51
|
Pan X, Kaminga AC, Wen SW, Liu A. Catecholamines in Post-traumatic Stress Disorder: A Systematic Review and Meta-Analysis. Front Mol Neurosci 2018; 11:450. [PMID: 30564100 PMCID: PMC6288600 DOI: 10.3389/fnmol.2018.00450] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
Studies on the association between post-traumatic stress disorder (PTSD) and levels of catecholamines have yielded inconsistent results. The aim of this study was to conduct a systematic review and meta-analysis to assess whether concentrations of the catecholamines dopamine, norepinephrine, and epinephrine are associated with PTSD. This study searched relevant articles in the following databases: PubMed, Embase, Web of Science, and Psyc-ARTICLES. Each database was searched from its inception to September, 2018. Data related to catecholamine concentrations were extracted for patients with PTSD and the controls to calculate standardized mean differences and to evaluate effect sizes. A meta-analysis was then performed to compare the concentration of each catecholamine between the two groups in blood and/or urine samples. Heterogeneity was quantified using I2 and its significance was tested using the Q statistics. Subgroup analyses of the types of controls, PTSD assessment tools, and assayed methods used in the studies were performed to explore sources of heterogeneity among studies. Random-effects models were used to combine results from selected studies. A total of 1,388 articles were identified, of which 27 were included in the final analysis. Heterogeneity was high; hence random-effects models were used to combine results of selected studies. Results revealed significantly higher norepinephrine levels in people with PTSD than in the controls [standardized mean difference (SMD) = 0.35, 95% confidence interval (CI): 0.13 to 0.57, p = 0.002]. No difference was found in dopamine and epinephrine concentrations between the two groups. Elevated norepinephrine levels may be an important indicator for PTSD.
Collapse
Affiliation(s)
- Xiongfeng Pan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Atipatsa C Kaminga
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Department of Mathematics and Statistics, Mzuzu University, Mzuzu, Malawi
| | - Shi Wu Wen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Department of Obstetrics and Gynaecology and Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
52
|
Abstract
PURPOSE OF REVIEW Traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) can result from similar injuries and can result in similar symptoms, such as problems with sleep, concentration, memory, and mood. Although PTSD and persistent sequelae due to a TBI (PST) have generally been viewed as pragmatically confounded but conceptually separable entities, we examine emerging evidence emphasizing the breadth of overlap in both clinical presentation and underlying pathophysiology between PST and PTSD. RECENT FINDINGS New evidence underscores the poor specificity of symptoms to etiology and emphasizes the potential, after both physical brain injury and traumatic stress, for changes in each of the three interacting systems that coordinate the body's response to the experience or expectation of major injury-the immune, endocrine, and neuromodulatory neurotransmitter systems. A view of PTSD and PST sharing common pathophysiologic elements related to the CNS response to acute injury or threat carries important implications for research and clinical care.
Collapse
|
53
|
Herring WJ, Roth T, Krystal AD, Michelson D. Orexin receptor antagonists for the treatment of insomnia and potential treatment of other neuropsychiatric indications. J Sleep Res 2018; 28:e12782. [DOI: 10.1111/jsr.12782] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/06/2018] [Accepted: 09/22/2018] [Indexed: 01/06/2023]
Affiliation(s)
| | - Thomas Roth
- Sleep Disorders and Research Center Henry Ford Hospital Detroit MI USA
| | - Andrew D. Krystal
- Department of Psychiatry University of California San Francisco California USA
| | - David Michelson
- Clinical ResearchMerck & Co., Inc. Kenilworth New Jersey USA
| |
Collapse
|
54
|
Abstract
The neuropeptides orexins are important in regulating the neurobiological systems that respond to stressful stimuli. Furthermore, orexins are known to play a role many of the phenotypes associated with stress-related mental illness such as changes in cognition, sleep-wake states, and appetite. Interestingly, orexins are altered in stress-related psychiatric disorders such as Major Depressive Disorder and Anxiety Disorders. Thus, orexins may be a potential target for treatment of these disorders. In this review, we will focus on what is known about the role of orexins in acute and repeated stress, in stress-induced phenotypes relevant to psychiatric illness in preclinical models, and in stress-related psychiatric illness in humans. We will also briefly discuss how orexins may contribute to sex differences in the stress response and subsequent phenotypes relevant to mental health, as many stress-related psychiatric disorders are twice as prevalent in women.
Collapse
|
55
|
Sargin D. The role of the orexin system in stress response. Neuropharmacology 2018; 154:68-78. [PMID: 30266600 DOI: 10.1016/j.neuropharm.2018.09.034] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 11/30/2022]
Abstract
Orexins are neuropeptides that are exclusively produced by hypothalamic neurons, which project throughout the entire brain. Orexin, also known as hypocretins, were initially identified to play a fundamental role in food intake, arousal and the regulation of sleep and wakefulness. Recent studies identified orexins to be critical for diverse physiological processes including motivation, reward, attention, emotional regulation, stress and anxiety. Here, I review recent findings that indicate orexin has an important role in acute and chronic stress. I also summarize the recent optogenetic and chemogenetic studies that have advanced our understanding of the orexin system. I will conclude by discussing clinical studies that implicate orexins in mental health disorders. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Derya Sargin
- Hotchkiss Brain Institute and the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
56
|
Chen PY, Chen CH, Chang CK, Kao CF, Lu ML, Lin SK, Huang MC, Hwang LL, Mondelli V. Orexin-A Levels in Relation to the Risk of Metabolic Syndrome in Patients with Schizophrenia Taking Antipsychotics. Int J Neuropsychopharmacol 2018; 22:28-36. [PMID: 30204875 PMCID: PMC6313111 DOI: 10.1093/ijnp/pyy075] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The role of orexin-A in regulating metabolic homeostasis has been recognized, but its association with antipsychotic-induced metabolic abnormalities remains unclear. We investigated the association between orexin-A levels and metabolic syndrome in patients with schizophrenia treated with clozapine or less obesogenic antipsychotics compared with nonpsychiatric controls. METHODS Plasma orexin-A levels and metabolic parameters were determined in 159 patients with schizophrenia: 109 taking clozapine; 50 taking aripiprazole, amisulpride, ziprasidone, or haloperidol; and 60 nonpsychiatric controls. RESULTS Orexin-A levels were significantly higher in the group taking less obesogenic antipsychotics, followed by the clozapine group and the controls (F=104.6, P<.01). Higher orexin-A levels were correlated with better metabolic profiles in the patient groups but not in the controls. Regression analyses revealed that the patients with higher orexin-A levels had significantly lower risk of metabolic syndrome (adjusted odds ratio [OR]=0.04, 95% CI: 0.01-0.38 for the 2nd tertile; OR=0.04, 95% CI: 0.01-0.36 for the 3rd tertile, compared with the first tertile), after adjustment for age, sex, smoking history, types of antipsychotics (clozapine vs less obesogenic antipsychotics), duration of antipsychotic treatment, and disease severity. CONCLUSIONS Our results revealed that the orexin-A level was upregulated in patients with schizophrenia treated with antipsychotics, especially for the group taking less obesogenic antipsychotics. Furthermore, higher orexin-A levels were independently associated with better metabolic profiles. These observations suggest that an upregulation of orexin-A has a protective effect against the development of metabolic abnormalities in patients with schizophrenia receiving antipsychotic treatment.
Collapse
Affiliation(s)
- Po-Yu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan,Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan,Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Chun-Hsin Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan,Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chin-Kuo Chang
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom,Department of Health and Welfare, University of Taipei, Taipei, Taiwan
| | - Chung-Feng Kao
- Department of Agronomy, College of Agriculture & Natural Resources, National Chung-Hsing University, Taichung, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan,Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ku Lin
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan,Psychiatric Research Center, Taipei Medical University Hospital,Correspondence: Ming-Chyi Huang, MD, PhD, Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, 309 Song-de Road, Taipei 110, Taiwan (); and Ling-Ling Hwang, PhD, Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan ()
| | - Ling-Ling Hwang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,Correspondence: Ming-Chyi Huang, MD, PhD, Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, 309 Song-de Road, Taipei 110, Taiwan (); and Ling-Ling Hwang, PhD, Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan ()
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
57
|
Tsuneki H, Wada T, Sasaoka T. Chronopathophysiological implications of orexin in sleep disturbances and lifestyle-related disorders. Pharmacol Ther 2018; 186:25-44. [PMID: 29289556 DOI: 10.1016/j.pharmthera.2017.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
58
|
Shi L, Chen W, Deng J, Chen S, Han Y, Khan MZ, Liu J, Que J, Bao Y, Lu L, Shi J. Orexin A Differentially Influences the Extinction Retention of Recent and Remote Fear Memory. Front Neurosci 2018; 12:295. [PMID: 29773974 PMCID: PMC5943634 DOI: 10.3389/fnins.2018.00295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/16/2018] [Indexed: 12/02/2022] Open
Abstract
Recently the role of the orexin system in the learning and memory, especially orexin A, which could enhance fear memory through regulating the activity of amygdala, has drawn considerable attention. However, the relationship between orexin A and extinction memory remains unclear. To investigate the effect of orexin A on extinction memory in humans, we recruited 43 male subjects and divided them into a recent group and remote group. After acquiring Pavlovian fear conditioning, individuals in recent group experienced fear extinction 24 h after acquisition, and remote group underwent extinction 2 weeks later. Meanwhile, plasma orexin A levels before extinction were measured by enzyme-linked immunosorbent assay. Both groups received memory test 24 h after fear extinction. The results showed that both recent and remote groups successfully acquired fear conditioning and had spontaneous recovery at test. In particular, the correlational analysis indicated that orexin A levels before extinction were negatively associated with fear responses during test only in recent group, but not in remote group. Moreover, individuals with high orexin A levels still kept low fear responses after extinction in recent group by subgroup analyses. The results suggest that orexin A could influence the retention of recent fear memory extinction, without affecting remote fear extinction. These findings remind us the orexin system can be a potential treatment target for fear-related disorders, and the mechanisms of recent and remote fear extinction may be different.
Collapse
Affiliation(s)
- Le Shi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Wenhao Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Sijing Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Muhammad Z Khan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Jiajia Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Jianyu Que
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China.,Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| |
Collapse
|
59
|
Sex- and Age-dependent Effects of Orexin 1 Receptor Blockade on Open-Field Behavior and Neuronal Activity. Neuroscience 2018; 381:11-21. [PMID: 29678754 DOI: 10.1016/j.neuroscience.2018.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
Adolescence is a sensitive and critical period in brain development where psychiatric disorders such as anxiety, depression and post-traumatic stress disorder are more likely to emerge following a stressful life event. Females are two times more likely to suffer from psychiatric disorders than males. Patients with these disorders show alterations in orexins (also called hypocretins), important neuropeptides that regulate arousal, wakefulness and the hypothalamic-pituitary-adrenal axis activity. Little is known on the role of orexins in mediating arousal behaviors in male and female rats during adolescence or adulthood. Here, we examine the influence of orexin 1 receptor blockade by SB334867 in open-field behavior in male and female rats during early adolescence (PND 31-33) or adulthood (PND 75-77). Animals were injected with 0 (vehicle), 1, 10, or 30 mg/kg SB334867 (i.p.). Thirty minutes later, they were placed in an open field, and behavior and neuronal activity (c-Fos) were assessed. In adolescent males, SB334867 significantly increased immobility in the 10 mg/kg group compared to vehicle. However, this increase in immobility in adolescent males was not observed in adolescent females. In contrast to adolescent males, adult males in the 10 mg/kg dose group showed the opposite effect on immobility compared to vehicle. These results indicate that 10 mg/kg dose of SB334867 has opposing effects in adolescent and adult males, but few effects in adolescent and adult females. Differences in functional networks between limbic regions may underlie these effects of orexin receptor blockade that are sex- and age-dependent in rats.
Collapse
|
60
|
Grafe LA, Eacret D, Dobkin J, Bhatnagar S. Reduced Orexin System Function Contributes to Resilience to Repeated Social Stress. eNeuro 2018; 5:ENEURO.0273-17.2018. [PMID: 29662948 PMCID: PMC5900465 DOI: 10.1523/eneuro.0273-17.2018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 12/12/2022] Open
Abstract
Exposure to stress increases the risk of developing affective disorders such as depression and post-traumatic stress disorder (PTSD). However, these disorders occur in only a subset of individuals, those that are more vulnerable to the effects of stress, whereas others remain resilient. The coping style adopted to deal with the stressor, either passive or active coping, is related to vulnerability or resilience, respectively. Important neural substrates that mediate responses to a stressor are the orexins. These neuropeptides are altered in the cerebrospinal fluid of patients with stress-related illnesses such as depression and PTSD. The present experiments used a rodent social defeat model that generates actively coping rats and passively coping rats, which we have previously shown exhibit resilient and vulnerable profiles, respectively, to examine if orexins play a role in these stress-induced phenotypes. In situ radiolabeling and qPCR revealed that actively coping rats expressed significantly lower prepro-orexin mRNA compared with passively coping rats. This led to the hypothesis that lower levels of orexins contribute to resilience to repeated social stress. To test this hypothesis, rats first underwent 5 d of social defeat to establish active and passive coping phenotypes. Then, orexin neurons were inhibited before each social defeat for three additional days using designer receptors exclusively activated by designer drugs (DREADDs). Inhibition of orexins increased social interaction behavior and decreased depressive-like behavior in the vulnerable population of rats. Indeed, these data suggest that lowering orexins promoted resilience to social defeat and may be an important target for treatment of stress-related disorders.
Collapse
Affiliation(s)
- Laura A. Grafe
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Darrell Eacret
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Jane Dobkin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
61
|
Mäkelä KA, Karhu T, Jurado Acosta A, Vakkuri O, Leppäluoto J, Herzig KH. Plasma Orexin-A Levels Do Not Undergo Circadian Rhythm in Young Healthy Male Subjects. Front Endocrinol (Lausanne) 2018; 9:710. [PMID: 30568633 PMCID: PMC6289979 DOI: 10.3389/fendo.2018.00710] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/12/2018] [Indexed: 11/22/2022] Open
Abstract
Orexin-A (OXA) has been originally isolated from a precursor peptide prepro-orexin from the lateral hypothalamus. The orexin system has been attributed to important functions in sleep, arousal and regulation of energy homeostasis. In addition to its high levels in cerebrospinal fluid, OXA is present in blood. However, reported peptide concentrations in plasma vary significantly depending on the method used. Therefore, a specific and sensitive OXA radioimmunoassay (RIA) with solid phase extraction method was developed to determine whether plasma OXA concentrations is affected by acute feeding and/or wake and sleep in young healthy males. Blood samples were collected for 24 h from nine healthy males (aged 20-24 years; BMI 20.7-26.5) every 2 h starting at 11 a.m. Food was served at 12 p.m, 5:30 p.m, 8 p.m and 8 a.m and the sleep time was between 10 p.m and 7 a.m. Plasma samples were analyzed in addition for cortisol and melatonin levels. Blood pressure was monitored through the experimental period. OXA antibody was raised in rabbits. OXA antiserum had only minor cross-reactivity with prepro-orexin precursor (<0.001%), amino-terminal peptide (<0.001%), carboxy-terminal peptide (0.001%), and orexin-B (0.3%) with high sensitivity (0.15 pg/tube). Plasma OXA levels varied between 0.5 and 16 pg/ml in seven subjects and were undetectable (below 0.5 pg/ml) in two subjects. The OXA concentrations did not correlate to feeding nor wake/sleep, whereas cortisol, melatonin and mean arterial blood pressure presented a clear circadian rhythm in each subject. In conclusion, OXA is present in blood in low amounts and its levels do not follow autonomic nor neuroendocrine circadian rhythms. Thereby, studies examining regulatory mechanisms and influences of OXA from blood samples should interpret results very cautiously.
Collapse
Affiliation(s)
- Kari A. Mäkelä
- Research Unit of Biomedicine, Physiology, University of Oulu, Oulu, Finland
- *Correspondence: Karl-Heinz Herzig
| | - Toni Karhu
- Research Unit of Biomedicine, Physiology, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Olavi Vakkuri
- Research Unit of Biomedicine, Physiology, University of Oulu, Oulu, Finland
| | - Juhani Leppäluoto
- Research Unit of Biomedicine, Physiology, University of Oulu, Oulu, Finland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Physiology, University of Oulu, Oulu, Finland
- Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
- Kari A. Mäkelä
| |
Collapse
|
62
|
Almeneessier AS, Alzoghaibi M, BaHammam AA, Ibrahim MG, Olaish AH, Nashwan SZ, BaHammam AS. The effects of diurnal intermittent fasting on the wake-promoting neurotransmitter orexin-A. Ann Thorac Med 2018; 13:48-54. [PMID: 29387256 PMCID: PMC5772108 DOI: 10.4103/atm.atm_181_17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND: Food restriction has been demonstrated to increase the alertness in different species and to increase the levels of the wake-promoting neurotransmitter orexin. We hypothesized that diurnal intermittent fasting (DIF) increases orexin-A levels during fasting. Therefore, we conducted this study to assess the effects of DIF, during the month of Ramadan, on orexin, while controlling for lifestyle changes that may accompany Ramadan such as sleep duration, bedtime and wake time, energy expenditure, light exposure, and food. METHODS: Eight young healthy volunteers (mean age, 25.4 ± 3.5 years) reported to the laboratory on three occasions: (1) 4 weeks before Ramadan while performing DIF for 1 week outside the month of Ramadan (fasting outside Ramadan); (2) 1 week before Ramadan (nonfasting baseline) (BL); and (3) during the 2nd week of Ramadan while performing DIF (Ramadan). Plasma levels of orexin-A were measured using an enzyme immunoassay five times at 22:00, 02:00, 04:00, 06:00, and 11:00. Caloric intake, light exposure, and sleep schedule were maintained during the participants’ stays in the laboratory in the three study periods. RESULTS: Orexin-A levels increased in the daytime during fasting and decreased at night compared to BL. The differences in orexin-A levels between DIF and BL were significant at 06:00, 11:00, 22:00, and 02:00. CONCLUSIONS: DIF increases orexin-A levels in the plasma during fasting hours. This finding supports findings from animal studies showing that fasting increases alertness.
Collapse
Affiliation(s)
- Aljohara S Almeneessier
- Department of Family Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alzoghaibi
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A BaHammam
- King Abdulaziz and His Companions Foundation for Giftedness and Creativity, Manarat Al Riyadh School, Riyadh, Saudi Arabia
| | - Mahmoud G Ibrahim
- King Abdulaziz and His Companions Foundation for Giftedness and Creativity, Manarat Al Riyadh School, Riyadh, Saudi Arabia
| | - Awad H Olaish
- University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Samar Z Nashwan
- University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed S BaHammam
- University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
63
|
Coleman PJ, Gotter AL, Herring WJ, Winrow CJ, Renger JJ. The Discovery of Suvorexant, the First Orexin Receptor Drug for Insomnia. Annu Rev Pharmacol Toxicol 2017; 57:509-533. [PMID: 27860547 DOI: 10.1146/annurev-pharmtox-010716-104837] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Historically, pharmacological therapies have used mechanisms such as γ-aminobutyric acid A (GABAA) receptor potentiation to drive sleep through broad suppression of central nervous system activity. With the discovery of orexin signaling loss as the etiology underlying narcolepsy, a disorder associated with hypersomnolence, orexin antagonism emerged as an alternative approach to attenuate orexin-induced wakefulness more selectively. Dual orexin receptor antagonists (DORAs) block the activity of orexin 1 and 2 receptors to both reduce the threshold to transition into sleep and attenuate orexin-mediated arousal. Among DORAs evaluated clinically, suvorexant has pharmacokinetic properties engineered for a plasma half-life appropriate for rapid sleep onset and maintenance at low to moderate doses. Unlike GABAA receptor modulators, DORAs promote both non-rapid eye movement (NREM) and REM sleep, do not disrupt sleep stage-specific quantitative electroencephalogram spectral profiles, and allow somnolence indistinct from normal sleep. The preservation of cognitive performance and the ability to arouse to salient stimuli after DORA administration suggest further advantages over historical therapies.
Collapse
Affiliation(s)
- Paul J Coleman
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, Pennsylvania 19486;
| | - Anthony L Gotter
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - W Joseph Herring
- Department of Clinical Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Christopher J Winrow
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - John J Renger
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486
| |
Collapse
|
64
|
Sharko AC, Fadel JR, Kaigler KF, Wilson MA. Activation of orexin/hypocretin neurons is associated with individual differences in cued fear extinction. Physiol Behav 2017; 178:93-102. [PMID: 27746261 PMCID: PMC5391308 DOI: 10.1016/j.physbeh.2016.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/23/2016] [Accepted: 10/11/2016] [Indexed: 01/15/2023]
Abstract
Identifying the neurobiological mechanisms that underlie differential sensitivity to stress is critical for understanding the development and expression of stress-induced disorders, such as post-traumatic stress disorder (PTSD). Preclinical studies have suggested that rodents display different phenotypes associated with extinction of Pavlovian conditioned fear responses, with some rodent populations being resistant to extinction. An emerging literature also suggests a role for orexins in the consolidation processes associated with fear learning and extinction. To examine the possibility that the orexin system might be involved in individual differences in fear extinction, we used a Pavlovian conditioning paradigm in outbred Long-Evans rats. Rats showed significant variability in the extinction of cue-conditioned freezing and extinction recall, and animals were divided into groups based on their extinction profiles based on a median split of percent freezing behavior during repeated exposure to the conditioned cue. Animals resistant to extinction (high freezers) showed more freezing during repeated cue presentations during the within trial and between trial extinction sessions compared with the group showing significant extinction (low freezers), although there were no differences between these groups in freezing upon return to the conditioned context or during the conditioning session. Following the extinction recall session, activation of orexin neurons was determined using dual label immunohistochemistry for cFos in orexin positive neurons in the hypothalamus. Individual differences in the extinction of cue conditioned fear were associated with differential activation of hypothalamic orexin neurons. Animals showing poor extinction of cue-induced freezing (high freezers) had significantly greater percentage of orexin neurons with Fos in the medial hypothalamus than animals displaying significant extinction and good extinction recall (low freezers). Further, the freezing during extinction learning was positively correlated with the percentage of activated orexin neurons in both the lateral and medial hypothalamic regions. No differences in the overall density of orexin neurons or Fos activation were seen between extinction phenotypes. Although correlative, our results support other studies implicating a role of the orexinergic system in regulating extinction of conditioned responses to threat.
Collapse
Affiliation(s)
- Amanda C Sharko
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - Jim R Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - Kris F Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA.
| |
Collapse
|
65
|
Kristiansen ES, Nielsen LS, Christensen SS, Botvid SHC, Nørgaard Poulsen J, Gazerani P. Sleep deprivation sensitizes human craniofacial muscles. Somatosens Mot Res 2017; 34:116-122. [DOI: 10.1080/08990220.2017.1317241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Louise Skou Nielsen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | | | | | - Parisa Gazerani
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
66
|
Grafe LA, Cornfeld A, Luz S, Valentino R, Bhatnagar S. Orexins Mediate Sex Differences in the Stress Response and in Cognitive Flexibility. Biol Psychiatry 2017; 81:683-692. [PMID: 27955897 PMCID: PMC5359079 DOI: 10.1016/j.biopsych.2016.10.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/12/2016] [Accepted: 10/04/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Women are twice as likely as men to experience stress-related psychiatric disorders. The biological basis of these sex differences is poorly understood. Orexins are altered in anxious and depressed patients. Using a rat model of repeated stress, we examined whether orexins contribute to sex differences in outcomes relevant to stress-related psychiatric diseases. METHODS Behavioral, neural, and endocrine habituation to repeated restraint stress and subsequent cognitive flexibility was examined in adult male and female rats. In parallel, orexin expression and activation were determined in both sexes, and chromatin immunoprecipitation was used to determine transcription factors acting at the orexin promoter. Designer receptors exclusively activated by designer drugs were used to inhibit orexin activation throughout repeated restraint to determine if the stress-related impairments in female rats could be reduced. RESULTS Female rats exhibited impaired habituation to repeated restraint with subsequent deficits in cognitive flexibility compared with male rats. Increased orexin expression and activation were observed in female rats compared with male rats. The higher expression of orexin messenger RNA in female rats was due to actions of glucocorticoid receptors on the orexin promoter, as determined by chromatin immunoprecipitation. Inhibition of orexins using designer receptors exclusively activated by designer drugs in female rats throughout repeated restraint abolished their heightened hypothalamic-pituitary-adrenal responsivity and reduced stress-induced cognitive impairments. CONCLUSIONS Orexins mediate the impairments in adaptations to repeated stress and in subsequent cognitive flexibility exhibited by female rats and provide evidence for a broader role for orexins in mediating functions relevant to stress-related psychiatric diseases.
Collapse
Affiliation(s)
- Laura A. Grafe
- Department of Anesthesiology and Critical Care, Children’s
Hospital of Philadelphia, Philadelphia, Pennsylvania, USA 19104
| | - Amanda Cornfeld
- University of Pennsylvania Perelman School of Medicine,
Philadelphia, Pennsylvania, USA 19104
| | - Sandra Luz
- Department of Anesthesiology and Critical Care, Children’s
Hospital of Philadelphia, Philadelphia, Pennsylvania, USA 19104
| | - Rita Valentino
- Department of Anesthesiology and Critical Care, Children’s
Hospital of Philadelphia, Philadelphia, Pennsylvania, USA 19104,University of Pennsylvania Perelman School of Medicine,
Philadelphia, Pennsylvania, USA 19104
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
67
|
Marvin RK, Saepoo MB, Ye S, White DB, Liu R, Hensley K, Rega P, Kazan V, Giovannucci DR, Isailovic D. Salivary protein changes in response to acute stress in medical residents performing advanced clinical simulations: a pilot proteomics study. Biomarkers 2017; 22:372-382. [PMID: 28055279 DOI: 10.1080/1354750x.2017.1279215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT Quantitative changes of salivary proteins due to acute stress were detected. OBJECTIVE To explore protein markers of stress in saliva of eight medical residents who performed emergency medicine simulations. MATERIALS AND METHODS Saliva was collected before the simulations, after the simulations, and following morning upon waking. Proteins were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), identified by mass spectrometry (MS), and relatively quantified by densitometry. RESULTS Salivary alpha-amylase and S-type cystatins significantly increased, while the ∼26 kDa and low-molecular weight (MW) (<10 kDa) SDS-PAGE bands exhibited changes after stress. DISCUSSION AND CONCLUSION Alpha-amylase and cystatins are potential salivary markers of acute stress, but further validation should be performed using larger sample populations.
Collapse
Affiliation(s)
- Rachel K Marvin
- a Department of Chemistry and Biochemistry , University of Toledo , Toledo , OH , USA
| | | | - Simiao Ye
- c Department of Mathematics and Statistics , University of Toledo , Toledo , OH , USA
| | - Donald B White
- c Department of Mathematics and Statistics , University of Toledo , Toledo , OH , USA
| | - Rong Liu
- c Department of Mathematics and Statistics , University of Toledo , Toledo , OH , USA
| | - Kenneth Hensley
- d Department of Pathology , University of Toledo, Toledo , OH, USA
| | - Paul Rega
- e Department of Emergency Medicine , University of Toledo , Toledo , OH , USA
| | - Viviane Kazan
- e Department of Emergency Medicine , University of Toledo , Toledo , OH , USA
| | | | - Dragan Isailovic
- a Department of Chemistry and Biochemistry , University of Toledo , Toledo , OH , USA
| |
Collapse
|
68
|
Collet TH, van der Klaauw AA, Henning E, Keogh JM, Suddaby D, Dachi SV, Dunbar S, Kelway S, Dickson SL, Farooqi IS, Schmid SM. The Sleep/Wake Cycle is Directly Modulated by Changes in Energy Balance. Sleep 2016; 39:1691-700. [PMID: 27306267 PMCID: PMC4989258 DOI: 10.5665/sleep.6094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/19/2016] [Indexed: 02/02/2023] Open
Abstract
STUDY OBJECTIVES The rise in obesity has been paralleled by a decline in sleep duration in epidemiological studies. However, the potential mechanisms linking energy balance and the sleep/wake cycle are not well understood. We aimed to examine the effects of manipulating energy balance on the sleep/wake cycle. METHODS Twelve healthy normal weight men were housed in a clinical research facility and studied at three time points: baseline, after energy balance was disrupted by 2 days of caloric restriction to 10% of energy requirements, and after energy balance was restored by 2 days of ad libitum/free feeding. Sleep architecture, duration of sleep stages, and sleep-associated respiratory parameters were measured by polysomnography. RESULTS Two days of caloric restriction significantly increased the duration of deep (stage 4) sleep (16.8% to 21.7% of total sleep time; P = 0.03); an effect which was entirely reversed upon free feeding (P = 0.01). Although the apnea-hypopnea index stayed within the reference range (< 5 events per hour), it decreased significantly from caloric restriction to free feeding (P = 0.03). Caloric restriction was associated with a marked fall in leptin (P < 0.001) and insulin levels (P = 0.002). The fall in orexin levels from baseline to caloric restriction correlated positively with duration of stage 4 sleep (Spearman rho = 0.83, P = 0.01) and negatively with the number of awakenings in caloric restriction (Spearman rho = -0.79, P = 0.01). CONCLUSIONS We demonstrate that changes in energy homeostasis directly and reversibly impact on the sleep/wake cycle. These findings provide a mechanistic framework for investigating the association between sleep duration and obesity risk.
Collapse
Affiliation(s)
- Tinh-Hai Collet
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science and the NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Agatha A. van der Klaauw
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science and the NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science and the NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Julia M. Keogh
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science and the NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Diane Suddaby
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science and the NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Sekesai V. Dachi
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science and the NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Síle Dunbar
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science and the NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Sarah Kelway
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science and the NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Suzanne L. Dickson
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - I. Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science and the NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Sebastian M. Schmid
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science and the NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
- Department of Internal Medicine, University of Lübeck, Germany
| |
Collapse
|
69
|
Orexin-A level elevation in recently abstinent male methamphetamine abusers. Psychiatry Res 2016; 239:9-11. [PMID: 27137956 DOI: 10.1016/j.psychres.2016.02.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 11/23/2022]
Abstract
Research has suggested that methamphetamine (METH) use influences orexin regulation. We examined the difference in orexin-A levels between METH abusers and healthy controls. Fasting serum orexin-A levels were measured in 35 participants who used METH in the preceding 3 weeks and 36 healthy controls. We found METH abusers had significantly higher orexin-A levels. No association was observed between orexin-A levels and METH use variables. Our results, consistent with prior preclinical evidence, showed that recent METH exposure is associated with increased orexin-A expression. Further investigation is required to determine whether orexin-A levels normalize after a longer term of abstinence.
Collapse
|
70
|
Ozsoy S, Olguner Eker O, Abdulrezzak U, Esel E. Relationship between orexin A and childhood maltreatment in female patients with depression and anxiety. Soc Neurosci 2016; 12:330-336. [DOI: 10.1080/17470919.2016.1169216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
71
|
Abstract
Sleep and energy balance are essential for health. The two processes act in concert to regulate central and peripheral homeostasis. During sleep, energy is conserved due to suspended activity, movement, and sensory responses, and is redirected to restore and replenish proteins and their assemblies into cellular structures. During wakefulness, various energy-demanding activities lead to hunger. Thus, hunger promotes arousal, and subsequent feeding, followed by satiety that promotes sleep via changes in neuroendocrine or neuropeptide signals. These signals overlap with circuits of sleep-wakefulness, feeding, and energy expenditure. Here, we will briefly review the literature that describes the interplay between the circadian system, sleep-wake, and feeding-fasting cycles that are needed to maintain energy balance and a healthy metabolic profile. In doing so, we describe the neuroendocrine, hormonal/peptide signals that integrate sleep and feeding behavior with energy metabolism.
Collapse
Affiliation(s)
- Charu Shukla
- Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School, West Roxbury, MA, USA
| | - Radhika Basheer
- Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School, West Roxbury, MA, USA
| |
Collapse
|
72
|
Yu B, Cui SY, Zhang XQ, Cui XY, Li SJ, Sheng ZF, Cao Q, Huang YL, Xu YP, Lin ZG, Yang G, Song JZ, Ding H, Zhang YH. Mechanisms Underlying Footshock and Psychological Stress-Induced Abrupt Awakening From Posttraumatic "Nightmares". Int J Neuropsychopharmacol 2015; 19:pyv113. [PMID: 26591007 PMCID: PMC4851262 DOI: 10.1093/ijnp/pyv113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/29/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Posttraumatic nightmares are a highly prevalent and distressing symptom of posttraumatic stress disorder (PTSD), but have been the subject of limited phenomenological investigations. METHODS We utilized a communication box to establish PTSD symptoms in rats through exposure to footshock stress (FS) and psychological stress (PS). The immunohistochemical test and high-performance liquid chromatography with electrochemical detection were used to detect the activity and monoamine levels in the rats' arousal systems. RESULTS Twenty-one days after traumatic stress, 14.17% of FS and 12.5% of PS rats exhibited startled awakening, and the same rats showed hyperfunction of the locus coeruleus/noradrenergic system and hypofunction of the perifornical nucleus/orexinergic system. Changes in serotonin levels in the dorsal raphe nucleus showed opposite trends in the FS and PS rats that were startled awake. No differences were found in other sleep/arousal systems. CONCLUSION These results suggest that different clinically therapeutic strategies should be considered to treat different trauma-induced posttraumatic nightmares.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Yong-He Zhang
- Department of Pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191, China (Ms Yu, Zhang, Li, Cao, Song, and Ding, Drs S-Y Cui, X-Y Cui, and Y-H Zhang, and Mr Sheng, Huang, Xu, Lin and Yang).
| |
Collapse
|
73
|
Flores Á, Saravia R, Maldonado R, Berrendero F. Orexins and fear: implications for the treatment of anxiety disorders. Trends Neurosci 2015. [DOI: 10.1016/j.tins.2015.06.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
74
|
Tohma Y, Akturk M, Altinova A, Yassibas E, Cerit ET, Gulbahar O, Arslan M, Sanlier N, Toruner F. Circulating Levels of Orexin-A, Nesfatin-1, Agouti-Related Peptide, and Neuropeptide Y in Patients with Hyperthyroidism. Thyroid 2015; 25:776-83. [PMID: 25915725 DOI: 10.1089/thy.2014.0515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND There is insufficient information about the appetite-related hormones orexin-A, nesfatin-1, agouti-related peptide (AgRP), and neuropeptide Y (NPY) in hyperthyroidism. The aim of the present study was to investigate the effects of hyperthyroidism on the basal metabolic rate (BMR) and energy intake, orexin-A, nesfatin-1, AgRP, NPY, and leptin levels in the circulation, and their relationship with each other and on appetite. METHODS In this prospective study, patients were evaluated in hyperthyroid and euthyroid states in comparison with healthy subjects. Twenty-one patients with overt hyperthyroidism and 33 healthy controls were included in the study. RESULTS Daily energy intake in the hyperthyroid state was found to be higher than that in the euthyroid state patient group (p=0.039). BMR was higher in hyperthyroid patients than the control group (p=0.018). Orexin-A was lower and nesfatin-1 was higher in hyperthyroid patients compared to the controls (p<0.001), whereas orexin-A increased and nesfatin-1 decreased after euthyroidism (p=0.003, p<0.001). No differences were found in the AgRP, NPY, and leptin levels between the hyperthyroid and euthyroid states and controls (p>0.05). Orexin-A correlated negatively with nesfatin-1 (p=0.042), BMR (p=0.013), free triiodothyronine (fT3; p<0.001), and free thyroxine (fT4; p<0.001) and positively with thyrotropin (TSH; p<0.001). Nesfatin-1 correlated negatively with orexin-A (p=0.042) and TSH (p<0.001) and positively with fT3 (p=0.005) and fT4 (p=0.001). In the regression analysis, "diagnosis of hyperthyroidism" was the main factor affecting orexin-A (p<0.001). CONCLUSIONS Although it seems that no relationship exists among orexin-A, nesfatin-1, and increased appetite in hyperthyroidism, the orexin-A and nesfatin-1 levels are markedly affected by hyperthyroidism.
Collapse
Affiliation(s)
- Yusuf Tohma
- 1 Department of Endocrinology and Metabolism, Gazi University , Ankara, Turkey
| | - Mujde Akturk
- 1 Department of Endocrinology and Metabolism, Gazi University , Ankara, Turkey
| | - Alev Altinova
- 1 Department of Endocrinology and Metabolism, Gazi University , Ankara, Turkey
| | - Emine Yassibas
- 2 Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University , Ankara, Turkey
| | - Ethem Turgay Cerit
- 1 Department of Endocrinology and Metabolism, Gazi University , Ankara, Turkey
| | - Ozlem Gulbahar
- 3 Department of Biochemistry, Faculty of Medicine, Gazi University , Ankara, Turkey
| | - Metin Arslan
- 1 Department of Endocrinology and Metabolism, Gazi University , Ankara, Turkey
| | - Nevin Sanlier
- 2 Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University , Ankara, Turkey
| | - Fusun Toruner
- 1 Department of Endocrinology and Metabolism, Gazi University , Ankara, Turkey
| |
Collapse
|
75
|
Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev 2015; 20:63-73. [PMID: 25462194 DOI: 10.1016/j.arr.2014.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/19/2014] [Accepted: 11/14/2014] [Indexed: 02/03/2023]
Abstract
The hypothalamic neuropeptides orexin A and B (hypocretin 1 and 2) are important homeostatic mediators of central control of energy metabolism and maintenance of sleep/wake states. Dysregulation or loss of orexin signaling has been linked to narcolepsy, obesity, and age-related disorders. In this review, we present an overview of our current understanding of orexin function, focusing on sleep disorders, energy balance, and aging, in both rodents and humans. We first discuss animal models used in studies of obesity and sleep, including loss of function using transgenic or viral-mediated approaches, gain of function models using exogenous delivery of orexin receptor agonist, and naturally-occurring models in which orexin responsiveness varies by individual. We next explore rodent models of orexin in aging, presenting evidence that orexin loss contributes to age-related changes in sleep and energy balance. In the next section, we focus on clinical importance of orexin in human obesity, sleep, and aging. We include discussion of orexin loss in narcolepsy and potential importance of orexin in insomnia, correlations between animal and human studies of age-related decline, and evidence for orexin involvement in age-related changes in cognitive performance. Finally, we present a summary of recent studies of orexin in neurodegenerative disease. We conclude that orexin acts as an integrative homeostatic signal influencing numerous brain regions, and that this pivotal role results in potential dysregulation of multiple physiological processes when orexin signaling is disrupted or lost.
Collapse
|
76
|
Chien YL, Liu CM, Shan JC, Lee HJ, Hsieh MH, Hwu HG, Chiou LC. Elevated plasma orexin A levels in a subgroup of patients with schizophrenia associated with fewer negative and disorganized symptoms. Psychoneuroendocrinology 2015; 53:1-9. [PMID: 25560205 DOI: 10.1016/j.psyneuen.2014.12.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/29/2014] [Accepted: 12/15/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Orexin A and B, a pair of hypothalamic neuropeptides also named hypocretin 1 and 2, play a role in the regulation of arousal, appetite, reward, attention, and cognition. Animal studies showed that antipsychotics can activate orexin neurons in a manner correlated with their weight gain liability. However, little is known about the role of orexin in patients with schizophrenia. This study aimed to investigate the correlation of plasma orexin level with clinical symptom profile, neurocognitive functioning and weight gain liability of the antipsychotics taken in patients with schizophrenia. METHODS We measured plasma levels of orexin A in 127 patients with schizophrenia and 34 healthy controls by radioimmunoassay. In patients, we assessed clinical symptoms on the Positive and Negative Syndrome Scale and executive function by the Wisconsin Card Sorting test (WCST), and examined their associations with plasma orexin A level. RESULTS Patients with schizophrenia had a significantly higher mean orexin A level than healthy controls (60.7±37.9 vs. 38.8±15.5pg/ml). Patients were divided into two subgroups based on their orexin A levels that were distributed in two clusters divided by 80pg/ml. Patients in the high-orexin subgroup had significantly fewer negative and disorganized symptoms, and tended to have fewer perseverative errors, more failure to maintain set yet comparable category achieved on the WCST than the normal-orexin subgroup. There was no significant difference in orexin A levels among patients taking antipsychotics with different weight gain liabilities. CONCLUSION Higher level of orexin A seems to be related to favorable clinical symptom profiles of schizophrenia, but the causal relationship needs further clarification.
Collapse
Affiliation(s)
- Yi-Ling Chien
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jia-Chi Shan
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Department of Psychiatry, Cathay General Hospital, Taipei, Taiwan
| | - Hsin-Jung Lee
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming H Hsieh
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Neurobiology and Cognitive Science Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lih-Chu Chiou
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
77
|
Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015; 9:9. [PMID: 25741247 PMCID: PMC4332303 DOI: 10.3389/fnsys.2015.00009] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/15/2015] [Indexed: 12/26/2022] Open
Abstract
Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA) is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH) or orexins/hypocretins (OX) are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts) has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.
Collapse
Affiliation(s)
- Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, MI, USA ; Center for Integrative Toxicology East Lansing, MI, USA
| | | | - Gina M Leinninger
- Center for Integrative Toxicology East Lansing, MI, USA ; Department of Physiology, Michigan State University East Lansing, MI, USA
| |
Collapse
|
78
|
Chen Q, de Lecea L, Hu Z, Gao D. The hypocretin/orexin system: an increasingly important role in neuropsychiatry. Med Res Rev 2014; 35:152-97. [PMID: 25044006 DOI: 10.1002/med.21326] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypocretins, also named as orexins, are excitatory neuropeptides secreted by neurons specifically located in lateral hypothalamus and perifornical areas. Orexinergic fibers are extensively distributed in various brain regions and involved in a number of physiological functions, such as arousal, cognition, stress, appetite, and metabolism. Arousal is the most important function of orexin system as dysfunction of orexin signaling leads to narcolepsy. In addition to narcolepsy, orexin dysfunction is associated with serious neural disorders, including addiction, depression, and anxiety. However, some results linking orexin with these disorders are still contradictory, which may result from differences of detection methods or the precision of tools used in measurements; strategies targeted to orexin system (e.g., antagonists to orexin receptors, gene delivery, and cell transplantation) are promising new tools for treatment of neuropsychiatric disorders, though studies are still in a stage of preclinical or clinical research.
Collapse
Affiliation(s)
- Quanhui Chen
- Department of Physiology, Third Military Medical University, Chongqing 400038, China; Department of Sleep and Psychology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | |
Collapse
|
79
|
Yeoh JW, Campbell EJ, James MH, Graham BA, Dayas CV. Orexin antagonists for neuropsychiatric disease: progress and potential pitfalls. Front Neurosci 2014; 8:36. [PMID: 24616658 PMCID: PMC3934415 DOI: 10.3389/fnins.2014.00036] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/10/2014] [Indexed: 11/20/2022] Open
Abstract
The tight regulation of sleep/wake states is critical for mental and physiological wellbeing. For example, dysregulation of sleep/wake systems predisposes individuals to metabolic disorders such as obesity and psychiatric problems, including depression. Contributing to this understanding, the last decade has seen significant advances in our appreciation of the complex interactions between brain systems that control the transition between sleep and wake states. Pivotal to our increased understanding of this pathway was the description of a group of neurons in the lateral hypothalamus (LH) that express the neuropeptides orexin A and B (hypocretin, Hcrt-1 and Hcrt-2). Orexin neurons were quickly placed at center stage with the demonstration that loss of normal orexin function is associated with the development of narcolepsy—a condition in which sufferers fail to maintain normal levels of daytime wakefulness. Since these initial seminal findings, much progress has been made in our understanding of the physiology and function of the orexin system. For example, the orexin system has been identified as a key modulator of autonomic and neuroendocrine function, arousal, reward and attention. Notably, studies in animals suggest that dysregulation of orexin function is associated with neuropsychiatric states such as addiction and mood disorders including depression and anxiety. This review discusses the progress associated with therapeutic attempts to restore orexin system function and treat neuropsychiatric conditions such as addiction, depression and anxiety. We also highlight potential pitfalls and challenges associated with targeting this system to treat these neuropsychiatric states.
Collapse
Affiliation(s)
- Jiann Wei Yeoh
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Erin J Campbell
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Morgan H James
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Brett A Graham
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| | - Christopher V Dayas
- Neurobiology of Addiction Laboratory, The Centre for Translational Neuroscience and Mental Health Research, School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute Newcastle, NSW, Australia
| |
Collapse
|
80
|
Abstract
The hypocretin system is constituted by a small group of hypothalamic neurons with widespread connections within the entire central nervous system producing two neuropeptides involved in several key physiological functions such as the regulation of sleep and wakefulness, motor control, autonomic functions, metabolism, feeding behavior, and reward. Narcolepsy with cataplexy is a neurological disorder regarded as a disease model for the selective hypocretin system damage, and also shares several psychopatological traits and comorbidities with psychiatric disorders. We reviewed the available literature on the involvement of the hypocretin system in psychiatric nosography. Different evidences such as cerebrospinal hypocretin-1 levels, genetic polymorphisms of the neuropeptides or their receptors, response to treatments, clinical, experimental and functional data directly or indirectly linked the hypocretin system to schizophrenia, mood, anxiety and eating disorders, as well as to addiction. Future genetic and pharmacological studies will disentangle the hypocretin system role in the field of psychiatry.
Collapse
Affiliation(s)
- Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Ugo Foscolo 7, 40123, Bologna, Italy
| | | | | | | |
Collapse
|
81
|
Lebold TP, Bonaventure P, Shireman BT. Selective orexin receptor antagonists. Bioorg Med Chem Lett 2013; 23:4761-9. [PMID: 23891187 DOI: 10.1016/j.bmcl.2013.06.057] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 01/03/2023]
Abstract
The orexin, or hypocretin, neuropeptides (orexin-A and orexin-B) are produced on neurons in the hypothalamus which project to key areas of the brain that control sleep-wake states, modulation of food intake, panic, anxiety, emotion, reward and addictive behaviors. These neuropeptides exert their effects on a pair of G-protein coupled receptors termed the orexin-1 (OX1) and orexin-2 (OX2) receptors. Emerging biology suggests the involvement of these receptors in psychiatric disorders as they are thought to play a key role in the regulation of multiple systems. This review is intended to highlight key selective OX1 or OX2 small-molecule antagonists.
Collapse
Affiliation(s)
- Terry P Lebold
- Janssen Research & Development, 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | | |
Collapse
|
82
|
Chase MH. A unified survival theory of the functioning of the hypocretinergic system. J Appl Physiol (1985) 2013; 115:954-71. [PMID: 23640599 DOI: 10.1152/japplphysiol.00700.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This article advances the theory that the hypocretinergic (orexinergic) system initiates, coordinates, and maintains survival behaviors and survival-related processes (i.e., the Unified Survival Theory of the Functioning of the Hypocretinergic System or "Unified Hypocretinergic Survival Theory"). A priori presumptive support for the Unified Hypocretinergic Survival Theory emanates from the fact that neurons that contain hypocretin are located in the key executive central nervous system (CNS) site, the lateral hypothalamus, that for decades has been well-documented to govern core survival behaviors such as fight, flight, and food consumption. In addition, the hypocretinergic system exhibits the requisite morphological and electrophysiological capabilities to control survival behaviors and related processes. Complementary behavioral data demonstrate that all facets of "survival" are coordinated by the hypocretinergic system and that hypocretinergic directives are not promulgated except during survival behaviors. Importantly, it has been shown that survival behaviors are selectively impacted when the hypocretinergic system is impaired or rendered nonfunctional, whereas other behaviors are relatively unaffected. The Unified Hypocretinergic Survival Theory resolves the disparate, perplexing, and often paradoxical-appearing results of previous studies; it also provides a foundation for future hypothesis-driven basic science and clinical explorations of the hypocretinergic system.
Collapse
Affiliation(s)
- Michael H Chase
- WebSciences International, Veterans Affairs-Greater Los Angeles Healthcare System, University of California, Los Angeles School of Medicine, Los Angeles, California
| |
Collapse
|
83
|
Hagen J, Lyon W, Chushak Y, Tomczak M, Naik R, Stone M, Kelley-Loughnane N. Detection of orexin A neuropeptide in biological fluids using a zinc oxide field effect transistor. ACS Chem Neurosci 2013; 4:444-53. [PMID: 23509980 DOI: 10.1021/cn300159e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Biomarkers which are indicative of acute physiological and emotional states are studied in a number of different areas in cognitive neuroscience. Currently, many cognitive studies are conducted based on programmed tasks followed by timed biofluid sampling, central laboratory processing, and followed by data analysis. In this work, we present a sensor platform capable of rapid biomarker detection specific for detecting neuropeptide orexin A, found in blood and saliva and known as an indicator of fatigue and cognitive performance. A peptide recognition element that selectively binds to orexin A was designed, characterized, and functionalized onto a zinc oxide field effect transistor to enable rapid detection. The detection limit using the sensor platform was sub-picomolar in water, and picomolar to nanomolar levels in saliva and serum. The transistor and recognition element sensor platform can be easily expanded, allowing for multiple biomarkers to be detected simultaneously, lending itself to complex biomarker analysis applicable to rapid feedback for neuroscience research and physiological monitoring.
Collapse
Affiliation(s)
- Joshua Hagen
- 711th Human Performance Wing, Human Effectiveness
Directorate and ‡Materials
and Manufacturing Directorate, Air Force Research Laboratories, Wright Patterson Air Force Base, Dayton, Ohio, United
States
| | - Wanda Lyon
- 711th Human Performance Wing, Human Effectiveness
Directorate and ‡Materials
and Manufacturing Directorate, Air Force Research Laboratories, Wright Patterson Air Force Base, Dayton, Ohio, United
States
| | - Yaroslav Chushak
- 711th Human Performance Wing, Human Effectiveness
Directorate and ‡Materials
and Manufacturing Directorate, Air Force Research Laboratories, Wright Patterson Air Force Base, Dayton, Ohio, United
States
| | - Melanie Tomczak
- 711th Human Performance Wing, Human Effectiveness
Directorate and ‡Materials
and Manufacturing Directorate, Air Force Research Laboratories, Wright Patterson Air Force Base, Dayton, Ohio, United
States
| | - Rajesh Naik
- 711th Human Performance Wing, Human Effectiveness
Directorate and ‡Materials
and Manufacturing Directorate, Air Force Research Laboratories, Wright Patterson Air Force Base, Dayton, Ohio, United
States
| | - Morley Stone
- 711th Human Performance Wing, Human Effectiveness
Directorate and ‡Materials
and Manufacturing Directorate, Air Force Research Laboratories, Wright Patterson Air Force Base, Dayton, Ohio, United
States
| | - Nancy Kelley-Loughnane
- 711th Human Performance Wing, Human Effectiveness
Directorate and ‡Materials
and Manufacturing Directorate, Air Force Research Laboratories, Wright Patterson Air Force Base, Dayton, Ohio, United
States
| |
Collapse
|
84
|
|
85
|
Gotter AL, Webber AL, Coleman PJ, Renger JJ, Winrow CJ. International Union of Basic and Clinical Pharmacology. LXXXVI. Orexin receptor function, nomenclature and pharmacology. Pharmacol Rev 2012; 64:389-420. [PMID: 22759794 DOI: 10.1124/pr.111.005546] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Orexin signaling is essential for normal regulation of arousal and behavioral state control and represents an attractive target for therapeutics combating insomnia. Alternatively termed hypocretins, these neuropeptides were named to reflect sequence similarity to incretins and their potential to promote feeding. Current nomenclature reflects these molecular and biochemical discovery approaches in which HCRT, HCRTR1, and HCRTR2 genes encode prepro-orexin, the orexin 1 receptor (OX(1)) and the orexin 2 receptor (OX(2))-gene names designated by the Human Genome Organization and receptor names designated by the International Union of Basic and Clinical Pharmacology. Orexinergic neurons are most active during wakefulness and fall silent during inactive periods, a prolonged disruption in signaling most profoundly resulting in hypersomnia and narcolepsy. Hcrtr2 mutations underlie the etiology of canine narcolepsy, deficiencies in orexin-producing neurons are observed in the human disorder, and ablation of mouse orexin neurons or the Hcrt gene results in a narcolepsy-cataplexy phenotype. The development of orexin receptor antagonists and genetic models targeting components of the orexin pathway have elucidated the OX(2) receptor-specific role in histamine-mediated arousal and the contribution of both receptors in brainstem pathways involved in vigilance state gating. Orexin receptor antagonists of varying specificity uncovered additional roles beyond sleep and feeding that include addiction, depression, anxiety, and potential influences on peripheral physiology. Combined genetic and pharmacological approaches indicate that orexin signaling may represent a confluence of sleep, feeding, and reward pathways. Selective orexin receptor antagonism takes advantage of these properties toward the development of novel insomnia therapeutics.
Collapse
MESH Headings
- Animals
- Arousal/drug effects
- Arousal/genetics
- Clinical Trials as Topic
- Evolution, Molecular
- Humans
- Hypnotics and Sedatives/chemistry
- Hypnotics and Sedatives/pharmacology
- Hypnotics and Sedatives/therapeutic use
- International Agencies
- Ligands
- Models, Molecular
- Molecular Structure
- Narcolepsy/drug therapy
- Narcolepsy/genetics
- Neurotransmitter Agents/chemistry
- Neurotransmitter Agents/pharmacology
- Neurotransmitter Agents/therapeutic use
- Orexin Receptors
- Protein Conformation
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/classification
- Receptors, G-Protein-Coupled/genetics
- Receptors, Neuropeptide/agonists
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/classification
- Receptors, Neuropeptide/genetics
- Sleep Initiation and Maintenance Disorders/drug therapy
- Sleep Initiation and Maintenance Disorders/genetics
- Terminology as Topic
Collapse
Affiliation(s)
- Anthony L Gotter
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, PA 19486-0004.
| | | | | | | | | |
Collapse
|
86
|
Lungwitz EA, Molosh A, Johnson PL, Harvey BP, Dirks RC, Dietrich A, Minick P, Shekhar A, Truitt WA. Orexin-A induces anxiety-like behavior through interactions with glutamatergic receptors in the bed nucleus of the stria terminalis of rats. Physiol Behav 2012; 107:726-32. [PMID: 22652097 DOI: 10.1016/j.physbeh.2012.05.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/22/2022]
Abstract
The hypothalamic neuropeptide orexin (ORX) has been implicated in anxiety, and anxiety-like behaviors. The purpose of these studies was to determine the role of ORX, specifically orexin-A (ORX-A) in the bed nucleus of the stria terminalis (BNST) on anxiety-like behaviors in rats. Rats injected with ORX-A into the BNST displayed greater anxiety-like measures in the social interaction and elevated plus maze tests compared to vehicle treated controls. Such anxiety-like behaviors were not observed when the ORX-A injections were adjacent to the BNST, in the medial septum. The anxiety-inducing effects of direct infusions of ORX-A into the BNST may be a consequence of increased activation of BNST neurons. In BNST slice preparations using patch-clamp techniques, ORX-A induced membrane depolarization and generation of action potentials in a subset of BNST neurons. The anxiety-inducing effects of ORX-A in the BNST also appear to be dependent on NMDA-type glutamate receptor activity, as pre-injecting the NMDA antagonist AP5 into the BNST blocked anxiogenic effects of local ORX-A injections. Injections of AMPA-type receptor antagonists into the BNST prior to ORX-A resulted in only a partial attenuation of anxiety-like behaviors.
Collapse
Affiliation(s)
- Elizabeth A Lungwitz
- Graduate Program in Medical Neuroscience, Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Gotter AL, Roecker AJ, Hargreaves R, Coleman PJ, Winrow CJ, Renger JJ. Orexin receptors as therapeutic drug targets. PROGRESS IN BRAIN RESEARCH 2012; 198:163-88. [PMID: 22813974 DOI: 10.1016/b978-0-444-59489-1.00010-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Orexin (hypocretin) receptor antagonists stand as a model for the development of targeted CNS small-molecule therapeutics. The identification of mutations in the gene for the orexin 2 receptor responsible for canine narcolepsy, the demonstration of a hypersomnolence phenotype in hypocretin knockout mice and the disruption in orexin signaling in narcoleptic patients provides clear genetic proof of concept for targeting orexin-induced arousal for the treatment of insomnia. The full characterization of the genes encoding orexin and its two cognate receptors enabled the rapid development of in vitro and ex vivo assays with which to identify lead compound structures and to optimize potency and pharmacokinetic properties. Polysomnographic measures with cross-species translatability capable of measuring the sleep-promoting effects of orexin receptor antagonists from mice to man, and the existence of knockout models not only allow efficacy assessment but also the demonstration of mechanism of action. Focused efforts by a number of groups have identified potent compounds of diverse chemical structure with differential orexin receptor selectivity for either the orexin 1 receptor (OX₁R) or the orexin 2 receptor (OX₂R), or both. This work has yielded tool compounds that, along with genetic models, have been used to specifically define the role these receptors in mediating orexin-induced arousal and vigilance state control. Optimized dual receptor antagonists with favorable pharmacokinetic and safety profiles have now demonstrated efficacy in clinical development and represent a distinct mechanism of action for the treatment of insomnia relative to current standard of care.
Collapse
Affiliation(s)
- Anthony L Gotter
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
88
|
Johnson PL, Molosh A, Fitz SD, Truitt WA, Shekhar A. Orexin, stress, and anxiety/panic states. PROGRESS IN BRAIN RESEARCH 2012; 198:133-61. [PMID: 22813973 DOI: 10.1016/b978-0-444-59489-1.00009-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A panic response is an adaptive response to deal with an imminent threat and consists of an integrated pattern of behavioral (aggression, fleeing, or freezing) and increased cardiorespiratory and endocrine responses that are highly conserved across vertebrate species. In the 1920s and 1940s, Philip Bard and Walter Hess, respectively, determined that the posterior regions of the hypothalamus are critical for a "fight-or-flight" reaction to deal with an imminent threat. Since the 1940s it was determined that the posterior hypothalamic panic area was located dorsal (perifornical hypothalamus: PeF) and dorsomedial (dorsomedial hypothalamus: DMH) to the fornix. This area is also critical for regulating circadian rhythms and in 1998, a novel wake-promoting neuropeptide called orexin (ORX)/hypocretin was discovered and determined to be almost exclusively synthesized in the DMH/PeF perifornical hypothalamus and adjacent lateral hypothalamus. The most proximally emergent role of ORX is in regulation of wakefulness through interactions with efferent systems that mediate arousal and energy homeostasis. A hypoactive ORX system is also linked to narcolepsy. However, ORX role in more complex emotional responses is emerging in more recent studies where ORX is linked to depression and anxiety states. Here, we review data that demonstrates ORX ability to mobilize a coordinated adaptive panic/defense response (anxiety, cardiorespiratory, and endocrine components), and summarize the evidence that supports a hyperactive ORX system being linked to pathological panic and anxiety states.
Collapse
Affiliation(s)
- Philip L Johnson
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | | | | | |
Collapse
|
89
|
Logrip ML, Zorrilla EP, Koob GF. Stress modulation of drug self-administration: implications for addiction comorbidity with post-traumatic stress disorder. Neuropharmacology 2011; 62:552-64. [PMID: 21782834 DOI: 10.1016/j.neuropharm.2011.07.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/11/2011] [Accepted: 07/06/2011] [Indexed: 12/27/2022]
Abstract
Drug abuse and dependence present significant health burdens for our society, affecting roughly 10% of the population. Stress likely contributes to the development and persistence of drug use; for example, rates of substance dependence are elevated among individuals diagnosed with post-traumatic stress disorder (PTSD). Thus, understanding the interaction between stress and drug use, and associated neuroadaptations, is key for developing therapies to combat substance use disorders. For this purpose, many rodent models of the effects of stress exposure on substance use have been developed; the models can be classified according to three categories of stress exposure: developmental, adult nonsocial, and adult social. The present review addresses preclinical findings on the effect of each type of trauma on responses to and self-administration of drugs of abuse by focusing on a key exemplar for each category. In addition, the potential efficacy of targeting neuropeptide systems that have been implicated in stress responses and stress system neuroadaptation in order to treat comorbid PTSD and substance abuse will be discussed. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Marian L Logrip
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
90
|
Barzman DH, Patel A, Sonnier L, Strawn JR. Neuroendocrine aspects of pediatric aggression: Can hormone measures be clinically useful? Neuropsychiatr Dis Treat 2010; 6:691-7. [PMID: 21127686 PMCID: PMC2987501 DOI: 10.2147/ndt.s5832] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pediatric aggression is common in human societies, mainly presenting as impulsive aggression or predatory aggression. Numerous psychiatric disorders can contain aggression as a symptom, leading to difficulties in diagnosis and treatment. This review focuses on the biological systems that affect pediatric aggression. We review the hypothalamic-pituitary-adrenal (HPA) axis, the hypothalamic-pituitary-gonadal (HPG) axis, and the mechanisms by which these axes influence the body and mind of aggressive children and adolescents. Although this review focuses on the HPA and HPG axes, it is important to note that other biological systems have relationships with these two axes. Based on the results of the studies reviewed, elevated cortisol concentrations were associated with impulsive aggression, whereas, low levels of cortisol were associated with callous-unemotional traits similar to predatory aggression. Higher levels of dehydroepiandrosterone were correlated with higher levels of aggression as were higher levels of testosterone. However, there have been discrepancies in the results between various studies, indicating the need for more research on hormonal levels and pediatric aggression. In the future, hormonal levels may be useful in determining what treatments will work best for certain pediatric patients.
Collapse
Affiliation(s)
- Drew H Barzman
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | | | |
Collapse
|