51
|
Zhang Q, Jia Y, Pan P, Zhang X, Jia Y, Zhu P, Chen X, Jiao Y, Kang G, Zhang L, Ma X. α5-nAChR associated with Ly6E modulates cell migration via TGF-β1/Smad signaling in non-small cell lung cancer. Carcinogenesis 2022; 43:393-404. [PMID: 34994389 DOI: 10.1093/carcin/bgac003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
The α5-nicotinic acetylcholine receptor (α5-nAChR) is closely associated with nicotine-related lung cancer, offering a novel perspective for investigating the molecular pathogenesis of this disease. However, the mechanism by which α5-nAChR functions in lung carcinogenesis remains to be elucidated. Lymphocyte antigen 6 (Ly6) proteins, like snake three-finger alpha toxins such as α-bungarotoxin, can modulate nAChR signaling. Ly6E, a member of the Ly6 family, is a biomarker of poor prognosis in smoking-induced lung carcinogenesis and is involved in the regulation of TGF-β1/Smad signaling. Here, we explored the underlying mechanisms linking α5-nAChR and Ly6E in non-small cell lung cancer (NSCLC). The expression of α5-nAChR was correlated with Ly6 expression, smoking status and lower survival in NSCLC tissues. In vitro, α5-nAChR mediated Ly6E, the phosphorylation of the TGF-β1 downstream molecule Smad3 (pSmad3, a key mediator of TGF-β1 signaling), the epithelial-mesenchymal transition (EMT) markers Zeb1, N-cadherin and vimentin expression in NSCLC cells. The downregulation of Ly6E reduced α5-nAChR, pSmad3, Zeb1, N-cadherin and vimentin expression. Functionally, silencing both α5-nAChR and Ly6E significantly inhibited cell migration compared to silencing α5-nAChR or Ly6E alone. Furthermore, the functional effects of α5-nAchR and Ly6E were confirmed in chicken embryo chorioallantoic membrane (CAM) and mouse xenograft models. Therefore, our findings uncover a new interaction between α5-nAChR and Ly6E that inhibits cancer cell migration by modulating the TGF-β1/Smad signaling pathway in NSCLC, which may serve as a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Qian Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Jia
- Department of Clinical Laboratory, Taian City Central Hospital, Taian, China
| | - Pan Pan
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiuping Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Zhu
- Department of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Xiaowei Chen
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Jiao
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guiyu Kang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Taian City Central Hospital, Taian, China
| | - Lulu Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Medical Laboratory, Weifang Medical University, Weifang, China.,Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
52
|
Imidazopyridazine Acetylcholinesterase Inhibitors Display Potent Anti-Proliferative Effects in the Human Neuroblastoma Cell-Line, IMR-32. Molecules 2021; 26:molecules26175319. [PMID: 34500749 PMCID: PMC8434581 DOI: 10.3390/molecules26175319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022] Open
Abstract
Imidazo[1,2-b]pyridazine compounds are a new class of promising lead molecules to which we have incorporated polar nitro and amino moieties to increase the scope of their biological activity. Two of these substituted 3-nitro-6-amino-imidazo[1,2-b]pyridazine compounds (5c and 5h) showed potent acetylcholinesterase (AChE) inhibitory activity (IC50 40–50 nM), which we have previously reported. In this study, we wanted to test the biological efficacy of these compounds. Cytotoxicity assays showed that compound 5h mediated greater cell death with over 43% of cells dead at 100 μM and activation of caspase 3-mediated apoptosis. On the other hand, compound 5c mediated a dose-dependent decrease in cell proliferation. Both compounds showed cell cycle arrest in the G0/G1 phase and reduced cellular ATP levels leading to activation of adenosine monophosphate-activated protein kinase (AMPK) and enhanced mitochondrial oxidative stress. It has to be noted that all these effects were observed at doses beyond 10 μM, 200-fold above the IC50 for AChE inhibition. Both compounds also inhibited bacterial lipopolysaccharide-mediated cyclooxygenase-2 and nitric oxide release in primary rat microglial cells. These results suggested that the substituted imidazo (1,2-b) pyridazine compounds, which have potent AChE inhibitory activity, were also capable of antiproliferative, anti-migratory, and anti-inflammatory effects at higher doses.
Collapse
|
53
|
Abstract
The enzyme acetylcholinesterase (AChE) is a serine hydrolase whose primary function is to degrade acetylcholine (ACh) and terminate neurotransmission. Apart from its role in synaptic transmission, AChE has several "non-classical" functions in non-neuronal cells. AChE is involved in cellular growth, apoptosis, drug resistance pathways, response to stress signals and inflammation. The observation that the functional activity of AChE is altered in human tumors (relative to adjacent matched normal tissue) has raised several intriguing questions about its role in the pathophysiology of human cancers. Published reports show that AChE is a vital regulator of oncogenic signaling pathways involving proliferation, differentiation, cell-cell adhesion, migration, invasion and metastasis of primary tumors. The objective of this book chapter is to provide a comprehensive overview of the contributions of the AChE-signaling pathway in the growth of progression of human cancers. The AChE isoforms, AChE-T, AChE-R and AChE-S are robustly expressed in human cancer cell lines as well in human tumors (isolated from patients). Traditionally, AChE-modulators have been used in the clinic for treatment of neurodegenerative disorders. Emerging studies reveal that these drugs could be repurposed for the treatment of human cancers. The discovery of potent, selective AChE ligands will provide new knowledge about AChE-regulatory pathways in human cancers and foster the hope of novel therapies for this disease.
Collapse
Affiliation(s)
- Stephen D Richbart
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Justin C Merritt
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nicholas A Nolan
- West Virginia University Medical School, Morgantown, WV, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States.
| |
Collapse
|
54
|
OPALS: A New Osimertinib Adjunctive Treatment of Lung Adenocarcinoma or Glioblastoma Using Five Repurposed Drugs. Cells 2021; 10:cells10051148. [PMID: 34068720 PMCID: PMC8151869 DOI: 10.3390/cells10051148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Pharmacological targeting aberrant activation of epidermal growth factor receptor tyrosine kinase signaling is an established approach to treating lung adenocarcinoma. Osimertinib is a tyrosine kinase approved and effective in treating lung adenocarcinomas that have one of several common activating mutations in epidermal growth factor receptor. The emergence of resistance to osimertinib after a year or two is the rule. We developed a five-drug adjuvant regimen designed to increase osimertinib’s growth inhibition and thereby delay the development of resistance. Areas of Uncertainty: Although the assembled preclinical data is strong, preclinical data and the following clinical trial results can be discrepant. The safety of OPALS drugs when used individually is excellent. We have no data from humans on their tolerability when used as an ensemble. That there is no data from the individual drugs to suspect problematic interaction does not exclude the possibility. Data Sources: All relevant PubMed.org articles on the OPALS drugs and corresponding pathophysiology of lung adenocarcinoma and glioblastoma were reviewed. Therapeutic Opinion: The five drugs of OPALS are in wide use in general medicine for non-oncology indications. OPALS uses the anti-protozoal drug pyrimethamine, the antihistamine cyproheptadine, the antibiotic azithromycin, the antihistamine loratadine, and the potassium sparing diuretic spironolactone. We show how these inexpensive and generically available drugs intersect with and inhibit lung adenocarcinoma growth drive. We also review data showing that both OPALS adjuvant drugs and osimertinib have data showing they may be active in suppressing glioblastoma growth.
Collapse
|
55
|
Wang H, Zheng Q, Lu Z, Wang L, Ding L, Xia L, Zhang H, Wang M, Chen Y, Li G. Role of the nervous system in cancers: a review. Cell Death Discov 2021; 7:76. [PMID: 33846291 PMCID: PMC8041826 DOI: 10.1038/s41420-021-00450-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 03/08/2021] [Indexed: 02/02/2023] Open
Abstract
Nerves are important pathological elements of the microenvironment of tumors, including those in pancreatic, colon and rectal, prostate, head and neck, and breast cancers. Recent studies have associated perineural invasion with tumor progression and poor outcomes. In turn, tumors drive the reprogramming of neurons to recruit new nerve fibers. Therefore, the crosstalk between nerves and tumors is the hot topic and trend in current cancer investigations. Herein, we reviewed recent studies presenting direct supporting evidences for a better understanding of nerve-tumor interactions.
Collapse
Affiliation(s)
- Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Liya Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Hao Zhang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Yicheng Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China.
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
56
|
Hudáčová M, Hamuľaková S, Konkoľová E, Jendželovský R, Vargová J, Ševc J, Fedoročko P, Soukup O, Janočková J, Ihnatova V, Kučera T, Bzonek P, Novakova N, Jun D, Junova L, Korábečný J, Kuča K, Kožurková M. Synthesis of New Biscoumarin Derivatives, In Vitro Cholinesterase Inhibition, Molecular Modelling and Antiproliferative Effect in A549 Human Lung Carcinoma Cells. Int J Mol Sci 2021; 22:ijms22083830. [PMID: 33917200 PMCID: PMC8068036 DOI: 10.3390/ijms22083830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/29/2022] Open
Abstract
A series of novel C4-C7-tethered biscoumarin derivatives (12a–e) linked through piperazine moiety was designed, synthesized, and evaluated biological/therapeutic potential. Biscoumarin 12d was found to be the most effective inhibitor of both acetylcholinesterase (AChE, IC50 = 6.30 µM) and butyrylcholinesterase (BChE, IC50 = 49 µM). Detailed molecular modelling studies compared the accommodation of ensaculin (well-established coumarin derivative tested in phase I of clinical trials) and 12d in the human recombinant AChE (hAChE) active site. The ability of novel compounds to cross the blood–brain barrier (BBB) was predicted with a positive outcome for compound 12e. The antiproliferative effects of newly synthesized biscoumarin derivatives were tested in vitro on human lung carcinoma cell line (A549) and normal colon fibroblast cell line (CCD-18Co). The effect of derivatives on cell proliferation was evaluated by MTT assay, quantification of cell numbers and viability, colony-forming assay, analysis of cell cycle distribution and mitotic activity. Intracellular localization of used derivatives in A549 cells was confirmed by confocal microscopy. Derivatives 12d and 12e showed significant antiproliferative activity in A549 cancer cells without a significant effect on normal CCD-18Co cells. The inhibition of hAChE/human recombinant BChE (hBChE), the antiproliferative activity on cancer cells, and the ability to cross the BBB suggest the high potential of biscoumarin derivatives. Beside the treatment of cancer, 12e might be applicable against disorders such as schizophrenia, and 12d could serve future development as therapeutic agents in the prevention and/or treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Monika Hudáčová
- Department of Biochemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia; (M.H.); (E.K.); (M.K.)
| | - Slávka Hamuľaková
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01 Kosice, Slovakia
- Correspondence:
| | - Eva Konkoľová
- Department of Biochemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia; (M.H.); (E.K.); (M.K.)
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí 542/2, 160 00 Prague 6, Czech Republic
| | - Rastislav Jendželovský
- Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia; (R.J.); (J.V.); (J.Š.); (P.F.)
| | - Jana Vargová
- Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia; (R.J.); (J.V.); (J.Š.); (P.F.)
| | - Juraj Ševc
- Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia; (R.J.); (J.V.); (J.Š.); (P.F.)
| | - Peter Fedoročko
- Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia; (R.J.); (J.V.); (J.Š.); (P.F.)
| | - Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; (O.S.); (V.I.); (T.K.); (P.B.); (D.J.); (L.J.); (J.K.)
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (J.J.); (N.N.); (K.K.)
| | - Jana Janočková
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (J.J.); (N.N.); (K.K.)
| | - Veronika Ihnatova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; (O.S.); (V.I.); (T.K.); (P.B.); (D.J.); (L.J.); (J.K.)
| | - Tomáš Kučera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; (O.S.); (V.I.); (T.K.); (P.B.); (D.J.); (L.J.); (J.K.)
| | - Petr Bzonek
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; (O.S.); (V.I.); (T.K.); (P.B.); (D.J.); (L.J.); (J.K.)
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (J.J.); (N.N.); (K.K.)
| | - Nikola Novakova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (J.J.); (N.N.); (K.K.)
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; (O.S.); (V.I.); (T.K.); (P.B.); (D.J.); (L.J.); (J.K.)
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (J.J.); (N.N.); (K.K.)
| | - Lucie Junova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; (O.S.); (V.I.); (T.K.); (P.B.); (D.J.); (L.J.); (J.K.)
| | - Jan Korábečný
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; (O.S.); (V.I.); (T.K.); (P.B.); (D.J.); (L.J.); (J.K.)
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Kamil Kuča
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (J.J.); (N.N.); (K.K.)
| | - Mária Kožurková
- Department of Biochemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia; (M.H.); (E.K.); (M.K.)
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; (J.J.); (N.N.); (K.K.)
| |
Collapse
|
57
|
Terpinskaya TI, Osipov AV, Kryukova EV, Kudryavtsev DS, Kopylova NV, Yanchanka TL, Palukoshka AF, Gondarenko EA, Zhmak MN, Tsetlin VI, Utkin YN. α-Conotoxins and α-Cobratoxin Promote, while Lipoxygenase and Cyclooxygenase Inhibitors Suppress the Proliferation of Glioma C6 Cells. Mar Drugs 2021; 19:118. [PMID: 33669933 PMCID: PMC7956437 DOI: 10.3390/md19020118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Among the brain tumors, glioma is the most common. In general, different biochemical mechanisms, involving nicotinic acetylcholine receptors (nAChRs) and the arachidonic acid cascade are involved in oncogenesis. Although the engagement of the latter in survival and proliferation of rat C6 glioma has been shown, there are practically no data about the presence and the role of nAChRs in C6 cells. In this work we studied the effects of nAChR antagonists, marine snail α-conotoxins and snake α-cobratoxin, on the survival and proliferation of C6 glioma cells. The effects of the lipoxygenase and cyclooxygenase inhibitors either alone or together with α-conotoxins and α-cobratoxin were studied in parallel. It was found that α-conotoxins and α-cobratoxin promoted the proliferation of C6 glioma cells, while nicotine had practically no effect at concentrations below 1 µL/mL. Nordihydroguaiaretic acid, a nonspecific lipoxygenase inhibitor, and baicalein, a 12-lipoxygenase inhibitor, exerted antiproliferative and cytotoxic effects on C6 cells. nAChR inhibitors weaken this effect after 24 h cultivation but produced no effects at longer times. Quantitative real-time polymerase chain reaction showed that mRNA for α4, α7, β2 and β4 subunits of nAChR were expressed in C6 glioma cells. This is the first indication for involvement of nAChRs in mechanisms of glioma cell proliferation.
Collapse
Affiliation(s)
- Tatiana I. Terpinskaya
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Alexey V. Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Elena V. Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Denis S. Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Nina V. Kopylova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Tatsiana L. Yanchanka
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Alena F. Palukoshka
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Elena A. Gondarenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Maxim N. Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Victor I. Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| |
Collapse
|
58
|
Sell EA, Ortiz-Carpena JF, Herbert DR, Cohen NA. Tuft cells in the pathogenesis of chronic rhinosinusitis with nasal polyps and asthma. Ann Allergy Asthma Immunol 2021; 126:143-151. [PMID: 33122124 PMCID: PMC8674819 DOI: 10.1016/j.anai.2020.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To review the latest discoveries regarding the role of tuft cells in the pathogenesis of chronic rhinosinusitis (CRS) with nasal polyposis and asthma. DATA SOURCES Reviews and primary research manuscripts were identified from PubMed, Google, and bioRxiv using the search words airway epithelium, nasal polyposis, CRS or asthma and chemoreceptor cell, solitary chemosensory cell, brush cell, microvillus cell, and tuft cell. STUDY SELECTIONS Studies were selected on the basis of novelty and likely relevance to the functions of tuft cells in chronic inflammatory diseases in the upper and lower airways. RESULTS Tuft cells coordinate a variety of immune responses throughout the body. After the activation of bitter-taste receptors, tuft cells coordinate the secretion of antimicrobial products by adjacent epithelial cells and initiate the calcium-dependent release of acetylcholine resulting in neurogenic inflammation, including mast cell degranulation and plasma extravasation. Tuft cells are also the dominant source of interleukin-25 and a significant source of cysteinyl leukotrienes that play a role in initiating inflammatory processes in the airway. Tuft cells have also been found to seem de novo in the distal airway after a viral infection, implicating these cells in dysplastic remodeling in the distal lung in the pathogenesis of asthma. CONCLUSION Tuft cells bridge innate and adaptive immunes responses and play an upstream role in initiating type 2 inflammation in the upper and possibly the lower airway. The role of tuft cells in respiratory pathophysiology must be further investigated, because tuft cells are putative high-value therapeutic targets for novel therapeutics in CRS with nasal polyps and asthma.
Collapse
Affiliation(s)
- Elizabeth A Sell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Jorge F Ortiz-Carpena
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - De'Broski R Herbert
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Noam A Cohen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Corporal Michael J. Crescenz Veterans Administration Medical Center, Veterans Health Administration, United States Department of Veteran Affairs, Philadelphia, Pennsylvania; Monell Chemical Senses Center, Philadelphia, Pennsylvania
| |
Collapse
|
59
|
Zhao Y, Song Y, Zhao R, Zhao M, Huang Q. Gene Panel of Persister Cells as a Prognostic Indicator for Tumor Repopulation After Radiation. Front Oncol 2020; 10:607727. [PMID: 33330109 PMCID: PMC7714959 DOI: 10.3389/fonc.2020.607727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor repopulation during cycles of radiotherapy limits the radio-response in ensuing cycles and causes failure of treatment. It is thus of vital importance to unveil the mechanisms underlying tumor repopulating cells. Increasing evidence suggests that a subpopulation of drug-tolerant persister cancer cells (DTPs) could survive the cytotoxic treatment and resume to propagate. Whether these persister cells contribute to development of radio-resistance remains elusive. Based on the genetic profiling of DTPs by integrating datasets from Gene Expression Omnibus database, this study aimed to provide novel insights into tumor-repopulation mediated radio-resistance and identify predictive biomarkers for radio-response in clinic. A prognostic risk index, grounded on four persister genes (LYNX1, SYNPO, GADD45B, and PDLIM1), was constructed in non-small-cell lung cancer patients from The Cancer Genome Atlas Program (TCGA) using stepwise Cox regression analysis. Weighted gene co-expression network analysis further confirmed the interaction among persister-gene based risk score, radio-response and overall survival time. In addition, the predictive role of risk index was validated in vitro and in other types of TCGA patients. Gene set enrichment analysis was performed to decipher the possible biological signaling, which indicated that two forces behind persister cells, stress response and survival adaptation, might fuel the tumor repopulation after radiation. Targeting these persister cells may represent a new prognostic and therapeutic approach to enhance radio-response and prevent radio-resistance induced by tumor repopulation.
Collapse
Affiliation(s)
- Yucui Zhao
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanwei Song
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruyi Zhao
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghui Zhao
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
60
|
Organic Cation Transporters in the Lung-Current and Emerging (Patho)Physiological and Pharmacological Concepts. Int J Mol Sci 2020; 21:ijms21239168. [PMID: 33271927 PMCID: PMC7730617 DOI: 10.3390/ijms21239168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Organic cation transporters (OCT) 1, 2 and 3 and novel organic cation transporters (OCTN) 1 and 2 of the solute carrier 22 (SLC22) family are involved in the cellular transport of endogenous compounds such as neurotransmitters, l-carnitine and ergothioneine. OCT/Ns have also been implicated in the transport of xenobiotics across various biological barriers, for example biguanides and histamine receptor antagonists. In addition, several drugs used in the treatment of respiratory disorders are cations at physiological pH and potential substrates of OCT/Ns. OCT/Ns may also be associated with the development of chronic lung diseases such as allergic asthma and chronic obstructive pulmonary disease (COPD) and, thus, are possible new drug targets. As part of the Special Issue "Physiology, Biochemistry and Pharmacology of Transporters for Organic Cations", this review provides an overview of recent findings on the (patho)physiological and pharmacological functions of organic cation transporters in the lung.
Collapse
|
61
|
Dragomir MP, Moisoiu V, Manaila R, Pardini B, Knutsen E, Anfossi S, Amit M, Calin GA. A Holistic Perspective: Exosomes Shuttle between Nerves and Immune Cells in the Tumor Microenvironment. J Clin Med 2020; 9:jcm9113529. [PMID: 33142779 PMCID: PMC7693842 DOI: 10.3390/jcm9113529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
One of the limitations of cancer research has been the restricted focus on tumor cells and the omission of other non-malignant cells that are constitutive elements of this systemic disease. Current research is focused on the bidirectional communication between tumor cells and other components of the tumor microenvironment (TME), such as immune and endothelial cells, and nerves. A major success of this bidirectional approach has been the development of immunotherapy. Recently, a more complex landscape involving a multi-lateral communication between the non-malignant components of the TME started to emerge. A prime example is the interplay between immune and endothelial cells, which led to the approval of anti-vascular endothelial growth factor-therapy combined with immune checkpoint inhibitors and classical chemotherapy in non-small cell lung cancer. Hence, a paradigm shift approach is to characterize the crosstalk between different non-malignant components of the TME and understand their role in tumorigenesis. In this perspective, we discuss the interplay between nerves and immune cells within the TME. In particular, we focus on exosomes and microRNAs as a systemic, rapid and dynamic communication channel between tumor cells, nerves and immune cells contributing to cancer progression. Finally, we discuss how combinatorial therapies blocking this tumorigenic cross-talk could lead to improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Mihnea P. Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 022328 Bucharest, Romania
- Institute of Pathology, Charité University Hospital, 10117 Berlin, Germany
- Correspondence: (M.P.D.); (G.A.C.)
| | - Vlad Moisoiu
- Faculty of Physics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Roxana Manaila
- Clinical Institute of Urology and Renal Transplantation, 400006 Cluj-Napoca, Romania;
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), 10060 Candiolo, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Simone Anfossi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (M.P.D.); (G.A.C.)
| |
Collapse
|
62
|
Diabasana Z, Perotin JM, Belgacemi R, Ancel J, Mulette P, Delepine G, Gosset P, Maskos U, Polette M, Deslée G, Dormoy V. Nicotinic Receptor Subunits Atlas in the Adult Human Lung. Int J Mol Sci 2020; 21:ijms21207446. [PMID: 33050277 PMCID: PMC7588933 DOI: 10.3390/ijms21207446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels responsible for rapid neural and neuromuscular signal transmission. Although it is well documented that 16 subunits are encoded by the human genome, their presence in airway epithelial cells (AECs) remains poorly understood, and contribution to pathology is mainly discussed in the context of cancer. We analysed nAChR subunit expression in the human lungs of smokers and non-smokers using transcriptomic data for whole-lung tissues, isolated large AECs, and isolated small AECs. We identified differential expressions of nAChRs in terms of detection and repartition in the three modalities. Smoking-associated alterations were also unveiled. Then, we identified an nAChR transcriptomic print at the single-cell level. Finally, we reported the localizations of detectable nAChRs in bronchi and large bronchioles. Thus, we compiled the first complete atlas of pulmonary nAChR subunits to open new avenues to further unravel the involvement of these receptors in lung homeostasis and respiratory diseases.
Collapse
Affiliation(s)
- Zania Diabasana
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
| | - Jeanne-Marie Perotin
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Randa Belgacemi
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
| | - Julien Ancel
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Pauline Mulette
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Gonzague Delepine
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Thoracic Surgery, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Philippe Gosset
- CNRS UMR9017, Inserm U1019, University of Lille, Centre Hospitalier Régional Universitaire de Lille, Institut Pasteur, CIIL—Center for Infection and Immunity of Lille, 59000 Lille, France;
| | - Uwe Maskos
- Integrative Neurobiology of Cholinergic Systems, Institut Pasteur, CNRS UMR 3571, 75015 Paris, France;
| | - Myriam Polette
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Biopathology, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Gaëtan Deslée
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Valérian Dormoy
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Correspondence: ; Tel.: +33-(0)3-10-73-62-28; Fax: +33-(0)3-26-06-58-61
| |
Collapse
|
63
|
Low-Dose Nicotine Activates EGFR Signaling via α5-nAChR and Promotes Lung Adenocarcinoma Progression. Int J Mol Sci 2020; 21:ijms21186829. [PMID: 32957649 PMCID: PMC7555382 DOI: 10.3390/ijms21186829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Nicotine in tobacco smoke is considered carcinogenic in several malignancies including lung cancer. The high incidence of lung adenocarcinoma (LAC) in non-smokers, however, remains unexplained. Although LAC has long been less associated with smoking behavior based on previous epidemiological correlation studies, the effect of environmental smoke contributing to low-dose nicotine exposure in non-smoking population could be underestimated. Here we provide experimental evidence of how low-dose nicotine promotes LAC growth in vitro and in vivo. Screening of nicotinic acetylcholine receptor subunits in lung cancer cell lines demonstrated a particularly high expression level of nicotinic acetylcholine receptor subunit α5 (α 5-nAChR) in LAC cell lines. Clinical specimen analysis revealed up-regulation of α 5-nAChR in LAC tumor tissues compared to non-tumor counterparts. In LAC cell lines α 5-nAChR interacts with epidermal growth factor receptor (EGFR), positively regulates EGFR pathway, enhances the expression of epithelial-mesenchymal transition markers, and is essential for low-dose nicotine-induced EGFR phosphorylation. Functionally, low-dose nicotine requires α 5-nAChR to enhance cell migration, invasion, and proliferation. Knockdown of α 5-nAChR inhibits the xenograft tumor growth of LAC. Clinical analysis indicated that high level of tumor α 5-nAChR is correlated with poor survival rates of LAC patients, particularly in those expressing wild-type EGFR. Our data identified α 5-nAChR as an essential mediator for low-dose nicotine-dependent LAC progression possibly through signaling crosstalk with EGFR, supporting the involvement of environmental smoke in tumor progression in LAC patients.
Collapse
|
64
|
Zhang Y, Sun Y, Jia Y, Zhang Q, Zhu P, Ma X. α5-nAChR and survivin: Two potential biological targets in lung adenocarcinoma. J Cell Physiol 2020; 236:1787-1797. [PMID: 33196129 DOI: 10.1002/jcp.29956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022]
Abstract
Recent studies have shown that the overexpression of α5 nicotinic acetylcholine receptor (α5-nAChR) is associated with nicotine-related lung carcinogenesis. Survivin is one of the biomarkers of a worse prognosis for smoking-related lung cancer. The aim of this study is to investigate the association of α5-nAChR, survivin, and clinical outcomes in lung adenocarcinoma (LUAD). We analyzed the expression level and correlation of CHRNA5 (encoding α5-nAChR) and BIRC5 (encoding survivin) in LUAD with The Cancer Genome Atlas data set. The relationship between overall survival (OS) and the expression of CHRNA5 or/and BIRC5 was evaluated by the Kaplan-Meier method and Cox proportional hazards model. Moreover, our results showed that the expression of α5-nAChR mediated survivin expression in lung cancer cells and in lung tumor xenografts. Relationships between the expression of α5-nAChR and/or survivin with clinical-pathological characteristics were analyzed using LUAD tissue samples. The results showed that expression of α5-nAChR was correlated with survivin expression in vitro and in vivo. The group coexpressing α5-nAChR and survivin had a worse prognosis than other subgroups in LUAD (p < .05). In conclusion, ascertaining the expression of both α5-nAChR and survivin provides a better measure of prognosis for LUAD patients. The combined inhibition of α5-nAChR and survivin may be a promising multitargeted gene therapeutic strategy in LUAD diagnosis.
Collapse
Affiliation(s)
- Yujie Zhang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Yilin Sun
- College of Science, Northwest A&F University, Yangling, Xianyang, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qian Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Zhu
- Department of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.,Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
65
|
Pan J, Zhang L, Shao X, Huang J. Acetylcholine From Tuft Cells: The Updated Insights Beyond Its Immune and Chemosensory Functions. Front Cell Dev Biol 2020; 8:606. [PMID: 32733896 PMCID: PMC7359717 DOI: 10.3389/fcell.2020.00606] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Tuft cells, rare solitary chemosensory cells, are distributed in mucosal epithelium throughout mammalian organs. Their nomenclatures are various in different organs and may be confused with other similar cells. Current studies mainly focus on their chemosensory ability and immune functions in type 2 inflammation. Several state-of-the-art reviews have already systematically discussed their role in immune responses. However, given that tuft cells are one of the crucial components of non-neuronal cholinergic system, the functions of tuft cell derived acetylcholine (ACh) and the underlying mechanisms remain intricate. Existing evidence demonstrated that tuft cell derived ACh participates in maintaining epithelial homeostasis, modulating airway remodeling, regulating reflexes, promoting muscle constriction, inducing neurogenic inflammation, initiating carcinogenesis and producing ATP. In this review, the ACh biosynthesis pathways and potential clinical applications of tuft cells have been proposed. More importantly, the main pathophysiological roles and the underlying mechanisms of tuft cell derived ACh are summarized and discussed.
Collapse
Affiliation(s)
- Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Leyi Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Shao
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
66
|
Terpinskaya TI, Osipov AV, Balashevich TV, Yanchanka TL, Tamashionik EA, Tsetlin VI, Utkin YN. Blockers of Nicotinic Acetylcholine Receptors Delay Tumor Growth and Increase Antitumor Activity of Mouse Splenocytes. DOKL BIOCHEM BIOPHYS 2020; 491:89-92. [PMID: 32483759 DOI: 10.1134/s1607672920020143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 01/17/2023]
Abstract
Blockade of α6, α3β2, α9α10, and α7 subtypes of nicotinic acetylcholine receptors slows tumor growth in vivo, increases cytotoxic activity of splenocytes from tumor-bearing mice, and, to some extent, reduces the viability of Ehrlich carcinoma cells in vitro. These data indicate that nicotinic acetylcholine receptors are involved in oncogenesis, affecting the survival of tumor cells, inter alia, via modulation of the antitumor immunity.
Collapse
Affiliation(s)
- T I Terpinskaya
- Institute of Physiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - A V Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - T V Balashevich
- Institute of Physiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - T L Yanchanka
- Institute of Physiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - E A Tamashionik
- Institute of Physiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - V I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yu N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
67
|
Osipov AV, Terpinskaya TI, Yanchanka T, Balashevich T, Zhmak MN, Tsetlin VI, Utkin YN. α-Conotoxins Enhance both the In Vivo Suppression of Ehrlich carcinoma Growth and In Vitro Reduction in Cell Viability Elicited by Cyclooxygenase and Lipoxygenase Inhibitors. Mar Drugs 2020; 18:193. [PMID: 32272633 PMCID: PMC7230841 DOI: 10.3390/md18040193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Several biochemical mechanisms, including the arachidonic acid cascade and activation of nicotinic acetylcholine receptors (nAChRs), are involved in increased tumor survival. Combined application of inhibitors acting on these two pathways may result in a more pronounced antitumor effect. Here, we show that baicalein (selective 12-lipoxygenase inhibitor), nordihydroguaiaretic acid (non-selective lipoxygenase inhibitor), and indomethacin (non-selective cyclooxygenase inhibitor) are cytotoxic to Ehrlich carcinoma cells in vitro. Marine snail α-conotoxins PnIA, RgIA and ArIB11L16D, blockers of α3β2/α6β2, α9α10 and α7 nAChR subtypes, respectively, as well as α-cobratoxin, a blocker of α7 and muscle subtype nAChRs, exhibit low cytotoxicity, but enhance the antitumor effect of baicalein 1.4-fold after 24 h and that of nordihydroguaiaretic acid 1.8-3.9-fold after 48 h of cell cultivation. α-Conotoxin MII, a blocker of α6-containing and α3β2 nAChR subtypes, increases the cytotoxic effect of indomethacin 1.9-fold after 48 h of cultivation. In vivo, baicalein, α-conotoxins MII and PnIA inhibit Ehrlich carcinoma growth and increase mouse survival; these effects are greatly enhanced by the combined application of α-conotoxin MII with indomethacin or conotoxin PnIA with baicalein. Thus, we show, for the first time, antitumor synergism of α-conotoxins and arachidonic acid cascade inhibitors.
Collapse
Affiliation(s)
- Alexey V. Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (M.N.Z.); (V.I.T.)
| | - Tatiana I. Terpinskaya
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus (T.Y.); (T.B.)
| | - Tatsiana Yanchanka
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus (T.Y.); (T.B.)
| | - Tatjana Balashevich
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus (T.Y.); (T.B.)
| | - Maxim N. Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (M.N.Z.); (V.I.T.)
| | - Victor I. Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (M.N.Z.); (V.I.T.)
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (M.N.Z.); (V.I.T.)
| |
Collapse
|
68
|
IGFBP-3 Blocks Hyaluronan-CD44 Signaling, Leading to Increased Acetylcholinesterase Levels in A549 Cell Media and Apoptosis in a p53-Dependent Manner. Sci Rep 2020; 10:5083. [PMID: 32193421 PMCID: PMC7081274 DOI: 10.1038/s41598-020-61743-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) belongs to a family of six IGF binding proteins. We previously found that IGFBP-3 exerts its cytotoxic effects on A549 (p53 wild-type) cell survival through a mechanism that depends on hyaluronan-CD44 interactions. To shed light on the mechanism employed, we used CD44-negative normal human lung cells (HFL1), A549, and H1299 (p53-null) lung cancer cells. A synthetic IGFBP-3 peptide (215-KKGFYKKKQCRPSKGRKR-232) but not the mutant (K228AR230A), was able to bind hyaluronan more efficiently than the analogous sequences from the other IGFBPs. In a manner comparable to that of the IGFBP-3 protein, the peptide blocked hyaluronan-CD44 signaling, and more effectively inhibited viability of A549 cells than viability of either H1299 or HFL1 cell lines. Treatment with the IGFBP-3 protein or its peptide resulted in increased acetylcholinesterase concentration and activity in the A549 cell media but not in the media of either HFL1 or H1299, an effect that correlated with increased apoptosis and decreased cell viability. These effects were diminished upon the same treatment of A549 cells transfected with either p53 siRNA or acetylcholinesterase siRNA. Taken together, our results show that IGFBP-3 or its peptide blocks hyaluronan-CD44 signaling via a mechanism that depends on both p53 and acetylcholinesterase.
Collapse
|
69
|
Chen X, Jia Y, Zhang Y, Zhou D, Sun H, Ma X. α5-nAChR contributes to epithelial-mesenchymal transition and metastasis by regulating Jab1/Csn5 signalling in lung cancer. J Cell Mol Med 2020; 24:2497-2506. [PMID: 31930655 PMCID: PMC7028847 DOI: 10.1111/jcmm.14941] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Recent studies have showed that α5 nicotinic acetylcholine receptor (α5‐nAChR) is closely associated with nicotine‐related lung cancer. Our previous studies also demonstrated that α5‐nAChR mediates nicotine‐induced lung carcinogenesis. However, the mechanism by which α5‐nAChR functions in lung carcinogenesis remains to be elucidated. Jab1/Csn5 is a key regulatory factor in smoking‐induced lung cancer. In this study, we explored the underlying mechanisms linking the α5‐nAChR‐Jab1/Csn5 axis with lung cancer epithelial‐mesenchymal transition (EMT) and metastasis, which may provide potential therapeutic targets for future lung cancer treatments. Our results demonstrated that the expression of α5‐nAChR was correlated with the expression of Jab1/Csn5 in lung cancer tissues and lung cancer cells. α5‐nAChR expression is associated with Jab1/Csn5 expression in lung tumour xenografts in mice. In vitro, the expression of α5‐nAChR mediated Stat3 and Jab1/Csn5 expression, significantly regulating the expression of the EMT markers, N‐cadherin and Vimentin. In addition, the down‐regulation of α5‐nAChR or/and Stat3 reduced Jab1/Csn5 expression, while the silencing of α5‐nAChR or Jab1/Csn5 inhibited the migration and invasion of NSCLC cells. Mechanistically, α5‐nAChR contributes to EMT and metastasis by regulating Stat3‐Jab1/Csn5 signalling in NSCLC, suggesting that α5‐nAChR may be a potential target in NSCLC diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Xiaowei Chen
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | | | - Dajie Zhou
- Weifang Medical University, Weifang, China
| | - Haiji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, Jinan, China
| | - Xiaoli Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
70
|
Lin LT, Choong CY, Tai CJ. Solanine Attenuates Hepatocarcinoma Migration and Invasion Induced by Acetylcholine. Integr Cancer Ther 2020; 19:1534735420909895. [PMID: 32975458 PMCID: PMC7522814 DOI: 10.1177/1534735420909895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 11/24/2022] Open
Abstract
AIM Evidence has provided an explanation of the correlation between the nervous system and the tumor microenvironment. Neurotransmitters may be involved in different aspects of cancer progression. The glycoalkaloid solanine has been reported to suppress neural signaling pathways and exists in numerous plants, including Solanum nigrum, which have been demonstrated to inhibit cancer cell proliferation. METHODS We evaluated the potentials of solanine on inhibiting acetylcholine-induced cell proliferation and migration in hepatocellular carcinoma cells. RESULTS The results indicated that solanine markedly attenuated cell proliferation and migration via inhibiting epithelial-mesenchymal transition and matrix metalloproteinases in acetylcholine-treated Hep G2 cells. In addition, exosomes derived from acetylcholine-treated Hep G2 cells were isolated, and solanine showed inhibiting effects of extrahepatic metastasis on blocking cell proliferation in exosome-treated A549 lung carcinoma cells through regulating microRNA-21 expression. CONCLUSION Solanine has strong potential for application in integrative cancer therapy.
Collapse
Affiliation(s)
- Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Yen Choong
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medicine University Hospital, Taipei 11042, Taiwan
| | - Chen-Jei Tai
- Department of Traditional Chinese Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
71
|
Abstract
Ion channels are a major class of membrane proteins that play central roles in signaling within and among cells, as well as in the coupling of extracellular events with cellular responses. Dysregulated ion channel activity plays a causative role in many diseases including cancer. Here, we will review their role in lung cancer. Lung cancer is one of the most frequently diagnosed cancers, and it causes the highest number of deaths of all cancer types. The overall 5-year survival rate of lung cancer patients is only 19% and decreases to 5% when patients are diagnosed with stage IV. Thus, new therapeutical strategies are urgently needed. The important contribution of ion channels to the progression of various types of cancer has been firmly established so that ion channel-based therapeutic concepts are currently developed. Thus far, the knowledge on ion channel function in lung cancer is still relatively limited. However, the published studies clearly show the impact of ion channel inhibitors on a number of cellular mechanisms underlying lung cancer cell aggressiveness such as proliferation, migration, invasion, cell cycle progression, or adhesion. Additionally, in vivo experiments reveal that ion channel inhibitors diminish tumor growth in mice. Furthermore, some studies give evidence that ion channel inhibitors can have an influence on the resistance or sensitivity of lung cancer cells to common chemotherapeutics such as paclitaxel or cisplatin.
Collapse
Affiliation(s)
- Etmar Bulk
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
72
|
Mucke HA. Patent highlights, August-September 2019. Pharm Pat Anal 2020; 9:9-16. [PMID: 32008423 DOI: 10.4155/ppa-2019-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022]
Abstract
A snapshot of recent noteworthy developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
73
|
Shao XM, Friedman TC. Pod-mod vs. conventional e-cigarettes: nicotine chemistry, pH, and health effects. J Appl Physiol (1985) 2019; 128:1056-1058. [PMID: 31854246 DOI: 10.1152/japplphysiol.00717.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Xuesi M Shao
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California.,David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Theodore C Friedman
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California.,David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
74
|
Paz ML, Barrantes FJ. Autoimmune Attack of the Neuromuscular Junction in Myasthenia Gravis: Nicotinic Acetylcholine Receptors and Other Targets. ACS Chem Neurosci 2019; 10:2186-2194. [PMID: 30916550 DOI: 10.1021/acschemneuro.9b00041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) family, the archetype member of the pentameric ligand-gated ion channels, is ubiquitously distributed in the central and peripheral nervous systems, and its members are the targets for both genetic and acquired forms of neurological disorders. In the central nervous system, nAChRs contribute to the pathological mechanisms of neurodegenerative disorders, such as Alzheimer and Parkinson diseases. In the peripheral nerve-muscle synapse, the vertebrate neuromuscular junction, "classical" myasthenia gravis (MG) and other forms of neuromuscular transmission disorders are antibody-mediated autoimmune diseases. In MG, antibodies to the nAChR bind to the postsynaptic receptors and activate the classical complement pathway culminating in the formation of the membrane attack complex, with the subsequent destruction of the postsynaptic apparatus. Divalent nAChR-antibodies also cause internalization and loss of the nAChRs. Loss of receptors by either mechanism results in the muscle weakness and fatigability that typify the clinical manifestations of the disease. Other targets for antibodies, in a minority of patients, include muscle specific kinase (MuSK) and low-density lipoprotein related protein 4 (LRP4). This brief Review analyzes the current status of muscle-type nAChR in relation to the pathogenesis of autoimmune diseases affecting the peripheral cholinergic synapse.
Collapse
Affiliation(s)
- Mariela L. Paz
- Immunology Department, Faculty of Pharmacy and Biochemistry, IDEHU-CONICET, University of Buenos Aires, Junin 956, C1113AAD Buenos Aires, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| |
Collapse
|
75
|
The Vagus Nerve Can Predict and Possibly Modulate Non-Communicable Chronic Diseases: Introducing a Neuroimmunological Paradigm to Public Health. J Clin Med 2018; 7:jcm7100371. [PMID: 30347734 PMCID: PMC6210465 DOI: 10.3390/jcm7100371] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
Global burden of diseases (GBD) includes non-communicable conditions such as cardiovascular diseases, cancer and chronic obstructive pulmonary disease. These share important behavioral risk factors (e.g., smoking, diet) and pathophysiological contributing factors (oxidative stress, inflammation and excessive sympathetic activity). This article wishes to introduce to medicine and public health a new paradigm to predict, understand, prevent and possibly treat such diseases based on the science of neuro-immunology and specifically by focusing on vagal neuro-modulation. Vagal nerve activity is related to frontal brain activity which regulates unhealthy lifestyle behaviors. Epidemiologically, high vagal activity, indexed by greater heart rate variability (HRV), independently predicts reduced risk of GBD and better prognosis in GBD. Biologically, the vagus nerve inhibits oxidative stress, inflammation and sympathetic activity (and associated hypoxia). Finally, current non-invasive methods exist to activate this nerve for neuro-modulation, and have promising clinical effects. Indeed, preliminary evidence exists for the beneficial effects of vagal nerve activation in diabetes, stroke, myocardial infarction and possibly cancer. Thus, we propose to routinely implement measurement of HRV to predict such GBD in populations, and to test in randomized controlled trials effects of non-invasive vagal nerve activation on prevention and treatment of GBD, reflecting possible neuro-modulation of health.
Collapse
|