51
|
Lin S, Li Q, Jiang S, Xu Z, Jiang Y, Liu L, Jiang J, Tong Y, Wang P. Crocetin ameliorates chronic restraint stress-induced depression-like behaviors in mice by regulating MEK/ERK pathways and gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113608. [PMID: 33242618 DOI: 10.1016/j.jep.2020.113608] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This study aimed at determining the effects of saffron on depression as well as its neuroprotective and pharmacological effects on the intestinal function of crocetin in mice exposed to chronic restraint stress. MATERIALS AND METHODS Chronic stress was induced in two-week-old ICR mice by immobilizing them for 6 h per day for 28 days. The mice were orally administered with crocetin (20, 40, 80 mg/kg), fluoxetine (20 mg/kg) or distilled water. The treatments were administered daily and open field and tail suspension tests were performed. Immunofluorescent and Western-bolt (WB) assays were conducted to determine the expression of mitogen-activated protein kinase phosphatase-1 (MKP-1), the precursor of brain-derived neurotrophic factor (proBDNF), extracellular signal-regulated kinase 1/2 (ERK1/2), phosphorylated cAMP response element-binding (CREB) protein in the hippocampus. Serum levels of dopamine (DA), proBDNF, MKP-1 and CREB were measured by Elisa kits. High-throughput sequencing was carried out to analyze the composition of intestinal microbiota. RESULTS Crocetin ameliorated depressive-like behaviors caused by chronic restraint stress-induced depressive mice. It significantly attenuated the elevated levels of MKP-1, proBDNF, alanine transaminase, aspartate transaminase and increased the serum levels of DA as well as CREB. Histopathological analysis showed that crocetin suppressed hippocampus injury in restraint stress mice by protecting neuronal cells. Immunofluorescent and WB analysis showed elevated expression levels of ERK1/2, CREB and inhibited expression levels of MKP-1, proBDNF in the hippocampus. The intestinal ecosystem of the crocetin group partially recovered and was close to the control group. CONCLUSIONS Crocetin has neuroprotective properties and ameliorates the effects of stress-associated brain damage by regulating the MKP-1-ERK1/2-CREB signaling and intestinal ecosystem.
Collapse
Affiliation(s)
- Susu Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qiaoqiao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Shanshan Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zijin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yu Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ling Liu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jinyan Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yingpeng Tong
- Institute of Natural Medicine and Health Products, School of Advanced Study, Taizhou University, Taizhou, 318000, People's Republic of China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
52
|
Triviño JJ, von Bernhardi R. The effect of aged microglia on synaptic impairment and its relevance in neurodegenerative diseases. Neurochem Int 2021; 144:104982. [PMID: 33556444 DOI: 10.1016/j.neuint.2021.104982] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Microglia serve key functions in the central nervous system (CNS), participating in the establishment and regulation of synapses and the neuronal network, and regulating activity-dependent plastic changes. As the neuroimmune system, they respond to endogenous and exogenous signals to protect the CNS. In aging, one of the main changes is the establishment of inflamm-aging, a mild chronic inflammation that reduces microglial response to stressors. Neuroinflammation depends mainly on the increased activation of microglia. Microglia over-activation may result in a reduced capacity for performing normal functions related to migration, clearance, and the adoption of an anti-inflammatory state, contributing to an increased susceptibility for neurodegeneration. Oxidative stress contributes both to aging and to the progression of neurodegenerative diseases. Increased production of reactive oxygen species (ROS) and neuroinflammation associated with age- and disease-dependent mechanisms affect synaptic activity and neurotransmission, leading to cognitive dysfunction. Astrocytes prevent microglial cell cytotoxicity by mechanisms mediated by transforming growth factor β1 (TGFβ1). However, TGFβ1-Smad3 pathway is impaired in aging, and the age-related impairment of TGFβ signaling can reduce protective activation while facilitating cytotoxic activation of microglia. A critical analysis on the effect of aging microglia on neuronal function is relevant for the understanding of age-related changes on neuronal function. Here, we present evidence in the context of the "microglial dysregulation hypothesis", which leads to the reduction of the protective functions and increased cytotoxicity of microglia, to discuss the mechanisms involved in neurodegenerative changes and Alzheimer's disease.
Collapse
Affiliation(s)
- Juan José Triviño
- Department of Neurology, Pontificia Universidad Católica de Chile School of Medicine, Laboratory of Neuroscience. Marcoleta 391, Santiago, Chile
| | - Rommy von Bernhardi
- Department of Neurology, Pontificia Universidad Católica de Chile School of Medicine, Laboratory of Neuroscience. Marcoleta 391, Santiago, Chile; Faculty of Health Sciences, Universidad San Sebastián, Lota 2465, Santiago, Chile.
| |
Collapse
|
53
|
Nangare S, Patil P. Nanoarchitectured Bioconjugates and Bioreceptors Mediated Surface Plasmon Resonance Biosensor for In Vitro Diagnosis of Alzheimer’s Disease: Development and Future Prospects. Crit Rev Anal Chem 2021; 52:1139-1169. [DOI: 10.1080/10408347.2020.1864716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
54
|
Abstract
Platelet mitochondria can be used in the study of mitochondrial dysfunction in various complex diseases and can help in finding biological markers for diagnosing the disease, monitoring its course and the effects of treatment. The aim of this chapter was to describe in detail the method of measuring mitochondrial respiration in platelets using high-resolution respirometry. The described method was successfully used for the study of mitochondrial dysfunction in neuropsychiatric diseases.
Collapse
|
55
|
Cholewinski T, Pereira D, Moerland M, Jacobs GE. MTORC1 signaling as a biomarker in major depressive disorder and its pharmacological modulation by novel rapid-acting antidepressants. Ther Adv Psychopharmacol 2021; 11:20451253211036814. [PMID: 34733478 PMCID: PMC8558816 DOI: 10.1177/20451253211036814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is a multifactorial psychiatric disorder with obscure pathophysiology. A biomarker-based approach in combination with standardized interview-based instruments is needed to identify MDD subtypes and novel therapeutic targets. Recent findings support the impairment of the mammalian target of rapamycin complex 1 (mTORC1) in MDD. No well-established biomarkers of mTORC1 disease- and treatment-modulated activity are currently available for use in early phase antidepressant drug (AD) development. This review aims to summarize biomarkers of mTORC1 activity in MDD and to suggest how these could be implemented in future early clinical trials on mTORC1 modulating ADs. Therefore, a PubMed-based narrative literature review of the mTORC1 involvement in MDD was performed. We have summarized recent pre-clinical and clinical findings linking the MDD to the impaired activity of several key biomarkers related to mTORC1. Also, cases of restoration of these impairments by classical ADs and novel fast-acting investigational ADs are summarized. The presented biomarkers may be used to monitor pharmacological effects by novel rapid-acting mTORC1-targeting ADs. Based on findings in the peripheral blood mononuclear cells, we argue that those may serve as an ex vivo model for evaluation of mTORC1 activity and propose the use of the summarized biomarkers for this purpose. This could both facilitate the selection of a pharmacodynamically active dose and guide future early clinical efficacy studies in MDD. In conclusion, this review provides a blueprint for the rational development of rapid-acting mTORC1-targeting ADs.
Collapse
Affiliation(s)
| | - Diana Pereira
- Centre for Human Drug Research, Leiden, The Netherlands
| | | | - Gabriel E Jacobs
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands
| |
Collapse
|
56
|
Sagar R, Pathak P, Pandur B, Kim SJ, Li J, Mahairaki V. Biomarkers and Precision Medicine in Alzheimer’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1339:403-408. [DOI: 10.1007/978-3-030-78787-5_50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
57
|
Sharif M, Noroozian M, Hashemian F. Do serum GDNF levels correlate with severity of Alzheimer's disease? Neurol Sci 2020; 42:2865-2872. [PMID: 33215334 DOI: 10.1007/s10072-020-04909-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION A growing body of evidence that glial cell line-derived neurotrophic factor (GDNF) levels are probably involved in pathogenesis and disease course of Alzheimer's disease (AD) suggested that its blood levels could potentially be used as a biomarker of AD. The aim of this study was to compare serum GDNF levels in patients with AD and age-matched controls. METHODS Serum concentrations of GDNF were compared in 25 AD patients and 25 healthy volunteers using a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA). Severity of the disease in AD patients was assessed using Functional Assessment Staging (FAST). Cognitive assessment of the patients was done using the Mini-Mental State Examination (MMSE). RESULTS Mean GDNF levels were found to be 2.45 ± 0.93 ng/ml in AD patients and 4.61 ± 3.39 ng/ml in age-matched controls. There was a statistically significant difference in GDNF serum levels in patients with AD compared to age-matched controls (p = 0.001). Moreover, GDNF serum levels were significantly correlated with disease severity (p < 0.001) and cognitive impairment (p < 0.001). CONCLUSION This study showed that serum levels of GDNF are significantly decreased in AD patients in comparison with age-matched controls, thus suggesting a potential role of GDNF as a disease biomarker. However, a comprehensive study of changes in serum levels of multiple neurotrophic factors reflective of different neurobiological pathways in large-scale population studies is recommended.
Collapse
Affiliation(s)
- Maryam Sharif
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, 99 Yakhchal Street, Shariati Avenue, Tehran, 1941933111, Iran
| | - Maryam Noroozian
- Memory and Behavioral Neurology Division, Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Hashemian
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, 99 Yakhchal Street, Shariati Avenue, Tehran, 1941933111, Iran.
| |
Collapse
|
58
|
Jiang Y, Liu Y, Gao M, Xue M, Wang Z, Liang H. Nicotinamide riboside alleviates alcohol-induced depression-like behaviours in C57BL/6J mice by altering the intestinal microbiota associated with microglial activation and BDNF expression. Food Funct 2020; 11:378-391. [PMID: 31820774 DOI: 10.1039/c9fo01780a] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gut microbiota play an important role in many central nervous system diseases through the gut microbiota-brain axis. Recent studies suggest that nicotinamide riboside (NR) has neuroprotective properties. However, it is unknown whether NR can prevent or protect against alcohol-induced depression. Furthermore, it is unclear whether its therapeutic action involves changes in the composition of the gut microbiome. Here, we investigated the effects of NR in the mouse model of alcohol-induced depression. Treatment with NR improved the alcohol-induced depressive behaviour in mice. In addition, NR decreased the number of activated microglia in the hippocampus, and it reduced the levels of pro-inflammatory (IL-1β, IL-6, and TNF-α) and anti-inflammatory (IL-10 and TGF-β) cytokines in the brain of mice with alcohol-induced depression. Furthermore, NR significantly upregulated BDNF and diminished the inhibition of the AKT/GSK3β/β-catenin signalling pathway in the hippocampus of these mice. 16S rRNA sequencing revealed that, compared with control and NR-treated mice, the gut microbiome richness and composition were significantly altered in the depressed mice. Spearman's correlation analysis showed that differential gut bacterial genera correlated with the levels of inflammation-related cytokines and BDNF in the brain. After faecal microbiota transplantation, cognitive behaviours, microglial activity, levels of cytokines and BDNF, and activation state of the AKT/GSK3β/β-catenin signalling pathway (which is downstream of the BDNF receptor, TrkB) in recipient mice were similar to those in donor mice. Collectively, our findings show that NR dietary supplementation protects against alcohol-induced depression-like behaviours, possibly by altering the composition of the gut microbiota.
Collapse
Affiliation(s)
- Yushan Jiang
- Department of Human Nutrition, College of Public Health, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | | | | | | | | | | |
Collapse
|
59
|
Martínez-Cué C, Rueda N. Signalling Pathways Implicated in Alzheimer's Disease Neurodegeneration in Individuals with and without Down Syndrome. Int J Mol Sci 2020; 21:E6906. [PMID: 32962300 PMCID: PMC7555886 DOI: 10.3390/ijms21186906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Down syndrome (DS), the most common cause of intellectual disability of genetic origin, is characterized by alterations in central nervous system morphology and function that appear from early prenatal stages. However, by the fourth decade of life, all individuals with DS develop neuropathology identical to that found in sporadic Alzheimer's disease (AD), including the development of amyloid plaques and neurofibrillary tangles due to hyperphosphorylation of tau protein, loss of neurons and synapses, reduced neurogenesis, enhanced oxidative stress, and mitochondrial dysfunction and neuroinflammation. It has been proposed that DS could be a useful model for studying the etiopathology of AD and to search for therapeutic targets. There is increasing evidence that the neuropathological events associated with AD are interrelated and that many of them not only are implicated in the onset of this pathology but are also a consequence of other alterations. Thus, a feedback mechanism exists between them. In this review, we summarize the signalling pathways implicated in each of the main neuropathological aspects of AD in individuals with and without DS as well as the interrelation of these pathways.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain;
| | | |
Collapse
|
60
|
Ausó E, Gómez-Vicente V, Esquiva G. Biomarkers for Alzheimer's Disease Early Diagnosis. J Pers Med 2020; 10:E114. [PMID: 32899797 PMCID: PMC7563965 DOI: 10.3390/jpm10030114] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting the central nervous system (CNS) through the accumulation of intraneuronal neurofibrillary tau tangles (NFTs) and β-amyloid plaques. By the time AD is clinically diagnosed, neuronal loss has already occurred in many brain and retinal regions. Therefore, the availability of early and reliable diagnosis markers of the disease would allow its detection and taking preventive measures to avoid neuronal loss. Current diagnostic tools in the brain, such as magnetic resonance imaging (MRI), positron emission tomography (PET) imaging, and cerebrospinal fluid (CSF) biomarkers (Aβ and tau) detection are invasive and expensive. Brain-secreted extracellular vesicles (BEVs) isolated from peripheral blood have emerged as novel strategies in the study of AD, with enormous potential as a diagnostic evaluation of therapeutics and treatment tools. In addition; similar mechanisms of neurodegeneration have been demonstrated in the brain and the eyes of AD patients. Since the eyes are more accessible than the brain, several eye tests that detect cellular and vascular changes in the retina have also been proposed as potential screening biomarkers. The aim of this study is to summarize and discuss several potential markers in the brain, eye, blood, and other accessible biofluids like saliva and urine, and correlate them with earlier diagnosis and prognosis to identify individuals with mild symptoms prior to dementia.
Collapse
Affiliation(s)
| | | | - Gema Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain; (E.A.); (V.G.-V.)
| |
Collapse
|
61
|
Involvement of hippocampal agmatine in β1-42 amyloid induced memory impairment, neuroinflammation and BDNF signaling disruption in mice. Neurotoxicology 2020; 80:1-11. [DOI: 10.1016/j.neuro.2020.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 01/25/2023]
|
62
|
Nho K, Nudelman K, Allen M, Hodges A, Kim S, Risacher SL, Apostolova LG, Lin K, Lunnon K, Wang X, Burgess JD, Ertekin-Taner N, Petersen RC, Wang L, Qi Z, He A, Neuhaus I, Patel V, Foroud T, Faber KM, Lovestone S, Simmons A, Weiner MW, Saykin AJ. Genome-wide transcriptome analysis identifies novel dysregulated genes implicated in Alzheimer's pathology. Alzheimers Dement 2020; 16:1213-1223. [PMID: 32755048 DOI: 10.1002/alz.12092] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/23/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Abnormal gene expression patterns may contribute to the onset and progression of late-onset Alzheimer's disease (LOAD). METHODS We performed transcriptome-wide meta-analysis (N = 1440) of blood-based microarray gene expression profiles as well as neuroimaging and cerebrospinal fluid (CSF) endophenotype analysis. RESULTS We identified and replicated five genes (CREB5, CD46, TMBIM6, IRAK3, and RPAIN) as significantly dysregulated in LOAD. The most significantly altered gene, CREB5, was also associated with brain atrophy and increased amyloid beta (Aβ) accumulation, especially in the entorhinal cortex region. cis-expression quantitative trait loci mapping analysis of CREB5 detected five significant associations (P < 5 × 10-8 ), where rs56388170 (most significant) was also significantly associated with global cortical Aβ deposition measured by [18 F]Florbetapir positron emission tomography and CSF Aβ1-42 . DISCUSSION RNA from peripheral blood indicated a differential gene expression pattern in LOAD. Genes identified have been implicated in biological processes relevant to Alzheimer's disease. CREB, in particular, plays a key role in nervous system development, cell survival, plasticity, and learning and memory.
Collapse
Affiliation(s)
- Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kelly Nudelman
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University, Indiana
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida
| | - Angela Hodges
- Psychology & Neuroscience, Institute of Psychiatry, King's college London, London, UK
| | - Sungeun Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Electrical and Computer Engineering, State University of New York, Oswego, New York
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Liana G Apostolova
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kuang Lin
- Psychology & Neuroscience, Institute of Psychiatry, King's college London, London, UK
| | | | - Xue Wang
- Department of Health Sciences Research, Mayo Clinic Florida, Jacksonville, Florida
| | - Jeremy D Burgess
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida.,Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic Minnesota, Rochester, Minnesota
| | - Lisu Wang
- Bristol-Meyers Squibb, Wallingford, Connecticut
| | - Zhenhao Qi
- Bristol-Meyers Squibb, Wallingford, Connecticut
| | - Aiqing He
- Bristol-Meyers Squibb, Wallingford, Connecticut
| | | | | | - Tatiana Foroud
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University, Indiana
| | - Kelley M Faber
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University, Indiana
| | | | - Andrew Simmons
- Psychology & Neuroscience, Institute of Psychiatry, King's college London, London, UK
| | - Michael W Weiner
- Departments of Radiology, Medicine, and Psychiatry, University of California-San Francisco, San Francisco, California.,Department of Veterans Affairs Medical Center, San Francisco, California
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | | |
Collapse
|
63
|
Amidfar M, de Oliveira J, Kucharska E, Budni J, Kim YK. The role of CREB and BDNF in neurobiology and treatment of Alzheimer's disease. Life Sci 2020; 257:118020. [PMID: 32603820 DOI: 10.1016/j.lfs.2020.118020] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia worldwide. β-amyloid peptide (Aβ) is currently assumed to be the main cause of synaptic dysfunction and cognitive impairments in AD, but the molecular signaling pathways underlying its neurotoxic consequences have not yet been completely explored. Additional investigations regarding these pathways will contribute to development of new therapeutic targets. In context, developing evidence suggest that Aβ decreases brain-derived neurotrophic factor (BDNF) mostly by lowering phosphorylated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) protein. In fact, it has been observed that brain or serum levels of BDNF appear to be beneficial markers for cognitive condition. In addition, the participation of transcription mediated by CREB has been widely analyzed in the memory process and AD development. Designing pharmacologic or genetic therapeutic approaches based on the targeting of CREB-BDNF signaling could be a promising treatment potential for AD. In this review, we summarize data demonstrating the role of CREB-BDNF signaling pathway in cognitive status and mediation of Aβ toxicity in AD. Finally, we also focus on the developing intervention methods for improvement of cognitive decline in AD based on targeting of CREB-BDNF pathway.
Collapse
Affiliation(s)
| | - Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ewa Kucharska
- Jesuit University Ignatianum in Krakow, Faculty of Education, Institute of Educational Sciences, Poland
| | - Josiane Budni
- Laboratório de Neurologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Yong-Ku Kim
- Departments of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
64
|
Ismail NA, Leong Abdullah MFI, Hami R, Ahmad Yusof H. A narrative review of brain-derived neurotrophic factor (BDNF) on cognitive performance in Alzheimer's disease. Growth Factors 2020; 38:210-225. [PMID: 33427532 DOI: 10.1080/08977194.2020.1864347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is highly expressed in the brain. It influences neuronal survival, growth and acts as a control centre for neurotransmitters. It also plays a crucial role in learning and memory. Current evidence indicates that BDNF may be a possible neurotrophic factor that controls cognitive functions under normal and neuropathological conditions. Recent findings indicate a reduction in cognitive performance in individuals with Alzheimer's disease (AD). This relationship between cognitive performance and AD is important for investigating both the time they overlap and the pathophysiological mechanism in each case. Therefore, this study reviewed the existing knowledge about BDNF and cognitive performance in the AD population. The findings support the idea that this tropic factor may be a potential biomarker for evaluating the changes in cognitive performance in AD.
Collapse
Affiliation(s)
- Noor Azila Ismail
- Institut Perubatan dan Pengigian Termaju, Lifestyle Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Mohammad Farris Iman Leong Abdullah
- Institut Perubatan dan Pengigian Termaju, Lifestyle Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Rohayu Hami
- Institut Perubatan dan Pengigian Termaju, Lifestyle Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Hazwani Ahmad Yusof
- Institut Perubatan dan Pengigian Termaju, Lifestyle Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| |
Collapse
|
65
|
The BDNF Val66Met Polymorphism Modulates Resilience of Neurological Functioning to Brain Ageing and Dementia: A Narrative Review. Brain Sci 2020; 10:brainsci10040195. [PMID: 32218234 PMCID: PMC7226504 DOI: 10.3390/brainsci10040195] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Brain-derived neurotropic factor (BDNF) is an abundant and multi-function neurotrophin in the brain. It is released following neuronal activity and is believed to be particularly important in strengthening neural networks. A common variation in the BDNF gene, a valine to methionine substitution at codon 66 (Val66Met), has been linked to differential expression of BDNF associated with experience-dependent plasticity. The Met allele has been associated with reduced production of BDNF following neuronal stimulation, which suggests a potential role of this variation with respect to how the nervous system may respond to challenges, such as brain ageing and related neurodegenerative conditions (e.g., dementia and Alzheimer’s disease). The current review examines the potential of the BDNF Val66Met variation to modulate an individual’s susceptibility and trajectory through cognitive changes associated with ageing and dementia. On balance, research to date indicates that the BDNF Met allele at this codon is potentially associated with a detrimental influence on the level of cognitive functioning in older adults and may also impart increased risk of progression to dementia. Furthermore, recent studies also show that this genetic variation may modulate an individual’s response to interventions targeted at building cognitive resilience to conditions that cause dementia.
Collapse
|
66
|
Duda P, Hajka D, Wójcicka O, Rakus D, Gizak A. GSK3β: A Master Player in Depressive Disorder Pathogenesis and Treatment Responsiveness. Cells 2020; 9:cells9030727. [PMID: 32188010 PMCID: PMC7140610 DOI: 10.3390/cells9030727] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3β), originally described as a negative regulator of glycogen synthesis, is a molecular hub linking numerous signaling pathways in a cell. Specific GSK3β inhibitors have anti-depressant effects and reduce depressive-like behavior in animal models of depression. Therefore, GSK3β is suggested to be engaged in the pathogenesis of major depressive disorder, and to be a target and/or modifier of anti-depressants’ action. In this review, we discuss abnormalities in the activity of GSK3β and its upstream regulators in different brain regions during depressive episodes. Additionally, putative role(s) of GSK3β in the pathogenesis of depression and the influence of anti-depressants on GSK3β activity are discussed.
Collapse
|
67
|
Abstract
Alzheimer's disease is a chronic neurodegenerative devastating disorder affecting a high percentage of the population over 65 years of age and causing a relevant emotional, social, and economic burden. Clinically, it is characterized by a prominent cognitive deficit associated with language and behavioral impairments. The molecular pathogenesis of Alzheimer's disease is multifaceted and involves changes in neurotransmitter levels together with alterations of inflammatory, oxidative, hormonal, and synaptic pathways, which may represent a drug target for both prevention and treatment; however, an effective treatment for Alzheimer's disease still represents an unmet goal. As neurotrophic factors participate in the modulation of the above-mentioned pathways, they have been highlighted as critical contributors of Alzheimer's disease etiology, whose modulation might be beneficial for Alzheimer's disease. We focused on the neurotrophin brain-derived neurotrophic factor, providing several lines of evidence pointing to brain-derived neurotrophic factor as a plausible endophenotype of cognitive deficits in Alzheimer's disease, illustrating some of the most recent possibilities to modulate the expression of this neurotrophin in the brain in an attempt to ameliorate cognition and delay the progression of Alzheimer's disease. This review shows that otherwise disparate pharmacologic or non-pharmacologic approaches converge on brain-derived neurotrophic factor, providing a means whereby apparently unrelated medical approaches may nevertheless produce similar synaptic and cognitive outcomes in Alzheimer's disease pathogenesis, suggesting that brain-derived neurotrophic factor-based synaptic repair may represent a modifying strategy to ameliorate cognition in Alzheimer's disease.
Collapse
|
68
|
Çelik H, Kandemir FM, Caglayan C, Özdemir S, Çomaklı S, Kucukler S, Yardım A. Neuroprotective effect of rutin against colistin-induced oxidative stress, inflammation and apoptosis in rat brain associated with the CREB/BDNF expressions. Mol Biol Rep 2020; 47:2023-2034. [PMID: 32030599 DOI: 10.1007/s11033-020-05302-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022]
Abstract
The purpose of the current study was to examine the neuroprotective effect of rutin against colistin-induced neurotoxicity in rats. Thirty-five male Sprague Dawley rats were randomly divided into 5 groups. The control group (orally received physiological saline), the rutin group (orally administered 100 mg/kg body weight), the colistin group (i.p. administered 15 mg/kg body weight), the Col + Rut 50 group (i.p. administered 15 mg/kg body weight of colistin, and orally received 50 mg/kg body weight of rutin), the Col + Rut 100 group (i.p. administered 15 mg/kg body weight of colistin, and orally received 100 mg/kg body weight of rutin). Administration of colistin increased levels of glial fibrillary acidic protein and brain-derived neurotrophic factor and acetylcholinesterase and butyrylcholinesterase activities while decreasing level of cyclic AMP response element binding protein and extracellular signal regulated kinases 1 and 2 (ERK1/2) expressions. Colistin increased oxidative impairments as evidenced by a decrease in level of nuclear factor erythroid 2-related factor 2 (Nrf-2), glutathione, superoxide dismutase, glutathione peroxidase and catalase activities, and increased malondialdehyde content. Colistin also increased the levels of the apoptotic and inflammatoric parameters such as cysteine aspartate specific protease-3 (caspase-3), p53, B-cell lymphoma-2 (Bcl-2), nuclear factor kappa B (NF-κB), Bcl-2 associated X protein (Bax), tumor necrosis factor-α (TNF-α) and neuronal nitric oxide synthase (nNOS). Rutin treatment restored the brain function by attenuating colistin-induced oxidative stress, apoptosis, inflammation, histopathological and immunohistochemical alteration suggesting that rutin supplementation mitigated colistin-induced neurotoxicity in male rats.
Collapse
Affiliation(s)
- Hamit Çelik
- Department of Neurology, Private Buhara Hospital, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey.
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Ahmet Yardım
- Department of Neurosurgery, Private Buhara Hospital, Erzurum, Turkey
| |
Collapse
|
69
|
Máderová D, Krumpolec P, Slobodová L, Schön M, Tirpáková V, Kovaničová Z, Klepochová R, Vajda M, Šutovský S, Cvečka J, Valkovič L, Turčáni P, Krššák M, Sedliak M, Tsai CL, Ukropcová B, Ukropec J. Acute and regular exercise distinctly modulate serum, plasma and skeletal muscle BDNF in the elderly. Neuropeptides 2019; 78:101961. [PMID: 31506171 DOI: 10.1016/j.npep.2019.101961] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) participates in orchestrating the adaptive response to exercise. However, the importance of transient changes in circulating BDNF for eliciting whole-body and skeletal muscle exercise benefits in humans remains relatively unexplored. Here, we investigated effects of acute aerobic exercise and 3-month aerobic-strength training on serum, plasma and skeletal muscle BDNF in twenty-two sedentary older individuals (69.0 ± 8.0 yrs., 9 M/13F). BDNF response to acute exercise was additionally evaluated in young trained individuals (25.1 ± 2.1 yrs., 3 M/5F). Acute aerobic exercise transiently increased serum BDNF in sedentary (16%, p = .007) but not in trained elderly or young individuals. Resting serum or plasma BDNF was not regulated by exercise training in the elderly. However, subtle training-related changes of serum BDNF positively correlated with improvements in walking speed (R = 0.59, p = .005), muscle mass (R = 0.43, p = .04) and cognitive performance (R = 0.41, p = .05) and negatively with changes in body fat (R = -0.43, p = .04) and triglyceridemia (R = -0.53, p = .01). Individuals who increased muscle BDNF protein in response to 3-month training (responders) displayed stronger acute exercise-induced increase in serum BDNF than non-responders (p = .006). In addition, muscle BDNF protein content positively correlated with type II-to-type I muscle fiber ratio (R = 0.587, p = .008) and with the rate of post-exercise muscle ATP re-synthesis (R = 0.703, p = .005). Contrary to serum, acute aerobic exercise resulted in a decline of plasma BDNF 1 h post-exercise in both elderly-trained (-34%, p = .002) and young-trained individuals (-48%, p = .034). Acute circulating BDNF regulation by exercise was dependent on the level of physical fitness and correlated with training-induced improvements in metabolic and cognitive functions. Our observations provide an indirect evidence that distinct exercise-induced changes in serum and plasma BDNF as well as training-related increase in muscle BDNF protein, paralleled by improvements in muscle and whole-body clinical phenotypes, are involved in the coordinated adaptive response to exercise in humans.
Collapse
Affiliation(s)
- Denisa Máderová
- Institute of Experimental Endocrinology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Patrik Krumpolec
- Institute of Experimental Endocrinology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia; Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lucia Slobodová
- Institute of Experimental Endocrinology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Martin Schön
- Institute of Experimental Endocrinology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Veronika Tirpáková
- Institute of Sports Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Zuzana Kovaničová
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Institute of Experimental Endocrinology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radka Klepochová
- High Field MR Centre, Department of Biomedical Imaging and Imaged-Guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular Imaging, MOLIMA, Medical University of Vienna, Vienna, Austria
| | - Matej Vajda
- Faculty of Physical Education and Sports, Comenius University, Bratislava, Slovakia
| | - Stanislav Šutovský
- 1st Department of Neurology, Faculty of Medicine, Comenius University & University Hospital Bratislava, Slovakia
| | - Ján Cvečka
- Faculty of Physical Education and Sports, Comenius University, Bratislava, Slovakia
| | - Ladislav Valkovič
- High Field MR Centre, Department of Biomedical Imaging and Imaged-Guided Therapy, Medical University of Vienna, Vienna, Austria; Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, United Kingdom
| | - Peter Turčáni
- 1st Department of Neurology, Faculty of Medicine, Comenius University & University Hospital Bratislava, Slovakia
| | - Martin Krššák
- High Field MR Centre, Department of Biomedical Imaging and Imaged-Guided Therapy, Medical University of Vienna, Vienna, Austria; Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular Imaging, MOLIMA, Medical University of Vienna, Vienna, Austria
| | - Milan Sedliak
- Faculty of Physical Education and Sports, Comenius University, Bratislava, Slovakia
| | - Chia-Liang Tsai
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Barbara Ukropcová
- Institute of Experimental Endocrinology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Faculty of Physical Education and Sports, Comenius University, Bratislava, Slovakia.
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
70
|
Zhao WN, Hylton NK, Wang J, Chindavong PS, Alural B, Kurtser I, Subramanian A, Mazitschek R, Perlis RH, Haggarty SJ. Activation of WNT and CREB signaling pathways in human neuronal cells in response to the Omega-3 fatty acid docosahexaenoic acid (DHA). Mol Cell Neurosci 2019; 99:103386. [PMID: 31202891 PMCID: PMC7001743 DOI: 10.1016/j.mcn.2019.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
A subset of individuals with major depressive disorder (MDD) elects treatment with complementary and alternative medicines (CAMs), including the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Previous studies in rodents suggest that DHA modulates neurodevelopmental processes, including adult neurogenesis and neuroplasticity, but the molecular and cellular mechanisms of DHA's potential therapeutic effect in the context of human neurobiology have not been well established. Here we sought to address this knowledge gap by investigating the effects of DHA using human iPSC-derived neural progenitor cells (NPCs) and post-mitotic neurons using pathway-selective reporter genes, multiplexed mRNA expression profiling, and a panel of metabolism-based viability assays. Finally, real-time, live-cell imaging was employed to monitor neurite outgrowth upon DHA treatment. Overall, these studies showed that DHA treatment (0-50 μM) significantly upregulated both WNT and CREB signaling pathways in human neuronal cells in a dose-dependent manner with 2- to 3-fold increases in pathway activation. Additionally, we observed that DHA treatment enhanced survival of iPSC-derived NPCs and differentiation of post-mitotic neurons with live-cell imaging, revealing increased neurite outgrowth with DHA treatment within 24 h. Taken together, this study provides evidence that DHA treatment activates critical pathways regulating neuroplasticity, which may contribute to enhanced neuronal cell viability and neuronal connectivity. The extent to which these pathways represent molecular mechanisms underlying the potential beneficial effects of omega-3 fatty acids in MDD and other brain disorders merits further investigation.
Collapse
Affiliation(s)
- Wen-Ning Zhao
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Norma K Hylton
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America
| | - Jennifer Wang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America; Center for Quantitative Health, Center for Genomic Medicine, Division of Clinical Research, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America
| | - Peter S Chindavong
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Begum Alural
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America; Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir 35210, Turkey
| | - Iren Kurtser
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Aravind Subramanian
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States of America
| | - Ralph Mazitschek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States of America; Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America; Center for Quantitative Health, Center for Genomic Medicine, Division of Clinical Research, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America.
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States of America; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America.
| |
Collapse
|
71
|
Rosa JM, Pazini FL, Olescowicz G, Camargo A, Moretti M, Gil-Mohapel J, Rodrigues ALS. Prophylactic effect of physical exercise on Aβ 1-40-induced depressive-like behavior: Role of BDNF, mTOR signaling, cell proliferation and survival in the hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109646. [PMID: 31078612 DOI: 10.1016/j.pnpbp.2019.109646] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive impairments as well as non-cognitive symptoms such as depressed mood. Physical exercise has been proposed as a preventive strategy against AD and depression, an effect that may be related, at least partially, to its ability to prevent impairments on cell proliferation and neuronal survival in the hippocampus, a structure implicated in both cognition and affective behavior. Here, we investigated the ability of treadmill exercise (4 weeks) to counteract amyloid β1-40 peptide-induced depressive-like and anxiety-like behavior in mice. Moreover, we addressed the role of the BDNF/mTOR intracellular signaling pathway as well as hippocampal cell proliferation and survival in the effects of physical exercise and/or Aβ1-40. Aβ1-40 administration (400 pmol/mouse, i.c.v.) increased immobility time and reduced the latency to immobility in the forced swim test, a finding indicative of depressive-like behavior. In addition, Aβ1-40 administration also decreased time spent in the center of the open field and increased grooming and defecation, alterations indicative of anxiety-like behavior. These behavioral alterations were accompanied by a reduction in the levels of mature BDNF and mTOR (Ser2448) phosphorylation in the hippocampus. In addition, Aß1-40 administration reduced cell proliferation and survival in the ventral, dorsal and entire dentate gyrus of the hippocampus. Importantly, most of these behavioral, neurochemical and structural impairments induced by Aβ1-40 were not observed in mice subjected to 4 weeks of treadmill exercise. These findings indicate that physical exercise has the potential to prevent the occurrence of early emotional disturbances associated with AD and this appears to be mediated, at least in part, by modulation of hippocampal BDNF and mTOR signaling as well as through promotion of cell proliferation and survival in the hippocampal DG.
Collapse
Affiliation(s)
- Julia M Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Gislaine Olescowicz
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, British Columbia, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil.
| |
Collapse
|
72
|
Telles-Longui M, Mourelle D, Schöwe NM, Cipolli GC, Malerba HN, Buck HS, Viel TA. α7 nicotinic ACh receptors are necessary for memory recovery and neuroprotection promoted by attention training in amyloid-β-infused mice. Br J Pharmacol 2019; 176:3193-3205. [PMID: 31144293 DOI: 10.1111/bph.14744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/04/2019] [Accepted: 05/10/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Attention training reverses the neurodegeneration and memory loss promoted by infusion of amyloid-β (Aβ) peptide in rats and increases the density of α7 nicotinic ACh receptors (α7nAChRs) in brain areas related to memory. Hence, we aimed to assess the role of α7nAChRs in the memory recovery promoted by attention training. EXPERIMENTAL APPROACH C57Bl/6 mice were chronically infused with Aβ, Aβ plus the α7 antagonist methyllycaconitine (MLA), or MLA alone. Control animals were infused with vehicle. Animals were subjected weekly to the active avoidance shuttle box for 4 weeks (attention training). The brain and serum were collected for biochemical and histological analysis. KEY RESULTS Aβ caused cognitive impairment, which was reversed by the weekly training, whereas Aβ + MLA also promoted memory loss but with no reversal with weekly training. MLA alone also promoted memory loss but with only partial reversal with the training. Animals infused with Aβ alone showed senile plaques in hippocampus, no change in BDNF levels in cortex, hippocampus, and serum, but increased AChE activity in cortex and hippocampus. Co-treatment with MLA increased AChE activity and senile plaque deposition in hippocampus as well as reducing BDNF in hippocampus and serum, suggesting a lack of α7nAChR function leads to a loss of neuroprotection mechanisms. CONCLUSIONS AND IMPLICATIONS The α7nAChR has a determinant role in memory recovery and brain resilience in the presence of neurodegeneration promoted by Aβ peptide. These data support further studies concerning these receptors as pharmacological targets for future therapies.
Collapse
Affiliation(s)
- Milena Telles-Longui
- Graduate Course on Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Danilo Mourelle
- Graduate Course on Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Natalia Mendes Schöwe
- Graduate Course on Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.,Research Group on Neuropharmacology of Aging, São Paulo, Brazil
| | | | - Helena Nascimento Malerba
- Graduate Course on Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.,Research Group on Neuropharmacology of Aging, São Paulo, Brazil
| | - Hudson Sousa Buck
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil.,Research Group on Neuropharmacology of Aging, São Paulo, Brazil
| | - Tania Araujo Viel
- Graduate Course on Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.,School of Arts, Sciences and Humanities, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
73
|
Esposito M, Sherr GL. Epigenetic Modifications in Alzheimer's Neuropathology and Therapeutics. Front Neurosci 2019; 13:476. [PMID: 31133796 PMCID: PMC6524410 DOI: 10.3389/fnins.2019.00476] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/26/2019] [Indexed: 01/09/2023] Open
Abstract
Transcriptional activation is a highly synchronized process in eukaryotes that requires a series of cis- and trans-acting elements at promoter regions. Epigenetic modifications, such as chromatin remodeling, histone acetylation/deacetylation, and methylation, have frequently been studied with regard to transcriptional regulation/dysregulation. Recently however, it has been determined that implications in epigenetic modification seem to expand into various neurodegenerative disease mechanisms. Impaired learning and memory deterioration are cognitive dysfunctions often associated with a plethora of neurodegenerative diseases, including Alzheimer's disease. Through better understanding of the epigenetic mechanisms underlying these dysfunctions, new epigenomic therapeutic targets, such as histone deacetylases, are being explored. Here we review the intricate packaging of DNA in eukaryotic cells, and the various modifications in epigenetic mechanisms that are now linked to the neuropathology and the progression of Alzheimer's disease (AD), as well as potential therapeutic interventions.
Collapse
Affiliation(s)
- Michelle Esposito
- Department of Biology, Georgian Court University, Lakewood, NJ, United States
- Department of Biology, College of Staten Island, City University of New York, New York, NY, United States
| | - Goldie Libby Sherr
- Department of Biology, College of Staten Island, City University of New York, New York, NY, United States
- Department of Biological Sciences, Bronx Community College, City University of New York, New York, NY, United States
| |
Collapse
|
74
|
Dinda B, Dinda M, Kulsi G, Chakraborty A, Dinda S. Therapeutic potentials of plant iridoids in Alzheimer's and Parkinson's diseases: A review. Eur J Med Chem 2019; 169:185-199. [DOI: 10.1016/j.ejmech.2019.03.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 01/25/2023]
|
75
|
Fišar Z, Jirák R, Zvěřová M, Setnička V, Habartová L, Hroudová J, Vaníčková Z, Raboch J. Plasma amyloid beta levels and platelet mitochondrial respiration in patients with Alzheimer's disease. Clin Biochem 2019; 72:71-80. [PMID: 30954436 DOI: 10.1016/j.clinbiochem.2019.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Altered amyloid metabolism and mitochondrial dysfunction play key roles in the development of Alzheimer's disease (AD). We asked whether an association exists between disturbed platelet mitochondrial respiration and the plasma concentrations of Aβ40 and Aβ42 in patients with AD. DESIGN AND METHODS Plasma Aβ40 and Aβ42 concentrations and mitochondrial respiration in intact and permeabilized platelets were measured in 50 patients with AD, 15 patients with vascular dementia and 25 control subjects. A pilot longitudinal study was performed to monitor the progression of AD in a subgroup 11 patients with AD. RESULTS The mean Aβ40, Aβ42 and Aβ42/Aβ40 levels were not significantly altered in patients with AD compared with controls. The mitochondrial respiratory rate in intact platelets was significantly reduced in patients with AD compared to controls, particularly the basal respiratory rate, maximum respiratory capacity, and respiratory reserve; however, the flux control ratio for basal respiration was increased. A correlation between the plasma Aβ42 concentration and mitochondrial respiration in both intact and permeabilized platelets differs in controls and patients with AD. CONCLUSIONS Based on our data, (1) mitochondrial respiration in intact platelets, but not the Aβ level itself, may be included in a panel of biomarkers for AD; (2) dysfunctional mitochondrial respiration in platelets is not explained by changes in plasma Aβ concentrations; and (3) the association between mitochondrial respiration in platelets and plasma Aβ levels differs in patients with AD and controls. The results supported the hypothesis that mitochondrial dysfunction is the primary factor contributing to the development of AD.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | - Roman Jirák
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | - Martina Zvěřová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | - Vladimír Setnička
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Czech Republic.
| | - Lucie Habartová
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Czech Republic.
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | - Zdislava Vaníčková
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| |
Collapse
|
76
|
Hrubešová K, Fousková M, Habartová L, Fišar Z, Jirák R, Raboch J, Setnička V. Search for biomarkers of Alzheimer's disease: Recent insights, current challenges and future prospects. Clin Biochem 2019; 72:39-51. [PMID: 30953619 DOI: 10.1016/j.clinbiochem.2019.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
Due to the trend of prolonged lifespan leading to higher incidence of age-related diseases, the demand for reliable biomarkers of dementia rises. In this review, we present novel biomarkers of high potential, especially those found in blood, urine or saliva, which could lead to a more comfortable patient experience and better time- and cost-effectivity, compared to the currently used diagnostic methods. We focus on biomarkers that might allow for the detection of Alzheimer's disease before its clinical manifestations. Such biomarkers might be helpful for better understanding the etiology of the disease and identifying its risk factors. Moreover, it could be a base for developing new treatment or at least help to prolong the presymptomatic stage in patients suffering from Alzheimer's disease. As potential candidates, we present, for instance, neurofilament light in both cerebrospinal fluid and blood plasma or amyloid β in plasma. Above all, we provide an overview of different approaches to the diagnostics, analyzing patient's biofluids as a whole using molecular spectroscopy. Infrared and Raman spectroscopy and especially chiroptical methods provide information not only on the chemical composition, but also on molecular structure. Therefore, these techniques are promising for the diagnostics of Alzheimer's disease, as the accumulation of amyloid β in abnormal conformation is one of the hallmarks of this disease.
Collapse
Affiliation(s)
- Kateřina Hrubešová
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Markéta Fousková
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Lucie Habartová
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| | - Roman Jirák
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| | - Vladimír Setnička
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
77
|
Resveratrol exerts a protective effect in chronic unpredictable mild stress-induced depressive-like behavior: involvement of the AKT/GSK3β signaling pathway in hippocampus. Psychopharmacology (Berl) 2019; 236:591-602. [PMID: 30374891 DOI: 10.1007/s00213-018-5087-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 10/18/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chronic unpredictable mild stress (CUMS) is an important contributing factor for depression with inflammatory response alteration, neuron apoptosis, and decreased neurogenesis. Previous study reported that the administration of resveratrol alleviated depression by normalizing the increased proinflammatory cytokine levels and inhibiting apoptosis in the hippocampus. However, the upstream signaling pathway that regulates cytokines and apoptosis in the antidepressant effect of resveratrol remains unclear. OBJECTIVE The objective of this study is to investigate the possible mechanism of the effect of resveratrol on depression. METHODS Male Sprague Dawley rats were exposed to CUMS for four consecutive weeks to elicit depressive-like behavior. The rats in the drug treatment groups were injected with resveratrol (40 or 80 mg/kg/day) and fluoxetine (10 mg/kg/day) intraperitoneally for 4 weeks. Rats in two additional groups were administered LY294002 by bilateral stereotaxic microinjection into the lateral ventricle before resveratrol administration. Behavioral tests, including sucrose preference test, forced swim test, and open field test, were used after 4 weeks of a CUMS procedure to appraise depressive-like behavior. Then, the proinflammatory cytokines (TNF-α, IL-6, and IL-1β) in the hippocampus and prefrontal cortex (PFC) tissues of rats were measured. Apoptosis-related molecules such as Bax and Bcl-2 mRNA levels in the hippocampus were analyzed. Furthermore, p-Akt/Akt and p-GSK3β/GSK3β protein expression in the hippocampus were also measured. RESULTS The results show that rats were subjected to CUMS procedure exhibited depressive-like behavior, increased TNF-α, IL-6, and IL-1β levels in hippocampus and PFC, alteration of Bax and Bcl-2 mRNA levels in hippocampus, decreased p-Akt/Akt and p-GSK3β/GSK3β protein expression in hippocampus, and an increased apoptotic cell percentage in the hippocampal CA1 region. However, resveratrol (40 or 80 mg/kg) treatment reversed these behavioral and molecular changes in CUMS rats. The positive control drug fluoxetine showed a similar effect as the resveratrol treatment. When rats were injected with LY294002 before resveratrol treatment, the antidepressant effect of resveratrol was significantly attenuated, TNF-α, IL-6 and IL-1β levels in hippocampus and PFC increased again, Bax mRNA levels increased and Bcl-2 mRNA levels decreased in hippocampus, and Akt/GSK3β protein expression in hippocampus decreased. CONCLUSIONS The findings in the present study suggest that the antidepressant effect of resveratrol treatment may act through activation of the Akt/GSK3β signaling pathway and then regulation of proinflammatory cytokine expression and alteration of apoptosis.
Collapse
|
78
|
Ng TKS, Ho CSH, Tam WWS, Kua EH, Ho RCM. Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Levels in Patients with Alzheimer's Disease (AD): A Systematic Review and Meta-Analysis. Int J Mol Sci 2019; 20:ijms20020257. [PMID: 30634650 PMCID: PMC6358753 DOI: 10.3390/ijms20020257] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 12/27/2022] Open
Abstract
Findings from previous studies reporting the levels of serum brain-derived neurotrophic factor (BDNF) in patients with Alzheimer's disease (AD) and individuals with mild cognitive impairment (MCI) have been conflicting. Hence, we performed a meta-analysis to examine the aggregate levels of serum BDNF in patients with AD and individuals with MCI, in comparison with healthy controls. Fifteen studies were included for the comparison between AD and healthy control (HC) (n = 2067). Serum BDNF levels were significantly lower in patients with AD (SMD: -0.282; 95% confidence interval [CI]: -0.535 to -0.028; significant heterogeneity: I² = 83.962). Meta-regression identified age (p < 0.001) and MMSE scores (p < 0.001) to be the significant moderators that could explain the heterogeneity in findings in these studies. Additionally, there were no significant differences in serum BDNF levels between patients with AD and MCI (eight studies, n = 906) and between MCI and HC (nine studies, n = 5090). In all, patients with AD, but not MCI, have significantly lower serum BDNF levels compared to healthy controls. This meta-analysis confirmed the direction of change in serum BDNF levels in dementia. This finding suggests that a significant change in peripheral BDNF levels can only be detected at the late stage of the dementia spectrum. Molecular mechanisms, implications on interventional trials, and future directions for studies examining BDNF in dementia were discussed.
Collapse
Affiliation(s)
- Ted Kheng Siang Ng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Cyrus Su Hui Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
- Department of Psychological Medicine, National University Hospital, Singapore 119074, Singapore.
| | - Wilson Wai San Tam
- Alice Lee School of Nursing, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Ee Heok Kua
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
- Department of Psychological Medicine, National University Hospital, Singapore 119074, Singapore.
| | - Roger Chun-Man Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
- Department of Psychological Medicine, National University Hospital, Singapore 119074, Singapore.
- Biomedical Global Institute of Healthcare Research & Technology (BIGHEART), National University of Singapore, Singapore 119228, Singapore.
- Center of Excellence in Behavioral Medicine, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam.
- Faculty of Education, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, Anhui, China.
| |
Collapse
|
79
|
Lim HS, Kim YJ, Sohn E, Yoon J, Kim BY, Jeong SJ. Bojungikgi-Tang, a Traditional Herbal Formula, Exerts Neuroprotective Effects and Ameliorates Memory Impairments in Alzheimer's Disease-Like Experimental Models. Nutrients 2018; 10:nu10121952. [PMID: 30544702 PMCID: PMC6316759 DOI: 10.3390/nu10121952] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022] Open
Abstract
Bojungikgi-tang (BJIGT; Bu Zhong Yi Qi Tang in China, Hochuekkito in Japan) is a traditional Oriental herbal formula comprised of eight medicinal herbs that has long been used for the treatment of digestive disorders. A recent clinical study from South Korea reported that BJIGT-gamibang administration may be effective in treating dementia. We aimed to establish scientific evidence for the anti-dementia effects of BJIGT using in vitro and in vivo experimental models. We measured amyloid- β (Aβ) aggregation, β-secretase (BACE), and antioxidant activity in a cell free system. Neuroprotective effects were assessed using CCK-8. Imprinting control region (ICR) mice were divided into the following six groups: Normal control, Aβ-injected, Aβ-injection + oral BJIGT gavage (200, 400, or 800 mg/kg/day), and Aβ-injection + oral morin administration (10 mg/kg/day). Subsequently, behavioral evaluations were conducted and brain samples were collected from all the animals and assessed. BJIGT enhanced inhibition of Aβ aggregation and BACE activity in vivo, as well as antioxidant activity in in vitro, cell-free systems. BJIGT also exerted neuroprotective effects in a hydroperoxide (H₂O₂)-induced damaged HT22 hippocampal cell line model. In addition, BJIGT administration significantly ameliorated cognitive impairments in Aβ-injected mice, as assessed by the passive avoidance and Y-maze tests. Furthermore, BJIGT treatment suppressed Aβ aggregation and expression, as well as expression of Aβ, NeuN, and brain-derived neurotrophic factor (BDNF) in the hippocampi of Aβ-injected mice. Overall, our results demonstrate that, with further testing in clinical populations, BJIGT may have great utility for the treatment of dementia and especially Alzheimer's disease.
Collapse
Affiliation(s)
- Hye-Sun Lim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do 58245, Korea.
| | - Yu Jin Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Eunjin Sohn
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Jiyeon Yoon
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Bu-Yeo Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Soo-Jin Jeong
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| |
Collapse
|
80
|
Han YX, Tao C, Gao XR, Wang LL, Jiang FH, Wang C, Fang K, Chen XX, Chen Z, Ge JF. BDNF-Related Imbalance of Copine 6 and Synaptic Plasticity Markers Couples With Depression-Like Behavior and Immune Activation in CUMS Rats. Front Neurosci 2018; 12:731. [PMID: 30429764 PMCID: PMC6220370 DOI: 10.3389/fnins.2018.00731] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022] Open
Abstract
Chronic stress is a contributing risk factor in the pathogenesis of depression. Although the mechanisms are multifaceted, the relationship can be ascribed partly to stress-related alterations in immune activation and brain plasticity. Considering the increasing evidence regarding the role of Copine 6 in the regulation of synaptic plasticity, the aim of the present study is to investigate Copine 6 expression in the hippocampus and the prefrontal cortex (PFC) in a stress-induced depression rat model. The behavior of the rats was evaluated via the open field test, saccharin preference test, elevated plus maze test, tail suspension test, Morris water maze, and forced swimming test. The plasma concentrations of C-reactive protein (CRP) and interleukin-6 (IL-6) were measured, and the protein expressions of brain-derived neurotrophic factor (BDNF), Copine 6, and synaptic plasticity markers in the hippocampus and the PFC were also detected. The results showed that chronic unpredictable mild stress (CUMS) induces depression-like behavior in rats, accompanied by increased plasma concentrations of CRP and IL-6. Moreover, the protein expressions of BDNF, Copine 6, and synapsin I were decreased in both the hippocampus and the PFC of CUMS rats, and the protein expression of synaptotagmin I was decreased in the hippocampus. Furthermore, Pearson's test revealed a potential relationship between the depression-like behavior, the plasma CRP concentration, and the protein expressions of BDNF, Copine 6, synapsin I, or synaptotagmin I in the hippocampus or the PFC. Together with our previous results, the current findings suggest that apart from immune activation, the BDNF-related imbalance of Copine 6 expression in the brain might play a crucial role in stress-associated depression-like behaviors and synaptic plasticity changes.
Collapse
Affiliation(s)
- Yin-Xiu Han
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Chen Tao
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xin-Ran Gao
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Le-le Wang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Fu-Hao Jiang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chong Wang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ke Fang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xing-Xing Chen
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Zheng Chen
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
81
|
Balsamo M, Cataldi F, Carlucci L, Padulo C, Fairfield B. Assessment of late-life depression via self-report measures: a review. Clin Interv Aging 2018; 13:2021-2044. [PMID: 30410319 PMCID: PMC6199213 DOI: 10.2147/cia.s178943] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Depression in later life is a significant and growing problem. Age-related differences in the type and severity of depressive disorders continue to be questioned and necessarily question differential methods of assessment and treatment strategies. A host of geropsychiatric measures have been developed for diagnostic purposes, for rating severity of depression, and monitoring treatment progress. This literature review includes the self-report depression measures commonly and currently used in geropsychological practice. Each of the included measures is considered according to its psychometric properties. In particular, information about reliability; convergent, divergent, and factorial validity evidence based on data from clinical and nonclinical samples of older adults; and availability of age-appropriate norms was provided along with the strengths and weaknesses of each measure. Results highlighted that in cognitively intact or mildly impaired patients over 65 years, the Geriatric Depression Scale and the Geriatric Depression Scale-15 currently seem to be the preferred instruments. The psychometric functioning of the Beck Depression Inventory-II and the Center for Epidemiological Studies Depression Scale, instead, is mixed in this population. Most importantly, this review may be a valuable resource for practicing clinicians and researchers who wish to develop state-of-the-science assessment strategies for clinical problems and make informed choices about which instruments best suit their purposes in older populations.
Collapse
Affiliation(s)
- Michela Balsamo
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health, University "G. d'Annunzio" of Chieti-Pescara, Italy,
| | - Fedele Cataldi
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health, University "G. d'Annunzio" of Chieti-Pescara, Italy,
| | - Leonardo Carlucci
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health, University "G. d'Annunzio" of Chieti-Pescara, Italy,
| | - Caterina Padulo
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health, University "G. d'Annunzio" of Chieti-Pescara, Italy,
| | - Beth Fairfield
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health, University "G. d'Annunzio" of Chieti-Pescara, Italy,
| |
Collapse
|
82
|
Antidepressant effects of creatine on amyloid β 1-40-treated mice: The role of GSK-3β/Nrf 2 pathway. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:270-278. [PMID: 29753049 DOI: 10.1016/j.pnpbp.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/26/2018] [Accepted: 05/08/2018] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is characterized by progressive synaptic dysfunction and neuronal lost in specific brain areas including hippocampus, resulting in memory/learning deficits and cognitive impairments. In addition, non-cognitive symptoms are reported in AD patients, such as anxiety, apathy and depressed mood. The current antidepressant drugs present reduced efficacy to improve depressive symptoms in AD patients. Here, we investigated the ability of creatine, a compound with neuroprotective and antidepressant properties, to counteract amyloid β1-40 peptide-induced depressive-like behavior in mice. Moreover, we addressed the participation of the intracellular signaling pathway mediated by glycogen synthase kinase-3β (GSK-3β)/nuclear factor erythroid-2-related factor 2 (Nrf2) in the creatine effects. Aß1-40 administration (400 pmol/mouse, i.c.v.) increased the immobility time in the tail suspension test and decreased the grooming time and increased latency to grooming in the splash test, indicative of depressive-like behavior. These impairments were attenuated by creatine (0.01 and 10 mg/kg, p.o.) and fluoxetine (10 mg/kg, p.o., positive control). No significant alterations on locomotor performance were observed in the open field. Aß1-40 administration did not alter hippocampal phospho-GSK-3β (Ser9)/total GSK-3β, total GSK-3β and heme oxygenase-1 (HO-1) immunocontents. However, Aß1-40-infused mice treated with creatine (0.01 mg/kg) presented increased phosphorylation of GSK-3β(Ser9) and HO-1 immunocontent in the hippocampus. Fluoxetine per se increased GSK-3β(Ser9) phosphorylation, but did not alter HO-1 levels. In addition, Aß1-40 administration increased hippocampal glutathione (GSH) levels as well as glutathione reductase (GR) and thioredoxin reductase (TrxR) activities, and these effects were abolished by creatine and fluoxetine. This study provides the first evidence of the antidepressive-like effects of creatine in Aß1-40-treated mice, which were accompanied by hippocampal inhibition of GSK-3β and modulation of antioxidant defenses. These findings indicate the potential of creatine for the treatment of depression associated with AD.
Collapse
|
83
|
Alcalde LA, de Freitas BS, Machado GDB, de Freitas Crivelaro PC, Dornelles VC, Gus H, Monteiro RT, Kist LW, Bogo MR, Schröder N. Iron chelator deferiprone rescues memory deficits, hippocampal BDNF levels and antioxidant defenses in an experimental model of memory impairment. Biometals 2018; 31:927-940. [PMID: 30117045 DOI: 10.1007/s10534-018-0135-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/12/2018] [Indexed: 12/18/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a key role in neural development and physiology, as well as in pathological states. Post-mortem studies demonstrate that BDNF is reduced in the brains of patients affected by neurodegenerative diseases. Iron accumulation has also been associated to the pathogenesis of neurodegenerative diseases. In rats, iron overload induces persistent memory deficits, increases oxidative stress and apoptotic markers, and decreases the expression of the synaptic marker, synaptophysin. Deferiprone (DFP) is an oral iron chelator used for the treatment of systemic iron overload disorders, and has recently been tested for Parkinson's disease. Here, we investigated the effects of iron overload on BDNF levels and on mRNA expression of genes encoding TrkB, p75NTR, catalase (CAT) and NQO1. We also aimed at investigating the effects of DFP on iron-induced impairments. Rats received iron or vehicle at postnatal days 12-14 and when adults, received chronic DFP or water (vehicle). Recognition memory was tested 19 days after the beginning of chelation therapy. BDNF measurements and expression analyses in the hippocampus were performed 24 h after the last day of DFP treatment. DFP restored memory and increased hippocampal BDNF levels, ameliorating iron-induced effects. Iron overload in the neonatal period reduced, while treatment with DFP was able to rescue, the expression of antioxidant enzymes CAT and NQO1.
Collapse
Affiliation(s)
- Luisa Azambuja Alcalde
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Betânia Souza de Freitas
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Gustavo Dalto Barroso Machado
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Pedro Castilhos de Freitas Crivelaro
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Victoria Campos Dornelles
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Henrique Gus
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Ricardo Tavares Monteiro
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Luiza Wilges Kist
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil.,Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Mauricio Reis Bogo
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil.,Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Nadja Schröder
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil. .,National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, 71605-001, Brazil.
| |
Collapse
|
84
|
Balietti M, Giuli C, Conti F. Peripheral Blood Brain-Derived Neurotrophic Factor as a Biomarker of Alzheimer's Disease: Are There Methodological Biases? Mol Neurobiol 2018; 55:6661-6672. [PMID: 29330839 PMCID: PMC6061178 DOI: 10.1007/s12035-017-0866-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
Abstract
Mounting evidence that alterations in brain-derived neurotrophic factor (BDNF) levels and signaling may be involved in the etiopathogenesis of Alzheimer's disease (AD) has suggested that its blood levels could be used as a biomarker of the disease. However, higher, lower, or unchanged circulating BDNF levels have all been described in AD patients compared to healthy controls. Although the reasons for such different findings are unclear, methodological issues are likely to be involved. The heterogeneity of participant recruitment criteria and the lack of control of variables that influence circulating BDNF levels regardless of dementia (depressive symptoms, medications, lifestyle, lack of overlap between serum and plasma, and experimental aspects) are likely to bias result and prevent study comparability. The present work reviews a broad panel of factors, whose close control could help reduce the inconsistency of study findings, and offers practical advice on their management. Research directed at elucidating the weight of each of these variables and at standardizing analytical methodologies is urgently needed.
Collapse
Affiliation(s)
- Marta Balietti
- Center for Neurobiology of Aging, INRCA, Via Birarelli 8, 60121, Ancona, Italy.
| | - Cinzia Giuli
- Geriatrics Operative Unit, INRCA, Fermo, 63023, Italy
| | - Fiorenzo Conti
- Center for Neurobiology of Aging, INRCA, Via Birarelli 8, 60121, Ancona, Italy
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, 60126, Italy
| |
Collapse
|
85
|
Qiao X, Gai H, Su R, Deji C, Cui J, Lai J, Zhu Y. PI3K-AKT-GSK3β-CREB signaling pathway regulates anxiety-like behavior in rats following alcohol withdrawal. J Affect Disord 2018; 235:96-104. [PMID: 29655081 DOI: 10.1016/j.jad.2018.04.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alcohol abuse and anxiety disorders often occur concurrently, but their underlying cellular mechanisms remain unclear. Neuroadaptation within the medial prefrontal cortex (mPFC) have been implicated in the molecular mechanisms underlying alcohol drinking behavior and withdrawal. METHODS A chronic alcohol exposure rat model (35 consecutive days of 10% alcohol intake and 48 h of withdrawal) was established, then, wortmannin (0.5 µg/side) was injected bilaterally into the mPFC. The elevated plus maze (EPM) and open field test (OFT) were used to assess anxiety-like behavior. Western blot assays were used to assess protein levels. RESULTS We found that anxiety-like behavior peaked approximately 6 h after alcohol withdrawal. However, wortmannin greatly decreased alcohol intake and attenuated anxiety-like behavior in the alcohol exposure rats. Moreover, the PI3K-AKT-GSK3β signaling pathway was activated after alcohol withdrawal, and phosphorylation of the downstream cAMP response element-binding protein (CREB) was increased. Wortmannin uniformly reversed PI3K-AKT-GSK3β-CREB pathway phosphorylation. LIMITATIONS The downstream GSK3β activity was not intervened and a single dose level of wortmannin was used. CONCLUSION Our results suggest that activating the PI3K-AKT-GSK3β-CREB pathway in the mPFC is an important contributor to the molecular mechanisms underlying alcohol withdrawal. PI3K signaling pathway inhibitors are thus potential candidates for treating alcohol abuse.
Collapse
Affiliation(s)
- Xiaomeng Qiao
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Haiyun Gai
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, China
| | - Rui Su
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Cuola Deji
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Jingjing Cui
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Jianghua Lai
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Yongsheng Zhu
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
86
|
Cespón J, Miniussi C, Pellicciari MC. Interventional programmes to improve cognition during healthy and pathological ageing: Cortical modulations and evidence for brain plasticity. Ageing Res Rev 2018. [PMID: 29522820 DOI: 10.1016/j.arr.2018.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A growing body of evidence suggests that healthy elderly individuals and patients with Alzheimer's disease retain an important potential for neuroplasticity. This review summarizes studies investigating the modulation of neural activity and structural brain integrity in response to interventions involving cognitive training, physical exercise and non-invasive brain stimulation in healthy elderly and cognitively impaired subjects (including patients with mild cognitive impairment (MCI) and Alzheimer's disease). Moreover, given the clinical relevance of neuroplasticity, we discuss how evidence for neuroplasticity can be inferred from the functional and structural brain changes observed after implementing these interventions. We emphasize that multimodal programmes, which combine several types of interventions, improve cognitive function to a greater extent than programmes that use a single interventional approach. We suggest specific methods for weighting the relative importance of cognitive training, physical exercise and non-invasive brain stimulation according to the functional and structural state of the brain of the targeted subject to maximize the cognitive improvements induced by multimodal programmes.
Collapse
Affiliation(s)
- Jesús Cespón
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; BCBL, Basque Center on Cognition, Brain and Language, Spain.
| | - Carlo Miniussi
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy
| | | |
Collapse
|
87
|
Kitzlerová E, Fišar Z, Lelková P, Jirák R, Zvěřová M, Hroudová J, Manukyan A, Martásek P, Raboch J. Interactions Among Polymorphisms of Susceptibility Loci for Alzheimer's Disease or Depressive Disorder. Med Sci Monit 2018; 24:2599-2619. [PMID: 29703883 PMCID: PMC5944403 DOI: 10.12659/msm.907202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Several genetic susceptibility loci for major depressive disorder (MDD) or Alzheimer’s disease (AD) have been described. Interactions among polymorphisms are thought to explain the differences between low- and high-risk groups. We tested for the contribution of interactions between multiple functional polymorphisms in the risk of MDD or AD. Material/Methods A genetic association case-control study was performed in 68 MDD cases, 84 AD cases (35 of them with comorbid depression), and 90 controls. The contribution of 7 polymorphisms from 5 genes (APOE, HSPA1A, SLC6A4, HTR2A, and BDNF) related to risk of MDD or AD development was analyzed. Results Significant associations were found between MDD and interactions among polymorphisms in HSPA1A, SLC6A4, and BDNF or HSPA1A, BDNF, and APOE genes. For polymorphisms in the APOE gene in AD, significant differences were confirmed on the distributions of alleles and genotype rates compared to the control or MDD. Increased probability of comorbid depression was found in patients with AD who do not carry the ɛ4 allele of APOE. Conclusions Assessment of the interactions among polymorphisms of susceptibility loci in both MDD and AD confirmed a synergistic effect of genetic factors influencing inflammatory, serotonergic, and neurotrophic pathways at these heterogenous complex diseases. The effect of interactions was greater in MDD than in AD. A presence of the ɛ4 allele was confirmed as a genetic susceptibility factor in AD. Our findings indicate a role of APOE genotype in onset of comorbid depression in a subgroup of patients with AD who are not carriers of the APOE ɛ4 allele.
Collapse
Affiliation(s)
- Eva Kitzlerová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Lelková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Roman Jirák
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martina Zvěřová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ada Manukyan
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Martásek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
88
|
Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Transl Psychiatry 2018; 8:42. [PMID: 29391397 PMCID: PMC5804031 DOI: 10.1038/s41398-017-0089-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/20/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023] Open
Abstract
Butyrate (BT) is a ubiquitous short-chain fatty acid (SCFA) principally derived from the enteric microbiome. BT positively modulates mitochondrial function, including enhancing oxidative phosphorylation and beta-oxidation and has been proposed as a neuroprotectant. BT and other SCFAs have also been associated with autism spectrum disorders (ASD), a condition associated with mitochondrial dysfunction. We have developed a lymphoblastoid cell line (LCL) model of ASD, with a subset of LCLs demonstrating mitochondrial dysfunction (AD-A) and another subset of LCLs demonstrating normal mitochondrial function (AD-N). Given the positive modulation of BT on mitochondrial function, we hypothesized that BT would have a preferential positive effect on AD-A LCLs. To this end, we measured mitochondrial function in ASD and age-matched control (CNT) LCLs, all derived from boys, following 24 and 48 h exposure to BT (0, 0.1, 0.5, and 1 mM) both with and without an in vitro increase in reactive oxygen species (ROS). We also examined the expression of key genes involved in cellular and mitochondrial response to stress. In CNT LCLs, respiratory parameters linked to adenosine triphosphate (ATP) production were attenuated by 1 mM BT. In contrast, BT significantly increased respiratory parameters linked to ATP production in AD-A LCLs but not in AD-N LCLs. In the context of ROS exposure, BT increased respiratory parameters linked to ATP production for all groups. BT was found to modulate individual LCL mitochondrial respiration to a common set-point, with this set-point slightly higher for the AD-A LCLs as compared to the other groups. The highest concentration of BT (1 mM) increased the expression of genes involved in mitochondrial fission (PINK1, DRP1, FIS1) and physiological stress (UCP2, mTOR, HIF1α, PGC1α) as well as genes thought to be linked to cognition and behavior (CREB1, CamKinase II). These data show that the enteric microbiome-derived SCFA BT modulates mitochondrial activity, with this modulation dependent on concentration, microenvironment redox state, and the underlying mitochondrial function of the cell. In general, these data suggest that BT can enhance mitochondrial function in the context of physiological stress and/or mitochondrial dysfunction, and may be an important metabolite that can help rescue energy metabolism during disease states. Thus, insight into this metabolic modulator may have wide applications for both health and disease since BT has been implicated in a wide variety of conditions including ASD. However, future clinical studies in humans are needed to help define the practical implications of these physiological findings.
Collapse
|
89
|
Heng Li S, Wang LT, Deng X, NanJiao Y, Kong L, Fu M, Jia LQ, Yang JX, Ren L. Electroacupuncture Rescued the Impairment of Hippocampal Neurons in Perimenopausal Depression Rats via Activating the CREB/BDNF Pathway. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.164.178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
90
|
Abstract
Alzheimer's disease (AD) is an irreversible, incurable, progressive neurodegenerative illness, where dementia symptoms gradually worsen over a number of years. The research of validated biomarkers for AD is essential to improve diagnosis and accelerate the development of new therapies. Biochemical markers including neuroimaging could facilitate diagnosis, predict AD progression from a pre-AD state of mild cognitive impairment, and be used to detect the efficacies of disease-modifying therapies. Established biomarkers of AD from cerebrospinal fluid and neuroimaging are highly accurate, but barriers to clinical implementation exist. The focus on blood-based AD biomarkers has grown exponentially during the past few decades. An ideal diagnostic test for AD should be noninvasive and easily applicable. Clinical cost-effectiveness also needs to be established.
Collapse
Affiliation(s)
- Martina Zvěřová
- Department of Psychiatry, General University Hospital in Prague, Prague, Czech Republic, .,First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic,
| |
Collapse
|
91
|
Antidepressant Flavonoids and Their Relationship with Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5762172. [PMID: 29410733 PMCID: PMC5749298 DOI: 10.1155/2017/5762172] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/22/2017] [Indexed: 12/25/2022]
Abstract
Depression is a serious disorder that affects hundreds of millions of people around the world and causes poor quality of life, problem behaviors, and limitations in activities of daily living. Therefore, the search for new therapeutic options is of high interest and growth. Research on the relationship between depression and oxidative stress has shown important biochemical aspects in the development of this disease. Flavonoids are a class of natural products that exhibit several pharmacological properties, including antidepressant-like activity, and affects various physiological and biochemical functions in the body. Studies show the clinical potential of antioxidant flavonoids in treating depressive disorders and strongly suggest that these natural products are interesting prototype compounds in the study of new antidepressant drugs. So, this review will summarize the chemical and pharmacological perspectives related to the discovery of flavonoids with antidepressant activity. The mechanisms of action of these compounds are also discussed, including their actions on oxidative stress relating to depression.
Collapse
|
92
|
Qi Y, Ji XF, Chi TY, Liu P, Jin G, Xu Q, Jiao Q, Wang LH, Zou LB. Xanthoceraside attenuates amyloid β peptide 1-42-induced memory impairments by reducing neuroinflammatory responses in mice. Eur J Pharmacol 2017; 820:18-30. [PMID: 29229533 DOI: 10.1016/j.ejphar.2017.11.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022]
Abstract
Xanthoceraside, a novel triterpenoid saponin extracted from the husks of Xanthoceras sorbifolia Bunge, has neuroprotective effects in vivo and anti-inflammatory properties in vitro. However, the exact mechanism of xanthoceraside on anti-amyloid beta (Aβ)-induced neuroinflammatory responses has not been elucidated. Therefore, we used intracerebroventricular injection of amyloid 1-42 (Aβ1-42) to establish a mouse model to test the effects of xanthoceraside on Aβ-induced cognitive impairments and the TLR2/NF-κB and MAPK pathways. The mice received xanthoceraside (0.02, 0.08 or 0.32mg/kg) or vehicle from the day of Aβ1-42 injection. The Morris water maze test was performed 4 days after Aβ1-42 injection. The levels of inflammatory cytokines (interleukin (IL)-6 and IL-4) were measured by enzyme-linked immunosorbent assay (ELISA). The expression levels of glial fibrillary acidic protein (GFAP) and cluster of differentiation 11b (CD11b) in the hippocampus were determined with an immunohistochemistry assay. Inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) were analysed by Western blotting; iNOS, COX-2 and Toll-like receptor 2 (TLR2) mRNA expression levels were measured by reverse transcription-polymerase chain reaction (RT-PCR). Here, we observed that xanthoceraside at doses of 0.08 and 0.32mg/kg significantly improved learning and memory impairments and significantly inhibited GFAP and CD11b overexpression induced by Aβ1-42 in mice. ELISA results revealed that xanthoceraside suppressed IL-6 release and increased IL-4 levels. Western blotting results showed that xanthoceraside reduced iNOS and COX-2 protein levels in hippocampus; xanthoceraside also inhibited translocation of NF-κB p50 and p65 into the nucleus and phosphorylation of extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38. RT-PCR confirmed that xanthoceraside decreased iNOS, COX-2 and TLR2 mRNA levels. These results suggest that xanthoceraside inhibition of the TLR2 pathway and down-regulation of MAPK and NF-κB activities may be related to the improvement in learning and memory impairments.
Collapse
Affiliation(s)
- Yue Qi
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Pharmacology, The Second Hospital Affiliated to Liaoning Chinese Medical University, Shenyang 110034, PR China
| | - Xue-Fei Ji
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Tian-Yan Chi
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Peng Liu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Ge Jin
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Qian Xu
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Qing Jiao
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Li-Hua Wang
- Shenyang Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Li-Bo Zou
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
93
|
Li B, Gao Y, Zhang W, Xu JR. Regulation and effects of neurotrophic factors after neural stem cell transplantation in a transgenic mouse model of Alzheimer disease. J Neurosci Res 2017; 96:828-840. [PMID: 29114922 DOI: 10.1002/jnr.24187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022]
Abstract
According to much research, neurodegeneration and cognitive decline in Alzheimer disease (AD) are correlated with alternations of neurotrophic factors such as nerve growth factor, brain-derived neurotrophic factor, and glial cell-derived neurotrophic factor. The experimental illumination of neural stem cell (NSC) transplantation to eliminate AD symptoms is being explored frequently, and we have acknowledged that neurotrophic factors may play a pivotal role in cognitive improvement. However, the relation between the reversal of cognitive deficits after NSC transplantation and directed alternations of neurotrophic factors is not clearly expounded. Meanwhile, reduced inflammatory response, promoted vessel density, and vascular endothelial growth factor (VEGF) can be reflections of improvement in cerebrovascular function. Three weeks after NSC transplantation, spatial learning and memory function in NSC-injected (Tg-NSC) mice were significantly improved compared with vehicle-injected (Tg-Veh) mice. Meanwhile, results obtained by immunofluorescence and Western blot analyses demonstrated that the levels of neurotrophic factors, VEGF, and vessel density in the cortex of Tg-NSC mice were significantly enhanced compared with Tg-Veh mice, while the levels of proinflammatory cytokines interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 were significantly decreased. Our results suggest that elevated concentrations of neurotrophic factors probably play a critical role in rescuing cognitive dysfunction in APP/PS1 transgenic mice after NSC transplantation, and neurotrophic factors may improve cerebrovascular function by means such as reducing inflammatory response and promoting angiogenesis.
Collapse
Affiliation(s)
- Bo Li
- Department of Medical Imaging, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yun Gao
- Department of Medical Imaging, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Wei Zhang
- Department of Medical Imaging, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jian-Rong Xu
- Department of Medical Imaging, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|
94
|
Zhang Q, Zhang J, Yan Y, Zhang P, Zhang W, Xia R. Proinflammatory cytokines correlate with early exercise attenuating anxiety-like behavior after cerebral ischemia. Brain Behav 2017; 7:e00854. [PMID: 29201553 PMCID: PMC5698870 DOI: 10.1002/brb3.854] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/02/2017] [Accepted: 09/16/2017] [Indexed: 01/07/2023] Open
Abstract
Background and Objective Stroke may cause neuropsychiatric problems, which have negative effects on cognitive functions and behavior. Exercise plays an important role in reducing the occurrence and development of stroke, the concrete mechanism is not fully clarified. In this study, we attempted to determine whether early treadmill exercise attenuates anxiety-like behavior by regulation of inflammation after brain ischemia. Method We subjected adult male rats to middle cerebral artery occlusion (MCAO) for 90 min and trained rats started to run on a treadmill from postoperative day 1 to day 14. The effects of treadmill on cognitive functions, anxiety-like behavior, and immune activation were analyzed by Morris water maze test, open field test, elevated plus maze test, and enzyme-linked immunosorbent assay. Results Early treadmill exercise significantly improved cognitive function, alleviated anxiety-like behavior in ischemic rats model; this improvement was associated with significantly decreased activation of astrocytes and microglia cells and proinflammatory markers (platelet-activating factor [PAF], interleukin-6 [IL-6], tumor necrosis factor-alpha [TNF-α], intercellular adhesion molecule-1 [ICAM-1], and vascular cell adhesion molecule-1 [VCAM-1]). Conclusion Our results indicated that early treadmill exercise attenuated anxiety-like behavior by decreasing inflammation response, exercise conferred a great benefit of attenuating anxiety-like behavior via anti-inflammatory treatment may prove to be a novel neuroprotective strategy for stroke.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Blood TransfusionHuashan HospitalFudan UniversityShanghaiChina
| | - Jingjun Zhang
- Department of Blood TransfusionHuashan HospitalFudan UniversityShanghaiChina
| | - Yuzhong Yan
- Department of Blood TransfusionHuashan HospitalFudan UniversityShanghaiChina
| | - Pengyue Zhang
- Medical FacultyKunming University of Science and TechnologyKunmingChina
| | - Wei Zhang
- Department of Medical ImagingRenji HospitalMedical School of Jiaotong UniversityShanghaiChina
| | - Rong Xia
- Department of Blood TransfusionHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
95
|
Kolanowski A, Boltz M, Galik E, Gitlin LN, Kales HC, Resnick B, Van Haitsma KS, Knehans A, Sutterlin JE, Sefcik JS, Liu W, Petrovsky DV, Massimo L, Gilmore-Bykovskyi A, MacAndrew M, Brewster G, Nalls V, Jao YL, Duffort N, Scerpella D. Determinants of behavioral and psychological symptoms of dementia: A scoping review of the evidence. Nurs Outlook 2017; 65:515-529. [PMID: 28826872 PMCID: PMC6579119 DOI: 10.1016/j.outlook.2017.06.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/20/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Behavioral and psychological symptoms of dementia (BPSD) are prevalent in people with neurodegenerative diseases. PURPOSE In this scoping review the Kales, Gitlin and Lykestos framework is used to answer the question: What high quality evidence exists for the patient, caregiver and environmental determinants of five specific BPSD: aggression, agitation, apathy, depression and psychosis? METHOD An a priori review protocol was developed; 692 of 6013 articles retrieved in the search were deemed eligible for review. Gough's Weight of Evidence Framework and the Cochrane Collaboration's tool for assessing risk of bias were used. The findings from 56 high quality/low bias articles are summarized. DISCUSSION Each symptom had its own set of determinants, but many were common across several symptoms: neurodegeneration, type of dementia, severity of cognitive impairments, and declining functional abilities, and to a lesser extent, caregiver burden and communication. CONCLUSION Research and policy implications are relevant to the National Plan to Address Alzheimer's Disease.
Collapse
Affiliation(s)
| | - Marie Boltz
- College of Nursing, Penn State, University Park, PA
| | | | - Laura N Gitlin
- Department of Community-Public Health, Center for Innovative Care in Aging, Johns Hopkins School of Nursing, Baltimore, MD; Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD
| | - Helen C Kales
- The Program for Positive Aging, University of Michigan, Ann Arbor, MI; VA Center for Clinical Management Research, Ann Arbor, MI
| | | | - Kimberly S Van Haitsma
- Program for Person Centered Living Systems of Care, College of Nursing, The Pennsylvania State University, University Park, PA; Polisher Research Institute, Madlyn & Leonard Abramson Center for Jewish Life, North Wales, PA
| | - Amy Knehans
- Penn State College of Medicine, Harrell Health Sciences Library, Research & Learning Commons, Hershey, PA
| | | | | | - Wen Liu
- College of Nursing, The University of Iowa, Iowa City, IA
| | | | | | | | - Margaret MacAndrew
- Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Glenna Brewster
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, School of Nursing, University of Pennsylvania, Philadelphia, PA
| | | | | | | | - Danny Scerpella
- Center for Innovative Care in Aging, Johns Hopkins School of Nursing, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
96
|
Cui R, Fan J, Ge T, Tang L, Li B. The mechanism of acute fasting-induced antidepressant-like effects in mice. J Cell Mol Med 2017; 22:223-229. [PMID: 28782175 PMCID: PMC5742683 DOI: 10.1111/jcmm.13310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/19/2017] [Indexed: 11/30/2022] Open
Abstract
Acute fasting induced antidepressant‐like effects. However, the exact brain region and mechanism of these actions are still largely unknown. Therefore, in this study the antidepressant‐like effects of acute fasting on c‐Fos expression and BDNF levels were investigated. Consistent with our previous findings, immobility time was remarkably shortened by 9 hrs fasting in the forced swimming test. Furthermore, these antidepressant‐like effects of 9 fasting were inhibited by a 5‐HT2A/2C receptor agonist (±)‐1‐(2, 5‐dimethoxy‐4‐iodophenyl)‐2‐aminopropane hydrochloride (DOI), and the effect of DOI was blocked by pretreatment with a selective 5‐HT2A receptor antagonist ketanserin. Immunohistochemical study has shown that c‐Fos level was significantly increased by 9 hrs fasting in prefrontal cortex but not hippocampus and habenular. Fasting‐induced c‐Fos expression was further enhanced by DOI in prefrontal cortex, and these enhancements were inhibited by ketanserin. The increased BDNF levels by fasting were markedly inhibited by DOI in frontal cortex and hippocampus, and these effects of DOI on BDNF levels were also blocked by ketanserin. These findings suggest that the antidepressant‐like effects of acute fasting may be exerted via 5‐HT2A receptor and particularly sensitive to neural activity in the prefrontal cortex. Furthermore, these antidepressant‐like effects are also mediated by CREB and BDNF pathway in hippocampus and frontal cortex. Therefore, fasting may be potentially helpful against depression.
Collapse
Affiliation(s)
- Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Linda Tang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
97
|
Janel N, Alexopoulos P, Badel A, Lamari F, Camproux AC, Lagarde J, Simon S, Feraudet-Tarisse C, Lamourette P, Arbones M, Paul JL, Dubois B, Potier MC, Sarazin M, Delabar JM. Combined assessment of DYRK1A, BDNF and homocysteine levels as diagnostic marker for Alzheimer's disease. Transl Psychiatry 2017; 7:e1154. [PMID: 28632203 PMCID: PMC5537644 DOI: 10.1038/tp.2017.123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 02/07/2023] Open
Abstract
Early identification of Alzheimer's disease (AD) risk factors would aid development of interventions to delay the onset of dementia, but current biomarkers are invasive and/or costly to assess. Validated plasma biomarkers would circumvent these challenges. We previously identified the kinase DYRK1A in plasma. To validate DYRK1A as a biomarker for AD diagnosis, we assessed the levels of DYRK1A and the related markers brain-derived neurotrophic factor (BDNF) and homocysteine in two unrelated AD patient cohorts with age-matched controls. Receiver-operating characteristic curves and logistic regression analyses showed that combined assessment of DYRK1A, BDNF and homocysteine has a sensitivity of 0.952, a specificity of 0.889 and an accuracy of 0.933 in testing for AD. The blood levels of these markers provide a diagnosis assessment profile. Combined assessment of these three markers outperforms most of the previous markers and could become a useful substitute to the current panel of AD biomarkers. These results associate a decreased level of DYRK1A with AD and challenge the use of DYRK1A inhibitors in peripheral tissues as treatment. These measures will be useful for diagnosis purposes.
Collapse
Affiliation(s)
- N Janel
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - P Alexopoulos
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Psychiatry, University Hospital of Rion, University of Patras, Patras, Greece
| | - A Badel
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - F Lamari
- Department of Metabolic Biochemistry, Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | - A C Camproux
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - J Lagarde
- Unit of Neurology of Memory and Langage, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - S Simon
- CEA, DSV, iBiTec-S, Laboratoire d'études et de recherches en immunoanalyse, Gif-sur-Yvette, France
| | - C Feraudet-Tarisse
- CEA, DSV, iBiTec-S, Laboratoire d'études et de recherches en immunoanalyse, Gif-sur-Yvette, France
| | - P Lamourette
- CEA, DSV, iBiTec-S, Laboratoire d'études et de recherches en immunoanalyse, Gif-sur-Yvette, France
| | - M Arbones
- Instituto de Biología Molecular de Barcelona (CSIC), Barcelona, Spain
| | - J L Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, Paris, France
| | - B Dubois
- Alzheimer Institute (MB, LCdS, BD, MS), Department of Neurology, Hôpital Pitié-Salpêtrière (Assistance Publique—Hôpitaux de Paris), Paris, France
| | - M C Potier
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - M Sarazin
- Unit of Neurology of Memory and Langage, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR S894, Centre Hospitalier Sainte Anne, Paris, France
| | - J M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
98
|
Zhao H, Liang B, Yu L, Xu Y. Anti-depressant-like effects of Jieyu chufan capsules in a mouse model of unpredictable chronic mild stress. Exp Ther Med 2017; 14:1086-1094. [PMID: 28810562 PMCID: PMC5525591 DOI: 10.3892/etm.2017.4601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
Jieyu chufan (JYCF) is a well-known Chinese traditional medicine used for depression; however, the molecular mechanism underlying its anti-depressant action has remained elusive. In the present study, the anti-depressant effects of JYCF and the potential mechanisms were investigated in a mouse model. Five groups of 12 C57BL/6 mice each were used in the study, including a normal control group (NC group), a model control group (MC group) and three groups, which received different doses of JYCF (1.25, 2.5 and 5 g/kg) orally for 21 days (JYCF groups). The MC group and the three JYCF groups were subjected to 3 weeks of unpredictable chronic mild stress (UCMS) to induce depression-like behavior. All groups were subjected to a sucrose consumption test along with a forced swimming test to confirm depression-like behavior, an open-field test and an elevated plus maze test to confirm anxiety-like behavior, and a Morris water maze test to evaluate spatial learning and memory. In addition, synaptic density in the hippocampus was evaluated and western blot and immunostaining were used to analyze hippocampal expression of postsynaptic density protein-95 (PSD95), synaptophysin (Syn), cyclic adenosine monophosphate response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), Akt and glycogen synthase kinase (GSK)-3β as well as their phosphorylated (p) versions. The results showed that JYCF (2.5 and 5 g/kg) alleviated depressive-like behaviors and increased synaptic density in UCMS mice. Moreover, JYCF upregulated the expression of PSD95, Syn and BDNF and increased phosphorylated Akt, CREB and GSK-3β in the hippocampus. These results suggested that JYCF exerts an anti-depressant-like activity in UCMS-induced mice, which is likely to be mediated by reversing the stress-induced disruption of BDNF and GSK-3β activity.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,Department of Neurology, Nanjing Clinic Medicine Center for Neurological and Psychiatric Diseases, Nanjing, Jiangsu 210008, P.R. China
| | - Bingyu Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, P.R. China
| | - Linjie Yu
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,Department of Neurology, Nanjing Clinic Medicine Center for Neurological and Psychiatric Diseases, Nanjing, Jiangsu 210008, P.R. China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China.,Department of Neurology, Nanjing Clinic Medicine Center for Neurological and Psychiatric Diseases, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
99
|
Royall DR, Al-Rubaye S, Bishnoi R, Palmer RF. Serum proteins mediate depression's association with dementia. PLoS One 2017; 12:e0175790. [PMID: 28594820 PMCID: PMC5464526 DOI: 10.1371/journal.pone.0175790] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
The latent variable "δ" (for "dementia") uniquely explains dementia severity. Depressive symptoms are independent predictors of δ. We explored 115 serum proteins as potential causal mediators of the effect of depressive symptoms on δ in a large, ethnically diverse, longitudinal cohort. All models were adjusted for age, apolipoprotein E, education, ethnicity, gender, hemoglobin A1c, and homocysteine, and replicated in randomly selected 50% subsets. Alpha1-antitrypsin (A1AT), FAS, Heparin-binding EGF-like Growth Factor (HB-EGF), Insulin-like Growth Factor-1 (IGF-1), Luteinizing Hormone (LH), Macrophage Inflammatory Protein type 1 alpha (MIP-1α), Resitin, S100b, Tissue Inhibitor of Metalloproteinase type 1 (TIMP-1), and Vascular Cell Adhesion Molecule type 1 (VCAM-1) each were partial mediators of depression's association with δ. These proteins may offer targets for the treatment of depression's specific effect on dementia severity and Alzheimer's Disease (AD) conversion risk.
Collapse
Affiliation(s)
- Donald R. Royall
- Department of Psychiatry, the University of Texas Health Science Center, San Antonio, Texas, United States of America
- Department of Medicine, the University of Texas Health Science Center, San Antonio, Texas, United States of America
- Department of Family and Community Medicine, the University of Texas Health Science Center, San Antonio, Texas, United States of America
- South Texas Veterans’ Health System Audie L. Murphy Division Geriatric Research Education and Clinical Care Center, San Antonio, Texas, United States of America
| | - Safa Al-Rubaye
- Department of Psychiatry, the University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Ram Bishnoi
- Department of Psychiatry, the Medical College of Georgia, Augusta, Georgia, United States of America
| | - Raymond F. Palmer
- Department of Family and Community Medicine, the University of Texas Health Science Center, San Antonio, Texas, United States of America
| |
Collapse
|
100
|
Giuli C, Fattoretti P, Gagliardi C, Mocchegiani E, Venarucci D, Balietti M, Casoli T, Costarelli L, Giacconi R, Malavolta M, Papa R, Lattanzio F, Postacchini D. My Mind Project: the effects of cognitive training for elderly-the study protocol of a prospective randomized intervention study. Aging Clin Exp Res 2017; 29:353-360. [PMID: 27106901 PMCID: PMC5445186 DOI: 10.1007/s40520-016-0570-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/06/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cognitive decline and dementia represent a key problem for public health as they heavily impair social functioning and independent living. The development of new strategies to support recommendations for patients and their caregivers may represent an outstanding step forward. AIMS To describe the study protocol and methods of "My Mind Project: the effect of cognitive training for elderly" (Grant No. 154/GR-2009-1584108), which investigates, by the use of a multidisciplinary approach, the effects of a comprehensive cognitive training programme on performances in aged subjects with mild-moderate Alzheimer's disease, mild cognitive impairment and normal cognitive functioning. METHODS The study is a prospective randomized intervention for the assessment of cognitive training effects in three groups of elderly subjects with different cognitive status. A total of 321 elderly people were enrolled in Marche Region, Italy. Each subject was randomly assigned to an experimental group or to a control group. Cognitive performances and biochemical blood markers have also been analysed before cognitive training (baseline), immediately after termination (follow-up 1), after 6 months (follow-up 2) and after 2 years (follow-up 3). DISCUSSION The results will be useful to identify some efficient programmes for the enhancement of cognitive performance in elderly with and without cognitive decline. CONCLUSION The application of a non-pharmacological approach in the treatment of elderly with cognitive disorders could have a profound impact on National Health Service.
Collapse
Affiliation(s)
- C Giuli
- Geriatrics Operative Unit, Italian National Research Centre on Aging (INRCA) IRCCS, Contrada Mossa, 63900, Fermo, Italy.
| | - P Fattoretti
- Center for Neurobiology of Aging, Italian National Research Centre on Aging (INRCA), via Birarelli, Ancona, Italy
| | - C Gagliardi
- Centre of Socio-Economic Gerontological Research, Italian National Research Centre on Aging (INRCA), via S. Margherita, Ancona, Italy
| | - E Mocchegiani
- Nutrition and Aging Centre, Italian National Research Centre on Aging (INRCA), via Birarelli, Ancona, Italy
| | - D Venarucci
- Biochemical Operative Unit, Italian National Research Centre on Aging (INRCA), Contrada Mossa, Fermo, Italy
| | - M Balietti
- Center for Neurobiology of Aging, Italian National Research Centre on Aging (INRCA), via Birarelli, Ancona, Italy
| | - T Casoli
- Center for Neurobiology of Aging, Italian National Research Centre on Aging (INRCA), via Birarelli, Ancona, Italy
| | - L Costarelli
- Nutrition and Aging Centre, Italian National Research Centre on Aging (INRCA), via Birarelli, Ancona, Italy
| | - R Giacconi
- Nutrition and Aging Centre, Italian National Research Centre on Aging (INRCA), via Birarelli, Ancona, Italy
| | - M Malavolta
- Nutrition and Aging Centre, Italian National Research Centre on Aging (INRCA), via Birarelli, Ancona, Italy
| | - R Papa
- Centre of Socio-Economic Gerontological Research, Italian National Research Centre on Aging (INRCA), via S. Margherita, Ancona, Italy
| | - F Lattanzio
- Scientific Direction, Italian National Research Centre on Aging (INRCA), via S. Margherita, Ancona, Italy
| | - D Postacchini
- Geriatrics Operative Unit, Italian National Research Centre on Aging (INRCA) IRCCS, Contrada Mossa, 63900, Fermo, Italy
| |
Collapse
|