p38 MAPK) and Stat3 (p-Stat3), and inhibits HCC cell viability. Moreover, myricetin inhibits p38 MAPK and Stat3 signaling pathways by downregulating MARCH1 to repress HCC growth both in vitro and in vivo. Bafilomycin A1 (BafA1), an autophagy inhibitor, has synergetic effect with myricetin to inhibit HCC growth. Taken together, our results reveal that myricetin inhibits the proliferation of HCC cells by inhibiting MARCH1-regulated p38 MAPK and Stat3 signaling pathways. This research provides a new molecular mechanism for myricetin in anti-HCC and suggests that targeting MARCH1 could be a novel treatment strategy in developing anticancer therapeutics.
Collapse
Affiliation(s)
- Wei Yang
- Department of Imaging, Binzhou Medical University, Yantai, China
| | - Jiaqi Su
- Department of Imaging, Binzhou Medical University, Yantai, China
| | - Mingjing Li
- Department of Chinese Medicine Prescription, Binzhou Medical University, Yantai, China
| | - Tiantian Li
- Department of Immunology, Medical School, Qingdao University, Qingdao, China
| | - Xu Wang
- Department of Nuclear Medicine, Binzhou Medical University, Binzhou, China
| | - Mingdong Zhao
- Department of Imaging, Binzhou Medical University, Yantai, China
| | - Xuemei Hu
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
52
|
Arora L, Mohan CD, Yang MH, Rangappa S, Deivasigamani A, Kumar AP, Kunnumakkara AB, Garg M, Chinnathambi A, Alharbi SA, Alahmadi TA, Rangappa KS, Hui KM, Sethi G, Ahn KS. Tris(dibenzylideneacetone)dipalladium(0) (Tris DBA) Abrogates Tumor Progression in Hepatocellular Carcinoma and Multiple Myeloma Preclinical Models by Regulating the STAT3 Signaling Pathway. Cancers (Basel) 2021; 13:cancers13215479. [PMID: 34771643 PMCID: PMC8582575 DOI: 10.3390/cancers13215479] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary STAT3 is a major oncogenic transcription factor that is constitutively activated in many types of human cancers, including hepatocellular carcinoma (HCC) and multiple myeloma (MM). Many STAT3 inhibitors have gained momentum in clinical trials towards the treatment of various cancers. In the present study, we have investigated the STAT3 inhibitory efficacy of Tris DBA, a palladium-based compound, in HCC and MM cancer cells and preclinical cancer models. Tris(dibenzylideneacetone)dipalladium(0) (Tris DBA) abrogated the STAT3 signaling pathway in both models by elevating the expression of SHP2. Functionally, Tris DBA inhibited cell proliferation, migration, invasion, and regressed tumor metastasis. Although many studies propose Tris DBA as a modulator of MAPK, Akt, phospho-S6 kinase, and N-myristoyltransferase-1, we have comprehensively demonstrated for the first time that Tris DBA is an inhibitor of STAT3 signaling in preclinical cancer models. These results support the consideration of Tris DBA in clinical trials in translational relevance. Abstract STAT3 is an oncogenic transcription factor that controls the expression of genes associated with oncogenesis and malignant progression. Persistent activation of STAT3 is observed in human malignancies, including hepatocellular carcinoma (HCC) and multiple myeloma (MM). Here, we have investigated the action of Tris(dibenzylideneacetone) dipalladium 0 (Tris DBA) on STAT3 signaling in HCC and MM cells. Tris DBA decreased cell viability, increased apoptosis, and inhibited IL-6 induced/constitutive activation of STAT3, JAK1, JAK2, and Src in HCC and MM cells. Tris DBA downmodulated the nuclear translocation of STAT3 and reduced its DNA binding ability. It upregulated the expression of SHP2 (protein and mRNA) to induce STAT3 dephosphorylation, and the inhibition of SHP2 reversed this effect. Tris DBA downregulated the expression of STAT3-driven genes, suppressed cell migration/invasion. Tris DBA significantly inhibited tumor growth in xenograft MM and orthotopic HCC preclinical mice models with a reduction in the expression of various prosurvival biomarkers in MM tumor tissues without displaying significant toxicity. Overall, Tris DBA functions as a good inhibitor of STAT3 signaling in preclinical HCC and MM models.
Collapse
Affiliation(s)
- Loukik Arora
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; (L.A.); (A.P.K.)
| | | | - Min Hee Yang
- KHU-KIST Department of Converging Science and Technology and Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, BG Nagara, Nagamangala Taluk 571448, India;
| | - Amudha Deivasigamani
- National Cancer Centre, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, Singapore 169610, Singapore;
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; (L.A.); (A.P.K.)
- Cancer Science Institute of Singapore, and Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Ajaikumar B. Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India;
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida 201313, India;
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.C.); (S.A.A.)
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.C.); (S.A.A.)
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine, King Saud University, King Khalid University Hospital, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | | | - Kam Man Hui
- National Cancer Centre, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, Singapore 169610, Singapore;
- Correspondence: (K.M.H.); (G.S.); (K.S.A.)
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; (L.A.); (A.P.K.)
- Correspondence: (K.M.H.); (G.S.); (K.S.A.)
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology and Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Correspondence: (K.M.H.); (G.S.); (K.S.A.)
| |
Collapse
|
53
|
Digitoxin promotes apoptosis and inhibits proliferation and migration by reducing HIF-1α and STAT3 in KRAS mutant human colon cancer cells. Chem Biol Interact 2021; 351:109729. [PMID: 34717917 DOI: 10.1016/j.cbi.2021.109729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022]
Abstract
Colon cancer patients with mutant KRAS are resistant to cetuximab, an antibody directed against the epidermal growth factor receptor. New treatment options are needed to improve survival in patients with KRAS mutated colorectal cancer. Digitoxin is a cardiotonic drug, which has been demonstrated to exhibit anticancer effects in a number of cancers. However, the anticancer mechanisms of digitoxin in KRAS mutant human colon cancer cells remain elusive. Our result demonstrated that digitoxin but not cetuximab markedly decreased the expression of hypoxia-inducible factor-1α (HIF-1α), signal transducer and activator of transcription 3 (STAT3) and p-STAT3 protein in KRAS mutant colon cancer cells. Further analysis revealed that digitoxin inhibited HIF-1α protein synthesis, without affecting the expression level of HIF-1α mRNA or degradation of HIF-1α protein. The phosphorylation levels of ribosomal protein S6 kinase (p70S6K) and eIF4E binding protein-1 (4E-BP1) were significantly suppressed by digitoxin. Digitoxin inhibited the expression and activation of STAT3 through upregulation of phosphatase and tensin homolog deleted on chromosome ten (PTEN), SHP1 and protein inhibitors of activated STAT3 (PIAS3) and direct binding to STAT3. Meanwhile, digitoxin inhibited HIF-1α in STAT3-independent manner in KRAS mutant colon cancer cells. Moreover, digitoxin promoted apoptosis and inhibited proliferation and migration, which was potentially mediated by suppression of HIF-1α and STAT3. We also found that digitoxin administration inhibited tumor growth in a mouse xenograft model. Taken together, our findings highlight the therapeutic potential of digitoxin for the treatment of cetuximab-resistant human colon cancer.
Collapse
|
54
|
Establishment of a prognostic model of ten transcription factors in gastric cancer. Genomics 2021; 113:4075-4087. [PMID: 34688795 DOI: 10.1016/j.ygeno.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/23/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Transcription factors (TFs) play an important role in tumors. We integrated and analyzed 13 GPL570 platform gastric cancer (GC) microarrays, identified 10 independent prognostic TFs, and constructed a GC prognostic model. Using GSE26942 as the verification set, the Kaplan-Meier curve showed that the signature distinguish the survival rate of GC patients (P < 0.01), and the AUC values are 0.746 and 0.630, respectively. Compared with the clinicopathological characteristics, the signature is an independent prognostic factor (P < 0.05). A nomogram was established based on the model, and the five-year calibration curve verified that the prediction of the nomogram was almost consistent with the actual survival rate, C-index of 0.747 indicated a moderate prognostic ability. The analysis of target genes of 10 TFs showed that they are closely related to the progression of GC. External database and rt-PCR showed that the RNA and protein expression of TFs are consistent with our analysis.
Collapse
|
55
|
Pyrimidine-2,4-dione targets STAT3 signaling pathway to induce cytotoxicity in hepatocellular carcinoma cells. Bioorg Med Chem Lett 2021; 50:128332. [PMID: 34418571 DOI: 10.1016/j.bmcl.2021.128332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/21/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a tumorigenic transcription factor that is persistently activated in various human cancers including hepatocellular carcinoma (HCC). Therefore, STAT3 is considered as a prominent target to counteract the uncontrolled proliferation of cancer cells. In the present report, pyrimidine-2,4-diones (N-methyluracil derivatives) (MNK1-MNK14) were synthesized in an ionic liquid (BMIm PF6) medium employing a ligand-free Suzuki-Miyaura cross-coupling process. Among the 14 derivatives, compound MNK8 showed good cytotoxicity towards both the tested cell lines and did not display a toxic effect against normal hepatocytes (LO2). MNK8 significantly increased the Sub-G1 cell count in both cell lines and the cytotoxic effect of MNK8 was found to be mediated through the suppression of constitutive phosphorylation of STAT3Y705. It also decreased the DNA interaction ability of nuclear STAT3 in HCC cells. MNK8 downregulated the levels of apoptosis-related proteins (such as Bcl-2, cyclin D1, survivin) and increased cleaved caspase-3 inferring the apoptogenic effect of MNK8. It also reduced the CXCL12-triggered cell migration and invasion in in vitro assay systems. Overall, MNK8 has been demonstrated as a new inhibitor of STAT3 signaling cascade in HCC cells.
Collapse
|
56
|
TCF21 regulates miR-10a-5p/LIN28B signaling to block the proliferation and invasion of melanoma cells. PLoS One 2021; 16:e0255971. [PMID: 34424910 PMCID: PMC8382182 DOI: 10.1371/journal.pone.0255971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022] Open
Abstract
Background and aim Some research has suggested that miRNA-10a (miR-10a-5p) had an inhibitory function in proliferation and invasion of cancers. Whereas the role of miR-10a-5p in melanoma has not been fully explored. This study aims to confirm LIN28B as the targeted gene of miR-10a-5p which was explored in melanoma cells. In addition, upstream regulatory molecule of miR-10a-5p was also investigated in melanoma cells. Methods Real-time Quantitative polymerase chain reaction (RT-qPCR) was adopted to analyze miR-10a-5p expression level in melanoma and the normal human epidermal melanocyte cells. Several biological assays were performed to evaluate miR-10a-5p influences on cell proliferation, migration and invasion ability in A375 and B16-F10 cells. Gene prediction of miRNA targeting and a dual luciferase assay were applied to assess miR-10a-5p-targeted LIN28B. Western blot assessed the impacts of miR-10a-5p on the protein expression of LIN28B. Western blot analyzed the TCF21 effects on the expression of LIN28B and RT-qPCR assessed the influence of TCF21 on the expression level of miRNA-10a. In addition, Chromatin Immunoprecipitation (ChIP) Assay and JASPAR databases were employed to explore the regulatory relationship between TCF21 and miR-10a-5p. Results We discovered that miR-10a-5p expression was lower in melanoma cells and high expression of miR-10a-5p suppressed the proliferation, migration and invasion abilities of melanoma cells. We also discovered that miR-10a-5p targeted the LIN28B mRNA 3′UTR area and diminished LIN28B protein expression. We found that LIN28B expression was strongly decreased by TCF21 upregulation in the two melanoma cells. The qRT-PCR assay showed that miR-10a-5p expression level was obviously boosted by increased TCF21 expression. The results also demonstrated that TCF21 directly regulated miR-10a-5p at transcript levels. Conclusion TCF21 induced miRNA-10a targeting LIN28B could affect the progression and growth of melanoma.
Collapse
|
57
|
Bosch-Barrera J, Verdura S, Ruffinelli JC, Carcereny E, Sais E, Cuyàs E, Palmero R, Lopez-Bonet E, Hernández-Martínez A, Oliveras G, Buxó M, Izquierdo A, Morán T, Nadal E, Menendez JA. Silibinin Suppresses Tumor Cell-Intrinsic Resistance to Nintedanib and Enhances Its Clinical Activity in Lung Cancer. Cancers (Basel) 2021; 13:4168. [PMID: 34439322 PMCID: PMC8394850 DOI: 10.3390/cancers13164168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
The anti-angiogenic agent nintedanib has been shown to prolong overall and progression-free survival in patients with advanced non-small-cell lung cancer (NSCLC) who progress after first-line platinum-based chemotherapy and second-line immunotherapy. Here, we explored the molecular basis and the clinical benefit of incorporating the STAT3 inhibitor silibinin-a flavonolignan extracted from milk thistle-into nintedanib-based schedules in advanced NSCLC. First, we assessed the nature of the tumoricidal interaction between nintedanib and silibinin and the underlying relevance of STAT3 activation in a panel of human NSCLC cell lines. NSCLC cells with poorer cytotoxic responses to nintedanib exhibited a persistent, nintedanib-unresponsive activated STAT3 state, and deactivation by co-treatment with silibinin promoted synergistic cytotoxicity. Second, we tested whether silibinin could impact the lysosomal sequestration of nintedanib, a lung cancer cell-intrinsic mechanism of nintedanib resistance. Silibinin partially, but significantly, reduced the massive lysosomal entrapment of nintedanib occurring in nintedanib-refractory NSCLC cells, augmenting the ability of nintedanib to reach its intracellular targets. Third, we conducted a retrospective, observational multicenter study to determine the efficacy of incorporating an oral nutraceutical product containing silibinin in patients with NSCLC receiving a nintedanib/docetaxel combination in second- and further-line settings (n = 59). Overall response rate, defined as the combined rates of complete and partial responses, was significantly higher in the study cohort receiving silibinin supplementation (55%) than in the control cohort (22%, p = 0.011). Silibinin therapy was associated with a significantly longer time to treatment failure in multivariate analysis (hazard ratio 0.43, p = 0.013), despite the lack of overall survival benefit (hazard ratio 0.63, p = 0.190). Molecular mechanisms dictating the cancer cell-intrinsic responsiveness to nintedanib, such as STAT3 activation and lysosomal trapping, are amenable to pharmacological intervention with silibinin. A prospective, powered clinical trial is warranted to confirm the clinical relevance of these findings in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Joaquim Bosch-Barrera
- Medical Oncology, Catalan Institute of Oncology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain; (E.S.); (A.H.-M.); (A.I.)
- Department of Medical Sciences, Medical School, University of Girona, 17003 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 (Salt) Girona, Spain; (S.V.); (E.C.); (M.B.)
| | - Sara Verdura
- Girona Biomedical Research Institute (IDIBGI), 17190 (Salt) Girona, Spain; (S.V.); (E.C.); (M.B.)
| | - José Carlos Ruffinelli
- Medical Oncology Department, Catalan Institute of Oncology, Hospital Duran i Reynals, 08908 L’Hospitalet de Llobregat, Spain; (J.C.R.); (R.P.); (E.N.)
| | - Enric Carcereny
- Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, 08916 Badalona, Spain; (E.C.); (T.M.)
- B-ARGO Group (Badalona Applied Research Group in Oncology), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Elia Sais
- Medical Oncology, Catalan Institute of Oncology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain; (E.S.); (A.H.-M.); (A.I.)
| | - Elisabet Cuyàs
- Girona Biomedical Research Institute (IDIBGI), 17190 (Salt) Girona, Spain; (S.V.); (E.C.); (M.B.)
| | - Ramon Palmero
- Medical Oncology Department, Catalan Institute of Oncology, Hospital Duran i Reynals, 08908 L’Hospitalet de Llobregat, Spain; (J.C.R.); (R.P.); (E.N.)
| | - Eugeni Lopez-Bonet
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain; (E.L.-B.); (G.O.)
| | - Alejandro Hernández-Martínez
- Medical Oncology, Catalan Institute of Oncology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain; (E.S.); (A.H.-M.); (A.I.)
| | - Gloria Oliveras
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain; (E.L.-B.); (G.O.)
| | - Maria Buxó
- Girona Biomedical Research Institute (IDIBGI), 17190 (Salt) Girona, Spain; (S.V.); (E.C.); (M.B.)
| | - Angel Izquierdo
- Medical Oncology, Catalan Institute of Oncology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain; (E.S.); (A.H.-M.); (A.I.)
- Department of Medical Sciences, Medical School, University of Girona, 17003 Girona, Spain
- Hereditary Cancer Program, Epidemiology Unit and Girona Cancer Registry, Oncology Coordination Plan, Catalan Institute of Oncology-Girona Biomedical Research Institute (IDIBGI), 17007 Girona, Spain
| | - Teresa Morán
- Medical Oncology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, 08916 Badalona, Spain; (E.C.); (T.M.)
- B-ARGO Group (Badalona Applied Research Group in Oncology), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Ernest Nadal
- Medical Oncology Department, Catalan Institute of Oncology, Hospital Duran i Reynals, 08908 L’Hospitalet de Llobregat, Spain; (J.C.R.); (R.P.); (E.N.)
| | - Javier A. Menendez
- Girona Biomedical Research Institute (IDIBGI), 17190 (Salt) Girona, Spain; (S.V.); (E.C.); (M.B.)
- Program against Cancer Therapeutic Resistance (ProCURE), Metabolism & Cancer Group, Catalan Institute of Oncology, 17190 (Salt) Girona, Spain
| |
Collapse
|
58
|
Qiu L, Ma Y, Chen X, Zhou L, Zhang H, Zhong G, Zhang L, Tang J. Heparin-binding growth factor (HDGF) drives radioresistance in breast cancer by activating the STAT3 signaling pathway. J Transl Med 2021; 19:344. [PMID: 34376200 PMCID: PMC8353798 DOI: 10.1186/s12967-021-03021-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Although reports implicate radioresistance as an important obstacle for the management of breast cancer, its molecular mechanism is elusive. Herein, we found that high HDGF levels are expressed significantly in breast cancer and exhibit a positive association with poor survival prognosis. Heparin-binding growth factor (HDGF) was upregulated in radioresistant breast cancer cells, however, its knockdown could reduce breast cancer radioresistant both in vitro and in vivo. Additionally, the binding of RXRα to HDGF promoter blocked HDGF transcriptional activity, consequently inhibiting breast cancer radioresistance. The enhanced radioresistant activity of HDGF is induced by TKT and STAT3, impacting the STAT3-Tyr705 and STAT3-Ser727 phosphorylation and STAT3 transcriptional activity. Notably, HDGF depletion renders radioresistant hypersensitive to the drug that targets STAT3 phosphorylation. This article demonstrates the novel function of HDGF as a promising molecular target for predicting radioresistance in breast cancer.
Collapse
Affiliation(s)
- Lingyun Qiu
- Oncology Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Yan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xiaohua Chen
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Haibo Zhang
- Oncology Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Guansheng Zhong
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Lei Zhang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Jianming Tang
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
59
|
Fan H, Ou Q, Su Q, Li G, Deng Z, Huang X, Bi J. ZIPK activates the IL-6/STAT3 signaling pathway and promotes cisplatin resistance in gastric cancer cells. FEBS Open Bio 2021; 11:2655-2667. [PMID: 34375503 PMCID: PMC8409285 DOI: 10.1002/2211-5463.13270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Gastric cancer is one of the most common malignant cancers globally. Chemotherapy resistance remains a major obstacle in the treatment of gastric cancer, and the molecular mechanisms underlying drug resistance are still not well understood. We previously reported that Zipper interacting protein kinase (ZIPK), also known as death‐associated protein kinase3, exerts an oncogenic effect on gastric cancer via activation of Akt/NF‐κB signaling and promotion of stemness. Here, we explored the roles of ZIPK in cisplatin resistance. We report that ZIPK enhances cell proliferation and invasion and reduces the antitumor activity of cisplatin in gastric cancer. In addition, our western blot data suggest that ZIPK activated the IL‐6/STAT3 signaling pathway. Furthermore, ZIPK increased the expression of IL‐6 and multidrug‐resistance genes. Using the STAT3 inhibitor stattic to block the IL‐6/STAT3 signaling pathway strongly increased the sensitivity of ZIPK‐expressed cells to cisplatin. In conclusion, ZIPK may play a role in cisplatin resistance through activation of the IL‐6/ STAT3 signaling pathway. Inhibition of STAT3 in gastric cancer overexpressing ZIPK might have potential to improve the efficacy of cisplatin.
Collapse
Affiliation(s)
- Haonan Fan
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qifeng Ou
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiao Su
- Laboratory Animal Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guanman Li
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,School of Medicine (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zhijuan Deng
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Ultrasound Medical Center, the First people's Hospital of Chenzhou, Chenzhou, China
| | - Xiaohui Huang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiong Bi
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
60
|
Zhou XQ, Mao XM, Fan R, Li SY, Shang J, Zhang T, Li RH, Li HQ, Hui Y, Chen WH, Wang ZX, Shen DY. Trilobolide-6-O-isobutyrate suppresses hepatocellular carcinoma tumorigenesis through inhibition of IL-6/STAT3 signaling pathway. Phytother Res 2021; 35:5741-5753. [PMID: 34355433 DOI: 10.1002/ptr.7233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 11/06/2022]
Abstract
Currently available therapies for hepatocellular carcinoma (HCC), with a high morbidity and high mortality, are only marginally effective and with sharp adverse side effects, which makes it compulsory to explore novel and more effective anticancer molecules. Chinese medicinal herbs exhibited prominent anticancer effects and were applied to supplement clinical cancer treatment. Here, we reported a compound, trilobolide-6-O-isobutyrate (TBB), isolated from the flowers of Wedelia trilobata with a markedly cytotoxic effect on HCC cells. We found that TBB time- and dose-dependently inhibited HCC cells' growth and colony formation in vitro. Moreover, TBB induced cell cycle arrest at the G2/M phase, mitochondrial caspase-dependent apoptosis, and suppressed migration and invasion, as well as the glycolysis of HCC cells. Mechanistically, our data indicated that TBB inhibited the STAT3 pathway activation by directly interacting with the TYR 640/657 sites of the STAT3 protein and decreasing the level of p-STAT3. TBB also regulated the expression of PCNA, Ki67, Cyclin B1, Cyclin E, Bax, Bcl2, MMP2/9, and PGK1 through the inhibition of the IL-6/STAT3 signaling pathway. Lastly, we confirmed that TBB effectively eliminated tumor growth without causing overt toxicity to healthy tissues in the xenograft tumor model. The exploration of anticancer activity and the underlying mechanism of TBB suggested its usage as a promising chemotherapeutic agent for HCC.
Collapse
Affiliation(s)
- Xiu-Qiao Zhou
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, China
| | - Xiao-Mei Mao
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Rui Fan
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Si-Yang Li
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jin Shang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Tong Zhang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Rui-Han Li
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hui-Qi Li
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yang Hui
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, China
| | - Wen-Hao Chen
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, China
| | - Zhan-Xiang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Dong-Yan Shen
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
61
|
Xu A, Lee J, Zhao Y, Wang Y, Li X, Xu P. Potential effect of EGCG on the anti-tumor efficacy of metformin in melanoma cells. J Zhejiang Univ Sci B 2021; 22:548-562. [PMID: 34269008 DOI: 10.1631/jzus.b2000455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metformin, a first-line drug for type 2 diabetes mellitus, has been recognized as a potential anti-tumor agent in recent years. Epigallocatechin-3-gallate (EGCG), as the dominant catechin in green tea, is another promising adjuvant agent for tumor prevention. In the present work, the potential effect of EGCG on the anti-tumor efficacy of metformin in a mouse melanoma cell line (B16F10) was investigated. Results indicated that EGCG and metformin exhibited a synergistic effect on cell viability, migration, and proliferation, as well as signal transducer and activator of transcription 3/nuclear factor-κB (STAT3/NF-κB) pathway signaling and the production of inflammation cytokines. Meanwhile, the combination showed an antagonistic effect on cell apoptosis and oxidative stress levels. The combination of EGCG and metformin also differentially affected the nucleus (synergism) and cytoplasm (antagonism) of B16F10 cells. Our findings provide new insight into the potential effects of EGCG on the anti-tumor efficacy of metformin in melanoma cells.
Collapse
Affiliation(s)
- An'an Xu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Jeehyun Lee
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yueling Zhao
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yuefei Wang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ping Xu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
62
|
Ji W, Jiao J, Cheng C, Xiao Y, Shao J, Liu H. A positive feedback loop of LINC00662 and STAT3 promotes malignant phenotype of glioma. Pathol Res Pract 2021; 224:153539. [PMID: 34246852 DOI: 10.1016/j.prp.2021.153539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been reported to be associated with tumorigenesis and development of glioma. LINC00662 has been involved in the pathogenesis of various human cancers. However, the mechanism underlying which LINC00662 exerts its role in glioma needs further exploration. In addition, regulation mechanism of LINC00662 expression in glioma remains unknown. METHODS AND MATERIALS RT-qPCR was performed to evaluate the expression levels of LINC00662, miR-340-5p in glioma tissues and cell lines. The effect of LINC00662 and miR-340-5p in cell proliferation and invasion was assessed by Cell Counting Kit-8(CCK-8), clone colony formation and Transwell assay. Luciferase reporter assays and RNA immunoprecipitation assay validated the miR-340-5p-target relationships with LINC00662 or STAT3. CHIP-qPCR and Luciferase reporter assays were used to demonstrate the interaction between STAT3 and the promoter region of LINC00662. A tumor xenografts model was implemented to verify the effect of LINC00662 on glioma development in vivo. RESULTS We found that LINC00662 was frequently highly expressed and related to the malignant phenotype of glioma. LINC00662 knockdown inhibited the proliferation, invasion and glioma genesis of glioma. LINC00662 acted as a ceRNA sponging miR-340-5p to protect the expression of STAT3. In addition, STAT3 was forced to the promoter region of LINC00662 and promoted its transcription. In vivo experiments demonstrated that targeting LINC00662 may be a potential strategy in glioma therapy. CONCLUSION There was a positive regulation loop between LINC00662 and STAT3 in glioma. LINC00662 might be an oncogene in glioma. Targeting LINC00662 was a potential strategy in glioma therapy.
Collapse
Affiliation(s)
- Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China; Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, PR China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Yong Xiao
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, PR China
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China.
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
63
|
Ji W, Liu Y, Xu B, Mei J, Cheng C, Xiao Y, Yang K, Huang W, Jiao J, Liu H, Shao J. Bioinformatics Analysis of Expression Profiles and Prognostic Values of the Signal Transducer and Activator of Transcription Family Genes in Glioma. Front Genet 2021; 12:625234. [PMID: 34276757 PMCID: PMC8283826 DOI: 10.3389/fgene.2021.625234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) family genes—of which there are seven members: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6—have been associated with the progression of multiple cancers. However, their prognostic values in glioma remain unclear. In this study, we systematically investigated the expression, the prognostic value, and the potential mechanism of the STAT family genes in glioma. The expression of STAT1/2/3/5A/6 members were significantly higher and positively correlated with IDH mutations, while the expression of STAT5B was lower and negatively correlated with IDH mutations in glioma. Survival analysis indicated that the upregulation of STAT1/2/3/5A/6 and downregulation of STAT5B expression was associated with poorer overall survival in glioma. Joint effects analysis of STAT1/2/3/5A/5B/6 expression suggested that the prognostic value of the group was more significant than that of each individual gene. Thus, we constructed a risk score model to predict the prognosis of glioma. The receiver operating characteristic curve and calibration curves showed good performance as prognostic indicators in both TCGA (The Cancer Genome Atlas) and the CGGA (Chinese Glioma Genome Atlas) databases. Furthermore, we analyzed the correlation between STAT expression with immune infiltration in glioma. The Protein–protein interaction network and enrichment analysis showed that STAT members and co-expressed genes mainly participated in signal transduction activity, Hepatitis B, the Jak-STAT signaling pathway, transcription factor activity, sequence-specific DNA binding, and the cytokine-mediated signaling pathway in glioma. In summary, our study analyzed the expression, prognostic values, and biological roles of the STAT gene family members in glioma, based on which we developed a new risk score model to predict the prognosis of glioma more precisely.
Collapse
Affiliation(s)
- Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.,Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yuankun Liu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Bin Xu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jie Mei
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yong Xiao
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Kun Yang
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Weiyi Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
64
|
Yang W, Feng Q, Li M, Su J, Wang P, Wang X, Yin Y, Wang X, Zhao M. Sinomenine Suppresses Development of Hepatocellular Carcinoma Cells via Inhibiting MARCH1 and AMPK/STAT3 Signaling Pathway. Front Mol Biosci 2021; 8:684262. [PMID: 34179090 PMCID: PMC8222788 DOI: 10.3389/fmolb.2021.684262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
Promotion of apoptosis and suppression of proliferation in tumor cells are popular strategies for developing anticancer drugs. Sinomenine (SIN), a plant-derived alkaloid, displays antitumor activity. However, the mechanism of action of SIN against hepatocellular carcinoma (HCC) is unclear. Herein, several molecular technologies, such as Western Blotting, qRT-PCR, flow cytometry, and gene knockdown were applied to explore the role and mechanism of action of SIN in the treatment of HCC. It was found that SIN arrests HCC cell cycle at G0/G1 phase, induces apoptosis, and suppresses proliferation of HCC cells via down-regulating the expression of membrane-associated RING-CH finger protein 1 (MARCH1). Moreover, SIN induces cell death and growth inhibition through AMPK/STAT3 signaling pathway. MARCH1 expression was silenced by siRNA to explore its involvement in the regulation of AMPK/STAT3 signaling pathway. Silencing MARCH1 caused down-regulation of phosphorylation of AMPK, STAT3 and decreased cell viability and function. Our results suggested that SIN inhibits proliferation and promotes apoptosis of HCC cells by MARCH1-mediated AMPK/STAT3 signaling pathway. This study provides new support for SIN as a clinical anticancer drug and illustrates that targeting MARCH1 could be a novel treatment strategy in developing anticancer therapeutics.
Collapse
Affiliation(s)
- Wei Yang
- Department of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Qihua Feng
- Department of Imaging, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Minjing Li
- Department of Chinese Medicine Prescription, Binzhou Medical University, Yantai, China
| | - Jiaqi Su
- Department of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Peiyuan Wang
- Department of Imaging, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xu Wang
- Department of Imaging, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yancun Yin
- Department of Human Anatomy, Binzhou Medical University, Yantai, China
| | - Xia Wang
- Department of Oral Pathology, Binzhou Medical University, Yantai, China
| | - Mingdong Zhao
- Department of Medical Imaging, Binzhou Medical University, Yantai, China
| |
Collapse
|
65
|
Tang C, Feng W, Bao Y, Du H. Long non-coding RNA TINCR promotes hepatocellular carcinoma proliferation and invasion via STAT3 signaling by direct interacting with T-cell protein tyrosine phosphatase (TCPTP). Bioengineered 2021; 12:2119-2131. [PMID: 34057016 PMCID: PMC8806792 DOI: 10.1080/21655979.2021.1930336] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The long non-coding RNAs (lncRNAs) participate in modulating numerous important cancer phenotypes via formation of RNA-protein complex. TINCR (terminal differentiation-induced lncRNA) modulates cancer cell behavior in many human malignancies, such as hepatocellular carcinoma (HCC). Herein, we proposed to investigate the underlying mechanism by which TINCR regulates HCC progression via formation of RNA-protein. RNA pulldown, LC-MS/MS, bioinformatics analysis, and RNA immunoprecipitation (RIP) assays were employed to identify TINCR-interacting protein TCPTP in HCC cells. The siRNAs for TINCR and TCPTP were transfected into HCC cells. The plasmids encoding full length or the 1–360 nt deletion of TINCR were generated and applied to cell transfection. The CCK-8, colony formation, EdU, wound healing along with transwell assays were employed to examine cell proliferation, apoptosis, migration, and infiltration. Real-time PCR, as well as western blot assays were employed to assess the levels of STAT3 phosphorylation and its target genes. We identified 1–360 nt region of TINCR, which directly bound with the phosphatase domain of TCPTP to inhibit its tyrosine phosphatase activity. Then, the results showed that the increasing of cell growth, migration, infiltration, and the reducing of apoptosis in TINCR-knockdown HCC cells was remarkably reversed with TCPTP silence. Additionally, Δ1-360 TINCR overexpression did not affect HCC cell growth, apoptosis, migration, infiltration, and STAT3 target genes expression. Our data revealed that TINCR directly bound TCPTP and suppressed the dephosphorylation of STAT3, thus promoting STAT3 activation and its downstream target genes in HCC progression and tumorigenicity. Highlights LncRNA TINCR interacted with protein TCPTP LncRNA TINCR maintained STAT3 phosphorylation LncRNA TINCR affected STAT3 signaling in HCC Abbreviations: lncRNAs: long non-coding RNAs; TINCR: terminal differentiation-induced lncRNA; TCPTP: T cell protein tyrosine phosphatase; siRNA: small-interfering RNA; HCC: hepatocellular carcinoma; nt: nucleotide; LC-MS/MS: Liquid Chromatography - Tandem Mass Spectrometry; RIP: RNA immunoprecipitation; ANOVA: analysis of variance; EdU: 5-ethynyl-2’-deoxyuridine; real-time PCR: real-time polymerase chain reaction; CCK-8: cell counting kit-8; aa: amino acids; STAT3: signal transducer and activator of transcription 3
Collapse
Affiliation(s)
- Chengwu Tang
- Department of General Surgery, The First People's Hospital Affiliated to Huzhou Normal College, Huzhou, Zhejiang, People's Republic of China
| | - Wenming Feng
- Department of General Surgery, The First People's Hospital Affiliated to Huzhou Normal College, Huzhou, Zhejiang, People's Republic of China
| | - Ying Bao
- Department of General Surgery, The First People's Hospital Affiliated to Huzhou Normal College, Huzhou, Zhejiang, People's Republic of China
| | - Huimin Du
- Out-Patient Department, The First People's Hospital Affiliated to Huzhou Normal College, Huzhou, Zhejiang, People's Republic of China
| |
Collapse
|
66
|
Cotoraci C, Ciceu A, Sasu A, Miutescu E, Hermenean A. Bioactive Compounds from Herbal Medicine Targeting Multiple Myeloma. APPLIED SCIENCES 2021; 11:4451. [DOI: 10.3390/app11104451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple myeloma (MM) is one of the most widespread hematological cancers. It is characterized by a clonal proliferation of malignant plasma cells in the bone marrow and by the overproduction of monoclonal proteins. In recent years, the survival rate of patients with multiple myeloma has increased significantly due to the use of transplanted stem cells and of the new therapeutic agents that have significantly increased the survival rate, but it still cannot be completely cured and therefore the development of new therapeutic products is needed. Moreover, many patients have various side effects and face the development of drug resistance to current therapies. The purpose of this review is to highlight the bioactive active compounds (flavonoids) and herbal extracts which target dysregulated signaling pathway in MM, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their healing potential targeting multiple myeloma. Mechanistically, they demonstrated the ability to promote cell cycle blockage and apoptosis or autophagy in cancer cells, as well as inhibition of proliferation/migration/tumor progression, inhibition of angiogenesis in the tumor vascular network. Current research provides valuable new information about the ability of flavonoids to enhance the apoptotic effects of antineoplastic drugs, thus providing viable therapeutic options based on combining conventional and non-conventional therapies in MM therapeutic protocols.
Collapse
Affiliation(s)
- Coralia Cotoraci
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alciona Sasu
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Eftimie Miutescu
- Department of Gastroenterology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| |
Collapse
|
67
|
Sun TX, Li MY, Zhang ZH, Wang JY, Xing Y, Ri M, Jin CH, Xu GH, Piao LX, Jin HL, Zuo HX, Ma J, Jin X. Usnic acid suppresses cervical cancer cell proliferation by inhibiting PD-L1 expression and enhancing T-lymphocyte tumor-killing activity. Phytother Res 2021; 35:3916-3935. [PMID: 33970512 DOI: 10.1002/ptr.7103] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 11/10/2022]
Abstract
The programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway is abnormally expressed in cervical cancer cells. Moreover, PD-1/PD-L1 blockade reduces the apoptosis and exhaustion of T cells and inhibits the development of malignant tumors. Usnic acid is a dibenzofuran compound originating from Usnea diffracta Vain and has anti-inflammatory, antifungal, and anticancer activities. However, the molecular mechanism of its antitumor effects has not been fully elucidated. In this work, we first observed that usnic acid decreased the expression of PD-L1 in HeLa cells and enhanced the cytotoxicity of co-cultured T cells toward tumor cells. Usnic acid inhibited PD-L1 protein synthesis by reducing STAT3 and RAS pathways cooperatively. It was subsequently shown that usnic acid induced MiT/TFE nuclear translocation through the suppression of mTOR signaling pathways, and promoted the biogenesis of lysosomes and the translocation of PD-L1 to the lysosomes for proteolysis. Furthermore, usnic acid inhibited cell proliferation, angiogenesis, migration, and invasion, respectively, by downregulating PD-L1, thereby inhibiting tumor growth. Taken together, our results show that usnic acid is an effective inhibitor of PD-L1 and our study provide novel insights into the mechanism of its anticancer targeted therapy.
Collapse
Affiliation(s)
- Tong Xin Sun
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Ming Yue Li
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Zhi Hong Zhang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Jing Ying Wang
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Yue Xing
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - MyongHak Ri
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Cheng Hua Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Guang Hua Xu
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Lian Xun Piao
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Hong Lan Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Hong Xiang Zuo
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Juan Ma
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| | - Xuejun Jin
- Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, China
| |
Collapse
|
68
|
Zhang Y, Lu W, Chen Y, Lin Y, Yang X, Wang H, Liu Z. The miR-19b-3p-MAP2K3-STAT3 feedback loop regulates cell proliferation and invasion in esophageal squamous cell carcinoma. Mol Oncol 2021; 15:1566-1583. [PMID: 33660414 PMCID: PMC8096789 DOI: 10.1002/1878-0261.12934] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/22/2021] [Accepted: 02/26/2021] [Indexed: 02/05/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most refractory malignancies worldwide. Mitogen-activated protein kinase 3 (MAP2K3) has a contradictory role in tumor progression, and the function and expression patterns of MAP2K3 in ESCC remain to be determined. We found that MAP2K3 expression to be downregulated in ESCC, and MAP2K3 downregulation correlated with clinically poor survival. MAP2K3 inhibited ESCC cell proliferation and invasion in vitro and in vivo. MAP2K3 suppressed STAT3 expression and activation. Mechanistically, MAPSK3 interacted with MDM2 to promote STAT3 degradation via the ubiquitin-proteasome pathway. Furthermore, exosomal miR-19b-3p derived from the plasma of patients with ESCC could suppress MAP2K3 expression to promote ESCC tumorigenesis. STAT3 was found to bind to the MIR19B promoter and increased the expression of miR-19b-3p in ESCC cells. In summary, our results demonstrated that the miR-19b-3p-MAP2K3-STAT3 feedback loop regulates ESCC tumorigenesis and elucidates the potential of therapeutically targeting this pathway in ESCC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of PathologySun Yat‐Sen University Cancer CenterGuangzhouChina
- Sun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Weiqing Lu
- Department of OrthopaedicsFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Yelong Chen
- Department of OrthopaedicsFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Youbin Lin
- Department of OrthopaedicsFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Xia Yang
- Sun Yat‐Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Hu Wang
- Department of OrthopaedicsFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Zhaoyong Liu
- Department of OrthopaedicsFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
69
|
Batsika CS, Mantzourani C, Gkikas D, Kokotou MG, Mountanea OG, Kokotos CG, Politis PK, Kokotos G. Saturated Oxo Fatty Acids (SOFAs): A Previously Unrecognized Class of Endogenous Bioactive Lipids Exhibiting a Cell Growth Inhibitory Activity. J Med Chem 2021; 64:5654-5666. [PMID: 33881857 DOI: 10.1021/acs.jmedchem.0c02058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The discovery of novel bioactive lipids that promote human health is of great importance. Combining "suspect" and targeted lipidomic liquid chromatography-high-resolution mass spectrometry (LC-HRMS) approaches, a previously unrecognized class of oxidized fatty acids, the saturated oxo fatty acids (SOFAs), which carry the oxo functionality at various positions of the long chain, was identified in human plasma. A library of SOFAs was constructed, applying a simple green photochemical hydroacylation reaction as the key synthetic step. The synthesized SOFAs were studied for their ability to inhibit in vitro the cell growth of three human cancer cell lines. Four oxostearic acids (OSAs) were identified to inhibit the cell growth of human lung carcinoma A549 cells. 6OSA and 7OSA exhibited the highest cell growth inhibitory potency, suppressing the expression of both STAT3 and c-myc, which are critical regulators of cell growth and proliferation. Thus, naturally occurring SOFAs may play a role in the protection of human health.
Collapse
Affiliation(s)
- Charikleia S Batsika
- Center of Excellence for Drug Design and Discovery, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Christiana Mantzourani
- Center of Excellence for Drug Design and Discovery, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Dimitrios Gkikas
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece.,Department of Biology, University of Patras, Patras 26504, Greece
| | - Maroula G Kokotou
- Center of Excellence for Drug Design and Discovery, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Olga G Mountanea
- Center of Excellence for Drug Design and Discovery, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Christoforos G Kokotos
- Center of Excellence for Drug Design and Discovery, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Panagiotis K Politis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - George Kokotos
- Center of Excellence for Drug Design and Discovery, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| |
Collapse
|
70
|
Zhao X, Zhang N, Huang Y, Dou X, Peng X, Wang W, Zhang Z, Wang R, Qiu Y, Jin M, Kong D. Lansoprazole Alone or in Combination With Gefitinib Shows Antitumor Activity Against Non-small Cell Lung Cancer A549 Cells in vitro and in vivo. Front Cell Dev Biol 2021; 9:655559. [PMID: 33959611 PMCID: PMC8093516 DOI: 10.3389/fcell.2021.655559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
Lansoprazole (Lpz) is an FDA-approved proton pump inhibitor (PPI) drug for the therapy of acid-related diseases. Aiming to explore the new application of old drugs, we recently investigated the antitumor effect of Lpz. We demonstrated that the PPI Lpz played a tumor suppressive role in non-small cell lung cancer (NSCLC) A549 cells. Mechanistically, Lpz induced apoptosis and G0/G1 cell cycle arrest by inhibiting the activation of signal transducer and activator of transcription (Stat) 3 and the phosphoinositide 3-kinase (PI3K)/Akt and Raf/ERK pathways. In addition, Lpz inhibited autophagy by blocking the fusion of autophagosomes with lysosomes. Furthermore, Lpz in combination with gefitinib (Gef) showed a synergistic antitumor effect on A549 cells, with enhanced G0/G1 cell cycle arrest and apoptosis. The combination inhibited Stat3 phosphorylation, PI3K/Akt and Raf/ERK signaling, affecting cell cycle-related proteins such as p-Rb, cyclin D1 and p27, as well as apoptotic proteins such as Bax, Bcl-2, caspase-3, and poly (ADP-ribose) polymerase (PARP). In vivo, coadministration with Lpz and Gef significantly attenuated the growth of A549 nude mouse xenograft models. These findings suggest that Lpz might be applied in combination with Gef for NSCLC therapy, but further evidence is required.
Collapse
Affiliation(s)
- Xiaoxia Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ning Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yingying Huang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiaojing Dou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiaolin Peng
- Department of Otorhinolaryngology Head and Neck, Institute of Otorhinolaryngology, Tianjin First Central Hospital, Tianjin, China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck, Institute of Otorhinolaryngology, Tianjin First Central Hospital, Tianjin, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,School of Medicine, Tianjin Tianshi College, Tianyuan University, Tianjin, China
| |
Collapse
|
71
|
Lin Y, Zhou X, Yang K, Chen Y, Wang L, Luo W, Li Y, Liao J, Zhou Y, Lei Y, Zhang Y, Wu D, Cai L. Protein tyrosine phosphatase receptor type D gene promotes radiosensitivity via STAT3 dephosphorylation in nasopharyngeal carcinoma. Oncogene 2021; 40:3101-3117. [PMID: 33824475 PMCID: PMC8084736 DOI: 10.1038/s41388-021-01768-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 01/07/2023]
Abstract
Radiotherapy is essential to the treatment of nasopharyngeal carcinoma (NPC) and acquired or innate resistance to this therapeutic modality is a major clinical problem. However, the underlying molecular mechanisms in the radiation resistance in NPC are not fully understood. Here, we reanalyzed the microarray data from public databases and identified the protein tyrosine phosphatase receptor type D (PTPRD) as a candidate gene. We found that PTPRD was downregulated in clinical NPC tissues and NPC cell lines with its promoter hypermethylated. Functional assays revealed that PTPRD overexpression sensitized NPC to radiation in vitro and in vivo. Importantly, miR-454-3p directly targets PTPRD to inhibit its expression and biological effect. Interestingly, mechanistic analyses indicate that PTPRD directly dephosphorylates STAT3 to enhance Autophagy-Related 5 (ATG5) transcription, resulting in triggering radiation-induced autophagy. The immunohistochemical staining of 107 NPC revealed that low PTPRD and high p-STAT3 levels predicted poor clinical outcome. Overall, we showed that PTPRD promotes radiosensitivity by triggering radiation-induced autophagy via the dephosphorylation of STAT3, thus providing a potentially useful predictive biomarker for NPC radiosensitivity and drug target for NPC radiosensitization.
Collapse
Affiliation(s)
- Yanling Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohan Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaifan Yang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuting Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingzhi Wang
- First Clinical Medical College, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenxiao Luo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yujiang Li
- Department of Thoracic and Cardiovascular Surgery/Huiqiao Medical Center, Southern Medical University, Guangzhou, China
- Department of Thoracic and Cardiovascular Surgery, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Jinrong Liao
- Second Clinical Medical College, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingtong Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiming Lei
- First Clinical Medical College, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanting Zhang
- First Clinical Medical College, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Longmei Cai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
72
|
Yang MH, Baek SH, Ha IJ, Um JY, Ahn KS. Brassinin enhances the anticancer actions of paclitaxel by targeting multiple signaling pathways in colorectal cancer cells. Phytother Res 2021; 35:3875-3885. [PMID: 33792984 DOI: 10.1002/ptr.7095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Brassinin (BSN), a precursor of phytoalexins, extracted from Chinese cabbage has been reported to act as a promising anti-neoplastic agent. However, the effects of BSN on colon cancer cells and its underlying mechanisms have not been fully elucidated. This study aimed at investigating the anti-neoplastic impact of BSN and its possible synergistic effect with paclitaxel on colon cancer cells. The effect of BSN on Janus-activated kinases (JAKs)/signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways and its downstream functions was deciphered using diverse assays in colon carcinoma cells. We found that BSN displayed significant cytotoxic effect and suppressed cell proliferation on colon carcinoma cells. Additionally, it was noted that BSN modulated oncogenic gene expression and induced apoptosis through down regulating multiple oncogenic signaling cascades such as JAKs/STAT3 and PI3K/Akt/mTOR simultaneously. Besides, BSN-paclitaxel combination significantly increased cytotoxicity and induced apoptosis synergistically as compared with individual treatment of both the agents. Overall, our findings indicate that BSN may be a novel candidate for anti-colon cancer targeted therapy.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, Goyang-si, South Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul, South Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, South Korea
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
73
|
Yang MH, Ha IJ, Um JY, Ahn KS. Albendazole Exhibits Anti-Neoplastic Actions against Gastric Cancer Cells by Affecting STAT3 and STAT5 Activation by Pleiotropic Mechanism(s). Biomedicines 2021; 9:biomedicines9040362. [PMID: 33807326 PMCID: PMC8065911 DOI: 10.3390/biomedicines9040362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
Albendazole (ABZ) has been reported to display anti-tumoral actions against various maliganncies, but possible impact of ABZ on gastric cancer has not been deciphered. As aberrant phosphorylation of STAT3 and STAT5 proteins can regulate the growth and progression of gastric cancer, we postulated that ABZ may interrupt the activation of these oncogenic transcription factors. We found that ABZ exposure abrogated STAT3/5 activation, inhibited phosphorylation of Janus-activated kinases 1/2 and Src and enhanced the levels of SHP-1 protein. Silencing of SHP-1 gene by small interfering RNA (siRNA) reversed the ABZ-promoted attenuation of STAT3 as well as STAT5 activation and cellular apoptosis. In addition, these effects were noted to be driven by an augmented levels of reactive oxygen species caused by drug-induced GSH/GSSG imbalance. Thus, the data indicates that ABZ can modulate the activation of STAT3 and STAT5 by pleiotropic mechanisms in gastric cancer cells.
Collapse
Affiliation(s)
- Min Hee Yang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul 02447, Korea;
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Kwang Seok Ahn
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Correspondence: ; Tel.: +82-2-961-2316
| |
Collapse
|
74
|
Pemafibrate Pretreatment Attenuates Apoptosis and Autophagy during Hepatic Ischemia-Reperfusion Injury by Modulating JAK2/STAT3 β/PPAR α Pathway. PPAR Res 2021; 2021:6632137. [PMID: 33777128 PMCID: PMC7972847 DOI: 10.1155/2021/6632137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/01/2021] [Indexed: 11/18/2022] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a common phenomenon in liver transplantation and liver surgery. This article is aimed at clarifying the role of pemafibrate in HIRI through JAK2/STAT3β/PPARα. In the experiment, we divided Balb/c into seven groups, namely, normal control (NC), Sham, PEM (1.0 mg/kg), IRI, IRI + PEM (0.1 mg/kg), IRI + PEM (0.5 mg/kg), and IRI + PEM (1.0 mg/kg). We used biochemical assay, histopathological evaluation, immunohistochemistry, RT-PCR and qRT-PCR, ELISA analysis, and other methods to determine the level of serum AST, ALT, IL-1β, and TNF-α in the liver at three time points (2 h, 8 h, and 24 h) after reperfusion of apoptosis factor, autophagy factor, and the JAK2/STAT3/PPARα content in tissues. Our experiment results showed that the pemafibrate can effectively reduce the level of hepatic IR injury. In addition, pemafibrate has anti-inflammatory, antiapoptotic, and antiautophagy effects, which are mediated by the JAK2/STAT3β/PPARα pathway.
Collapse
|
75
|
Wu S, Ye S, Lin X, Chen Y, Zhang Y, Jing Z, Liu W, Chen W, Lin X, Lin X. Small hepatitis B virus surface antigen promotes malignant progression of hepatocellular carcinoma via endoplasmic reticulum stress-induced FGF19/JAK2/STAT3 signaling. Cancer Lett 2021; 499:175-187. [PMID: 33249195 DOI: 10.1016/j.canlet.2020.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is one of the major global health problems. Although the small protein of hepatitis B virus surface antigen (HBsAg), SHBs, is the most abundant HBV viral protein, its pathogenic role and molecular mechanism in malignant progression of HBV-related hepatocellular carcinoma (HCC) remain largely unknown. Here we reported that SHBs expression induced epithelial-mesenchymal transition (EMT) process in HCC cells and significantly increased their migratory and invasive ability as well as metastatic potential. Mechanistically, SHBs expression in HCC cells induced endoplasmic reticulum (ER) stress that activated the activating transcription factor 4 (ATF4) to increase the expression and secretion of fibroblast growth factor 19 (FGF19). The autocrine released FGF19 in turn activated JAK2/STAT3 signaling for induction of EMT process in HCC. Notably, SHBs was positively correlated with the expression of mesenchymal markers, the phosphorylation status of JAK2 and STAT3 as well as FGF19 levels in human HCC samples. HCC patients with SHBs positive had a more advanced clinical stage and worse prognosis. These results suggest an important role of SHBs in the metastasis and progression of HCC and may highlight a potential target for preventive and therapeutic intervention of HBV-related HCC and its malignant progression.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/virology
- Cell Proliferation
- Endoplasmic Reticulum Stress/immunology
- Female
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Gene Knockdown Techniques
- Hep G2 Cells
- Hepatitis B Surface Antigens/blood
- Hepatitis B Surface Antigens/metabolism
- Hepatitis B virus/immunology
- Hepatitis B virus/metabolism
- Hepatitis B, Chronic/blood
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/mortality
- Hepatitis B, Chronic/virology
- Humans
- Janus Kinase 2/genetics
- Janus Kinase 2/metabolism
- Kaplan-Meier Estimate
- Liver/immunology
- Liver/pathology
- Liver/virology
- Liver Neoplasms/blood
- Liver Neoplasms/immunology
- Liver Neoplasms/mortality
- Liver Neoplasms/virology
- Male
- Mice
- Middle Aged
- RNA, Small Interfering/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shuxiang Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Shuangshuang Ye
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Xiaohan Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Yi Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhentang Jing
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Wei Liu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Wannan Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China; Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
76
|
Ma Z, Dong Z, Yu D, Mu M, Feng W, Guo J, Cheng B, Guo J, Ma J. IL-32 Promotes the Radiosensitivity of Esophageal Squamous Cell Carcinoma Cell through STAT3 Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6653747. [PMID: 33681363 PMCID: PMC7904356 DOI: 10.1155/2021/6653747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE This study is set out to determine the relationship between IL-32 and radiosensitivity of esophageal squamous cell carcinoma (ESCC). METHODS Western blot was adopted for measuring IL-32 expression in Eca-109 and TE-10 cells. Eca-109 and TE-10 cells with interference or overexpression of IL-32 were treated with the presence or absence of X-ray irradiation. Then, the use of CCK8 assay was to detect proliferation ability, and effects of IL-32 expression on radiosensitivity of ESCC were tested by colony formation assay. The cell apoptosis was detected using flow cytometry. STAT3 and p-STAT expression, and apoptotic protein Bax were detected by western blot. RESULTS Colony formation assay and CCK8 assay showed that compared with the NC group without treatment, the growth of the ESCC cells, that is Eca-109 and TE-10, was significantly inhibited in the OE+IR group with highly expressed IL-32 and irradiation. In flow cytometry analysis, in Eca-109 and TE-10 cells, highly expressed IL-32 combined with irradiation significantly increased apoptosis compared with the control group. Highly expressed IL-32 has a synergistic effect with irradiation, inhibiting STAT3 and p-STAT3 expression and increasing apoptotic protein Bax expression. CONCLUSION IL-32 can improve the radiosensitivity of ESCC cells by inhibiting the STAT3 pathway. Therefore, IL-32 can be used as a new therapeutic target to provide a new attempt for radiotherapy of ESCC.
Collapse
Affiliation(s)
- Zhiyu Ma
- First Department of Radiotherapy, Wanbei Coal-Electricity Group General Hospital, Suzhou, 234000 Anhui, China
| | - Zhen Dong
- Department of Radiotherapy, BenQ Medical Center Affiliated to Nanjing Medical University, Nanjing, 210000 Jiangsu, China
| | - Dingyue Yu
- Department of Radiotherapy, Bengbu Second People's Hospital Affiliated to Bengbu Medical Collage, Bengbu, 233000 Anhui, China
| | - Mingchen Mu
- Department of Radiotherapy, Lianyungang Municipal Oriental Hospital Affiliated to Bengbu Medical Collage, Lianyungang, 222042 Jiangsu, China
| | - Wanwen Feng
- Translational Medicine Center, Lianyungang Municipal Oriental Hospital Affiliated to Bengbu Medical Collage, Lianyungang, 222042 Jiangsu, China
| | - Jiayi Guo
- Department of Radiotherapy, Lianyungang Municipal Oriental Hospital Affiliated to Bengbu Medical Collage, Lianyungang, 222042 Jiangsu, China
| | - Beibei Cheng
- Department of Radiotherapy, Lianyungang Municipal Oriental Hospital Affiliated to Bengbu Medical Collage, Lianyungang, 222042 Jiangsu, China
| | - Jiayou Guo
- Department of Radiotherapy, Lianyungang Municipal Oriental Hospital Affiliated to Bengbu Medical Collage, Lianyungang, 222042 Jiangsu, China
| | - Jianxin Ma
- Department of Radiotherapy, Lianyungang Municipal Oriental Hospital Affiliated to Bengbu Medical Collage, Lianyungang, 222042 Jiangsu, China
| |
Collapse
|
77
|
Zhang J. Targeting mTOR by CZ415 Suppresses Cell Proliferation and Promotes Apoptosis via Lipin-1 in Cervical Cancer In Vitro and In Vivo. Reprod Sci 2021; 28:524-531. [PMID: 32944878 DOI: 10.1007/s43032-020-00313-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022]
Abstract
CZ415, a novel inhibitor of mammalian target of rapamycin (mTOR) kinase, has demonstrated anti-tumor activity in several types of cancer. However, its biological function and underlying mechanism of action in cervical cancer (CC) have not been fully studied. Two CC cell lines (Hela and Siha) were treated with increasing concentrations of CZ415. Cell viability was tested with the CCK-8 assay, cell proliferation was determined by Edu staining and the colony formation assay, and apoptosis was determined by flow cytometry and Hoechst 33342 staining. Protein expression was evaluated by western blotting. A nude mouse xenograft model was used to confirm the anti-tumor activity of CZ415 in vivo. Hematoxylin and eosin (H&E) and immunohistochemistry (IHC) staining were performed on samples of tumor tissue. Results showed that CZ415 inhibited CC cell survival in a dose- and time-dependent manner, and 100 nanomolar and 48 h were the optimal conditions. In vitro and in vivo experiments showed that treatment with CZ415 significantly inhibited spheroid formation, cell proliferation, and tumor growth. Further studies showed that the anti-cancer effects of CZ415 were due to an induction of apoptosis, which was accompanied by an upregulation of Bax and downregulation of Bcl-2 through Lipin-1. CZ415 also reduced the levels of mTOR/STAT3 expression. However, these phenotypic changes were reversed by overexpression of Lipin-1. Our results suggest that the novel mTOR inhibitor CZ415 mediates tumor malignancy via Lipin-1 and might be useful for treating CC.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Department of Women's Health Care, Xiaonan District Maternity and Child Healthcare Hospital, Xiaogan City, 432000, Hubei Province, China.
| |
Collapse
|
78
|
Aziz MA, Sarwar MS, Akter T, Uddin MS, Xun S, Zhu Y, Islam MS, Hongjie Z. Polyphenolic molecules targeting STAT3 pathway for the treatment of cancer. Life Sci 2021; 268:118999. [PMID: 33421525 DOI: 10.1016/j.lfs.2020.118999] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/17/2023]
Abstract
Cancer is accounted as the second-highest cause of morbidity and mortality throughout the world. Numerous preclinical and clinical investigations have consistently highlighted the role of natural polyphenolic compounds against various cancers. A plethora of potential bioactive polyphenolic molecules, primarily flavonoids, phenolic acids, lignans and stilbenes, have been explored from the natural sources for their chemopreventive and chemoprotective activities. Moreover, combinations of these polyphenols with current chemotherapeutic agents have also demonstrated their strong role against both progression and resistance of malignancies. Signal transducer and activator of transcription 3 (STAT3) is a ubiquitously-expressed signaling molecule in almost all body cells. Thousands of literatures have revealed that STAT3 plays significant roles in promoting the cellular proliferation, differentiation, cell cycle progression, metastasis, angiogenesis and immunosuppression as well as chemoresistance through the regulation of its downstream target genes such as Bcl-2, Bcl-xL, cyclin D1, c-Myc and survivin. For its key role in cancer development, researchers considered STAT3 as a major target for cancer therapy that mainly focuses on abrogating the expression (activation or phosphorylation) of STAT3 in tumor cells both directly and indirectly. Polyphenolic molecules have explicated their protective actions in malignant cells via targeting STAT3 both in vitro and in vivo. In this article, we reviewed how polyphenolic compounds as well as their combinations with other chemotherapeutic drugs inhibit cancer cells by targeting STAT3 signaling pathway.
Collapse
Affiliation(s)
- Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahid Sarwar
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Tahmina Akter
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Song Xun
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yu Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Zhang Hongjie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|
79
|
Yoon YJ, Kwon BM. Cinnamomum cassia, apoptosis, STAT3 inactivation and reactive oxygen species in cancer studies. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
80
|
Wang H, Li S, Wang Q, Jin Z, Shao W, Gao Y, Li L, Lin K, Zhu L, Wang H, Liao X, Wang D. Tumor immunological phenotype signature-based high-throughput screening for the discovery of combination immunotherapy compounds. SCIENCE ADVANCES 2021; 7:eabd7851. [PMID: 33523948 DOI: 10.1126/sciadv.abd7851] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/04/2020] [Indexed: 02/05/2023]
Abstract
Combination immunotherapy is promising to overcome the limited objective response rates of immune checkpoint blockade (ICB) therapy. Here, a tumor immunological phenotype (TIP) gene signature and high-throughput sequencing-based high-throughput screening (HTS2) were combined to identify combination immunotherapy compounds. We firstly defined a TIP gene signature distinguishing "cold" tumors from "hot" tumors. After screening thousands of compounds, we identified that aurora kinase inhibitors (AKIs) could reprogram the expression pattern of TIP genes in triple-negative breast cancer (TNBC) cells. AKIs treatments up-regulate expression of chemokine genes CXCL10 and CXCL11 through inhibiting aurora kinase A (AURKA)-signal transducer and activator of transcription 3 (STAT3) signaling pathway, which promotes effective T cells infiltrating into tumor microenvironment and improves anti-programmed cell death 1 (PD-1) efficacy in preclinical models. Our study established a novel strategy to discover combination immunotherapy compounds and suggested the therapeutic potential of combining AKIs with ICB for the treatment of TNBC.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Pathology, School of Medicine, Qinghai University, Xining 810001, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shasha Li
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qianyu Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhengshuo Jin
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wei Shao
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yan Gao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kequan Lin
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lin Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huili Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuebin Liao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Dong Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
81
|
Jung YY, Ko JH, Um JY, Chinnathambi A, Alharbi SA, Sethi G, Ahn KS. LDL cholesterol promotes the proliferation of prostate and pancreatic cancer cells by activating the STAT3 pathway. J Cell Physiol 2020; 236:5253-5264. [PMID: 33368314 DOI: 10.1002/jcp.30229] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
Hypercholesterolemia has been found to be closely linked with a significant increase in both cancer incidence and mortality. However, the exact correlation between serum cholesterol levels and cancer has not been completely deciphered. Here we analyzed the effect of low-density lipoprotein (LDL) cholesterol on prostate and pancreatic cancer cells. We noted that LDL induced a substantial STAT3 activation and JAK1, JAK2, Src activation in diverse prostate and pancreatic tumor cells. Moreover, LDL promoted cancer cell proliferation, migration, and invasion as well as upregulated the expression of diverse oncogenic gene products. However, deletion of LDL-activated STAT3 in LNCaP and PANC-1 cells and reduced LDL-induced cell viability. Simvastatin (SV) treatment also alleviated LDL-induced cell viability and migration ability in both the prostate and pancreatic tumor cells. These results demonstrate that LDL-induced STAT3 activation may exert a profound effect on the proliferation and survival of tumor cells.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Hyeon Ko
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
82
|
HPRT promotes proliferation and metastasis in head and neck squamous cell carcinoma through direct interaction with STAT3. Exp Cell Res 2020; 399:112424. [PMID: 33340493 DOI: 10.1016/j.yexcr.2020.112424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Increasing effort has been put into finding novel molecular pathways to improve the efficiency of EGFR inhibitors against head and neck squamous cell cancer (HNSCC). In this study, we performed data mining and bioinformatically analysed RNA-Seq data downloaded from TCGA and confirmed that higher expression of HPRT in HNSCC tissue was related to poor prognosis of patients. Then, we conducted in vitro and in vivo loss- and gain-of-function experiments to demonstrate the role of HPRT in HNSCC cell lines. Overexpression of HPRT increased the gene expression of epithelial mesenchymal transition markers via direct interaction with STAT3. Knocking down HPRT significantly decreased tumour growth and enhanced the anticancer effect of EGFR inhibitors against HNSCC xenografts. In conclusion, HPRT is a binding partner of STAT3 that promotes EMT and proliferation. Our findings support HPRT as a promising prognostic indicator and potential therapeutic target for HNSCC.
Collapse
|
83
|
Marginean EC, Gotfrit J, Marginean H, Yokom DW, Bateman JJ, Daneshmand M, Sud S, Gown AM, Jonker D, Asmis T, Goodwin RA. Phosphorylated transducer and activator of transcription-3 (pSTAT3) immunohistochemical expression in paired primary and metastatic colorectal cancer. Transl Oncol 2020; 14:100996. [PMID: 33341488 PMCID: PMC7750168 DOI: 10.1016/j.tranon.2020.100996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Signal Transducer and Activator of Transcription-3 (STAT3) mediates cellular functions. We assessed the IHC expression of phosphorylated STAT3 (pSTAT3) in paired primary tumors and liver metastases in patients with advanced stage colorectal cancer (CRC). METHODS We included patients with tissue blocks available from both the primary CRC and a surgically resected liver metastasis. The IHC pSTAT3 expression agreement was measured using Cohen's kappa statistic. RESULTS The study included 103 patients, 55% male, median age was 64. 43% tumors originated in rectum, and 63% of the primary tumors were synchronous. Expression of pSTAT3 was 76% in liver metastases and 71% in primary tumors. A difference in pSTAT3 staining between the primary tumor and liver metastases was noted in 64%. There was lost expression of pSTAT3 in the liver metastases in 28% and gained expression in 36% of cases compared to the primary. The kappa statistic comparing agreement between staining patterns of the primary tumors and liver metastases was a "less-than-chance", at -0.02. Median survival was 4.9 years, with no difference in survival outcomes by pSTAT3 expression in the primary tumor or liver metastases. DISCUSSION STAT3 is not a prognostic marker in the selective setting of metastatic CRC to liver, but it may remain a potential therapeutic target given most liver metastases expressed pSTAT3. Discordant pSTAT3 expression in between primary tumors and paired liver metastases suggests that use of this class of drug to treat liver predominant metastatic colorectal cancer in a biomarker-driven approach may require confirmatory liver tumor biopsy.
Collapse
Affiliation(s)
- Esmeralda C Marginean
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Joanna Gotfrit
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Horia Marginean
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Daniel W Yokom
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Justin J Bateman
- Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9; The Ottawa Hospital, Department of Pathology, 501 Smyth Road, Ottawa ON K1H 8L6 Canada.
| | - Manijeh Daneshmand
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Shelly Sud
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Allen M Gown
- PhenoPath Laboratories, 551 N. 34th Street Seattle 98103 USA.
| | - Derek Jonker
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Timothy Asmis
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| | - Rachel A Goodwin
- The Ottawa Hospital Cancer Centre, 501 Smyth Road, Ottawa ON K1H 8L6 Canada; Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON K1Y 4E9.
| |
Collapse
|
84
|
WGCNA reveals key gene modules regulated by the combined treatment of colon cancer with PHY906 and CPT11. Biosci Rep 2020; 40:226138. [PMID: 32812032 PMCID: PMC7468096 DOI: 10.1042/bsr20200935] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Irinotecan (CPT11) is one of the most effective drugs for treating colon cancer, but its severe side effects limit its application. Recently, a traditional Chinese herbal preparation, named PHY906, has been proved to be effective for improving therapeutic effect and reducing side effects of CPT11. The aim of the present study was to provide novel insight to understand the molecular mechanism underlying PHY906-CPT11 intervention of colon cancer. Based on the GSE25192 dataset, for different three treatments (PHY906, CPT11, and PHY906-CPT11), we screened out differentially expressed genes (DEGs) and constructed a co-expression network by weighted gene co-expression network analysis (WGCNA) to identify hub genes. The key genes of the three treatments were obtained by merging the DEGs and hub genes. For the PHY906-CPT11 treatment, a total of 18 key genes including Eif4e, Prr15, Anxa2, Ddx5, Tardbp, Skint5, Prss12 and Hnrnpa3, were identified. The results of functional enrichment analysis indicated that the key genes associated with PHY906-CPT11 treatment were mainly enriched in ‘superoxide anion generation’ and ‘complement and coagulation cascades’. Finally, we validated the key genes by Gene Expression Profiling Interactive Analysis (GEPIA) and RT-PCR analysis, the results indicated that EIF4E, PRR15, ANXA2, HNRNPA3, NCF1, C3AR1, PFDN2, RGS10, GNG11, and TMSB4X might play an important role in the treatment of colon cancer with PHY906-CPT11. In conclusion, a total of 18 key genes were identified in the present study. These genes showed strong correlation with PHY906-CPT11 treatment in colon cancer, which may help elucidate the underlying molecular mechanism of PHY906-CPT11 treatment in colon cancer.
Collapse
|
85
|
Garg M, Shanmugam MK, Bhardwaj V, Goel A, Gupta R, Sharma A, Baligar P, Kumar AP, Goh BC, Wang L, Sethi G. The pleiotropic role of transcription factor STAT3 in oncogenesis and its targeting through natural products for cancer prevention and therapy. Med Res Rev 2020; 41:1291-1336. [PMID: 33289118 DOI: 10.1002/med.21761] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is one of the crucial transcription factors, responsible for regulating cellular proliferation, cellular differentiation, migration, programmed cell death, inflammatory response, angiogenesis, and immune activation. In this review, we have discussed the classical regulation of STAT3 via diverse growth factors, cytokines, G-protein-coupled receptors, as well as toll-like receptors. We have also highlighted the potential role of noncoding RNAs in regulating STAT3 signaling. However, the deregulation of STAT3 signaling has been found to be associated with the initiation and progression of both solid and hematological malignancies. Additionally, hyperactivation of STAT3 signaling can maintain the cancer stem cell phenotype by modulating the tumor microenvironment, cellular metabolism, and immune responses to favor drug resistance and metastasis. Finally, we have also discussed several plausible ways to target oncogenic STAT3 signaling using various small molecules derived from natural products.
Collapse
Affiliation(s)
- Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vipul Bhardwaj
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Akul Goel
- La Canada High School, La Canada Flintridge, California, USA
| | - Rajat Gupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Arundhiti Sharma
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Center for Translational Medicine, Singapore, Singapore
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Center for Translational Medicine, Singapore, Singapore
- Department of Hematology-Oncology, National University Health System, Singapore, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, Center for Translational Medicine, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
86
|
Bordoloi D, Banik K, Vikkurthi R, Thakur KK, Padmavathi G, Sailo BL, Girisa S, Chinnathambi A, Alahmadi TA, Alharbi SA, Buhrmann C, Shakibaei M, Kunnumakkara AB. Inflection of Akt/mTOR/STAT-3 cascade in TNF-α induced protein 8 mediated human lung carcinogenesis. Life Sci 2020; 262:118475. [PMID: 32976884 DOI: 10.1016/j.lfs.2020.118475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer is the leading cause of cancer-related death across the globe. Despite the marked advances in detection and therapeutic approaches, management of lung cancer patients remains a major challenge to oncologists which can be mainly attributed to late stage diagnosis, tumor recurrence and chemoresistance. Therefore, to overthrow these limitations, there arises a vital need to develop effective biomarkers for the successful management of this aggressive cancer type. Notably, TNF-alpha induced protein 8 (TIPE), a nuclear factor-kappa B (NF-κB)-inducible, oncogenic molecule and cytoplasmic protein which is involved in the regulation of T lymphocyte-mediated immunity and different processes in tumor cells such as proliferation, cell death and evasion of growth suppressors, might serve as one such biomarker which would facilitate effective management of lung cancer. Expression studies revealed this protein to be significantly upregulated in different lung cancer types, pathological conditions, stages and grades of lung tumor compared to normal human lung tissues. In addition, knockout of TIPE led to the reduced proliferation, survival, invasion and migration of lung cancer cells. Furthermore, TIPE was found to function through modulation of Akt/mTOR/STAT-3 signaling cascade. This is the first report which shows the involvement of TIPE in tobacco induced lung carcinogenesis. It positively regulated nicotine, NNK, NNN, and BaP induced proliferation, survival and migration of lung cancer cells possibly via Akt/STAT-3 signaling. Thus, this protein possesses important role in the pathogenesis of lung tumor and hence it can be targeted for developing newer therapeutic interventions for the clinico-management of lung cancer.
Collapse
Affiliation(s)
- Devivasha Bordoloi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Kishore Banik
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rajesh Vikkurthi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine, King Saud University [Medical City], King Khalid University Hospital, PO Box-2925, Riyadh 11461, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Constanze Buhrmann
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mehdi Shakibaei
- Department of Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
87
|
Ramasamy T, Chen X, Qin B, Johnson DE, Grandis JR, Villanueva FS. STAT3 decoy oligonucleotide-carrying microbubbles with pulsed ultrasound for enhanced therapeutic effect in head and neck tumors. PLoS One 2020; 15:e0242264. [PMID: 33206698 PMCID: PMC7673576 DOI: 10.1371/journal.pone.0242264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Signal transducer and activator of transcription-3 (STAT3) is an oncogenic transcription factor implicated in carcinogenesis, tumor progression, and drug resistance in head and neck squamous cell carcinoma (HNSCC). A decoy oligonucleotide targeting STAT3 offers a promising anti-tumor strategy, but achieving targeted tumor delivery of the decoy with systemic administration poses a significant challenge. We previously showed the potential for STAT3 decoy-loaded microbubbles, in conjunction with ultrasound targeted microbubble cavitation (UTMC), to decrease tumor growth in murine squamous cell carcinoma. As a next step towards clinical translation, we sought to determine the anti-tumor efficacy of our STAT3 decoy delivery platform against human HNSCC and the effect of higher STAT3 decoy microbubble loading on tumor cell inhibition. STAT3 decoy was loaded on cationic lipid microbubbles (STAT3-MB) or loaded on liposome-conjugated lipid microbubbles to form STAT3-loaded liposome-microbubble complexes (STAT3-LPX). UTMC treatment efficacy with these two formulations was evaluated in vitro using viability and apoptosis assays in CAL33 (human HNSCC) cells. Anti-cancer efficacy in vivo was performed in a CAL33 tumor murine xenograft model. UTMC with STAT3-MB caused significantly lower CAL33 cell viability compared to UTMC with STAT3-LPX (56.8±8.4% vs 84.5±8.8%, respectively, p<0.05). In vivo, UTMC with STAT3-MB had strong anti-tumor effects, with significantly less tumor burden and greater survival compared to that of UTMC with microbubbles loaded with a mutant control decoy and untreated control groups (p<0.05). UTMC with STAT3 decoy-loaded microbubbles significantly decreases human HNSSC tumor progression. These data set the stage for clinical translation of our microbubble platform as an imaged-guided, targeted delivery strategy for STAT3 decoy, or other nucleotide-based therapeutics, in human cancer treatment.
Collapse
Affiliation(s)
- Thiruganesh Ramasamy
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Bin Qin
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Daniel E. Johnson
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Jennifer R. Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Flordeliza S. Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
88
|
Zhou L, Li Y, Li Z, Huang Q. Mining therapeutic and prognostic significance of STATs in renal cell carcinoma with bioinformatics analysis. Genomics 2020; 112:4100-4114. [PMID: 32640276 DOI: 10.1016/j.ygeno.2020.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/06/2020] [Accepted: 06/19/2020] [Indexed: 02/05/2023]
Abstract
Renal cell carcinoma is one of the most common malignancies with high morbidity and mortality. STAT proteins play a significant role in cell biological behavior and immune response associated with cancer progression. In our study, the datasets analyzed for the expression and potential functions can be found in several bioinformatics analysis tools. We found that STAT1/2/4/6 were upregulated in RCC while STAT3/5B were downregulated. The expression of STAT2/4/5B were significantly associated with the pathological stage of RCC patients. RCC patients with high expression of STAT2/4 and low/medium expression of STAT5B had a poor overall survival. The function of STATs and the neighboring genes mainly enriched in JAK-STAT signaling pathway and NOD-like receptor signaling pathway. Several transcription factor, kinase, and miRNA targets were identified. Close correlations were obtained between immune cell infiltration and STATs in RCC. Our results have provided novel insights for the selection of immunotherapeutic targets and prognostic biomarkers.
Collapse
Affiliation(s)
- Liangcheng Zhou
- Department of Nephrology, Maoming People's Hospital, Maoming 525000, China.
| | - Yuwu Li
- Department of Urology, Gaozhou People's Hospital, Maoming, 525200, China
| | - Zuwei Li
- Department of Urology, Gaozhou People's Hospital, Maoming, 525200, China.
| | - Qinying Huang
- Department of Ophthalmology, Shantou University Medical college, Shantou 515041, China
| |
Collapse
|
89
|
Liu X, Dong Y, Song D. Inhibition of microRNA-15b-5p Attenuates the Progression of Oral Squamous Cell Carcinoma via Modulating the PTPN4/STAT3 Axis. Cancer Manag Res 2020; 12:10559-10572. [PMID: 33149666 PMCID: PMC7604544 DOI: 10.2147/cmar.s272498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Emerging evidence has demonstrated the important functions of microRNAs (miRNAs) in human malignancies. This study focuses on the function of miR-15b-5p on the oral squamous cell carcinoma (OSCC) progression and the molecules involved. METHODS Tumor and the paracancerous tissues were obtained from OSCC patients. Differentially expressed miRNAs between the tumor and normal tissues were screened out. miR-15b-5p expression in tumors and acquired cells was determined, and its correlation with patient survival was analyzed. Knockdown of miR-15b-5p was introduced in SCC-4 and CAL-27 cells to explore its role in cell growth and metastasis. Binding relationship between miR-15b-5p and PTPN4 was validated, and altered expression of PTPN4 was introduced in cells to explore its function in OSCC development. Xenograft tumors were induced in nude mice for in vivo experiments. RESULTS miR-15b-5p was abundantly expressed in OSCC tumors and cells and linked to poor survival in patients. Silencing of miR-15b-5p suppressed proliferation, migration, and invasion and triggered apoptosis in SCC-4 and CAL-27 cells. miR-15b-5p targeted PTPN4. Further silencing of PTPN4 blocked the inhibiting functions of miR-15b-5p inhibitor in OSCC cell growth. The in vitro results were reproduced in vivo, where inhibition of miR-15b-5p led to a decline in tumor growth and metastasis in nude mice. PTPN4 was found as a negative mediator of the STAT3 pathway. CONCLUSION This study evidenced that miR-15b-5p possibly promotes OSCC development through binding to PTPN4 and the following STAT3 signaling activation. miR-15b-5p may be a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Xuerong Liu
- Department of Oral and Maxillofacial Surgery, Zaozhuang Municipal Hospital, Zaozhuang, Shandong277100, People’s Republic of China
| | - Yuanyuan Dong
- Department of Oral and Maxillofacial Surgery, Zaozhuang Municipal Hospital, Zaozhuang, Shandong277100, People’s Republic of China
| | - Dan Song
- Department of Oral and Maxillofacial Surgery, Zaozhuang Municipal Hospital, Zaozhuang, Shandong277100, People’s Republic of China
| |
Collapse
|
90
|
Liao J, Chen Z, Yu Z, Huang T, Hu D, Su Y, He Z, Zou C, Zhang L, Lin X. The Role of ARL4C in Erlotinib Resistance: Activation of the Jak2/ Stat 5/β- Catenin Signaling Pathway. Front Oncol 2020; 10:585292. [PMID: 33194732 PMCID: PMC7657464 DOI: 10.3389/fonc.2020.585292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/01/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer patients who initially benefit from Erlotinib, a drug targeting EGFR path, eventually develop resistance to the drug. The underlying mechanism is largely unknown. This study investigated the role of ARL4C in Erlotinib resistance development of NSCLC. qRT-PCR and Western blotting were performed to analyze the expression of mRNA and protein of ARL4C in two NSCLC cell lines (HCC827 and PC-9). Several assays (MTS, colony formation, transwell migration, luciferase reporter, and chromatin-immunoprecipitation) were used to explore the role of ARL4C in biofunctional changes of Erlotinib-resistant cells and their associations with Jak2/Stat 5/β-catenin signaling. Results demonstrated that (1) long-term use of Erlotinib resulted in downregulation of ARL4C; (2) overexpression of ARL4C could regain the sensitivity to Erlotinib in the drug-resistant HCC827/ER cells, while downregulation of ARL4C increased HCC827, and PC-9 cells' resistance to the drug; (3) Erlotinib-induced downregulation of ARL4C resulted in phosphorylation of Jak2/Stat5 and upregulation of β-catenin and their related molecules Axin2, CD44, Ccnd1, Lgr-5, and MMP7, which promoted the malignant behaviors of Erlotinib-resistant cells; (4) chromatin immunoprecipitation and luciferase reporter assay revealed that Stat5 could bind to β-catenin promoter to upregulate molecules to maintain the malignant behaviors, which might count for how Erlotinib-resistant cell survived while EGFR path was blocked; (5) the expression of ARL4C was not associated with known EGFR gene mutations in both Erlotinib-resistant cells and NSCLC tissues. Our data suggest that Erlotinib resistance of NSCLCs is associated with downregulation of ARL4C via affecting Jak/Stat/β-catenin signaling. ARL4C could serve as a biomarker to predict the effectiveness of TKI targeting therapy and a potential therapeutic target for overcoming Erlotinib resistance in NSCLC.
Collapse
Affiliation(s)
- Jinrong Liao
- Laboratory of Radiation Oncology and Radiobiology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Zeng Chen
- Laboratory of Radiation Oncology and Radiobiology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Zongyang Yu
- Respiratory Department, The 900th Hospital of Joint Logistic Support Force, The Chinese People's Liberation Army, Fuzhou, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Dan Hu
- Department of Pathology, Fujian Provincial Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Ying Su
- Laboratory of Radiation Oncology and Radiobiology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Zhiyong He
- Department of Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Changyan Zou
- Laboratory of Radiation Oncology and Radiobiology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Lurong Zhang
- Laboratory of Radiation Oncology and Radiobiology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| |
Collapse
|
91
|
Meng H, Pang Y, Liu G, Luo Z, Tan H, Liu X. Podocarpusflavone A inhibits cell growth of skin cutaneous melanoma by suppressing STAT3 signaling. J Dermatol Sci 2020; 100:201-208. [PMID: 33127205 DOI: 10.1016/j.jdermsci.2020.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND JAK2/STAT3 pathway is involved in the development and progression of melanoma once DNA damage is caused by environment and genetic factors. OBJECTIVE Here, we aimed to identify novel inhibitor of JAK2/STAT3 pathway and reveal the underlying mechanisms. METHODS Eighty MedChemExpress compounds were screened by using STAT3-Luc reporter in A375 cells. Podocarpusflavone A (PCFA) was identified as an inhibitor of STAT3, which was further verified in four melanoma cell lines. The anti-melanoma effects and mechanism of PCFA were examined and explored in melanoma cells and mouse xenograft models by using Western blot and cell-counting kit-8 assay. RESULTS PCFA exhibited potent inhibitory effects on melanoma both in vitro and in vivo. PCFA inhibited the activation of STAT3 through suppressing the phosphorylation of JAK2, and then restrained cell cycle and induced apoptosis of melanoma cells. CONCLUSION PCFA inhibits melanoma growth via the inhibition of JAK2/STAT3 pathway, which provides a promising therapeutic strategies of melanoma treatment.
Collapse
Affiliation(s)
- Huijuan Meng
- Department of Dermatology, the Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Yunyan Pang
- Department of Dermatology, the Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Guoyan Liu
- Department of Dermatology, the Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Zengxiang Luo
- Department of Dermatology, the Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Haiyang Tan
- Department of Pharmacy, the Affiliated Hospital of Weifang Medical University, Shandong, China
| | - Xiangming Liu
- Department of Dermatology, Weifang Medical University, Shandong, China.
| |
Collapse
|
92
|
Farha AK, Gan RY, Li HB, Wu DT, Atanasov AG, Gul K, Zhang JR, Yang QQ, Corke H. The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives. Crit Rev Food Sci Nutr 2020; 62:832-859. [PMID: 33054344 DOI: 10.1080/10408398.2020.1829541] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rutin is one of the most common dietary polyphenols found in vegetables, fruits, and other plants. It is metabolized by the mammalian gut microbiota and absorbed from the intestines, and becomes bioavailable in the form of conjugated metabolites. Rutin exhibits a plethora of bioactive properties, making it an extremely promising phytochemical. Numerous studies demonstrate that rutin can act as a chemotherapeutic and chemopreventive agent, and its anticancer effects can be mediated through the suppression of cell proliferation, the induction of apoptosis or autophagy, and the hindering of angiogenesis and metastasis. Rutin has been found to modulate multiple molecular targets involved in carcinogenesis, such as cell cycle mediators, cellular kinases, inflammatory cytokines, transcription factors, drug transporters, and reactive oxygen species. This review summarizes the natural sources of rutin, its bioavailability, and in particular its potential use as an anticancer agent, with highlighting its anticancer mechanisms as well as molecular targets. Additionally, this review updates the anticancer potential of its analogs, nanoformulations, and metabolites, and discusses relevant safety issues. Overall, rutin is a promising natural dietary compound with promising anticancer potential and can be widely used in functional foods, dietary supplements, and pharmaceuticals for the prevention and management of cancer.
Collapse
Affiliation(s)
- Arakkaveettil Kabeer Farha
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Sun Yat-Sen University, Guangzhou, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria.,Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Khalid Gul
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Rong Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiong-Qiong Yang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, China
| |
Collapse
|
93
|
Wu MM, Zhang Z, Tong CWS, Yan VW, Cho WCS, To KKW. Repurposing of niclosamide as a STAT3 inhibitor to enhance the anticancer effect of chemotherapeutic drugs in treating colorectal cancer. Life Sci 2020; 262:118522. [PMID: 33011217 DOI: 10.1016/j.lfs.2020.118522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/20/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
AIMS Colorectal cancer (CRC) is the third most common cancer worldwide. Mutation of various cell signaling molecules or aberrant activation of signaling pathways leads to poor response to chemotherapy in CRC. Signal transducer and activator of transcription protein 3 (STAT3) is an important signaling molecule, which plays crucial roles in regulating cell survival and growth. In this study, the potentitation of chemotherapy by putative STAT3 inhibitors for treating CRC was investigated. MAIN METHODS A few putative STAT3 inhibitors were investigated. Niclosamide, originally indicated for the treatment of tapeworm infection, was chosen for further investigation in five CRC cell lines (HCT116, HT29, HCC2998, LoVo and SW480). Western blot analysis was used to evaluate the expression of STAT3/phospho-STAT3 and its downstream targets. Sulforhodamine B assay was used to evaluate the cytotoxicity of drug combinations. Flow cytometric assays were used to investigate the apoptotic and cell cycle effect. KEY FINDINGS Niclosamide was found to inhibit expression and activation of STAT3 in a concentration- and time-dependent manner, thereby downregulating STAT3 downstream targets including survivin and cyclin-D1 to induce apoptosis and cell cycle arrest. When combined with niclosamide or specific STAT3 inhibitor (C188-9), the cytotoxicity and DNA damage response from SN38 (the active metabolite from irinotecan) were significantly enhanced. The sequential exposure of SN38 followed by niclosamide was found to be the most potent treatment sequence for the drug combination. SIGNIFICANCE Niclosamide represents a promising candidate for repurposing to potentiate the anticancer activity of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Mia M Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Z Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Christy W S Tong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - ViVi W Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, SAR, China
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
94
|
Malojirao VH, Girimanchanaika SS, Shanmugam MK, Sherapura A, Dukanya, Metri PK, Vigneshwaran V, Chinnathambi A, Alharbi SA, Rangappa S, Mohan CD, Basappa, Prabhakar BT, Rangappa KS. Novel 1,3,4-oxadiazole Targets STAT3 Signaling to Induce Antitumor Effect in Lung Cancer. Biomedicines 2020; 8:E368. [PMID: 32967366 PMCID: PMC7555749 DOI: 10.3390/biomedicines8090368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the leading type of malignancy in terms of occurrence and mortality in the global context. STAT3 is an oncogenic transcription factor that is persistently activated in many types of human malignancies, including lung cancer. In the present report, new oxadiazole conjugated indazoles were synthesized and examined for their anticancer potential in a panel of cancer cell lines. Among the new compounds, 2-(3-(6-chloro-5-methylpyridin-3-yl)phenyl)-5-(1-methyl-1H-indazol-3-yl)-1,3,4-oxadiazole (CHK9) showed consistently good cytotoxicity towards lung cancer cells with IC50 values ranging between 4.8-5.1 µM. The proapoptotic effect of CHK9 was further demonstrated by Annexin-FITC staining and TUNEL assay. In addition, the effect of CHK9 on the activation of STAT3 in lung cancer cells was examined. CHK9 reduced the phosphorylation of STAT3Y705 in a dose-dependent manner. CHK9 had no effect on the activation and expression of JAK2 and STAT5. It also reduced the STAT3-dependent luciferase reporter gene expression. CHK9 increased the expression of proapoptotic (p53 and Bax) proteins and decreased the expression of the antiapoptotic (Bcl-2, Bcl-xL, BID, and ICAM-1) proteins. CHK9 displayed a significant reduction in the number of tumor nodules in the in vivo lung cancer model with suppression of STAT3 activation in tumor tissues. CHK9 did not show substantial toxicity in the normal murine model. Overall, CHK9 inhibits the growth of lung cancer cells and tumors by interfering with the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Vikas H. Malojirao
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka 577203, India; (V.H.M.); (A.S.); (V.V.)
| | - Swamy S. Girimanchanaika
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India; (S.S.G.); (D.); (P.K.M.)
| | - Muthu K. Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
| | - Ankith Sherapura
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka 577203, India; (V.H.M.); (A.S.); (V.V.)
| | - Dukanya
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India; (S.S.G.); (D.); (P.K.M.)
| | - Prashant K. Metri
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India; (S.S.G.); (D.); (P.K.M.)
| | - Vellingiri Vigneshwaran
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka 577203, India; (V.H.M.); (A.S.); (V.V.)
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.C.); (S.A.A.)
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.C.); (S.A.A.)
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, AIMS Campus, B. G. Nagar, Nagamangala Taluk, Mandya District 571448, India;
| | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India;
| | - Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore, Karnataka 570006, India; (S.S.G.); (D.); (P.K.M.)
| | - Bettadathunga T. Prabhakar
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka 577203, India; (V.H.M.); (A.S.); (V.V.)
| | | |
Collapse
|
95
|
Involvement of STAT5 in Oncogenesis. Biomedicines 2020; 8:biomedicines8090316. [PMID: 32872372 PMCID: PMC7555335 DOI: 10.3390/biomedicines8090316] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins, and in particular STAT3, have been established as heavily implicated in cancer. Recently, the involvement of STAT5 signalling in the pathology of cancer has been shown to be of increasing importance. STAT5 plays a crucial role in the development of the mammary gland and the homeostasis of the immune system. However, in various cancers, aberrant STAT5 signalling promotes the expression of target genes, such as cyclin D, Bcl-2 and MMP-2, that result in increased cell proliferation, survival and metastasis. To target constitutive STAT5 signalling in cancers, there are several STAT5 inhibitors that can prevent STAT5 phosphorylation, dimerisation, or its transcriptional activity. Tyrosine kinase inhibitors (TKIs) that target molecules upstream of STAT5 could also be utilised. Consequently, since STAT5 contributes to tumour aggressiveness and cancer progression, inhibiting STAT5 constitutive activation in cancers that rely on its signalling makes for a promising targeted treatment option.
Collapse
|
96
|
Shibata M, Ooki A, Inokawa Y, Sadhukhan P, Ugurlu MT, Izumchenko E, Munari E, Bogina G, Rudin CM, Gabrielson E, Singh A, Hoque MO. Concurrent Targeting of Potential Cancer Stem Cells Regulating Pathways Sensitizes Lung Adenocarcinoma to Standard Chemotherapy. Mol Cancer Ther 2020; 19:2175-2185. [PMID: 32847981 DOI: 10.1158/1535-7163.mct-20-0024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/03/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSC) are highly resistant to conventional chemotherapeutic drugs. YAP1 and STAT3 are the two transcription factors that facilitate the therapeutic resistance and expansion of CSCs. The objective of this study was to understand the cross-talk between YAP1 and STAT3 activities and to determine the therapeutic efficacy of targeting dual CSC-regulating pathways (YAP1 and STAT3) combined with chemotherapy in lung adenocarcinoma. Here, we showed that YAP1 contributes to CSC regulation and enhances tumor formation while suppressing apoptosis. Mechanistically, YAP1 promotes phosphorylation of STAT3 by upregulating IL6. In lung adenocarcinoma clinical specimens, YAP1 expression correlated with that of IL6 (P < 0.01). More importantly, YAP1 and phosphorylated STAT3 (pSTAT3) protein expressions were significantly correlated (P < 0.0001) in primary lung adenocarcinoma as determined by IHC. Immunoblotting of 13 lung adenocarcinoma patient-derived xenografts (PDX) showed that all YAP1-expressing PDXs also exhibited pSTAT3. Additional investigations revealed that chemotherapy resistance and malignant stemness were influenced by upregulating NANOG, OCT4, and SOX2, and the expression of these targets significantly attenuated by genetically and pharmacologically hindering the activities of YAP1 and STAT3 in vivo and in vitro Therapeutically, the dual inhibition of YAP1 and STAT3 elicits a long-lasting therapeutic response by limiting CSC expansion following chemotherapy in cell line xenograft and PDX models of lung adenocarcinoma. Collectively, these findings provide a conceptual framework to target the YAP1 and STAT3 pathways concurrently with systemic chemotherapy to improve the clinical management of lung adenocarcinoma, based on evidence that these two pathways expand CSC populations that mediate resistance to chemotherapy.
Collapse
Affiliation(s)
- Masahiro Shibata
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Breast and Endocrine Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Akira Ooki
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yoshikuni Inokawa
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pritam Sadhukhan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - M Talha Ugurlu
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Enrico Munari
- Department of Pathology, Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Giuseppe Bogina
- Department of Pathology, Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | | | - Edward Gabrielson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anju Singh
- Department of Environmental Health Science, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Mohammad O Hoque
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
97
|
Yang Y, Yang Y, Yang J, Zhao X, Wei X. Tumor Microenvironment in Ovarian Cancer: Function and Therapeutic Strategy. Front Cell Dev Biol 2020; 8:758. [PMID: 32850861 PMCID: PMC7431690 DOI: 10.3389/fcell.2020.00758] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is one of the leading causes of death in patients with gynecological malignancy. Despite optimal cytoreductive surgery and platinum-based chemotherapy, ovarian cancer disseminates and relapses frequently, with poor prognosis. Hence, it is urgent to find new targeted therapies for ovarian cancer. Recently, the tumor microenvironment has been reported to play a vital role in the tumorigenesis of ovarian cancer, especially with discoveries from genome-, transcriptome- and proteome-wide studies; thus tumor microenvironment may present potential therapeutic target for ovarian cancer. Here, we review the interactions between the tumor microenvironment and ovarian cancer and various therapies targeting the tumor environment.
Collapse
Affiliation(s)
- Yanfei Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
98
|
Liu H, Qiu F, Wang Y, Liang F, Liang J, Lin C, Liang J, Gong B, Chan S, De Zhang Z, Lai X, Hou S, Dai Z. A recombinant protein rLZ-8, originally extracted from Ganoderma lucidum, ameliorates OVA-induced lung inflammation by regulating Th17/Treg balance. J Leukoc Biol 2020; 108:531-545. [PMID: 32578901 DOI: 10.1002/jlb.5ma0420-453r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Asthma is one of the most common chronic and inflammatory respiratory diseases, which is estimated to affect 1-10% of the population in different regions across the world. Previous studies have shown that recombinant Ling-Zhi 8 (rLZ-8), an immunoregulatory protein originally extracted from Ganoderma lucidum, plays multiple roles in regulating murine immune cells, including T cells. Here, we examined whether rLZ-8 would ameliorate pulmonary inflammation in a model of asthma-like mice. We found that rLZ-8 significantly inhibited the lung inflammation and reduced infiltration of inflammatory cells, including dendritic cells and eosinophils, in OVA-induced asthmatic mice. It also deceased IL-17A level but increased IL-10 level in bronchoalveolar lavage fluid (BALF) while reducing RORγt mRNA expression and enhancing Foxp3 mRNA level in the lung tissue. Flow cytometry studies demonstrated that rLZ-8 remarkably down-regulated Th17 cells but upregulated Foxp3+ regulatory T (Treg) cells, rather than influencing Th1 versus Th2 cells. Experiments in vitro also showed that rLZ-8 suppressed murine CD3+ T cell proliferation and reduced the frequency of Th17 cells while promoting the differentiation of CD4+ Foxp3+ Tregs. Moreover, rIL-8 similarly altered human Th17/Treg generation or their balance in vitro. Finally, we found that rLZ-8 suppressed signaling pathways of both STAT3 and NF-κB (P100/P52) in murine lung tissue as well as cultured T cells. Thus, we have demonstrated that rLZ-8 attenuates pulmonary inflammation through regulating the balance of Th17/Treg cells in OVA-induced asthmatic mice and that rLZ-8 may be a potential therapeutic agent for the treatment of asthma in clinic.
Collapse
Affiliation(s)
- Huazhen Liu
- Section of Immunology & Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
- School of pharmaceutical sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Feifei Qiu
- Section of Immunology & Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Yuanyuan Wang
- Section of Immunology & Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Feng Liang
- Shenzhen Fan-Mao Pharmaceutical Co., Limited, Shenzhen, P. R. China
| | - Jian Liang
- School of pharmaceutical sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Chengchuan Lin
- Section of Immunology & Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Jiandong Liang
- Shenzhen Fan-Mao Pharmaceutical Co., Limited, Shenzhen, P. R. China
| | - Boliang Gong
- Shenzhen Fan-Mao Pharmaceutical Co., Limited, Shenzhen, P. R. China
| | - Shamyuen Chan
- Shenzhen Fan-Mao Pharmaceutical Co., Limited, Shenzhen, P. R. China
| | - Zhong- De Zhang
- Section of Immunology & Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Xiaoping Lai
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| | - Shaozhen Hou
- School of pharmaceutical sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
- Shenzhen Fan-Mao Pharmaceutical Co., Limited, Shenzhen, P. R. China
| | - Zhenhua Dai
- Section of Immunology & Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, and the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
99
|
Jin J, Chen N, Pan H, Xie W, Xu H, Lei S, Guo Z, Ding R, He Y, Gao J. Triclosan induces ROS-dependent cell death and autophagy in A375 melanoma cells. Oncol Lett 2020; 20:73. [PMID: 32863906 PMCID: PMC7436935 DOI: 10.3892/ol.2020.11934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/23/2020] [Indexed: 12/29/2022] Open
Abstract
Melanoma is a common type of cutaneous tumor, but current drug treatments do not satisfy clinical practice requirements. At present, mitochondrial uncoupling is an effective antitumor treatment. Triclosan, a common antimicrobial, also acts as a mitochondrial uncoupler. The aims of the present study were to investigate the effects of triclosan on melanoma cells and the underlying mechanisms. Mitochondrial membrane potential (MMP), mitochondrial morphology, mitochondrial reactive oxygen species (mito-ROS), intracellular superoxide anion and [Ca2+]i were measured using confocal microscopy. It was found that triclosan application was associated with decreased A375 cell viability in a dose- and time-dependent manner and these effects may have cell specificity. Furthermore, triclosan induced MMP depolarization, ATP content decrease, mito-ROS and [Ca2+]i level increases, excessive mitochondrial fission, AMP-activated protein kinase (AMPK) activation and STAT3 inhibition. Moreover, these aforementioned effects were reversed by acetylcysteine treatment. Triclosan acute treatment also induced mitochondrial swelling, which was reversed after AMPK-knockdown associated with [Ca2+]i overload. Cell death was caused by STAT3 inhibition but not AMPK activation. Moreover, triclosan induced autophagy via the ROS/AMPK/p62/microtubule-associated protein 1A/1B-light chain 3 (LC3) signaling pathway, which may serve a role in feedback protection. Collectively, the present results suggested that triclosan increased mito-ROS production in melanoma cells, following induced cell death via the STAT3/Bcl-2 pathway and autophagy via the AMPK/p62/LC3 pathway.
Collapse
Affiliation(s)
- Jing Jin
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Naiwen Chen
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China.,Department of Surgety, The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Huan Pan
- Department of Central Laboratory, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Wenhua Xie
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Hong Xu
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China.,Department of Surgety, The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Siyu Lei
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China.,Department of Surgety, The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhiqin Guo
- Department of Pathology, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Renye Ding
- Department of Clinical Laboratory, The Affiliated Hospital of Jiaxing University, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Yi He
- Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Jinlai Gao
- Department of Pharmacology, College of Medical, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| |
Collapse
|
100
|
Brusatol suppresses STAT3-driven metastasis by downregulating epithelial-mesenchymal transition in hepatocellular carcinoma. J Adv Res 2020; 26:83-94. [PMID: 33133685 PMCID: PMC7584682 DOI: 10.1016/j.jare.2020.07.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Epithelial-mesenchymal transition (EMT) is a process of transdifferentiation where epithelial cells attain mesenchymal phenotype to gain invasive properties and thus, can contribute to metastasis of tumor cells. Objectives The antimetastatic and antitumor efficacy of brusatol (BT) was investigated in a hepatocellular carcinoma (HCC) model. Methods We evaluated the action of BT on EMT process using various biological assays in HCC cell lines and its effect on tumorigenesis in an orthotopic mouse model. Results We found that BT treatment restored the expression of Occludin, E-cadherin (epithelial markers) while suppressing the levels of different mesenchymal markers in HCC cells and tumor tissues. Moreover, we observed a decline in the expression of transcription factors (Snail, Twist). Since the expression of these two factors can be regulated by STAT3 signaling, we deciphered the influence of BT on modulation of this pathway. BT suppressed the phosphorylation of STAT3Y705 and STAT3 depletion using siRNA resulted in the restoration of epithelial markers. Importantly, BT (1mg/kg) reduced the tumor burden in orthotopic mouse model with a concurrent decline in lung metastasis. Conclusions Overall, our results demonstrate that BT interferes with STAT3 induced metastasis by altering the expression of EMT-related proteins in HCC model.
Collapse
|