51
|
Krasavin M, Peshkov AA, Lukin A, Komarova K, Vinogradova L, Smirnova D, Kanov EV, Kuvarzin SR, Murtazina RZ, Efimova EV, Gureev M, Onokhin K, Zakharov K, Gainetdinov RR. Discovery and In Vivo Efficacy of Trace Amine-Associated Receptor 1 (TAAR1) Agonist 4-(2-Aminoethyl)- N-(3,5-dimethylphenyl)piperidine-1-carboxamide Hydrochloride (AP163) for the Treatment of Psychotic Disorders. Int J Mol Sci 2022; 23:ijms231911579. [PMID: 36232878 PMCID: PMC9569940 DOI: 10.3390/ijms231911579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Starting from a screening hit, a set of analogs was synthesized based on a 4-(2-aminoethyl)piperidine core not associated previously with trace amine-associated receptor 1 (TAAR1) modulation in the literature. Several structure–activity relationship generalizations have been drawn from the observed data, some of which were corroborated by molecular modeling against the crystal structure of TAAR1. The four most active compounds (EC50 for TAAR1 agonistic activity ranging from 0.033 to 0.112 μM) were nominated for evaluation in vivo. The dopamine transporter knockout (DAT-KO) rat model of dopamine-dependent hyperlocomotion was used to evaluate compounds’ efficacy in vivo. Out of four compounds, only one compound (AP163) displayed a statistically significant and dose-dependent reduction in hyperlocomotion in DAT-KO rats. As such, compound AP163 represents a viable lead for further preclinical characterization as a potential novel treatment option for disorders associated with increased dopaminergic function, such as schizophrenia.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Department of Medicinal Chemistry, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (R.R.G.)
| | - Anatoly A. Peshkov
- Department of Medicinal Chemistry, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Alexey Lukin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Kristina Komarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Lyubov Vinogradova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Daria Smirnova
- Department of Medicinal Chemistry, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Evgeny V. Kanov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Savelii R. Kuvarzin
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Ramilya Z. Murtazina
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Evgeniya V. Efimova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Maxim Gureev
- Center of Bio- and Chemoinformatics, Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Kirill Onokhin
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Konstantin Zakharov
- Accellena Research and Development Inc., 88A Sredniy pr. V.O., Saint Petersburg 199106, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (R.R.G.)
| |
Collapse
|
52
|
Vaganova AN, Katolikova NV, Murtazina RZ, Kuvarzin SR, Gainetdinov RR. Public Transcriptomic Data Meta-Analysis Demonstrates TAAR6 Expression in the Mental Disorder-Related Brain Areas in Human and Mouse Brain. Biomolecules 2022; 12:biom12091259. [PMID: 36139098 PMCID: PMC9496192 DOI: 10.3390/biom12091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
G protein-coupled trace amine-associated receptors (TAAR) recognize different classes of amine compounds, including trace amines or other exogenous and endogenous molecules. Yet, most members of the TAAR family (TAAR2-TAAR9) are considered olfactory receptors involved in sensing innate odors. In this study, TAAR6 mRNA expression was evaluated in the brain transcriptomic datasets available in the GEO, Allen Brain Atlas, and GTEx databases. Transcriptomic data analysis demonstrated ubiquitous weak TAAR6 mRNA expression in the brain, especially in the prefrontal cortex and nucleus accumbens. RNA sequencing of isolated cells from the nucleus accumbens showed that the expression of TAAR6 in some cell populations may be more pronounced than in whole-tissue samples. Curiously, in D1 and D2 medium spiny neurons of the nucleus accumbens, TAAR6 expression was co-regulated with genes involved in G protein-coupled receptor signaling. However, in cholinergic interneurons of the nucleus accumbens, TAAR6 expression was not associated with the activation of any specific biological process. Finally, TAAR6 expression in the mouse prefrontal cortex was validated experimentally by RT-PCR analysis. These data demonstrated that TAAR6 is expressed at low levels in the human and mouse brain, particularly in limbic structures involved in the pathogenesis of mental disorders, and thus might represent a new pharmacotherapeutic target.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Nataliia V. Katolikova
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Ramilya Z. Murtazina
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Savelii R. Kuvarzin
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
- St. Petersburg University Hospital, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
- Correspondence:
| |
Collapse
|
53
|
Abstract
UNLABELLED This continuing education supplement is jointly provided by Medical Education Resources and CMEology. The supplement is supported by an independent educational grant from Sunovion Pharmaceuticals Inc. It was edited and peer reviewed by the Journal of Clinical Psychopharmacology.After reviewing the learning objectives and reading the supplement, please complete the Activity Evaluation/Credit Request form online at https://www.cmesurvey.site/TAAR1. ABSTRACT All currently available antipsychotics work via essentially the same mechanism: by antagonizing the dopamine D2 receptor. However, schizophrenia is an extremely heterogeneous condition, and antipsychotics do not adequately control symptoms for all patients. Negative and cognitive symptoms are especially difficult to manage with existing medications. Therefore, antipsychotic agents with novel mechanisms of action are urgently needed. Recently, a phase 2 clinical trial and extension study demonstrated that, relative to placebo, the trace amine-associated receptor 1 (TAAR1) agonist ulotaront was effective at controlling the positive, negative, and cognitive symptoms of schizophrenia. In addition, ulotaront seems to lack the weight gain, metabolic issues, and extrapyramidal symptoms associated with traditional antipsychotics. This agent is currently undergoing multiple phase 3 trials for the treatment of schizophrenia. Another TAAR1 agonist, ralmitaront, is being investigated for the treatment of schizophrenia and schizoaffective disorders. Two phase 2 clinical trials are underway, evaluating ralmitaront both as a monotherapy and an add-on therapy to traditional antipsychotics. In this supplement, we review the biologic, preclinical, and clinical data available for TAAR1 agonists, so that if and when they are approved for the treatment of schizophrenia, psychiatry specialists will be ready to use them to optimize patient outcomes. We also briefly review other emerging therapies in late-stage development for the treatment of schizophrenia.
Collapse
|
54
|
Carpéné C, Viana P, Fontaine J, Laurell H, Grolleau JL. Multiple Direct Effects of the Dietary Protoalkaloid N-Methyltyramine in Human Adipocytes. Nutrients 2022; 14:nu14153118. [PMID: 35956295 PMCID: PMC9370673 DOI: 10.3390/nu14153118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
Dietary amines have been the subject of a novel interest in nutrition since the discovery of trace amine-associated receptors (TAARs), especially TAAR-1, which recognizes tyramine, phenethylamine, tryptamine, octopamine, N-methyltyramine (NMT), synephrine, amphetamine and related derivatives. Alongside the psychostimulant properties of TAAR-1 ligands, it is their ephedrine-like action on weight loss that drives their current consumption via dietary supplements advertised for ‘fat-burning’ properties. Among these trace amines, tyramine has recently been described, at high doses, to exhibit an antilipolytic action and activation of glucose transport in human adipocytes, i.e., effects that are facilitating lipid storage rather than mobilization. Because of its close structural similarity to tyramine, NMT actions on human adipocytes therefore must to be reevaluated. To this aim, we studied the lipolytic and antilipolytic properties of NMT together with its interplay with insulin stimulation of glucose transport along with amine oxidase activities in adipose cells obtained from women undergoing abdominal surgery. NMT activated 2-deoxyglucose uptake when incubated with freshly isolated adipocytes at 0.01–1 mM, reaching one-third of the maximal stimulation by insulin. However, when combined with insulin, NMT limited by half the action of the lipogenic hormone on glucose transport. The NMT-induced stimulation of hexose uptake was sensitive to inhibitors of monoamine oxidases (MAO) and of semicarbazide-sensitive amine oxidase (SSAO), as was the case for tyramine and benzylamine. All three amines inhibited isoprenaline-induced lipolysis to a greater extent than insulin, while they were poorly lipolytic on their own. All three amines—but not isoprenaline—interacted with MAO or SSAO. Due to these multiple effects on human adipocytes, NMT cannot be considered as a direct lipolytic agent, potentially able to improve lipid mobilization and fat oxidation in consumers of NMT-containing dietary supplements.
Collapse
Affiliation(s)
- Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1297), I2MC, CEDEX 4, 31432 Toulouse, France; (P.V.); (J.F.); (H.L.)
- CHU Rangueil, Université Paul Sabatier, I2MC, CEDEX 4, 31432 Toulouse, France
- Correspondence:
| | - Pénélope Viana
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1297), I2MC, CEDEX 4, 31432 Toulouse, France; (P.V.); (J.F.); (H.L.)
- CHU Rangueil, Université Paul Sabatier, I2MC, CEDEX 4, 31432 Toulouse, France
| | - Jessica Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1297), I2MC, CEDEX 4, 31432 Toulouse, France; (P.V.); (J.F.); (H.L.)
- CHU Rangueil, Université Paul Sabatier, I2MC, CEDEX 4, 31432 Toulouse, France
| | - Henrik Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM U1297), I2MC, CEDEX 4, 31432 Toulouse, France; (P.V.); (J.F.); (H.L.)
- CHU Rangueil, Université Paul Sabatier, I2MC, CEDEX 4, 31432 Toulouse, France
| | | |
Collapse
|
55
|
Leo D, Targa G, Espinoza S, Villers A, Gainetdinov RR, Ris L. Trace Amine Associate Receptor 1 (TAAR1) as a New Target for the Treatment of Cognitive Dysfunction in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23147811. [PMID: 35887159 PMCID: PMC9318502 DOI: 10.3390/ijms23147811] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Worldwide, approximately 27 million people are affected by Alzheimer’s disease (AD). AD pathophysiology is believed to be caused by the deposition of the β-amyloid peptide (Aβ). Aβ can reduce long-term potentiation (LTP), a form of synaptic plasticity that is closely associated with learning and memory and involves postsynaptic glutamate receptor phosphorylation and trafficking. Moreover, Aβ seems to be able to reduce glutamatergic transmission by increasing the endocytosis of NMDA receptors. Trace amines (TAs) are biogenic amines that are structurally similar to monoamine neurotransmitters. TAs bind to G protein-coupled receptors, called TAARs (trace amine-associated receptors); the best-studied member of this family, TAAR1, is distributed in the cortical and limbic structures of the CNS. It has been shown that the activation of TAAR1 can rescue glutamatergic hypofunction and that TAAR1 can modulate glutamate NMDA receptor-related functions in the frontal cortex. Several lines of evidence also suggest the pro-cognitive action of TAAR1 agonists in various behavioural experimental protocols. Thus, we studied, in vitro, the role of the TAAR1 agonist RO5256390 on basal cortical glutamatergic transmission and tested its effect on Aβ-induced dysfunction. Furthermore, we investigated, in vivo, the role of TAAR1 in cognitive dysfunction induced by Aβ infusion in Aβ-treated mice. In vitro data showed that Aβ 1–42 significantly decreased NMDA cell surface expression while the TAAR1 agonist RO5256390 promoted their membrane insertion in cortical cells. In vivo, RO5256390 showed a mild pro-cognitive effect, as demonstrated by the better performance in the Y maze test in mice treated with Aβ. Further studies are needed to better understand the interplay between TAAR1/Aβ and glutamatergic signalling, in order to evaluate the eventual beneficial effect in different experimental paradigms and animal models. Taken together, our data indicate that TAAR1 agonism may provide a novel therapeutic approach in the treatments of disorders involving Aβ-induced cognitive impairments, such as AD.
Collapse
Affiliation(s)
- Damiana Leo
- Department of Neuroscience, Research Institute for Health Science and Technology, University of Mons, 20 Place du Parc, 7000 Mons, Belgium; (D.L.); (A.V.)
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy;
| | - Stefano Espinoza
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy;
| | - Agnès Villers
- Department of Neuroscience, Research Institute for Health Science and Technology, University of Mons, 20 Place du Parc, 7000 Mons, Belgium; (D.L.); (A.V.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia;
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia
| | - Laurence Ris
- Department of Neuroscience, Research Institute for Health Science and Technology, University of Mons, 20 Place du Parc, 7000 Mons, Belgium; (D.L.); (A.V.)
- Correspondence: ; Tel.: +32-6537-3570
| |
Collapse
|
56
|
Aleksandrov AA, Dmitrieva ES, Knyazeva VM, Simon YA, Polyakova NV, Stankevich LN, Aleksandrov AY. Sensory Gating in TAAR1 Knockout Mice. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Trace amines (TA) are a family of endogenous compounds structurally
similar to classical biogenic amines that may be involved in the
pathogenesis of a number of neuropsychiatric disorders. One of the
most studied and perspective member of the TA associated receptors (TAARs)
family is the TAAR1. The aim of the present study was to investigate
the sensory gating (SG) in freely moving TAAR1 knockout mice in
a chronic experiment. The study of SG was conducted in the paired-click
paradigm. The SG indices were calculated as an absolute value by subtracting
the second stimulus response amplitude from the first stimulus response
amplitude (S1–S2) and as a relative value calculated by dividing
the S2 amplitude by the response amplitude on S1 (S2/S1). As a result,
a significant decrease in the amplitude of the N40 component was
found in TAAR1 knockout mice compared to wild-type mice. In addition,
the absolute value of sensory gating calculated by the S1–S2 method
was also reduced, but the relative value of sensory gating denoted
as S1/S2 ratio remained unchanged. Thus, the data obtained indicate
the involvement of TAAR1 in the generation of auditory evoked potentials
and the potential involvement of the trace amine system in the dosing
and filtering of sensory information.
Collapse
|
57
|
Evaluation of Approach to a Conspecific and Blood Biochemical Parameters in TAAR1 Knockout Mice. Brain Sci 2022; 12:brainsci12050614. [PMID: 35625001 PMCID: PMC9139149 DOI: 10.3390/brainsci12050614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
It is known that the trace amine-associated receptor 1 (TAAR1) receptor is involved in limbic brain functions by regulating dopamine transmission and putative reward circuitry. Moreover, other TAARs are expressed in the olfactory system of all studied vertebrate species, sensing innate socially-relevant odors, including pheromones. Therefore, one can assume that TAARs may play a role in rodent social and sexual behavior. A comparative behavioral and biochemical analysis of TAAR1 knockout (TAAR1-KO) and wild-type mice is also important for the preliminary evaluation of the potential side effects of future TAAR1-based therapies. In our studies, we adapted a sexual incentive motivation test for mice to evaluate the sexual behavior of TAAR1-KO and wild-type mice. Previously, similar methods were primarily applied to rats. Furthermore, we measured testosterone and other biochemical parameters in the blood. As a result, we found only minimal alterations in all of the studied parameters. Thus, the lack of TAAR1 does not significantly affect sexual motivation and routine lipid and metabolic blood biochemical parameters, suggesting that future TAAR1-based therapies should have a favorable safety profile.
Collapse
|
58
|
Grinevich VP, Zakirov AN, Berseneva UV, Gerasimova EV, Gainetdinov RR, Budygin EA. Applying a Fast-Scan Cyclic Voltammetry to Explore Dopamine Dynamics in Animal Models of Neuropsychiatric Disorders. Cells 2022; 11:cells11091533. [PMID: 35563838 PMCID: PMC9100021 DOI: 10.3390/cells11091533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/07/2023] Open
Abstract
Progress in the development of technologies for the real-time monitoring of neurotransmitter dynamics has provided researchers with effective tools for the exploration of etiology and molecular mechanisms of neuropsychiatric disorders. One of these powerful tools is fast-scan cyclic voltammetry (FSCV), a technique which has progressively been used in animal models of diverse pathological conditions associated with alterations in dopamine transmission. Indeed, for several decades FSCV studies have provided substantial insights into our understanding of the role of abnormal dopaminergic transmission in pathogenetic mechanisms of drug and alcohol addiction, Parkinson’s disease, schizophrenia, etc. Here we review the applications of FSCV to research neuropsychiatric disorders with particular attention to recent technological advances.
Collapse
Affiliation(s)
- Vladimir P. Grinevich
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
| | - Amir N. Zakirov
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
| | - Uliana V. Berseneva
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
| | - Elena V. Gerasimova
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
| | - Raul R. Gainetdinov
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
- Institute of Translational Biomedicine and St. Petersburg State University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, St. Petersburg 199034, Russia
| | - Evgeny A. Budygin
- Department of Neurobiology, Sirius University, 1 Olympic Ave., Sirius, Sochi 353340, Russia; (V.P.G.); (A.N.Z.); (U.V.B.); (E.V.G.); (R.R.G.)
- Correspondence:
| |
Collapse
|
59
|
Han SW, Choi Y, Jang Y, Kim JS, Shin JS. One-pot biosynthesis of aromatic D-amino acids and neuroactive monoamines via enantioselective decarboxylation under in situ product removal using ion exchange resin. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
60
|
Knyazeva VM, Dmitrieva ES, Polyakova NV, Simon YA, Stankevich LN, Aleksandrov AY, Aleksandrov AA. Stimulus Specific Adaptation Is Affected in Trace Amine-Associated Receptor 1 (TAAR1) Knockout Mice. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
61
|
Xiao G, Chen YL, Dedic N, Xie L, Koblan KS, Galluppi GR. In Vitro ADME and Preclinical Pharmacokinetics of Ulotaront, a TAAR1/5-HT 1A Receptor Agonist for the Treatment of Schizophrenia. Pharm Res 2022; 39:837-850. [PMID: 35484370 PMCID: PMC9160101 DOI: 10.1007/s11095-022-03267-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
Abstract
Purpose Ulotaront (SEP-363856) is a TAAR1 agonist with 5-HT1A agonist activity currently in clinical development for the treatment of schizophrenia. The objectives of the current study were to characterize the in vitro ADME properties, preclinical PK, and to evaluate the DDI potential of ulotaront and its major metabolite SEP-383103. Methods Solubility, permeability, plasma protein binding, CYP inhibition and induction, transporter inhibition and uptake studies were conducted in vitro. Phenotyping studies were conducted using recombinant human CYPs and FMOs, human liver microsomes and human liver homogenates. Preclinical plasma and brain pharmacokinetics were determined after a single intraperitoneal, intravenous, and oral administration of ulotaront. Results Ulotaront is a compound of high solubility, high permeability, and low binding to plasma proteins. Ulotaront metabolism is mediated via both NADPH-dependent and NADPH-independent pathways, with CYP2D6 as the major metabolizing enzyme. Ulotaront is an inducer of CYP2B6, and an inhibitor of CYP2D6, OCT1 and OCT2, while SEP-383103 is neither a CYP inducer nor a potent inhibitor of CYPs and human transporters. Ulotaront exhibits rapid absorption, greater than 70% bioavailability, approximately 3.5 L/kg volume of distribution, 1.5-4 h half-life, 12-43 ml/min/kg clearance, and good penetration across the blood–brain barrier in preclinical species. Conclusions Ulotaront has been designated as a BCS1 compound by US FDA. The ability of ulotaront to penetrate the blood–brain barrier for CNS targeting has been demonstrated in mice and rats. The potential for ulotaront and SEP-383103 to act as perpetrators of CYP and transporter-mediated DDIs is predicted to be remote. Supplementary Information The online version contains supplementary material available at 10.1007/s11095-022-03267-1.
Collapse
Affiliation(s)
- Guangqing Xiao
- DMPK and Clinical Pharmacology, Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA.
| | - Yu-Luan Chen
- DMPK and Clinical Pharmacology, Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA
| | - Nina Dedic
- DMPK and Clinical Pharmacology, Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA
| | - Linghong Xie
- DMPK and Clinical Pharmacology, Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA
| | - Kenneth S Koblan
- DMPK and Clinical Pharmacology, Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA
| | - Gerald R Galluppi
- DMPK and Clinical Pharmacology, Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA
| |
Collapse
|
62
|
Liao S, Pino MJ, Deleon C, Lindner-Jackson M, Wu C. Interaction analyses of hTAAR1 and mTAAR1 with antagonist EPPTB. Life Sci 2022; 300:120553. [PMID: 35452636 DOI: 10.1016/j.lfs.2022.120553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
Trace amine-associated receptor 1 (TAAR1) plays a critical role in regulating monoaminergic activity. EPPTB is the only known selective potent antagonist of the mouse (m) TAAR1 presently, while it was shown to be weak at antagonizing human (h) TAAR1. The lack of high-resolution structure of TAAR1 hinders the understanding of the differences in the interaction modes between EPPTB and m/hTARR1. The purpose of this study is to probe these interaction modes using homology modeling, molecular docking, molecular dynamics (MD) simulations, and molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. Eight populated conformers of hTAAR1-EPPTB complex were observed during the MD simulations and could be used in structure-based virtual screening in future. The MM-GBSA binding energy of hTAAR1-EPPTB complex (-96.5 kcal/mol) is larger than that of mTAAR1-EPPTB complex (-106.7 kcal/mol), which is consistent with the experimental finding that EPPTB has weaker binding affinity to hTAAR1. The several residues in binding site of hTAAR1 (F1544.56, T1945.42 and I2907.39) are different from these of mTAAR1 (Y1534.56, A1935.42 and Y2877.39), which might contribute to the binding affinity difference. Our docking analysis on another hTAAR1 antagonist Compound 3 has found that 1). this compound binds in different pockets of our mTAAR1 and hTAAR1 homology models with a slightly stronger binding affinity to hTAAR1; 2). both antagonists bind to a very similar pocket of hTAAR1.
Collapse
Affiliation(s)
- Siyan Liao
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Michael James Pino
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States of America
| | - Catherine Deleon
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States of America
| | - Maurice Lindner-Jackson
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States of America
| | - Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States of America.
| |
Collapse
|
63
|
Psychedelics: Alternative and Potential Therapeutic Options for Treating Mood and Anxiety Disorders. Molecules 2022; 27:molecules27082520. [PMID: 35458717 PMCID: PMC9025549 DOI: 10.3390/molecules27082520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/07/2022] Open
Abstract
The word “psychedelic” (psyche (i.e., the mind or soul) and delos (i.e., to show)) has Greek origin and was first coined by psychiatrist Humphry Osmond in 1956, who had been conducting research on lysergic acid diethylamide (LSD) at the time. Psychedelic drugs such as N,N-DMT/DMT (N,N-dimethyltryptamine), 5-MeO-DMT (5-methoxy-N,N-dimethyltryptamine), LSD (lysergic acid diethylamide), MDMA (3,4-methylenedioxymethamphetamine) and psilocybin have had significant value as an entheogen in spiritual, religious (shamanic) and sociocultural rituals in Central and South American cultures for thousands of years. In the 1960s, the globalization of these drugs and their subsequent spread outside of their indigenous, old-world cultures, led to the subsequent implementation of strict drug control laws in many Western countries. Even today, psychedelics are still classified as Schedule I drugs, resulting in a still lingering negative stigmatization/perception, vilification, and ultimate criminalization of psychedelics. This controversy still lingers and still limits scientific research and full medical acceptance. For many years up until recently, the spiritual, religious and medicinal value of these drugs could not be explored in a scientific context. More recently, a second wave of psychedelic research is now focusing on psychedelics as neuropharmaceuticals to treat alcohol and tobacco addiction, general mood and anxiety disorders and cancer-related depression. There is now a vast array of promising evidence-based data to confirm the years of anecdotal evidence of the medicinal values of psychedelics. Natural therapeutic alternatives such as psychedelic drugs may provide a safe and efficacious alternate to conventional drugs used to treat mood and anxiety disorders. In a Western context in particular, psychedelic drugs as therapeutic agents for mood and anxiety disorders are becoming increasingly of interest amidst increasing rates of such disorders globally, changing social constructions, the implementation of government regulations and increasing investment opportunities, that ultimately allow for the scientific study to generate evidenced-based data. Alternative psychotherapeutic interventions are gaining interest also, because of their low physiological toxicity, relatively low abuse potential, safe psychological effects, and no associated persisting adverse physiological or psychological effects during and after use. On the other hand, conventional psychotic drugs and anti-depressants are becoming less favorable because of their adverse side effects. Psychedelic neuropharmaceutical interventions may with medical oversight be the solution to conventional psychiatric disorders such as depression and anxiety, and an alternative to conventional psychiatric treatment options. This paper will review the therapeutic potential of psychedelic drugs as alternative therapeutic options for mood and anxiety disorders in a controlled, clinical setting, where the chances of adverse psychological episodes occurring are mitigated.
Collapse
|
64
|
Decker AM, Brackeen MF, Mohammadkhani A, Kormos CM, Hesk D, Borgland SL, Blough BE. Identification of a Potent Human Trace Amine-Associated Receptor 1 Antagonist. ACS Chem Neurosci 2022; 13:1082-1095. [PMID: 35325532 DOI: 10.1021/acschemneuro.2c00086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human trace amine-associated receptor subtype 1 (hTAAR1) is a G protein-coupled receptor that has therapeutic potential for multiple diseases, including schizophrenia, drug addiction, and Parkinson's disease (PD). Although several potent agonists have been identified and have shown positive results in various clinical trials for schizophrenia, the discovery of potent hTAAR1 antagonists remains elusive. Herein, we report the results of structure-activity relationship studies that have led to the discovery of a potent hTAAR1 antagonist (RTI-7470-44, 34). RTI-7470-44 exhibited an IC50 of 8.4 nM in an in vitro cAMP functional assay, a Ki of 0.3 nM in a radioligand binding assay, and showed species selectivity for hTAAR1 over the rat and mouse orthologues. RTI-7470-44 displayed good blood-brain barrier permeability, moderate metabolic stability, and a favorable preliminary off-target profile. Finally, RTI-7470-44 increased the spontaneous firing rate of mouse VTA dopaminergic neurons and blocked the effects of the known TAAR1 agonist RO5166017. Collectively, this work provides a promising hTAAR1 antagonist probe that can be used to study TAAR1 pharmacology and the potential therapeutic role in hypodopaminergic diseases such as PD.
Collapse
Affiliation(s)
- Ann M. Decker
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Marcus F. Brackeen
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Aida Mohammadkhani
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Chad M. Kormos
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - David Hesk
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Stephanie L. Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | - Bruce E. Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
65
|
Efimova EV, Kuvarzin SR, Mor MS, Katolikova NV, Shemiakova TS, Razenkova V, Ptukha M, Kozlova AA, Murtazina RZ, Smirnova D, Veshchitskii AA, Merkulyeva NS, Volnova AB, Musienko PE, Korzhevskii DE, Budygin EA, Gainetdinov RR. Trace Amine-Associated Receptor 2 Is Expressed in the Limbic Brain Areas and Is Involved in Dopamine Regulation and Adult Neurogenesis. Front Behav Neurosci 2022; 16:847410. [PMID: 35431833 PMCID: PMC9011332 DOI: 10.3389/fnbeh.2022.847410] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/28/2022] [Indexed: 01/22/2023] Open
Abstract
Trace amines are a group of biogenic amines that are structurally and functionally close to classical monoamine neurotransmitters. Trace amine-associated receptors (TAARs) are emerging as promising targets for treating neuropsychiatric disorders. It has been documented that all TAARs, apart from TAAR1, function as olfactory receptors involved in sensing innate odors encoded by volatile amines. However, recently, brain expression and function of TAAR5 were also demonstrated. In this study, we assessed the behavior, brain neurochemistry, and electrophysiology changes in knock-out mice lacking Trace amine-associated receptor 2 (TAAR2) but expressing beta-Galactosidase mapping expression of TAAR2 receptors. As expected, we detected beta-Galactosidase staining in the glomerular layer of the olfactory bulb. However, we also found staining in the deeper layers of the olfactory bulb and several brain regions, including the hippocampus, cerebellum, cortex, raphe nuclei, hypothalamus, and habenula, indicating that TAAR2 receptors are not only expressed in the olfactory system but are also present in the limbic brain areas that receive olfactory input. In behavioral experiments, TAAR2 knock-out (TAAR2-KO) mice showed increased locomotor activity and less immobility in the forced swim test, with no changes in anxiety level. Furthermore, TAAR2-KO mice showed alterations in brain electrophysiological activity—particularly, decreased spectral power of the cortex and striatum in the 0, 9–20 Hz range. TAAR2-KO mice also had elevated tissue dopamine levels in the striatum and an increased dopaminergic neuron number in the Substantia Nigra. In addition, an increased brain-derived neurotrophic factor (BDNF) mRNA level in the striatum and Monoamine Oxidase B (MAO-B) mRNA level in the striatum and midbrain was found in TAAR2-KO mice. Importantly, TAAR2-KO mice demonstrated an increased neuroblast-like and proliferating cell number in the subventricular and subgranular zone, indicating increased adult neurogenesis. These data indicate that in addition to its role in the innate olfaction of volatile amines, TAAR2 is expressed in limbic brain areas and regulates the brain dopamine system, neuronal electrophysiological activity, and adult neurogenesis. These findings further corroborated observations in TAAR1-KO and TAAR5-KO mice, indicating common for TAAR family pattern of expression in limbic brain areas and role in regulating monoamine levels and adult neurogenesis, but with variable involvement of each subtype of TAAR receptors in these functions.
Collapse
Affiliation(s)
- Evgeniya V. Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Saveliy R. Kuvarzin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Mikael S. Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Nataliia V. Katolikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Taisiia S. Shemiakova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Maria Ptukha
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Alena A. Kozlova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Ramilya Z. Murtazina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Daria Smirnova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | | | - Anna B. Volnova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Pavel E. Musienko
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Pavlov Institute of Physiology Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Evgeny A. Budygin
- Department of Neurobiology, Sirius University of Science and Technology, Sochi, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- St. Petersburg University Hospital, St. Petersburg State University, St. Petersburg, Russia
- *Correspondence: Raul R. Gainetdinov,
| |
Collapse
|
66
|
TAAR1 regulates drug-induced reinstatement of cocaine-seeking via negatively modulating CaMKIIα activity in the NAc. Mol Psychiatry 2022; 27:2136-2145. [PMID: 35079125 PMCID: PMC9829124 DOI: 10.1038/s41380-022-01448-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 01/12/2023]
Abstract
Relapse remains a major challenge to the treatment of cocaine addiction. Recent studies suggested that the trace amine-associated receptor 1 (TAAR1) could be a promising target to treat cocaine addiction and relapse; however, the underlying mechanism remains unclear. Here, we aimed to investigate the neural mechanism underlying the role of TAAR1 in the drug priming-induced reinstatement of cocaine-seeking behavior in rats, an animal model of cocaine relapse. We focused on the shell subregion of nucleus accumbens (NAc), a key brain region of the brain reward system. We found that activation of TAAR1 by systemic and intra-NAc shell administration of the selective TAAR1 agonist RO5166017 attenuated drug-induced reinstatement of cocaine-seeking and prevented drug priming-induced CaMKIIα activity in the NAc shell. Activation of TAAR1 dampened the CaMKIIα/GluR1 signaling pathway in the NAc shell and reduced AMPAR-EPSCs on the NAc slice. Microinjection of the selective TAAR1 antagonist EPPTB into the NAc shell enhanced drug-induced reinstatement as well as potentiated CaMKIIα activity in the NAc shell. Furthermore, viral-mediated expression of CaMKIIα in the NAc shell prevented the behavioral effects of TAAR1 activation. Taken together, our findings indicate that TAAR1 regulates drug-induced reinstatement of cocaine-seeking by negatively regulating CaMKIIα activity in the NAc. Our findings elucidate a novel mechanism of TAAR1 in regulating drug-induced reinstatement of cocaine-seeking and further suggests that TAAR1 is a promising target for the treatment of cocaine relapse.
Collapse
|
67
|
Nair PC, Chalker JM, McKinnon RA, Langmead CJ, Gregory KJ, Bastiampillai T. Trace Amine-Associated Receptor 1 (TAAR1): Molecular and Clinical Insights for the Treatment of Schizophrenia and Related Comorbidities. ACS Pharmacol Transl Sci 2022; 5:183-188. [PMID: 35311018 PMCID: PMC8922295 DOI: 10.1021/acsptsci.2c00016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 11/29/2022]
Abstract
Schizophrenia is a complex and severe mental illness. Current treatments for schizophrenia typically modulate dopaminergic neurotransmission by D2-receptor blockade. While reducing positive symptoms of schizophrenia, current antipsychotic drugs have little clinical effect on negative symptoms and cognitive impairments. For the last few decades, discovery efforts have sought nondopaminergic compounds with the aim to effectively treat the broad symptoms of schizophrenia. In this viewpoint, we provide an overview on trace-amine associated receptor-1 (TAAR1), which presents a clinically validated nondopaminergic target for treating schizophrenia and related disorders, with significantly less overall side-effect burden. TAAR1 agonists may also be specifically beneficial for the substance abuse comorbidity and metabolic syndrome that is often present in patients with schizophrenia.
Collapse
Affiliation(s)
- Pramod C. Nair
- †Discipline
of Clinical Pharmacology and ‡Flinders Health and Medical Research
Institute (FHMRI), College of Medicine and
Public Health, Flinders University, Adelaide, South Australia 5042, Australia,. Phone: 61-8-82043155
| | - Justin M. Chalker
- Institute
for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Ross A. McKinnon
- †Discipline
of Clinical Pharmacology and ‡Flinders Health and Medical Research
Institute (FHMRI), College of Medicine and
Public Health, Flinders University, Adelaide, South Australia 5042, Australia
| | - Christopher J Langmead
- ⊥Drug
Discovery Biology and ¶Neuroscience & Mental Health Therapeutic Program
Area, Monash Institute of Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Karen J. Gregory
- ⊥Drug
Discovery Biology and ¶Neuroscience & Mental Health Therapeutic Program
Area, Monash Institute of Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Tarun Bastiampillai
- Department
of Psychiatry, Monash University, Clayton, Victoria 3168, Australia,College
of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
68
|
Tonelli M. One step away from the breakthrough of TAAR1 agonists for the treatment of neuropsychiatric disorders. Curr Med Chem 2022; 29:4893-4895. [PMID: 35170404 DOI: 10.2174/0929867329666220216111512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV n. 3, 16132, Genoa, Italy
| |
Collapse
|
69
|
Synan C, Bowen C, Heal DJ, Froger-Colléaux C, Beardsley PM, Dedic N, Hopkins SC, Campbell U, Koblan KS. Ulotaront, a novel TAAR1 agonist with 5-HT1A agonist activity, lacks abuse liability and attenuates cocaine cue-induced relapse in rats. Drug Alcohol Depend 2022; 231:109261. [PMID: 35033729 DOI: 10.1016/j.drugalcdep.2021.109261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ulotaront (SEP-363856) is a trace amine-associated receptor 1 (TAAR1) agonist with 5-hydroxytryptamine type 1A (5-HT1A) agonist activity that is currently in Phase 3 clinical development for the treatment of schizophrenia. Unlike available antipsychotics, the efficacy of ulotaront is not mediated by blockade of dopamine D2 or serotonin 5-HT2A receptors. In a short-term randomized clinical trial, ulotaront has demonstrated significant efficacy in the treatment of adults with an acute exacerbation of schizophrenia. Given ulotaront's novel mechanism of action a series of preclinical studies were performed to evaluate its potential abuse liability. METHODS A battery of studies were conducted in male and female rats to evaluate whether ulotaront produces behavioral changes suggestive of human abuse potential. In addition, studies were undertaken to probe the potential for ulotaront to block reinstatement of cocaine-seeking behavior in male rats. RESULTS Ulotaront was not self-administered by rats trained to self-administer amphetamine, cocaine, or heroin. The subjective qualities of ulotaront were distinct from those produced by amphetamine in a drug discrimination procedure. Ulotaront, and buspirone, a non-scheduled anxiolytic with 5-HT1A agonism, partially generalized to the interoceptive cue elicited by 3, 4-methylenedioxymethamphetamine (MDMA). In addition, ulotaront demonstrated a trend to reduce cocaine-primed induced reinstatement, and dose-dependently reduced cue-reinstated responding. CONCLUSION The current results suggest that the TAAR1/5-HT1A agonist ulotaront is not likely to pose a risk for recreational abuse in humans and may have potential therapeutic utility as a treatment of substance use disorders.
Collapse
Affiliation(s)
- Colleen Synan
- Sunovion Pharmaceuticals, Inc., Marlborough, MA, USA
| | - Carrie Bowen
- Sunovion Pharmaceuticals, Inc., Marlborough, MA, USA
| | - David J Heal
- DevelRx Ltd, BioCity, Nottingham, United Kingdom
| | | | - Patrick M Beardsley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Nina Dedic
- Sunovion Pharmaceuticals, Inc., Marlborough, MA, USA
| | | | - Una Campbell
- Sunovion Pharmaceuticals, Inc., Marlborough, MA, USA
| | | |
Collapse
|
70
|
Deregulation of Trace Amine-Associated Receptors (TAAR) Expression and Signaling Mode in Melanoma. Biomolecules 2022; 12:biom12010114. [PMID: 35053262 PMCID: PMC8774021 DOI: 10.3390/biom12010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 12/10/2022] Open
Abstract
Trace amine-associated receptors (TAARs) interact with amine compounds called “trace amines” which are present in tissues at low concentrations. Recently, TAARs expression in neoplastic tumors was reported. In this study, TAARs expression was analyzed in public RNAseq datasets in nevi and melanoma samples and compared to the expression of dopamine receptors (DRDs) that are known to be involved in melanoma pathogenesis. It was found that all DRDs and TAARs are expressed in nevi at comparable levels. Differential expression analysis demonstrated the drastic decrease of TAAR1, TAAR2, TAAR5, TAAR6, and TAAR8 expression in melanomas compared to benign nevi with only TAAR6, TAAR8, and TAAR9 remaining detectable in malignant tumors. No association of TAARs expression levels and melanoma clinicopathological characteristics was observed. TAARs co-expressed genes in melanoma and nevi were selected by correlation values for comparative pathway enrichment analysis between malignant and benign neoplasia. It was found that coexpression of TAARs with genes inquired in neurotransmitter signaling is lost in melanoma, and tumor-specific association of TAAR6 expression with the mTOR pathway and inflammatory signaling is observed. It is not excluded that TAARs may have certain functions in melanoma pathogenesis, the significance of which to tumor progression is yet to be understood.
Collapse
|
71
|
Grinevich VP, Krupitsky EM, Gainetdinov RR, Budygin EA. Linking Ethanol-Addictive Behaviors With Brain Catecholamines: Release Pattern Matters. Front Behav Neurosci 2022; 15:795030. [PMID: 34975429 PMCID: PMC8716449 DOI: 10.3389/fnbeh.2021.795030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/26/2021] [Indexed: 12/30/2022] Open
Abstract
Using a variety of animal models that simulate key features of the alcohol use disorder (AUD), remarkable progress has been made in identifying neurochemical targets that may contribute to the development of alcohol addiction. In this search, the dopamine (DA) and norepinephrine (NE) systems have been long thought to play a leading role in comparison with other brain systems. However, just recent development and application of optogenetic approaches into the alcohol research field provided opportunity to identify neuronal circuits and specific patterns of neurotransmission that govern the key components of ethanol-addictive behaviors. This critical review summarizes earlier findings, which initially disclosed catecholamine substrates of ethanol actions in the brain and shows how the latest methodologies help us to reveal the significance of DA and NE release changes. Specifically, we focused on recent optogenetic investigations aimed to reveal cause-effect relationships between ethanol-drinking (seeking and taking) behaviors and catecholamine dynamics in distinct brain pathways. These studies gain the knowledge that is needed for the better understanding addiction mechanisms and, therefore, for development of more effective AUD treatments. Based on the reviewed findings, new messages for researches were indicated, which may have broad applications beyond the field of alcohol addiction.
Collapse
Affiliation(s)
- Vladimir P Grinevich
- Department of Neurobiology, Sirius University of Science and Technology, Sochi, Russia
| | - Evgeny M Krupitsky
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia.,Laboratory of Clinical Psychopharmacology of Addictions, St.-Petersburg First Pavlov State Medical University, St. Petersburg, Russia
| | - Raul R Gainetdinov
- Department of Neurobiology, Sirius University of Science and Technology, Sochi, Russia.,Institute of Translational Biomedicine and St. Petersburg State University Hospital, St. Petersburg State University, St. Petersburg, Russia
| | - Evgeny A Budygin
- Department of Neurobiology, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
72
|
Nair PC, Miners JO, McKinnon RA, Langmead CJ, Gregory KJ, Copolov D, Chan SKW, Bastiampillai T. Binding of SEP-363856 within TAAR1 and the 5HT 1A receptor: implications for the design of novel antipsychotic drugs. Mol Psychiatry 2022; 27:88-94. [PMID: 34376825 DOI: 10.1038/s41380-021-01250-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Current medications for schizophrenia typically modulate dopaminergic neurotransmission. While affecting positive symptoms, antipsychotic drugs have little clinical effect on negative symptoms and cognitive impairment. Moreover, newer 'atypical' antipsychotic drugs also have significant metabolic adverse-effects. The recent positive clinical trial of the novel drug candidate SEP-363856, which targets non-dopamine receptors (trace amine-associated receptor and the 5HT1A receptor), is a potentially promising development for the management of schizophrenia. In this perspective, we briefly overview the role of TAAR1 and the 5HT1A receptor in schizophrenia and explore the specific binding characteristics of SEP-363856 at these receptors. Molecular dynamics simulations (MDS) indicate that SEP-363856 interacts with a small, common set of conserved residues within the TAAR1 and 5HT1A ligand-binding domain. The primary interaction of SEP-363856 involves binding to the negatively charged aspartate residue (Asp1033.32, TAAR1; Asp1163.32, 5HT1A). In general, the binding of SEP-363856 within TAAR1 involves a greater number of aromatic contacts compared to 5HT1A. MDS provides important insights into the molecular basis of binding site interactions of SEP-363856 with TAAR1 and the 5HT1A receptor, which will be beneficial for understanding the pharmacological uniqueness of SEP-363856 and for the design of novel drug candidates for these newly targeted receptors in the treatment of schizophrenia and related disorders.
Collapse
Affiliation(s)
- Pramod C Nair
- Discipline of Clinical Pharmacology, Adelaide, SA, Australia. .,Flinders Health and Medical Research Institute (FHMRI) College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| | - John O Miners
- Discipline of Clinical Pharmacology, Adelaide, SA, Australia.,Flinders Health and Medical Research Institute (FHMRI) College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Ross A McKinnon
- Flinders Health and Medical Research Institute (FHMRI) College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - David Copolov
- Department of Psychiatry, Monash University, Parkville, Melbourne, VIC, Australia
| | - Sherry Kit Wa Chan
- Department of Psychiatry, The University of Hong Kong University, Hong Kong, SAR, China.,The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Tarun Bastiampillai
- Department of Psychiatry, Monash University, Parkville, Melbourne, VIC, Australia. .,Discipline of Psychiatry, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
73
|
Wu R, Liu J, Li JX. Trace amine-associated receptor 1 and drug abuse. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:373-401. [PMID: 35341572 PMCID: PMC9826737 DOI: 10.1016/bs.apha.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1) is the best characterized receptor selectively activated by trace amines. It is broadly expressed in the monoaminergic system in the brain including ventral tegmental area (VTA), nucleus accumbens (NAc), dorsal raphe (DR) and substantial nigra (SN). Extensive studies have suggested that TAAR1 plays an important role in the modulation of monoaminergic system, especially dopamine (DA) transmission which may underlie the mechanisms by which TAAR1 interventions affect drug abuse-like behaviors. TAAR1 activation inhibits the rewarding and reinforcing effects of drugs from different classes including psychostimulants, opioid and alcohol as well as drug-induced increase in DA accumulation. The mechanisms of TAAR1's function in mediating drug abuse-like behaviors are not clear. However, it is hypothesized that TAAR1 interaction with DA transporter (DAT) and dopamine D2 receptor (D2) and the subsequent modulation of cellular cascades may contribute to the effects of TAAR1 in regulating drug abuse. Further studies are needed to investigate the role of TAAR1 in other drugs of abuse-related behaviors and its safety and efficacy for prolonged medications. Together, TAAR1 inhibits drug-induced DA transmission and drug abuse-related behaviors. Therefore, TAAR1 may be a promising therapeutic target for the treatment of drug addiction.
Collapse
Affiliation(s)
- Ruyan Wu
- Medical College of Yangzhou University, Yangzhou, China,Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Jianfeng Liu
- Department of Psychological and Brain Sciences, College of Liberal Arts, Texas A&M University, College Station, TX, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA,Corresponding authors: Dr. Jun-Xu Li, , Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14214. Tel: +1 716 829 2482; Fax: +1 716 829 2801
| |
Collapse
|
74
|
Kohno M, Dennis LE, McCready H, Hoffman WF. Dopamine dysfunction in stimulant use disorders: mechanistic comparisons and implications for treatment. Mol Psychiatry 2022; 27:220-229. [PMID: 34117366 PMCID: PMC8664889 DOI: 10.1038/s41380-021-01180-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022]
Abstract
Dopamine system deficiencies and associated behavioral phenotypes may be a critical barrier to success in treating stimulant use disorders. Similarities in dopamine dysfunction between cocaine and methamphetamine use disorder but also key differences may impact treatment efficacy and outcome. This review will first compare the epidemiology of cocaine and methamphetamine use disorder. A detailed account of the pharmacokinetic and pharmacodynamic properties associated with each drug will then be discussed, with an emphasis on effects on the dopamine system and associated signaling pathways. Lastly, treatment results from pharmacological clinical trials will be summarized along with a more comprehensive review of the involvement of the trace amine-associated receptor on dopamine signaling dysfunction among stimulants and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Milky Kohno
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA. .,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA. .,Research and Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA. .,Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA.
| | - Laura E. Dennis
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA,Research & Development Service, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Holly McCready
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA,Research & Development Service, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - William F. Hoffman
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA,Research & Development Service, Veterans Affairs Portland Health Care System, Portland, Oregon, USA,Mental Health Division, Veterans Affairs Portland Health Care System, Portland, Oregon, USA,Methamphetamine Abuse Research Center, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
75
|
Glyakina AV, Pavlov CD, Sopova JV, Gainetdinov RR, Leonova EI, Galzitskaya OV. Search for Structural Basis of Interactions of Biogenic Amines with Human TAAR1 and TAAR6 Receptors. Int J Mol Sci 2021; 23:ijms23010209. [PMID: 35008636 PMCID: PMC8745718 DOI: 10.3390/ijms23010209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
The identification and characterization of ligand-receptor binding sites are important for drug development. Trace amine-associated receptors (TAARs, members of the class A GPCR family) can interact with different biogenic amines and their metabolites, but the structural basis for their recognition by the TAARs is not well understood. In this work, we have revealed for the first time a group of conserved motifs (fingerprints) characterizing TAARs and studied the docking of aromatic (β-phenylethylamine, tyramine) and aliphatic (putrescine and cadaverine) ligands, including gamma-aminobutyric acid, with human TAAR1 and TAAR6 receptors. We have identified orthosteric binding sites for TAAR1 (Asp68, Asp102, Asp284) and TAAR6 (Asp78, Asp112, Asp202). By analyzing the binding results of 7500 structures, we determined that putrescine and cadaverine bind to TAAR1 at one site, Asp68 + Asp102, and to TAAR6 at two sites, Asp78 + Asp112 and Asp112 + Asp202. Tyramine binds to TAAR6 at the same two sites as putrescine and cadaverine and does not bind to TAAR1 at the selected Asp residues. β-Phenylethylamine and gamma-aminobutyric acid do not bind to the TAAR1 and TAAR6 receptors at the selected Asp residues. The search for ligands targeting allosteric and orthosteric sites of TAARs has excellent pharmaceutical potential.
Collapse
Affiliation(s)
- Anna V. Glyakina
- Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia;
| | - Constantine D. Pavlov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia;
| | - Julia V. Sopova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (J.V.S.); (R.R.G.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (J.V.S.); (R.R.G.)
| | - Elena I. Leonova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (J.V.S.); (R.R.G.)
- Animal Genetic Technologies Department, University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: (E.I.L.); (O.V.G.)
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia;
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Correspondence: (E.I.L.); (O.V.G.)
| |
Collapse
|
76
|
Dedic N, Dworak H, Zeni C, Rutigliano G, Howes OD. Therapeutic Potential of TAAR1 Agonists in Schizophrenia: Evidence from Preclinical Models and Clinical Studies. Int J Mol Sci 2021; 22:ijms222413185. [PMID: 34947997 PMCID: PMC8704992 DOI: 10.3390/ijms222413185] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Trace amine-associated receptor 1 (TAAR1) has emerged as a promising therapeutic target for neuropsychiatric disorders due to its ability to modulate monoaminergic and glutamatergic neurotransmission. In particular, agonist compounds have generated interest as potential treatments for schizophrenia and other psychoses due to TAAR1-mediated regulation of dopaminergic tone. Here, we review unmet needs in schizophrenia, the current state of knowledge in TAAR1 circuit biology and neuropharmacology, including preclinical behavioral, imaging, and cellular evidence in glutamatergic, dopaminergic and genetic models linked to the pathophysiology of psychotic, negative and cognitive symptoms. Clinical trial data for TAAR1 drug candidates are reviewed and contrasted with antipsychotics. The identification of endogenous TAAR1 ligands and subsequent development of small-molecule agonists has revealed antipsychotic-, anxiolytic-, and antidepressant-like properties, as well as pro-cognitive and REM-sleep suppressing effects of TAAR1 activation in rodents and non-human primates. Ulotaront, the first TAAR1 agonist to progress to randomized controlled clinical trials, has demonstrated efficacy in the treatment of schizophrenia, while another, ralmitaront, is currently being evaluated in clinical trials in schizophrenia. Coupled with the preclinical findings, this provides a rationale for further investigation and development of this new pharmacological class for the treatment of schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Nina Dedic
- Sunovion Pharmaceuticals, Marlborough, MA 01752, USA; (H.D.); (C.Z.)
- Correspondence:
| | - Heather Dworak
- Sunovion Pharmaceuticals, Marlborough, MA 01752, USA; (H.D.); (C.Z.)
| | - Courtney Zeni
- Sunovion Pharmaceuticals, Marlborough, MA 01752, USA; (H.D.); (C.Z.)
| | - Grazia Rutigliano
- Department of Pathology, University of Pisa, via Savi 10, 56126 Pisa, Italy;
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Oliver D. Howes
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London SE5 8AF, UK
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK
| |
Collapse
|
77
|
"The quantitative determination of indolic microbial tryptophan metabolites in human and rodent samples: A systematic review". J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1186:123008. [PMID: 34735972 DOI: 10.1016/j.jchromb.2021.123008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
Concentrations reported for indolic microbial metabolites of tryptophan in human and rodent brain, cerebrospinal fluid, plasma, saliva and feces were compiled and discussed. A systematic review of the literature was accomplished by key word searches of Pubmed, Google Scholar and the Human Metabolome Data Base (HMDB), and by searching bibliographies of identified publications including prior reviews. The review was prompted by the increasing appreciation of the physiological importance of the indolic compounds in human health and disease. The compounds included were indoleacetic acid (IAA), indole propionic acid (IPA), indoleacrylic acid (IACR), indolelactic acid (ILA) indolepyruvic acid (IPY), indoleacetaldehyde (IAALD), indolealdehyde (IALD), tryptamine (TAM), indole (IND) and skatole (SKT). The undertaking aimed to vet and compare existing reports, to resolve apparent discrepancies, to draw biological inferences from the consideration of multiple analytes across sample types, to survey the analytical methodologies used, and to point out areas in need of greater attention.
Collapse
|
78
|
Potential of Ligands for Trace Amine-Associated Receptor 1 (TAAR1) in the Management of Substance Use Disorders. CNS Drugs 2021; 35:1239-1248. [PMID: 34766253 PMCID: PMC8787759 DOI: 10.1007/s40263-021-00871-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 10/19/2022]
Abstract
Trace amines, including β-phenylethylamine (β-PEA), p-tyramine (TYR), tryptamine (TRP), and p-octopamine (OCT), represent a group of amines expressed at low levels in the mammalian brain. Given the close structural similarities to traditional monoamines, links between trace amines and the monoaminergic system have long been suspected. Trace amine-associated receptor 1 (TAAR1), the most well characterized receptor in the TAAR family, has been shown to be potently activated by trace amines such as TYR and PEA. Further, catecholamine metabolites and amphetamine analogs are also potent agonists of TAAR1, implicating the receptor in mediating the monoaminergic system and in substance use disorders. In the central nervous system, TAAR1 is expressed in brain regions involved in dopaminergic, serotonergic, and glutamatergic transmission, and genetic animal models and electrophysiological studies have revealed that TAAR1 is a potent modulator of the monoaminergic system. Selective and potent engineered TAAR1 ligands, including full (RO5166017 and RO5256390) and partial (RO5203648, RO5263397 and RO5073012) agonists and the antagonist EPPTB (N-(3-ethoxyphenyl)-4-(1-pyrrolidinyl)-3-(trifluoromethyl) benzamide, RO5212773), serve as invaluable tools for the investigation of TAAR1 functions and display significant potential for the development of TAAR1-based pharmacotherapies for the treatment of substance use disorders. Despite a number of advances that have been made, more clinical studies are warranted in order to test the potential and efficacy of TAAR1 ligands in the treatment of psychiatric disorders, including substance use disorders.
Collapse
|
79
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
80
|
Role of the trace amine associated receptor 5 (TAAR5) in the sensorimotor functions. Sci Rep 2021; 11:23092. [PMID: 34845253 PMCID: PMC8630200 DOI: 10.1038/s41598-021-02289-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Classical monoamines are well-known modulators of sensorimotor neural networks. However, the role of trace amines and their receptors in sensorimotor function remains unexplored. Using trace amine-associated receptor 5 knockout (TAAR5-KO) mice, that express beta-galactosidase mapping its localization, we observed TAAR5 expression in the Purkinje cells of the cerebellum and the medial vestibular nucleus, suggesting that TAAR5 might be involved in the vestibular and motor control. Accordingly, in various behavioral tests, TAAR5-KO mice demonstrated lower endurance, but better coordination and balance compared to wild-type controls. Furthermore, we found specific changes in striatal local field potentials and motor cortex electrocorticogram, such as a decrease in delta and an increase in theta oscillations of power spectra, respectively. The obtained data indicate that TAAR5 plays a considerable role in regulation postural stability, muscle force, balance, and motor coordination during active movements, likely via modulation of monoaminergic systems at different levels of sensorimotor control involving critical brain areas such as the brainstem, cerebellum, and forebrain.
Collapse
|
81
|
Efimova EV, Katolikova NV, Kanov EV, Gainetdinov RR. Trace amine-associated receptors at the cross-road between innate olfaction of amines, emotions, and adult neurogenesis. Neural Regen Res 2021; 17:1257-1258. [PMID: 34782562 PMCID: PMC8643037 DOI: 10.4103/1673-5374.327338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Evgeniya V Efimova
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Saint Petersburg, Russia
| | - Nataliia V Katolikova
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Saint Petersburg, Russia
| | - Evgeny V Kanov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Saint Petersburg, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
82
|
Trace Amine-Associated Receptor 1 as a Target for the Development of New Antipsychotics: Current Status of Research and Future Directions. CNS Drugs 2021; 35:1153-1161. [PMID: 34655036 DOI: 10.1007/s40263-021-00864-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Schizophrenia is a mental illness associated with an array of symptoms that often result in disability. The primary treatments for schizophrenia are termed antipsychotics. Although antipsychotics modulate a number of different receptor types and subtypes, all currently regulatory agency-approved antipsychotics share in common direct or functional antagonism at the dopamine type 2 receptor (D2R). The majority of people with schizophrenia do not achieve full resolution of their symptoms with antipsychotics, suggesting the need for alternative or complementary approaches. The primary focus of this review is to assess the evidence for the role of the trace amine-associated receptor 1 (TAAR-1) in schizophrenia and the role of TAAR-1 modulators as novel-mechanism antipsychotics. Topics include an overview of TAAR-1 physiology and pathophysiology in schizophrenia, interaction with other neurotransmitter systems, including the dopaminergic, glutamatergic and serotonergic system, and finally, a review of investigational TAAR-1 compounds that have reached Phase II clinical studies in schizophrenia: SEP-363856 (ulotaront) and RO6889450 (ralmitaront). Thus far, results are publicly available only for ulotaront in a relatively young (18-40 years) and acutely exacerbated cohort. These results showed positive effects for overall schizophrenia symptoms without significant tolerability concerns. An ongoing study of ralmitaront will assess specific efficacy in patients with persistent negative symptoms. If trials of TAAR-1 modulators, and other novel-mechanism targets for schizophrenia that are under active study, continue to show positive results, the definition of an antipsychotic may need to be expanded beyond the D2R target in the near future.
Collapse
|
83
|
Wu R, Liu J, Seaman R, Johnson B, Zhang Y, Li JX. The selective TAAR1 partial agonist RO5263397 promoted novelty recognition memory in mice. Psychopharmacology (Berl) 2021; 238:3221-3228. [PMID: 34291306 PMCID: PMC8605990 DOI: 10.1007/s00213-021-05937-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
RATIONALE Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that has a particular role in regulating dopaminergic, serotonergic, and glutamatergic transmission. TAAR1 agonists have shown pro-cognitive activities. However, it remains largely unknown of the effects of TAAR1 agonists on memory performance. OBJECTIVES Here, by using the mice novel object recognition (NOR) test, we examined the effects of the selective TAAR1 partial agonist RO5263397 on recognition memory. RESULTS We found that RO5263397 significantly enhanced the retrieval of short-term memory (STM; 20 min after training) both in male and female mice. RO5263397 promoted the retrieval of STM in the wild-type (WT) littermates but not TAAR1-KO mice, indicating that the effects of RO5263397 were dependent on TAAR1. Interestingly, compared to their WT litters, TAAR1-KO mice showed similar levels of STM, suggesting that genetic deletion of taar1 gene did not affect the STM retrieval. Furthermore, RO5263397 also promoted the retrieval of long-term NOR memory (24 h after training). CONCLUSIONS These results indicate that TAAR1 activation promotes NOR memory retrieval. Consistent with previous studies, our finding further suggests that TAAR1 agonists have pro-cognitive properties.
Collapse
Affiliation(s)
- Ruyan Wu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA.,Medical college of Yangzhou University, Yangzhou, China
| | - Jianfeng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Robert Seaman
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Bernard Johnson
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University At Buffalo, The State University of New York, 955 Main Street, Buffalo, NY, 14214, USA.
| |
Collapse
|
84
|
Biocatalytic Decarboxylation of Aromatic l-Amino Acids with In Situ Removal of Both Products for Enhanced Production of Biogenic Amines. Catal Letters 2021. [DOI: 10.1007/s10562-021-03535-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
85
|
Amato A, Terzo S, Marchesa P, Maffongelli A, Martorana M, Scoglio S, Mulè F. Spasmolytic Effects of Aphanizomenon Flos Aquae (AFA) Extract on the Human Colon Contractility. Nutrients 2021; 13:nu13103445. [PMID: 34684446 PMCID: PMC8539423 DOI: 10.3390/nu13103445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The blue-green algae Aphanizomenon flos aquae (AFA), rich in beneficial nutrients, exerts various beneficial effects, acting in different organs including the gut. Klamin® is an AFA extract particularly rich in β-PEA, a trace-amine considered a neuromodulator in the central nervous system. To date, it is not clear if β-PEA exerts a role in the enteric nervous system. The aims of the present study were to investigate the effects induced by Klamin® on the human distal colon mechanical activity, to analyze the mechanism of action, and to verify a β-PEA involvement. The organ bath technique, RT-PCR, and immunohistochemistry (IHC) were used. Klamin® reduced, in a concentration-dependent manner, the amplitude of the spontaneous contractions. EPPTB, a trace-amine receptor (TAAR1) antagonist, significantly antagonized the inhibitory effects of both Klamin® and exogenous β-PEA, suggesting a trace-amine involvement in the Klamin® effects. Accordingly, AphaMax®, an AFA extract containing lesser amount of β-PEA, failed to modify colon contractility. Moreover, the Klamin® effects were abolished by tetrodotoxin, a neural blocker, but not by L-NAME, a nitric oxide-synthase inhibitor. On the contrary methysergide, a serotonin receptor antagonist, significantly antagonized the Klamin® effects, as well as the contractility reduction induced by 5-HT. The RT-PCR analysis revealed TAAR1 gene expression in the colon and the IHC experiments showed that 5-HT-positive neurons are co-expressed with TAAR1 positive neurons. In conclusion, the results of this study suggest that Klamin® exerts spasmolytic effects in human colon contractility through β-PEA, that, by activating neural TAAR1, induce serotonin release from serotoninergic neurons of the myenteric plexus.
Collapse
Affiliation(s)
- Antonella Amato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (S.T.); (F.M.)
- Correspondence: ; Tel.: +39-091-2389-7506
| | - Simona Terzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (S.T.); (F.M.)
| | - Pierenrico Marchesa
- U.O. Oncology Hospital, A.R.N.A.S. Ospedali Civico Di Cristina Benfratelli, Palermo, Via Carmelo Lazzaro, 4, 90127 Palermo, Italy; (P.M.); (A.M.); (M.M.)
| | - Angela Maffongelli
- U.O. Oncology Hospital, A.R.N.A.S. Ospedali Civico Di Cristina Benfratelli, Palermo, Via Carmelo Lazzaro, 4, 90127 Palermo, Italy; (P.M.); (A.M.); (M.M.)
| | - Martina Martorana
- U.O. Oncology Hospital, A.R.N.A.S. Ospedali Civico Di Cristina Benfratelli, Palermo, Via Carmelo Lazzaro, 4, 90127 Palermo, Italy; (P.M.); (A.M.); (M.M.)
| | | | - Flavia Mulè
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (S.T.); (F.M.)
| |
Collapse
|
86
|
Trace amine-associated receptor 1 (TAAR1): Potential application in mood disorders: A systematic review. Neurosci Biobehav Rev 2021; 131:192-210. [PMID: 34537265 DOI: 10.1016/j.neubiorev.2021.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/29/2022]
Abstract
There is a need for innovation with respect to therapeutics in psychiatry. Available evidence indicates that the trace amine-associated receptor 1 (TAAR1) agonist SEP-363856 is promising, as it improves measures of cognitive and reward function in schizophrenia. Hedonic and cognitive impairments are transdiagnostic and constitute major burdens in mood disorders. Herein, we systematically review the behavioural and genetic literature documenting the role of TAAR1 in reward and cognitive function, and propose a mechanistic model of TAAR1's functions in the brain. Notably, TAAR1 activity confers antidepressant-like effects, enhances attention and response inhibition, and reduces compulsive reward seeking without impairing normal function. Further characterization of the responsible mechanisms suggests ion-homeostatic, metabolic, neurotrophic, and anti-inflammatory enhancements in the limbic system. Multiple lines of evidence establish the viability of TAAR1 as a biological target for the treatment of mood disorders. Furthermore, the evidence suggests a role for TAAR1 in reward and cognitive function, which is attributed to a cascade of events that are relevant to the cellular integrity and function of the central nervous system.
Collapse
|
87
|
Kozlowska U, Nichols C, Wiatr K, Figiel M. From psychiatry to neurology: Psychedelics as prospective therapeutics for neurodegenerative disorders. J Neurochem 2021; 162:89-108. [PMID: 34519052 DOI: 10.1111/jnc.15509] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/22/2022]
Abstract
The studies of psychedelics, especially psychedelic tryptamines like psilocybin, are rapidly gaining interest in neuroscience research. Much of this interest stems from recent clinical studies demonstrating that they have a unique ability to improve the debilitating symptoms of major depressive disorder (MDD) long-term after only a single treatment. Indeed, the Food and Drug Administration (FDA) has recently designated two Phase III clinical trials studying the ability of psilocybin to treat forms of MDD with "Breakthrough Therapy" status. If successful, the use of psychedelics to treat psychiatric diseases like depression would be revolutionary. As more evidence appears in the scientific literature to support their use in psychiatry to treat MDD on and substance use disorders (SUD), recent studies with rodents revealed that their therapeutic effects might extend beyond treating MDD and SUD. For example, psychedelics may have efficacy in the treatment and prevention of brain injury and neurodegenerative diseases such as Alzheimer's Disease. Preclinical work has highlighted psychedelics' ability to induce neuroplasticity and synaptogenesis, and neural progenitor cell proliferation. Psychedelics may also act as immunomodulators by reducing levels of proinflammatory biomarkers, including IL-1β, IL-6, and tumor necrosis factor-α (TNF-α). Their exact molecular mechanisms, and induction of cellular interactions, especially between neural and glial cells, leading to therapeutic efficacy, remain to be determined. In this review, we discuss recent findings and information on how psychedelics may act therapeutically on cells within the central nervous system (CNS) during brain injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- Urszula Kozlowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Charles Nichols
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Kalina Wiatr
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
88
|
Luliński P, Janczura M, Sobiech M, Giebułtowicz J. Magnetic Molecularly Imprinted Nano-Conjugates for Effective Extraction of Food Components-A Model Study of Tyramine Determination in Craft Beers. Int J Mol Sci 2021; 22:9560. [PMID: 34502468 PMCID: PMC8430699 DOI: 10.3390/ijms22179560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
In this paper, magnetic molecularly imprinted nano-conjugates were synthesized to serve as selective sorbents in a model study of tyramine determination in craft beer samples. The molecularly imprinted sorbent was characterized in terms of morphology, structure, and composition. The magnetic dispersive solid phase extraction protocol was developed and combined with liquid chromatography coupled with mass spectrometry to determine tyramine. Ten samples of craft beers were analyzed using a validated method, revealing tyramine concentrations in the range between 0.303 and 126.5 mg L-1. Tyramine limits of detection and quantification were 0.033 mg L-1 and 0.075 mg L-1, respectively. Therefore, the fabricated molecularly imprinted magnetic nano-conjugates with a fast magnetic responsivity and desirable adsorption performance could be an effective tool for monitoring tyramine levels in beverages.
Collapse
Affiliation(s)
- Piotr Luliński
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (P.L.); (M.J.)
| | - Marta Janczura
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (P.L.); (M.J.)
| | - Monika Sobiech
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (P.L.); (M.J.)
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|
89
|
Trace Amine-Associated Receptor 1 Contributes to Diverse Functional Actions of O-Phenyl-Iodotyramine in Mice but Not to the Effects of Monoamine-Based Antidepressants. Int J Mol Sci 2021; 22:ijms22168907. [PMID: 34445611 PMCID: PMC8396211 DOI: 10.3390/ijms22168907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/29/2022] Open
Abstract
Trace Amine-Associated Receptor 1 (TAAR1) is a potential target for the treatment of depression and other CNS disorders. However, the precise functional roles of TAAR1 to the actions of clinically used antidepressants remains unclear. Herein, we addressed these issues employing the TAAR1 agonist, o-phenyl-iodotyramine (o-PIT), together with TAAR1-knockout (KO) mice. Irrespective of genotype, systemic administration of o-PIT led to a similar increase in mouse brain concentrations. Consistent with the observation of a high density of TAAR1 in the medial preoptic area, o-PIT-induced hypothermia was significantly reduced in TAAR1-KO mice. Furthermore, the inhibition of a prepulse inhibition response by o-PIT, as well as its induction of striatal tyrosine hydroxylase phosphorylation and elevation of extracellular DA in prefrontal cortex, were all reduced in TAAR1-KO compared to wildtype mice. O-PIT was active in both forced-swim and marble-burying tests, and its effects were significantly blunted in TAAR1-KO mice. Conversely, the actions on behaviour and prefrontal cortex dialysis of a broad suite of clinically used antidepressants were unaffected in TAAR1-KO mice. In conclusion, o-PIT is a useful tool for exploring the hypothermic and other functional antidepressant roles of TAAR1. By contrast, clinically used antidepressants do not require TAAR1 for expression of their antidepressant properties.
Collapse
|
90
|
Vaganova AN, Murtazina RZ, Shemyakova TS, Prjibelski AD, Katolikova NV, Gainetdinov RR. Pattern of TAAR5 Expression in the Human Brain Based on Transcriptome Datasets Analysis. Int J Mol Sci 2021; 22:ijms22168802. [PMID: 34445502 PMCID: PMC8395715 DOI: 10.3390/ijms22168802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Trace amine-associated receptors (TAAR) recognize organic compounds, including primary, secondary, and tertiary amines. The TAAR5 receptor is known to be involved in the olfactory sensing of innate socially relevant odors encoded by volatile amines. However, emerging data point to the involvement of TAAR5 in brain functions, particularly in the emotional behaviors mediated by the limbic system which suggests its potential contribution to the pathogenesis of neuropsychiatric diseases. TAAR5 expression was explored in datasets available in the Gene Expression Omnibus, Allen Brain Atlas, and Human Protein Atlas databases. Transcriptomic data demonstrate ubiquitous low TAAR5 expression in the cortical and limbic brain areas, the amygdala and the hippocampus, the nucleus accumbens, the thalamus, the hypothalamus, the basal ganglia, the cerebellum, the substantia nigra, and the white matter. Altered TAAR5 expression is identified in Down syndrome, major depressive disorder, or HIV-associated encephalitis. Taken together, these data indicate that TAAR5 in humans is expressed not only in the olfactory system but also in certain brain structures, including the limbic regions receiving olfactory input and involved in critical brain functions. Thus, TAAR5 can potentially be involved in the pathogenesis of brain disorders and represents a valuable novel target for neuropsychopharmacology.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (R.Z.M.); (T.S.S.); (A.D.P.); (N.V.K.)
| | - Ramilya Z. Murtazina
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (R.Z.M.); (T.S.S.); (A.D.P.); (N.V.K.)
| | - Taisiia S. Shemyakova
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (R.Z.M.); (T.S.S.); (A.D.P.); (N.V.K.)
| | - Andrey D. Prjibelski
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (R.Z.M.); (T.S.S.); (A.D.P.); (N.V.K.)
| | - Nataliia V. Katolikova
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (R.Z.M.); (T.S.S.); (A.D.P.); (N.V.K.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia; (A.N.V.); (R.Z.M.); (T.S.S.); (A.D.P.); (N.V.K.)
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
91
|
Zhukov IS, Kubarskaya LG, Karpova IV, Vaganova AN, Karpenko MN, Gainetdinov RR. Minor Changes in Erythrocyte Osmotic Fragility in Trace Amine-Associated Receptor 5 (TAAR5) Knockout Mice. Int J Mol Sci 2021; 22:ijms22147307. [PMID: 34298937 PMCID: PMC8303310 DOI: 10.3390/ijms22147307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/15/2023] Open
Abstract
Trace amine-associated receptors (TAARs) are a group of G protein-coupled receptors that are expressed in the olfactory epithelium, central nervous system, and periphery. TAAR family generally consists of nine types of receptors (TAAR1-9), which can detect biogenic amines. During the last 5 years, the TAAR5 receptor became one of the most intriguing receptors in this subfamily. Recent studies revealed that TAAR5 is involved not only in sensing socially relevant odors but also in the regulation of dopamine and serotonin transmission, emotional regulation, and adult neurogenesis by providing significant input from the olfactory system to the limbic brain areas. Such results indicate that future antagonistic TAAR5-based therapies may have high pharmacological potential in the field of neuropsychiatric disorders. TAAR5 is known to be expressed in leucocytes as well. To evaluate potential hematological side effects of such future treatments we analyzed several hematological parameters in mice lacking TAAR5. In these mutants, we observed minor but significant changes in the osmotic fragility test of erythrocytes and hematocrit levels. At the same time, analysis of other parameters including complete blood count and reticulocyte levels showed no significant alterations in TAAR5 knockout mice. Thus, TAAR5 gene knockout leads to minor negative changes in the erythropoiesis or eryptosis processes, and further research in that field is needed. The impact of TAAR5 deficiency on other hematological parameters seems minimal. Such negative, albeit minor, effects of TAAR5 deficiency should be taken into account during future TAAR5-based therapy development.
Collapse
Affiliation(s)
- Ilya S. Zhukov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.S.Z.); (A.N.V.)
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (L.G.K.); (I.V.K.); (M.N.K.)
| | - Larisa G. Kubarskaya
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (L.G.K.); (I.V.K.); (M.N.K.)
- Institute of Toxicology of Federal Medical-Biological Agency, 192019 Saint Petersburg, Russia
| | - Inessa V. Karpova
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (L.G.K.); (I.V.K.); (M.N.K.)
| | - Anastasia N. Vaganova
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.S.Z.); (A.N.V.)
| | - Marina N. Karpenko
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (L.G.K.); (I.V.K.); (M.N.K.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (I.S.Z.); (A.N.V.)
- Saint Petersburg State University Hospital, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Correspondence:
| |
Collapse
|
92
|
Sapegin AV, Peshkov AA, Kanov EV, Gainetdinov RR, Duszyńska B, Bojarski AJ, Krasavin M. Novel medium-sized di(het)areno-fused 1,4,7-(oxa)thiadiazecines as probes for aminergic receptors. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
93
|
Renal artery responses to trace amines: Multiple and differential mechanisms of action. Life Sci 2021; 277:119532. [PMID: 33891943 DOI: 10.1016/j.lfs.2021.119532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE The rise in consumption of dietary supplements containing the trace amines p-tyramine, p-synephrine and p-octopamine has been associated with cardiovascular side effects. Since renal blood flow plays an important role in blood pressure regulation, this study investigated the mechanisms of action of these trace amines on isolated porcine renal arteries. MAIN METHODS Contractile responses to amines were investigated in noradrenaline-depleted rings of porcine main renal arteries in the absence and presence of the α1-adrenoceptor antagonist, prazosin (1 μM), β-adrenoceptor antagonist, propranolol (1 μM), or the trace amine-associated receptor (TAAR-1) antagonist, EPPTB (RO-5212773; 100 nM or 100 μM). KEY FINDINGS All three amines induced constrictor responses of similar magnitude and potency. However, their mechanisms of action on the renal artery appeared to differ. Depleting endogenous noradrenaline stores significantly reduced maximum responses to tyramine and synephrine, but less for octopamine. When direct responses were examined after depleting tissues of noradrenaline, responses to synephrine and octopamine, but not tyramine, were reduced in the presence of prazosin(1 μM) and potentiated in the presence of propranolol (1 μM) or L-NNA (100 μM). Generally, vasoconstrictor responses remaining after noradrenaline-depletion and α-adrenoceptor blockade were not affected by the TAAR-1 antagonist EPPTB (0.1-100 μM), although responses to low concentration of synephrine and octopamine were enhanced by this antagonist. SIGNIFICANCE Tyramine appears to mediate constriction of the renal artery mainly via an indirect sympathomimetic mechanism, whereas synephrine and octopamine exert additional direct effects on α1-adrenoceptors and possibly contractile TAAR (not TAAR-1). The two amines also activate simultaneous inhibitory responses via β-adrenoceptors, TAAR-1 and nitric oxide release.
Collapse
|
94
|
Sun J, Chen J, Kumata K, Xiao Z, Rong J, Haider A, Shao T, Wang L, Xu H, Zhang MR, Liang SH. Imaging the trace amine-associated receptor 1 by positron emission tomography. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
95
|
Krishnan RG, Saraswathyamma B. Murexide-derived in vitro electrochemical sensor for the simultaneous determination of neurochemicals. Anal Bioanal Chem 2021; 413:6803-6812. [PMID: 33774711 DOI: 10.1007/s00216-021-03282-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 01/01/2023]
Abstract
This work highlights the protocol employed for the simultaneous electroanalysis of tryptamine, serotonin and dopamine using a conducting poly-murexide-based electrode. To date, this is the first-of-its-kind report of simultaneous electrochemical determination of these three targets. Features of the developed electrode were identified by employing FE-SEM analysis. Under optimized conditions, the analytes underwent an irreversible electro-oxidation at the modified electrode surface, with a linear range of 0.5-40 μΜ, 0.4-40.4 μΜ and 0.5-40 μΜ for dopamine, serotonin and tryptamine, respectively. The electrolytic medium employed for the sensing was a phosphate-buffered solution with pH 7. The specificity of the developed electrode was also satisfactory in the presence of other biomolecules including L-phenylalanine, L-serine, glucose and ascorbic acid. Thus, the developed murexide-derived conducting-polymer-based electrode was used for the simultaneous sensing of the neurochemicals dopamine, serotonin and tryptamine. Electroanalysis was also demonstrated for these targets in human serum.
Collapse
Affiliation(s)
- Rajasree G Krishnan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
- Department of Chemistry, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Beena Saraswathyamma
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
- Department of Chemistry, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
| |
Collapse
|
96
|
Role of trace amine‑associated receptor 1 in the medial prefrontal cortex in chronic social stress-induced cognitive deficits in mice. Pharmacol Res 2021; 167:105571. [PMID: 33753244 DOI: 10.1016/j.phrs.2021.105571] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
Emerging evidence supports an essential role of trace amine-associated receptor 1 (TAAR1) in neuropsychiatric disorders such as depression and schizophrenia. Stressful events are critical contributors to various neuropsychiatric disorders. This study examined the role of TAAR1 in mediating the negative outcomes of stressful events. In mice that experienced chronic social defeat stress but not acute stress, a significant reduction in the TAAR1 mRNA level was found in the medial prefrontal cortex (mPFC), a brain region that is known to be vulnerable to stress experience. Conditional TAAR1 knockout in the mPFC mimicked the cognitive deficits induced by chronic stress. In addition, chronic treatment with the selective TAAR1 partial agonist RO5263397 ameliorated chronic stress-induced changes in cognitive function, dendritic arborization, and the synapse number of pyramidal neurons in the mPFC but did not affect chronic stress-induced anxiety-like behaviors. Biochemically, chronic stress reduced the ratio of vesicular transporters of glutamate-1 (VGluT1) / vesicular GABA transporter (VGAT) in the mPFC,most prominently in the prelimbic cortex, and RO5263397 restored the excitatory-inhibitory (E/I) imbalance. Together, the results of this study reveal an essential role of TAAR1 in mediating chronic stress-induced cognitive impairments and suggest that TAAR1 agonists may be uniquely useful to treat MDD-related cognitive impairments.
Collapse
|
97
|
Genetic Deletion of Trace-Amine Associated Receptor 9 (TAAR9) in Rats Leads to Decreased Blood Cholesterol Levels. Int J Mol Sci 2021; 22:ijms22062942. [PMID: 33799339 PMCID: PMC7998418 DOI: 10.3390/ijms22062942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, interest has grown significantly in the investigation of the role of trace amines and their receptors in mammalian physiology and pathology. Trace amine-associated receptor 9 (TAAR9) is one of the least studied members of this receptor family with unidentified endogenous ligands and an unknown role in the central nervous system and periphery. In this study, we generated two new TAAR9 knockout (TAAR9-KO) rat strains by CRISPR-Cas9 technology as in vivo models to evaluate the role of TAAR9 in mammalian physiology. In these mutant rats, we performed a comparative analysis of a number of hematological and biochemical parameters in the blood. Particularly, we carried out a complete blood count, erythrocyte osmotic fragility test, and screening of a panel of basic biochemical parameters. No significant alterations in any of the hematological and most biochemical parameters were found between mutant and WT rats. However, biochemical studies revealed a significant decrease in total and low-density lipoprotein cholesterol levels in the blood of both strains of TAAR9-KO rats. Such role of TAAR9 in cholesterol regulation not only brings a new understanding of mechanisms and biological pathways of lipid exchange but also provides a new potential drug target for disorders involving cholesterol-related pathology, such as atherosclerosis.
Collapse
|
98
|
Dhakal S, Macreadie I. Potential contributions of trace amines in Alzheimer's disease and therapeutic prospects. Neural Regen Res 2021; 16:1394-1396. [PMID: 33318424 PMCID: PMC8284261 DOI: 10.4103/1673-5374.300985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Sudip Dhakal
- School of Science, Bundoora Campus, RMIT University, Victoria, Australia
| | - Ian Macreadie
- School of Science, Bundoora Campus, RMIT University, Victoria, Australia
| |
Collapse
|
99
|
Restini CBA, Fink GD, Watts SW. Vascular reactivity stimulated by TMA and TMAO: Are perivascular adipose tissue and endothelium involved? Pharmacol Res 2021; 163:105273. [PMID: 33197599 PMCID: PMC7855790 DOI: 10.1016/j.phrs.2020.105273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
Trimethylamine (TMA), formed by intestinal microbiota, and its Flavin-Monooxygenase 3 (FMO3) product Trimethylamine-N-Oxide (TMAO), are potential modulators of host cardiometabolic phenotypes. High circulating levels of TMAO are associated with increased risk for cardiovascular diseases. We hypothesized that TMA/TMAO could directly change the vascular tone. Perivascular adipose tissue (PVAT) helps to regulate vascular homeostasis and may also possess FMO3. Thoracic aorta with(+) or without(-) PVAT, also + or - the endothelium (E), of male Sprague Dawley rats were isolated for measurement of isometric tone in response to TMA/TMAO (1nM-0.5 M). Immunohistochemistry (IHC) studies were done to identify the presence of FMO3. TMA and TMAO elicited concentration-dependent arterial contraction. However, at a maximally achievable concentration (0.2 M), contraction stimulated by TMA was of a greater magnitude (141.5 ± 16% of maximum phenylephrine contraction) than that elicited by TMAO (19.1 ± 4.03%) with PVAT and endothelium intact. When PVAT was preserved, TMAO-induced contraction was extensively reduced the presence (19.1 ± 4.03%) versus absence of E (147.2 ± 20.5%), indicating that the endothelium plays a protective role against TMAO-induced contraction. FMO3 enzyme was present in aortic PVAT, but the FMO3 inhibitor methimazole did not affect contraction stimulated by TMA in aorta + PVAT. However, the l-type calcium channel blocker nifedipine reduced TMA-induced contraction by ∼50% compared to the vehicle. Though a high concentration of these compounds was needed to achieve contraction, the findings that TMA-induced contraction was independent of PVAT and E and mediated by nifedipine-sensitive calcium channels suggest metabolite-induced contraction may be physiologically important.
Collapse
Affiliation(s)
- Carolina Baraldi A Restini
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States; College of Osteopathic Medicine, Michigan State University, 44575 Garfield Road, Building UC4, Clinton Township, MI, 48038, United States.
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
100
|
Zhukov DA, Vinogradova EP. Trace Amines and Behavior. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420040108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|