51
|
Aaseth J, Javorac D, Djordjevic AB, Bulat Z, Skalny AV, Zaitseva IP, Aschner M, Tinkov AA. The Role of Persistent Organic Pollutants in Obesity: A Review of Laboratory and Epidemiological Studies. TOXICS 2022; 10:65. [PMID: 35202251 PMCID: PMC8877532 DOI: 10.3390/toxics10020065] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022]
Abstract
Persistent organic pollutants (POPs) are considered as potential obesogens that may affect adipose tissue development and functioning, thus promoting obesity. However, various POPs may have different mechanisms of action. The objective of the present review is to discuss the key mechanisms linking exposure to POPs to adipose tissue dysfunction and obesity. Laboratory data clearly demonstrate that the mechanisms associated with the interference of exposure to POPs with obesity include: (a) dysregulation of adipogenesis regulators (PPARγ and C/EBPα); (b) affinity and binding to nuclear receptors; (c) epigenetic effects; and/or (d) proinflammatory activity. Although in vivo data are generally corroborative of the in vitro results, studies in living organisms have shown that the impact of POPs on adipogenesis is affected by biological factors such as sex, age, and period of exposure. Epidemiological data demonstrate a significant association between exposure to POPs and obesity and obesity-associated metabolic disturbances (e.g., type 2 diabetes mellitus and metabolic syndrome), although the existing data are considered insufficient. In conclusion, both laboratory and epidemiological data underline the significant role of POPs as environmental obesogens. However, further studies are required to better characterize both the mechanisms and the dose/concentration-response effects of exposure to POPs in the development of obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Jan Aaseth
- Research Department, Innlandet Hospital Trust, P.O. Box 104, 2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, P.O. Box 400, 2418 Elverum, Norway
| | - Dragana Javorac
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia; (D.J.); (A.B.D.); (Z.B.)
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia; (D.J.); (A.B.D.); (Z.B.)
| | - Zorica Bulat
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia; (D.J.); (A.B.D.); (Z.B.)
| | - Anatoly V. Skalny
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
- Department of Bioelementology, KG Razumovsky Moscow State University of Technologies and Management, 109004 Moscow, Russia
| | - Irina P. Zaitseva
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia;
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
52
|
Analysis of Indirect Biomarkers of Effect after Exposure to Low Doses of Bisphenol A in a Study of Successive Generations of Mice. Animals (Basel) 2022; 12:ani12030300. [PMID: 35158624 PMCID: PMC8833323 DOI: 10.3390/ani12030300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Living beings are constantly and inadvertently exposed to a series of environmental and food pollutants, triggering effects on health that are transmitted over generations. Bisphenol A is a compound produced in large amounts world-wide and used in the manufacture of plastic containers and other utensils for daily use. It is an environmental and food pollutant with a demonstrated capacity to produce effects on the health of organisms exposed to it. The objective of our study was to identify possible indirect biomarkers of effect by means of the analysis of the blood biochemistry, and of certain reproductive parameters of animals exposed to Bisphenol A in doses considered to be safe over different generations. Our results did not show any modifications in the reproduction parameters evaluated, such as the duration of the estrous cycle, the size of the litters, or the percentage of the young alive at weaning time. However, they showed that there were alterations in biochemical parameters like glucose, total proteins, and albumin, which could therefore, be regarded as indirect indicators of an early effect of alterations in health caused by this compound. Abstract Bisphenol A (BPA) is considered as being an emerging pollutant, to which both animal and human populations are continuously and inadvertently exposed. The identification of indirect biomarkers of effect could be a key factor in determining early adverse outcomes from exposure to low doses of BPA. Thus, this study on mice aims to evaluate and identify indirect biomarkers of effect through the analysis of their blood biochemistry, and of certain reproduction parameters after exposure to different BPA concentrations (0.5, 2, 4, 50, and 100 µg/kg BW/day) in drinking water over generations. Our results showed that there were no modifications in the reproductive parameters evaluated, like estrous cycle duration, litter size, or the percentage of the young alive at reaching the weaning stage, at the exposure levels evaluated. However, there were modifications in the biochemical parameters, e.g., alterations in the glucose levels, that increased significantly (p < 0.05) in the breeders at the higher exposure doses (50 and 100 µg/kg BW/day in F1; 50 µg/kg BW/day in F2 and 100 µg/kg BW/day in F3), that would suggest that the BPA could induce hyperglycemia and its complications in adult animals, probably due to some damage in the pancreas cells; albumin, that increased in the breeders exposed to the highest dose in F1 and F3, inferring possible hepatic alterations. Further, total proteins showed a diminution in their values in F1 and F2, except the group exposed to 100 µg/kg BW/day, whereas in F3 the values of this parameter increased with respect to the control group, this aspect likely being related to a possible hepatic and renal alteration. Based on these results, glucose, albumin, and total proteins could initially be considered as early indicators of indirect effect after prolonged exposure to low BPA doses over generations.
Collapse
|
53
|
Franssen D, Svingen T, Lopez Rodriguez D, Van Duursen M, Boberg J, Parent AS. A Putative Adverse Outcome Pathway Network for Disrupted Female Pubertal Onset to Improve Testing and Regulation of Endocrine Disrupting Chemicals. Neuroendocrinology 2022; 112:101-114. [PMID: 33640887 DOI: 10.1159/000515478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/25/2021] [Indexed: 11/19/2022]
Abstract
The average age for pubertal onset in girls has declined over recent decades. Epidemiological studies in humans and experimental studies in animals suggest a causal role for endocrine disrupting chemicals (EDCs) that are present in our environment. Of concern, current testing and screening regimens are inadequate in identifying EDCs that may affect pubertal maturation, not least because they do not consider early-life exposure. Also, the causal relationship between EDC exposure and pubertal timing is still a matter of debate. To address this issue, we have used current knowledge to elaborate a network of putative adverse outcome pathways (pAOPs) to identify how chemicals can affect pubertal onset. By using the AOP framework, we highlight current gaps in mechanistic understanding that need to be addressed and simultaneously point towards events causative of pubertal disturbance that could be exploited for alternative test methods. We propose 6 pAOPs that could explain the disruption of pubertal timing by interfering with the central hypothalamic trigger of puberty, GnRH neurons, and by so doing highlight specific modes of action that could be targeted for alternative test method development.
Collapse
Affiliation(s)
- Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Majorie Van Duursen
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- Department of Pediatrics, CHU de Liège, Liège, Belgium
| |
Collapse
|
54
|
Sirasanagandla SR, Al-Huseini I, Al Mushaiqri M, Al-Abri N, Al-Ghafri F. Maternal resveratrol supplementation ameliorates bisphenol A-induced atherosclerotic lesions formation in adult offspring ApoE -/- mice. 3 Biotech 2022; 12:36. [PMID: 35070626 PMCID: PMC8727657 DOI: 10.1007/s13205-021-03078-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023] Open
Abstract
Current evidence suggests that intrauterine bisphenol A (BPA) exposure increases the risk of developing cardiovascular diseases in later stages of life. The beneficial effect of resveratrol (Rsv) on developmental programming of atherosclerosis lesions formation in offspring is seldom reported. Hence, we sought to study the effect of maternal Rsv in ameliorating perinatal BPA exposure-induced atherosclerosis lesions formation in adult offspring using the apolipoprotein E-deficient (ApoE-/-) mice model. The pregnant ApoE-/- mice were allocated into three groups: control, BPA, BPA + resveratrol (BPA + Rsv). The BPA group mice received BPA in their drinking water (1 μg/ml). BPA + Rsv group mice received BPA in their drinking water (1 μg/ml) and were treated orally with Rsv (20 mg kg-1 day-1). All the treatments were continued throughout the gestation and lactation period. Quantitative analysis of Sudan IV-stained aorta revealed a significantly increased area of atherosclerotic lesions in both female (p < 0.01) and male adult offspring mice (p < 0.01) in the BPA group. Supplementation with Rsv significantly reduced the BPA-induced atherosclerotic lesion development in the female offspring mice (p < 0.05). Transmission electron microscopy revealed the presence of a significantly high incidence of autophagic endothelial, smooth muscle, and macrophage cells in the aorta of BPA-exposed mice. Rsv treatment reduced the incidence of autophagic cells in BPA-exposed mice. In conclusion, maternal Rsv supplementation significantly prevents the BPA-induced atherosclerotic lesions formation in a sex-dependent manner potentially by acting as an autophagy modulator. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03078-y.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- grid.412846.d0000 0001 0726 9430Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoudh, PO Box 35, Muscat, PC 123 Oman
| | - Isehaq Al-Huseini
- grid.412846.d0000 0001 0726 9430Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoudh, Muscat, 123 Oman
| | - Mohamed Al Mushaiqri
- grid.412846.d0000 0001 0726 9430Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoudh, PO Box 35, Muscat, PC 123 Oman
| | - Nadia Al-Abri
- grid.412846.d0000 0001 0726 9430Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoudh, Muscat, 123 Oman
| | - Fatma Al-Ghafri
- grid.412846.d0000 0001 0726 9430Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoudh, Muscat, 123 Oman
| |
Collapse
|
55
|
Zamora AN, Marchlewicz E, Téllez-Rojo MM, Burant CF, Cantoral A, Song PXK, Mercado A, Dolinoy DC, Peterson KE. Trimester two gestational exposure to bisphenol A and adherence to mediterranean diet are associated with adolescent offspring oxidative stress and metabolic syndrome risk in a sex-specific manner. Front Nutr 2022; 9:961082. [PMID: 36276834 PMCID: PMC9579372 DOI: 10.3389/fnut.2022.961082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/09/2022] [Indexed: 01/25/2023] Open
Abstract
Background Exposure to prenatal bisphenol A (BPA) and Mediterranean Diet Score (MDS) has been linked to metabolic risk in child offspring. It remains unclear if independent and interactive effects persist in adolescence. Methods We examined prenatal BPA and MDS on adolescent offspring metabolic syndrome risk score (MRS) and 8-isoprostane (8-iso), a biomarker of oxidative stress. Data from maternal-adolescent dyads from a Mexico City cohort were utilized, including trimester-specific prenatal BPA from spot urine and MDS from food frequency questionnaires. Offspring socio-demographic data and biomarkers to estimate MRS and 8-iso were obtained during peri-adolescence. Results Adjusted linear regression models examined associations between trimester-specific BPA, MDS, and BPA*MDS on outcomes. Sex-stratified analyses revealed a significant association between MDS with increased 8-iso (β = 0.064, p < 0.05), and a marginal association between trimester two BPA with increased 8-iso (β = 0.237), while MDS modified the marginal association between BPA and 8-iso in females (β = 0.046). A negative, marginal association was observed between trimester two BPA and MRS (β = - 0.728), while BPA * MDS was marginally, positively associated with MRS (β = 0.152) in males. Conclusions Study findings indicate that trimester two prenatal BPA and maternal adherence to a Mediterranean diet may have sexually dimorphic effects on adolescent offspring oxidative stress and metabolic syndrome risk.
Collapse
Affiliation(s)
- Astrid N Zamora
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Elizabeth Marchlewicz
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Martha M Téllez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Charles F Burant
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States.,Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, United States
| | | | - Peter X K Song
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Adriana Mercado
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Dana C Dolinoy
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States.,Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States.,Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| |
Collapse
|
56
|
Lite C, Raja GL, Juliet M, Sridhar VV, Subhashree KD, Kumar P, Chakraborty P, Arockiaraj J. In utero exposure to endocrine-disrupting chemicals, maternal factors and alterations in the epigenetic landscape underlying later-life health effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103779. [PMID: 34843942 DOI: 10.1016/j.etap.2021.103779] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Widespread persistence of endocrine-disrupting chemicals (EDCs) in the environment has mandated the need to study their potential effects on an individual's long-term health after both acute and chronic exposure periods. In this review article a particular focus is given on in utero exposure to EDCs in rodent models which resulted in altered epigenetic programming and transgenerational effects in the offspring causing disrupted reproductive and metabolic phenotypes. The literature to date establishes the impact of transgenerational effects of EDCs potentially associated with epigenetic mediated mechanisms. Therefore, this review aims to provide a comprehensive overview of epigenetic programming and it's regulation in mammals, primarily focusing on the epigenetic plasticity and susceptibility to exogenous hormone active chemicals during the early developmental period. Further, we have also in depth discussed the epigenetic alterations associated with the exposure to selected EDCs such as Bisphenol A (BPA), di-2-ethylhexyl phthalate (DEHP) and vinclozlin upon in utero exposure especially in rodent models.
Collapse
Affiliation(s)
- Christy Lite
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India.
| | - Glancis Luzeena Raja
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India
| | - Melita Juliet
- Department of Oral and Maxillofacial Surgery, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India
| | - Vasisht Varsh Sridhar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India
| | - K Divya Subhashree
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India
| | - Praveen Kumar
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chennai 603203, Tamil Nadu, India.
| |
Collapse
|
57
|
Merrill AK, Anderson T, Conrad K, Marvin E, James-Todd T, Cory-Slechta DA, Sobolewski M. Protracted Impairment of Maternal Metabolic Health in Mouse Dams Following Pregnancy Exposure to a Mixture of Low Dose Endocrine-Disrupting Chemicals, a Pilot Study. TOXICS 2021; 9:346. [PMID: 34941779 PMCID: PMC8706199 DOI: 10.3390/toxics9120346] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022]
Abstract
Pregnancy, a period of increased metabolic demands coordinated by fluctuating steroid hormones, is an understudied critical window of disease susceptibility for later-life maternal metabolic health. Epidemiological studies have identified associations between exposures to various endocrine-disrupting chemicals (EDCs) with an increased risk for metabolic syndrome, obesity, and diabetes. Whether such adverse outcomes would be heightened by concurrent exposures to multiple EDCs during pregnancy, consistent with the reality that human exposures are to EDC mixtures, was examined in the current pilot study. Mouse dams were orally exposed to relatively low doses of four EDCs: (atrazine (10 mg/kg), bisphenol-A (50 µg/kg), perfluorooctanoic acid (0.1 mg/kg), 2,3,7,8-tetrachlorodibenzo-p-dioxin (0.036 µg/kg)), or the combination (MIX), from gestational day 7 until birth or for an equivalent 12 days in non-pregnant females. Glucose intolerance, serum lipids, weight, and visceral adiposity were assessed six months later. MIX-exposed dams exhibited hyperglycemia with a persistent elevation in blood glucose two hours after glucose administration in a glucose tolerance test, whereas no such effects were observed in MIX-exposed non-pregnant females. Correspondingly, MIX dams showed elevated serum low-density lipoprotein (LDL). There were no statistically significant differences in weight or visceral adipose; MIX dams showed an average visceral adipose volume to body volume ratio of 0.09, while the vehicle dams had an average ratio of 0.07. Collectively, these findings provide biological plausibility for the epidemiological associations observed between EDC exposures during pregnancy and subsequent maternal metabolic dyshomeostasis, and proof of concept data that highlight the importance of considering complex EDC mixtures based of off common health outcomes, e.g., for increased risk for later-life maternal metabolic effects following pregnancy.
Collapse
Affiliation(s)
- Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Timothy Anderson
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard University, Boston, MA 02115, USA;
| | - Deborah A. Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA; (A.K.M.); (T.A.); (K.C.); (E.M.); (D.A.C.-S.)
| |
Collapse
|
58
|
Morris J, Bealer EJ, Souza IDS, Repmann L, Bonelli H, Stanzione JF, Staehle MM. Chemical Exposure-Induced Developmental Neurotoxicity in Head-Regenerating Schmidtea Mediterranea. Toxicol Sci 2021; 185:220-231. [PMID: 34791476 DOI: 10.1093/toxsci/kfab132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The growing number of commercially-used chemicals that are under-evaluated for developmental neurotoxicity (DNT) combined with the difficulty in describing the etiology of exposure-related neurodevelopmental toxicity has created a reticent threat to human health. Current means of screening chemicals for DNT are limited to expensive, time-consuming, and labor-intensive traditional laboratory animal models. In this study, we hypothesize that exposed head regenerating planarian flatworms can effectively and efficiently categorize DNT in known developmental neurotoxins (ethanol and bisphenol A (BPA)). Planarian flatworms are an established alternative animal model for neurodevelopmental studies and have remarkable regenerative abilities allowing neurodevelopment to be induced via head resection. Here, we observed changes in photophobic behavior and central nervous system (CNS) morphology to evaluate the impact of exposure to low concentrations of ethanol, BPA, and BPA industry alternatives bisphenol F (BPF), and bisguaiacol (BG) on neurodevelopment. Our studies show that exposure to 1% v/v ethanol during regeneration induces a recoverable 48-hour delay in the development of proper CNS integrity, which aligns with behavioral assessments of cognitive ability. Exposure to BPA and its alternatives induced deviations to neurodevelopment in a range of severities, distinguished by suppressions, delays, or a combination of the two. These results suggest that quick and inexpensive behavioral assessments are a viable surrogate for tedious and costly immunostaining studies, equipping more utility and resolution to the planarian model for neurodevelopmental toxicity in the future of mass chemical screening. These studies demonstrate that behavioral phenotypes observed following chemical exposure are classifiable and also temporally correlated to the anatomical development of the central nervous system in planaria. This will facilitate and accelerate toxicological screening assays with this alternative animal model.
Collapse
Affiliation(s)
- J Morris
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - E J Bealer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - I D S Souza
- Department of Chemical Engineering, Rowan University, Glassboro, NJ
| | - L Repmann
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - H Bonelli
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| | - J F Stanzione
- Department of Chemical Engineering, Rowan University, Glassboro, NJ
| | - M M Staehle
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ
| |
Collapse
|
59
|
Mohsenzadeh MS, Razavi BM, Imenshahidi M, Tabatabaee Yazdi SA, Mohajeri SA, Hosseinzadeh H. Potential role of green tea extract and epigallocatechin gallate in preventing bisphenol A-induced metabolic disorders in rats: Biochemical and molecular evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153754. [PMID: 34607205 DOI: 10.1016/j.phymed.2021.153754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is an artificial chemical widely used in the production of polycarbonate plastics and epoxy resins. Accumulating evidence indicates that BPA exposure is associated with metabolic disorders. The beneficial effects of green tea and epigallocatechin gallate (EGCG), major catechin present in green tea, on alleviating BPA-induced metabolic disorders have been shown in various studies. PURPOSE Protective effects of green tea extract and EGCG on BPA-induced metabolic disorders and possible underlying mechanisms were investigated. METHODS Rats were randomly divided into control, green tea extract (50 and 100 mg/kg, IP), EGCG (20 and 40 mg/kg, IP), BPA (10 mg/kg, gavage), BPA plus green tea extract (25, 50, and 100 mg/kg, IP), BPA plus EGCG (10, 20, and 40 mg/kg, IP), and BPA plus vitamin E (200 IU/kg, IP). After two months, body weight, blood pressure, biochemical blood tests, hepatic malondialdehyde (MDA), and glutathione (GSH) were assessed. By enzyme-linked immunosorbent assay, serum levels of insulin, leptin, adiponectin, TNFα, and IL-6, and by western blotting, hepatic insulin signaling (IRS-1, PI3K, Akt) were measured. RESULTS BPA increased body weight, blood pressure, and MDA, decreased GSH, elevated serum levels of low-density lipoprotein cholesterol, total cholesterol, triglyceride, glucose, insulin, leptin, TNFα, IL-6, and liver enzymes including alanine aminotransferase and alkaline phosphatase, and lowered high-density lipoprotein cholesterol and adiponectin levels. In western blot, decreased phosphorylation of IRS-1, PI3K, and Akt was obtained. Administration of green tea extract, EGCG, or vitamin E with BPA reduced the detrimental effects of BPA. CONCLUSION These findings indicate that green tea extract and EGCG can be effective in preventing or reducing metabolic disorders induced by BPA linked to their antioxidant and anti-inflammatory activity, regulating the metabolism of lipids, and improving insulin signaling pathways.
Collapse
Affiliation(s)
- Mahdieh Sadat Mohsenzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
60
|
Cope HA, Blake BE, Love C, McCord J, Elmore SA, Harvey JB, Chappell VA, Fenton SE. Latent, sex-specific metabolic health effects in CD-1 mouse offspring exposed to PFOA or HFPO-DA (GenX) during gestation. EMERGING CONTAMINANTS 2021; 7:219-235. [PMID: 35097227 PMCID: PMC8794304 DOI: 10.1016/j.emcon.2021.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA) is an environmental contaminant associated with adverse metabolic outcomes in developmentally exposed human populations and mouse models. Hexafluoropropylene oxide-dimer acid (HFPO-DA, commonly called GenX) has replaced PFOA in many industrial applications in the U.S. and Europe and has been measured in global water systems from <1 to 9350 ng/L HFPO-DA. Health effects data for GenX are lacking. OBJECTIVE Determine the effects of gestational exposure to GenX on offspring weight gain trajectory, adult metabolic health, liver pathology and key adipose gene pathways in male and female CD-1 mice. METHODS Daily oral doses of GenX (0.2, 1.0, 2.0 mg/kg), PFOA (0.1, 1.0 mg/kg), or vehicle control were administered to pregnant mice (gestation days 1.5-17.5). Offspring were fed a high- or low-fat diet (HFD or LFD) at weaning until necropsy at 6 or 18 weeks, and metabolic endpoints were measured over time. PFOA and GenX serum and urine concentrations, weight gain, serum lipid parameters, body mass composition, glucose tolerance, white adipose tissue gene expression, and liver histopathology were evaluated. RESULTS Prenatal exposure to GenX led to its accumulation in the serum and urine of 5-day old pups (P = 0.007, P < 0.001), which was undetectable by weaning. By 18 weeks of age, male mice fed LFD in the 2.0 mg/kg GenX group displayed increased weight gain (P < 0.05), fat mass (P = 0.016), hepatocellular microvesicular fatty change (P = 0.015), and insulin sensitivity (P = 0.014) in comparison to control males fed LFD. Female mice fed HFD had a significant increase in hepatocyte single cell necrosis in 1.0 mg/kg GenX group (P = 0.022) and 1.0 mg/kg PFOA group (P = 0.003) compared to control HFD females. Both sexes were affected by gestational GenX exposure; however, the observed phenotype varied between sex with males displaying more characteristics of metabolic disease and females exhibiting liver damage in response to the gestational exposure. CONCLUSIONS Prenatal exposure to 1 mg/kg GenX and 1 mg/kg PFOA induces adverse metabolic outcomes in adult mice that are diet- and sex-dependent. GenX also accumulated in pup serum, suggesting that placental and potentially lactational transfer are important exposure routes for GenX.
Collapse
Affiliation(s)
- Harlie A. Cope
- National Toxicology Program Laboratory, Division of the National Toxicology Program (DNTP), National Institutes of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| | - Bevin E. Blake
- National Toxicology Program Laboratory, Division of the National Toxicology Program (DNTP), National Institutes of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| | - Charlotte Love
- National Toxicology Program Laboratory, Division of the National Toxicology Program (DNTP), National Institutes of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| | - James McCord
- Multimedia Methods Branch, Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Susan A. Elmore
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, NIH, RTP, NC, USA
| | - Janice B. Harvey
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, NIH, RTP, NC, USA
| | - Vesna A. Chappell
- National Toxicology Program Laboratory, Division of the National Toxicology Program (DNTP), National Institutes of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| | - Suzanne E. Fenton
- National Toxicology Program Laboratory, Division of the National Toxicology Program (DNTP), National Institutes of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA
| |
Collapse
|
61
|
Spiroux de Vendômois J, Bourdineaud JP, Apoteker A, Defarge N, Gaillard E, Lepage C, Testart J, Vélot C. Trans-disciplinary diagnosis for an in-depth reform of regulatory expertise in the field of environmental toxicology and security. Toxicol Res 2021; 37:405-419. [PMID: 34631497 DOI: 10.1007/s43188-020-00075-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Repeated health and environmental scandals, the loss of biodiversity and the recent burst of chronic diseases constantly remind us the inability of public authorities and risk assessment agencies to protect health and the environment. After reviewing the main shortcomings of our evaluation system of chemicals and new technologies, supported by some concrete examples, we develop a number of proposals to reform both the risk assessment agencies and the evaluation processes. We especially propose the establishment of an independent structure, a High Authority of Expertise, supervising, either at European level or at national level, all the evaluation agencies, and ensuring the transparency, the methodology and the deontology of the expertise. In addition to modifying the evaluation protocols, both in their nature and in their content, especially in order to adapt them to current pollutants such as endocrine disruptors, we propose a reform of the expertise processes based on transparency, contradiction, and greater democracy, including close collaboration between the institutional and scientific parties on the one hand and the whole civil society on the other. All the proposals we make are inspired by the desire to prevent, through appropriate mechanisms, the human, health, ecological, but also economic consequences of contemporary technological choices.
Collapse
Affiliation(s)
- Joël Spiroux de Vendômois
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France
| | - Jean-Paul Bourdineaud
- CNRS, UMR 5234, Laboratory of Fundamental Microbiology and Pathogenicity, European Institute of Chemistry and Biology, University of Bordeaux, Bordeaux, France
| | - Arnaud Apoteker
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France
| | - Nicolas Defarge
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France.,Institute of Integrative Biology IBZ, Swiss Federal Institute of Technology, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Emilie Gaillard
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France.,Université de Caen-Basse Normandie, Esplanade de la Paix, 14000 Caen, France
| | - Corinne Lepage
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France
| | - Jacques Testart
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France.,Sciences Citoyennes, 38 rue Saint Sabin, 75011 Paris, France
| | - Christian Vélot
- Committee for Independent Research and Information on Genetic Engineering (CRIIGEN), 42 rue de Lisbonne, 75008 Paris, France.,Sciences Citoyennes, 38 rue Saint Sabin, 75011 Paris, France.,Laboratory VEAC, University Paris-Saclay, Faculty of Sciences, Bât. 350-RdC, Avenue Jean Perrin, 91405 Orsay, France.,Risk Pole MRSH-CNRS, EA2608, University of Caen, Esplanade de la Paix, 14032 Caen, France
| |
Collapse
|
62
|
Yang J, Link C, Henderson YO, Bithi N, Hine C. Peripubertal Bisphenol A Exposure Imparts Detrimental Age-Related Changes in Body Composition, Cognition, and Hydrogen Sulfide Production Capacities. Antioxid Redox Signal 2021; 36:1246-1267. [PMID: 34314248 PMCID: PMC9221154 DOI: 10.1089/ars.2020.8226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/19/2022]
Abstract
Aims: Peripubertal endocrine disruption has immediate and lifelong consequences on health, cognition, and lifespan. Disruption comes from dietary, environmental, and pharmaceutical sources. The plasticizer Bisphenol A (BPA) is one such endocrine disrupting chemical. However, it is unclear whether peripubertal BPA exposure incites long-lasting physiological, neuro-cognitive, and/or longevity-related metabolic impairments. Catabolism of cysteine via transsulfuration enzymes produces hydrogen sulfide (H2S), a redox-modulating gasotransmitter causative to endocrine and metabolic homeostasis and improved cognitive function with age. As thyroid hormone (TH) regulates hepatic H2S production and BPA is a TH receptor antagonist, we hypothesized that BPA exposure during peripubertal development impairs metabolic and neuro-cognitive/behavioral endpoints in aged mice, in part, due to altered peripheral and/or localized H2S production and redox status. Results: To test this, male C57BL/6J mice at 5 weeks of age were orally exposed daily for 5 weeks to 250 μg BPA/kg, defined as low dose group (LD BPA), or 250 mg BPA/kg, defined as high dose group (HD BPA). Both LD and HD BPA exposure decreased lean mass and increased fat mass accompanied by decreased serum total TH at advanced ages. In addition, LD BPA had an anxiogenic effect whereas HD BPA caused cognitive deficits. Notably, HD BPA disrupted tissue-specific H2S production capacities and/or protein persulfidation, with the former negatively correlated with memory deficits and oxidative stress. Innovation and Conclusion: These findings provide a potential mechanism of action for acute and long-term health impacts of BPA-induced peripubertal endocrine disruption and bolster the need for improved monitoring and limitation of adolescent BPA exposure.
Collapse
Affiliation(s)
- Jie Yang
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Christopher Link
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Yoko O. Henderson
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Nazmin Bithi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
63
|
EFSA Scientific Committee, More S, Benford D, Hougaard Bennekou S, Bampidis V, Bragard C, Halldorsson T, Hernandez‐Jerez A, Koutsoumanis K, Lambré C, Machera K, Mullins E, Nielsen SS, Schlatter J, Schrenk D, Turck D, Tarazona J, Younes M. Opinion on the impact of non-monotonic dose responses on EFSA's human health risk assessments. EFSA J 2021; 19:e06877. [PMID: 34712366 PMCID: PMC8528485 DOI: 10.2903/j.efsa.2021.6877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This Opinion assesses the biological relevance of the non-monotonic dose responses (NMDR) identified in a previous EFSA External Report (Beausoleil et al., 2016) produced under GP/EFSA/SCER/2014/01 and the follow-up probabilistic assessment (Chevillotte et al., 2017a,b), focusing on the in vivo data sets fulfilling most of the checkpoints of the visual/statistical-based analysis identified in Beausoleil et al. (2016). The evaluation was completed with cases discussed in EFSA assessments and the update of the scientific literature. Observations of NMDR were confirmed in certain studies and are particularly relevant for receptor-mediated effects. Based on the results of the evaluation, the Opinion proposes an approach to be applied during the risk assessment process when apparent non-monotonicity is observed, also providing advice on specific elements to be considered to facilitate the assessment of NMDR in EFSA risk assessments. The proposed approach was applied to two case studies, Bisphenol A and bis(2-ethylhexyl phthalate (DEHP) and these evaluations are reported in dedicated annexes. Considering the potential impact of NMDRs in regulatory risk assessment, the Scientific Committee recommends a concerted international effort on developing internationally agreed guidance and harmonised frameworks for identifying and addressing NMDRs in the risk assessment process.
Collapse
|
64
|
Biemann R, Blüher M, Isermann B. Exposure to endocrine-disrupting compounds such as phthalates and bisphenol A is associated with an increased risk for obesity. Best Pract Res Clin Endocrinol Metab 2021; 35:101546. [PMID: 33966978 DOI: 10.1016/j.beem.2021.101546] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Increasing evidence from epidemiological, animal and in vitro studies suggests that the increased production of synthetic chemicals that interfere with the proper functioning of the hormonal system, so-called endocrine-disrupting compounds (EDCs), might be involved in the development and rapid spread of obesity, coined the obesity epidemic. Recent findings have demonstrated that EDCs may interfere with hormonal receptors that regulate adipogenesis and metabolic pathways. Furthermore, prenatal exposure to EDCs has been shown to influence the metabolism of the developing embryo through epigenetic mechanisms and to promote obesity in subsequent generations. In this Review, we discuss the potential impact of bisphenol A (BPA) and phthalate-based plasticizers on obesity and obesity-related metabolic disorders. Special emphasis is given to the obesogenic effects of prenatal exposure and strategies for identifying, regulating, and replacing EDCs.
Collapse
Affiliation(s)
- Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Str. 13/15, 04103, Leipzig, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Liebigstr. 21, 04103, Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Liebigstr. 21, 04103, Leipzig, Germany.
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Str. 13/15, 04103, Leipzig, Germany.
| |
Collapse
|
65
|
Huang WC, Liao KY, Hsieh SK, Pan PH, Kuan YH, Liao SL, Chen CJ, Chen WY. Magnesium lithospermate B supplementation improved prenatal Bisphenol A exposure-induced metabolic abnormalities in male offspring. ENVIRONMENTAL TOXICOLOGY 2021; 36:1932-1943. [PMID: 34165232 DOI: 10.1002/tox.23313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/12/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Obesity is closely linked with metabolic diseases, while life and prenatal exposure to endocrine-disrupting chemicals has been implicated in the development of obesity. Magnesium lithospermate B (MLB), an active compound of Salvia miltiorrhiza (Danshen), has beneficial effects on insulin resistance and metabolic abnormalities in diet-induced obese rodents. Since exposure to endocrine-disrupting chemical Bisphenol A (BPA) during pregnancy mimics the effects of high fat diet-induced alterations of glucose and lipid metabolism in adult male offspring, the effects of daily MLB supplementation for 4 weeks on metabolic abnormalities in rats weaning from prenatal BPA-exposed dams were investigated. BPA-exposed rats developed obesity and adiposity concurrent with hyperglycemia, hyperinsulinemia, insulin resistance, hypertriglyceridemia, and elevation of circulating glucagon and free fatty acids. Increased hepatic fatty acid synthesis and decreased fatty acid β-oxidation, activation of adipocytic adipogenesis, maturation, and lipogenesis, as well as reduction of muscular glucose uptake were demonstrated in BPA-exposed rats. The aforementioned alterations were improved by MLB supplementation. Additionally, MLB displayed negative effects on glucocorticoid receptor action and inflammation, and promoted lipolysis and thermogenesis in the adipose tissues. In conclusion, our findings suggest that MLB may be a potential therapeutic compound against metabolic diseases, including maternal exposure-induced metabolic abnormalities.
Collapse
Affiliation(s)
- Wei-Chi Huang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Keng-Ying Liao
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Kuo Hsieh
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ping-Ho Pan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Pediatrics, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
66
|
Reproducibility of adipogenic responses to metabolism disrupting chemicals in the 3T3-L1 pre-adipocyte model system: An interlaboratory study. Toxicology 2021; 461:152900. [PMID: 34411659 DOI: 10.1016/j.tox.2021.152900] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022]
Abstract
The 3T3-L1 murine pre-adipocyte line is an established cell culture model for screening Metabolism Disrupting Chemicals (MDCs). Despite a need to accurately identify MDCs for further evaluation, relatively little research has been performed to comprehensively evaluate reproducibility across laboratories, assess factors that might contribute to varying degrees of differentiation between laboratories (media additives, plastics, cell source, etc.), or to standardize protocols. As such, the goals of this study were to assess interlaboratory variability of efficacy and potency outcomes for triglyceride accumulation and pre-adipocyte proliferation using the mouse 3T3-L1 pre-adipocyte cell assay to test chemicals. Ten laboratories from five different countries participated. Each laboratory evaluated one reference chemical (rosiglitazone) and three blinded test chemicals (tributyltin chloride, pyraclostrobin, and bisphenol A) using: 1) their Laboratory-specific 3T3-L1 Cells (LC) and their Laboratory-specific differentiation Protocol (LP), 2) Shared 3T3-L1 Cells (SC) with LP, 3) LC with a Shared differentiation Protocol (SP), and 4) SC with SP. Blinded test chemical responses were analyzed by the coordinating laboratory. The magnitude and range of bioactivities reported varied considerably across laboratories and test conditions, though the presence or absence of activity for each tested chemical was more consistent. Triglyceride accumulation activity determinations for rosiglitazone ranged from 90 to 100% across test conditions, but 30-70 % for pre-adipocyte proliferation; this was 40-80 % for triglyceride accumulation induced by pyraclostrobin, 80-100 % for tributyltin, and 80-100 % for bisphenol A. Consistency was much lower for pre-adipocyte proliferation, with 30-70 % active determinations for pyraclostrobin, 30-50 % for tributyltin, and 20-40 % for bisphenol A. Greater consistency was observed for the SC/SP assessment. As such, working to develop a standardized adipogenic differentiation protocol represents the best strategy for improving consistency of adipogenic responses using the 3T3-L1 model to reproducibly identify MDCs and increase confidence in reported outcomes.
Collapse
|
67
|
Abstract
Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and Center for Childhood Nutrition Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Theresa L Powell
- Department of Pediatrics and Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Daniel B Hardy
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
68
|
Shih MK, Tain YL, Chen YW, Hsu WH, Yeh YT, Chang SKC, Liao JX, Hou CY. Resveratrol Butyrate Esters Inhibit Obesity Caused by Perinatal Exposure to Bisphenol A in Female Offspring Rats. Molecules 2021; 26:molecules26134010. [PMID: 34209270 PMCID: PMC8271435 DOI: 10.3390/molecules26134010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 01/13/2023] Open
Abstract
Resveratrol butyrate esters (RBE) are derivatives of resveratrol (RSV) and butyric acid and exhibit biological activity similar to that of RSV but with higher bioavailability. The aim of this study was designed as an animal experiment to explore the effects of RBE on the serum biochemistry, and fat deposits in the offspring rats exposed to bisphenol A (BPA), along with the growth and decline of gut microbiota. We constructed an animal model of perinatal Bisphenol A (BPA) exposure to observe the effects of RBE supplementation on obesity, blood lipids, and intestinal microbiota in female offspring rats. Perinatal exposure to BPA led to weight gain, lipid accumulation, high levels of blood lipids, and deterioration of intestinal microbiota in female offspring rats. RBE supplementation reduced the weight gain and lipid accumulation caused by BPA, optimised the levels of blood lipids, significantly reduced the Firmicutes/Bacteroidetes (F/B) ratio, and increased and decreased the abundance of S24-7 and Lactobacillus, respectively. The analysis of faecal short-chain fatty acid (SCFA) levels revealed that BPA exposure increased the faecal concentration of acetate, which could be reduced via RBE supplementation. However, the faecal concentrations of propionate and butyrate were not only significantly lower than that of acetate, but also did not significantly change in response to BPA exposure or RBE supplementation. Hence, RBE can suppress BPA-induced obesity in female offspring rats, and it demonstrates excellent modulatory activity on intestinal microbiota, with potential applications in perinatological research.
Collapse
Affiliation(s)
- Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, No.1, Songhe Rd., Xiaogang Dist., Kaohsiung City 812, Taiwan;
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yu-Wei Chen
- Department of Medicine, Chang Gung University, Linkow 333, Taiwan;
| | - Wei-Hsuan Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 831, Taiwan;
- Biomed Analysis Center, Fooyin University Hospital, Pingtung 928, Taiwan
| | - Sam K. C. Chang
- Experimental Seafood Processing Laboratory, Costal Research and Extension Center, Mississippi State University, Starkville, MS 39567, USA;
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Jin-Xian Liao
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan;
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan;
- Correspondence: ; Tel.: +886-985300345; Fax: +886-7-3640364
| |
Collapse
|
69
|
Pérez-Bermejo M, Mas-Pérez I, Murillo-Llorente MT. The Role of the Bisphenol A in Diabetes and Obesity. Biomedicines 2021; 9:666. [PMID: 34200822 PMCID: PMC8230545 DOI: 10.3390/biomedicines9060666] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Bisphenol A is a compound commonly found in products meant for daily use. It was one of the first compounds to be identified as an endocrine disruptor that was capable of disrupting the endocrine system and producing very similar effects to those of metabolic syndrome. It has recently gained popularity in the scientific arena as a risk factor for obesity and diabetes due to its ability to imitate natural oestrogens and bind to their receptors. The aim was to study the possible relationship between the Bisphenol A endocrine disruptor with diabetes and obesity. The analysis of the articles allows us to conclude that Bisphenol A is an additional risk factor to consider in the development of diabetes and obesity, since it is capable of stimulating the hypertrophy of adipocytes and altering the endocrine system by mimicking the effects of the oestrogen molecule, since epidemiological studies carried out have suggested that the same disruptions seen in experimental studies on animals can be found in humans; however, despite many countries having developed policies to limit exposure to this disruptor in their populations, there is a lack of international agreement. Understanding its relationship with obesity and diabetes will help to raise awareness in the population and adopt public health campaigns to prevent exposure-especially among young people-to these substances.
Collapse
Affiliation(s)
- Marcelino Pérez-Bermejo
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain;
| | - Irene Mas-Pérez
- School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain;
| | - Maria Teresa Murillo-Llorente
- SONEV Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo nº 2, 46001 Valencia, Spain;
| |
Collapse
|
70
|
Guzylack-Piriou L, Ménard S. Early Life Exposure to Food Contaminants and Social Stress as Risk Factor for Metabolic Disorders Occurrence?-An Overview. Biomolecules 2021; 11:687. [PMID: 34063694 PMCID: PMC8147825 DOI: 10.3390/biom11050687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
The global prevalence of obesity has been increasing in recent years and is now the major public health challenge worldwide. While the risks of developing metabolic disorders (MD) including obesity and type 2 diabetes (T2D) have been historically thought to be essentially driven by increased caloric intake and lack of exercise, this is insufficient to account for the observed changes in disease trends. Based on human epidemiological and pre-clinical experimental studies, this overview questioned the role of non-nutritional components as contributors to the epidemic of MD with a special emphasis on food contaminants and social stress. This overview examines the impact of early life adverse events (ELAE) focusing on exposures to food contaminants or social stress on weight gain and T2D occurrence in the offspring and explores potential mechanisms leading to MD in adulthood. Indeed, summing up data on both ELAE models in parallel allowed us to identify common patterns that appear worthwhile to study in MD etiology. This overview provides some evidence of a link between ELAE-induced intestinal barrier disruption, inflammation, epigenetic modifications, and the occurrence of MD. This overview sums up evidence that MD could have developmental origins and that ELAE are risk factors for MD at adulthood independently of nutritional status.
Collapse
Affiliation(s)
| | - Sandrine Ménard
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31024 Toulouse, France;
| |
Collapse
|
71
|
Szkudelska K, Okulicz M, Szkudelski T. Bisphenol A disturbs metabolism of primary rat adipocytes without affecting adipokine secretion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23301-23309. [PMID: 33447972 PMCID: PMC8113171 DOI: 10.1007/s11356-021-12411-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is an ubiquitous synthetic chemical exerting numerous adverse effects. Results of rodent studies show that BPA negatively affects adipose tissue. However, the short-term influence of this compound addressing adipocyte metabolism and adipokine secretion is unknown. In the present study, isolated rat adipocytes were exposed for 2 h to 1 and 10 nM BPA. Insulin-induced glucose conversion to lipids along with glucose transport was significantly increased in the presence of BPA. However, basal glucose conversion to lipids, glucose oxidation, and formation of lipids from acetate were unchanged in adipocytes incubated with BPA. It was also shown that BPA significantly increases lipolytic response of adipocytes to epinephrine. However, lipolysis stimulated by dibutyryl-cAMP (a direct activator of protein kinase A) and the antilipolytic action of insulin were not affected by BPA. Moreover, BPA did not influence leptin and adiponectin secretion from adipocytes. Our new results show that BPA is capable of disturbing processes related to lipid accumulation in isolated rat adipocytes. This is associated with the potentiation of insulin and epinephrine action. The effects of BPA appear already after short-term exposure to low doses of this compound. However, BPA fails to change adipokine secretion.
Collapse
Affiliation(s)
- Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Monika Okulicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland.
| |
Collapse
|
72
|
García-Arévalo M, Lorza-Gil E, Cardoso L, Batista TM, Araujo TR, Ramos LAF, Areas MA, Nadal A, Carneiro EM, Davel AP. Ventricular Fibrosis and Coronary Remodeling Following Short-Term Exposure of Healthy and Malnourished Mice to Bisphenol A. Front Physiol 2021; 12:638506. [PMID: 33912069 PMCID: PMC8072349 DOI: 10.3389/fphys.2021.638506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/03/2021] [Indexed: 11/15/2022] Open
Abstract
Bisphenol-A (BPA) is an endocrine disruptor associated with higher risk of insulin resistance, type 2 diabetes, and cardiovascular diseases especially in susceptible populations. Because malnutrition is a nutritional disorder associated with high cardiovascular risk, we sought to compare the effects of short-term BPA exposure on cardiovascular parameters of healthy and protein-malnourished mice. Postweaned male mice were fed a normo- (control) or low-protein (LP) diet for 8 weeks and then exposed or not to BPA (50 μg kg−1 day−1) for the last 9 days. Systolic blood pressure was higher in BPA or LP groups compared with the control group. However, diastolic blood pressure was enhanced by BPA only in malnourished mice. Left ventricle (LV) end diastolic pressure (EDP), collagen deposition, and CTGF mRNA expression were higher in the control or malnourished mice exposed to BPA than in the respective nonexposed groups. Nevertheless, mice fed LP diet exposed to BPA exhibited higher angiotensinogen and cardiac TGF-β1 mRNA expression than mice treated with LP or BPA alone. Wall:lumen ratio and cross-sectional area of intramyocardial arteries were higher either in the LP or BPA group compared with the control mice. Taken together, our data suggest that short-term BPA exposure results in LV diastolic dysfunction and fibrosis, and intramyocardial arteries inward remodeling, besides potentiate protein malnutrition-induced hypertension and cardiovascular risk.
Collapse
Affiliation(s)
- Marta García-Arévalo
- Department of Structural and Functional Biology, Institute of Biology, Campinas, Brazil.,Obesity and Comorbidities Research Center-OCRC, UNICAMP, Campinas, Brazil
| | - Estela Lorza-Gil
- Department of Structural and Functional Biology, Institute of Biology, Campinas, Brazil.,Obesity and Comorbidities Research Center-OCRC, UNICAMP, Campinas, Brazil
| | - Leandro Cardoso
- Department of Structural and Functional Biology, Institute of Biology, Campinas, Brazil
| | - Thiago Martins Batista
- Department of Structural and Functional Biology, Institute of Biology, Campinas, Brazil.,Obesity and Comorbidities Research Center-OCRC, UNICAMP, Campinas, Brazil
| | - Thiago Reis Araujo
- Department of Structural and Functional Biology, Institute of Biology, Campinas, Brazil.,Obesity and Comorbidities Research Center-OCRC, UNICAMP, Campinas, Brazil
| | | | - Miguel Arcanjo Areas
- Department of Structural and Functional Biology, Institute of Biology, Campinas, Brazil
| | - Angel Nadal
- Instituto de Biología Molecular y Celular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Universidad Miguel Hernández, Elche, Spain
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, Campinas, Brazil.,Obesity and Comorbidities Research Center-OCRC, UNICAMP, Campinas, Brazil
| | - Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, Campinas, Brazil
| |
Collapse
|
73
|
Soto AM, Schaeberle CM, Sonnenschein C. From Wingspread to CLARITY: a personal trajectory. Nat Rev Endocrinol 2021; 17:247-256. [PMID: 33514909 PMCID: PMC9662687 DOI: 10.1038/s41574-020-00460-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
In the three decades since endocrine disruption was conceptualized at the Wingspread Conference, we have witnessed the growth of this multidisciplinary field and the accumulation of evidence showing the deleterious health effects of endocrine-disrupting chemicals. It is only within the past decade that, albeit slowly, some changes regarding regulatory measures have taken place. In this Perspective, we address some historical points regarding the advent of the endocrine disruption field and the conceptual changes that endocrine disruption brought about. We also provide our personal recollection of the events triggered by our serendipitous discovery of oestrogenic activity in plastic, a founder event in the field of endocrine disruption. This recollection ends with the CLARITY study as an example of a discordance between 'science for its own sake' and 'regulatory science' and leads us to offer a perspective that could be summarized by the motto attributed to Ludwig Boltzmann: "Nothing is more practical than a good theory".
Collapse
Affiliation(s)
- Ana M Soto
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA.
| | - Cheryl M Schaeberle
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA
| |
Collapse
|
74
|
vom Saal FS, Vandenberg LN. Update on the Health Effects of Bisphenol A: Overwhelming Evidence of Harm. Endocrinology 2021; 162:6124507. [PMID: 33516155 PMCID: PMC7846099 DOI: 10.1210/endocr/bqaa171] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/14/2022]
Abstract
In 1997, the first in vivo bisphenol A (BPA) study by endocrinologists reported that feeding BPA to pregnant mice induced adverse reproductive effects in male offspring at the low dose of 2 µg/kg/day. Since then, thousands of studies have reported adverse effects in animals administered low doses of BPA. Despite more than 100 epidemiological studies suggesting associations between BPA and disease/dysfunction also reported in animal studies, regulatory agencies continue to assert that BPA exposures are safe. To address this disagreement, the CLARITY-BPA study was designed to evaluate traditional endpoints of toxicity and modern hypothesis-driven, disease-relevant outcomes in the same set of animals. A wide range of adverse effects was reported in both the toxicity and the mechanistic endpoints at the lowest dose tested (2.5 µg/kg/day), leading independent experts to call for the lowest observed adverse effect level (LOAEL) to be dropped 20 000-fold from the current outdated LOAEL of 50 000 µg/kg/day. Despite criticism by members of the Endocrine Society that the Food and Drug Administration (FDA)'s assumptions violate basic principles of endocrinology, the FDA rejected all low-dose data as not biologically plausible. Their decisions rely on 4 incorrect assumptions: dose responses must be monotonic, there exists a threshold below which there are no effects, both sexes must respond similarly, and only toxicological guideline studies are valid. This review details more than 20 years of BPA studies and addresses the divide that exists between regulatory approaches and endocrine science. Ultimately, CLARITY-BPA has shed light on why traditional methods of evaluating toxicity are insufficient to evaluate endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Frederick S vom Saal
- University of Missouri – Columbia, Division of Biological Sciences, Columbia, Missouri
- Correspondence: Dr. Frederick vom Saal, University of Missouri-Columbia, Division of Biological Sciences, 105 Lefevre Hall, Columbia, MO, 65211, USA. E-mail:
| | - Laura N Vandenberg
- University of Massachusetts – Amherst, Department of Environmental Health Sciences, Amherst, Massachusetts
| |
Collapse
|
75
|
Wu CC, Shields JN, Akemann C, Meyer DN, Connell M, Baker BB, Pitts DK, Baker TR. The phenotypic and transcriptomic effects of developmental exposure to nanomolar levels of estrone and bisphenol A in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143736. [PMID: 33243503 PMCID: PMC7790172 DOI: 10.1016/j.scitotenv.2020.143736] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/12/2020] [Accepted: 11/09/2020] [Indexed: 04/14/2023]
Abstract
Estrone and BPA are two endocrine disrupting chemicals (EDCs) that are predicted to be less potent than estrogens such as 17β-estradiol and 17α-ethinylestradiol. Human exposure concentrations to estrone and BPA can be as low as nanomolar levels. However, very few toxicological studies have focused on the nanomolar-dose effects. Low level of EDCs can potentially cause non-monotonic responses. In addition, exposures at different developmental stages can lead to different health outcomes. To identify the nanomolar-dose effects of estrone and BPA, we used zebrafish modeling to study the phenotypic and transcriptomic responses after extended duration exposure from 0 to 5 days post-fertilization (dpf) and short-term exposure at days 4-5 post fertilization. We found that non-monotonic transcriptomic responses occurred after extended duration exposures at 1 nM of estrone or BPA. At this level, estrone also caused hypoactivity locomotive behavior in zebrafish. After both extended duration and short-term exposures, BPA led to more apparent phenotypic responses, i.e. skeletal abnormalities and locomotion changes, and more significant transcriptomic responses than estrone exposure. After short-term exposure, BPA at concentrations equal or above 100 nM affected locomotive behavior and changed the expression of both estrogenic and non-estrogenic genes that are linked to neurological diseases. These data provide gaps of mechanisms between neurological genes expression and associated phenotypic response due to estrone or BPA exposures. This study also provides insights for assessing the acceptable concentration of BPA and estrone in aquatic environments.
Collapse
Affiliation(s)
- Chia-Chen Wu
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Jeremiah N Shields
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Camille Akemann
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA
| | - Danielle N Meyer
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA
| | - Mackenzie Connell
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - Bridget B Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA
| | - David K Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Tracie R Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, 540 E Canfield, Detroit, MI 28201, USA.
| |
Collapse
|
76
|
Faheem M, Bhandari RK. Detrimental Effects of Bisphenol Compounds on Physiology and Reproduction in Fish: A Literature Review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103497. [PMID: 32950715 PMCID: PMC11491272 DOI: 10.1016/j.etap.2020.103497] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol-A is one of the most studied endocrine-chemicals, which is widely used all over the world in plastic manufacture. Because of its extensive use, it has become one of the most abundant chemical environmental pollutants, especially in aquatic environments. BPA is known to affect fish reproduction via estrogen receptors but many studies advocate that BPA affects almost all aspects of fish physiology. The possible modes of action include genomic, as well as and non-genomic mechanisms, estrogen, androgen, and thyroid receptor-mediated effects. Due to the high detrimental effects of BPA, various analogs of BPA are being used as alternatives. Recent evidence suggests that the analogs of BPA have similar modes of action, with accompanying effects on fish physiology and reproduction. In this review, a detailed comparison of effects produced by BPA and analogs and their mode of action is discussed.
Collapse
|
77
|
Vega N, Pinteur C, Buffelan G, Loizon E, Vidal H, Naville D, Le Magueresse-Battistoni B. Exposure to pollutants altered glucocorticoid signaling and clock gene expression in female mice. Evidence of tissue- and sex-specificity. CHEMOSPHERE 2021; 262:127841. [PMID: 32784060 DOI: 10.1016/j.chemosphere.2020.127841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollutants suspected of disrupting the endocrine system are considered etiologic factors in the epidemic of metabolic disorders. As regulation of energy metabolism relies on the integrated action of a large number of hormones, we hypothesized that certain chemicals could trigger changes in glucocorticoid signaling. To this end, we exposed C57Bl6/J female and male mice between 5 and 20 weeks of age to a mixture of 2,3,7,8- tetrachlorodibenzo-p-dioxin (20 pg/kg body weight/day [bw/d]), polychlorobiphenyl 153 (200 ng/kg bw/d), di-[2-ethylhexyl]-phthalate (500 μg/kg bw/d) and bisphenol A (40 μg/kg bw/d). In female mice fed a standard diet (ST), we observed a decrease in plasma levels of leptin as well as a reduced expression of corticoid receptors Nr3c1 and Nr3c2, of leptin and of various canonical genes related to the circadian clock machinery in visceral (VAT) but not subcutaneous (SAT) adipose tissue. However, Nr3c1 and Nr3c2 mRNA levels did not change in high-fat-fed females exposed to pollutants. In ST-fed males, pollutants caused the same decrease of Nr3c1 mRNA levels in VAT observed in ST-fed females but levels of Nr3c2 and other clock-related genes found to be down-regulated in female VAT were enhanced in male SAT and not affected in male VAT. The expression of corticoid receptors was not affected in the livers of both sexes in response to pollutants. In summary, exposure to a mixture of pollutants at doses lower than the no-observed adverse effect levels (NoAELs) resulted in sex-dependent glucocorticoid signaling disturbances and clock-related gene expression modifications in the adipose tissue of ST-fed mice.
Collapse
Affiliation(s)
- Nathalie Vega
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Claudie Pinteur
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Gaël Buffelan
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Emmanuelle Loizon
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Hubert Vidal
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Danielle Naville
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | | |
Collapse
|
78
|
Vanni R, Bussuan RM, Rombaldi RL, Arbex AK. Endocrine Disruptors and the Induction of Insulin Resistance. Curr Diabetes Rev 2021; 17:e102220187107. [PMID: 33092513 DOI: 10.2174/1573399816666201022121254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The incidence of insulin resistance syndrome and type 2 diabetes mellitus has increased at an alarming rate worldwide and constitutes a serious challenge to public health care in the 21st century. Endocrine disrupting chemicals are defined as "substances or mixtures of substances that alter the endocrine system functions and, hence, adversely affect organisms, their progeny, or sub populations" and may be associated with this increase in prevalence. OBJECTIVE This study aimed to assess the role of endocrine disrupting chemicals in insulin resistance and the importance of approaching the subject during anamnesis. METHODS A full review of the literature regarding insulin resistance, type-2 diabetes and endocrine disruptors were conducted. CONCLUSION Large-scale production and distribution of endocrine disrupting chemicals coincide with the increase in the prevalence of insulin resistance globally. In recent years, studies have shown that endocrine disrupting chemicals are positively associated with insulin resistance syndrome, evidenced by worse prognoses among individuals with higher levels of exposure. Health professionals should recognize the forms of exposure, most susceptible people, and lifestyle habits that can worsen patients' prognoses.
Collapse
Affiliation(s)
- Rafael Vanni
- IPEMED Medical School/ AFYA Educational, Rio de Janeiro, Brazil
| | | | | | - Alberto K Arbex
- Medical Clinic in Schleswig-Flensburg, State of Schleswig-Holstein, Germany
| |
Collapse
|
79
|
Diamante G, Cely I, Zamora Z, Ding J, Blencowe M, Lang J, Bline A, Singh M, Lusis AJ, Yang X. Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice. ENVIRONMENT INTERNATIONAL 2021; 146:106260. [PMID: 33221593 PMCID: PMC7775895 DOI: 10.1016/j.envint.2020.106260] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 05/06/2023]
Abstract
Bisphenol A (BPA) is an industrial plasticizer widely found in consumer products, and exposure to BPA during early development has been associated with the prevalence of various cardiometabolic diseases including obesity, metabolic syndrome, type 2 diabetes, and cardiovascular diseases. To elucidate the molecular perturbations underlying the connection of low-dose prenatal BPA exposure to cardiometabolic diseases, we conducted a multi-dimensional systems biology study assessing the liver transcriptome, gut microbial community, and diverse metabolic phenotypes in both male and female mouse offspring exposed to 5 μg/kg/day BPA during gestation. Prenatal exposure to low-dose BPA not only significantly affected liver genes involved in oxidative phosphorylation, PPAR signaling and fatty acid metabolism, but also affected the gut microbial composition in an age- and sex-dependent manner. Bacteria such as those belonging to the S24-7 and Lachnospiraceae families were correlated with offspring phenotypes, differentially expressed liver metabolic genes such as Acadl and Dgat1, and key drivers identified in our gene network modeling such as Malat1 and Apoa2. This multiomics study provides insight into the relationship between gut bacteria and host liver genes that could contribute to cardiometabolic disease risks upon low-dose BPA exposure.
Collapse
Affiliation(s)
- Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Zacary Zamora
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jessica Ding
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jennifer Lang
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA (UCLA), Los Angeles, CA 90095, USA
| | - Abigail Bline
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Maya Singh
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA (UCLA), Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
80
|
Christoforou ER, Sferruzzi-Perri AN. Molecular mechanisms governing offspring metabolic programming in rodent models of in utero stress. Cell Mol Life Sci 2020; 77:4861-4898. [PMID: 32494846 PMCID: PMC7658077 DOI: 10.1007/s00018-020-03566-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
The results of different human epidemiological datasets provided the impetus to introduce the now commonly accepted theory coined as 'developmental programming', whereby the presence of a stressor during gestation predisposes the growing fetus to develop diseases, such as metabolic dysfunction in later postnatal life. However, in a clinical setting, human lifespan and inaccessibility to tissue for analysis are major limitations to study the molecular mechanisms governing developmental programming. Subsequently, studies using animal models have proved indispensable to the identification of key molecular pathways and epigenetic mechanisms that are dysregulated in metabolic organs of the fetus and adult programmed due to an adverse gestational environment. Rodents such as mice and rats are the most used experimental animals in the study of developmental programming. This review summarises the molecular pathways and epigenetic mechanisms influencing alterations in metabolic tissues of rodent offspring exposed to in utero stress and subsequently programmed for metabolic dysfunction. By comparing molecular mechanisms in a variety of rodent models of in utero stress, we hope to summarise common themes and pathways governing later metabolic dysfunction in the offspring whilst identifying reasons for incongruencies between models so to inform future work. With the continued use and refinement of such models of developmental programming, the scientific community may gain the knowledge required for the targeted treatment of metabolic diseases that have intrauterine origins.
Collapse
Affiliation(s)
- Efthimia R Christoforou
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge, UK.
| |
Collapse
|
81
|
Malaisé Y, Le Mentec H, Sparfel L, Guzylack-Piriou L. Differential influences of the BPA, BPS and BPF on in vitro IL-17 secretion by mouse and human T cells. Toxicol In Vitro 2020; 69:104993. [PMID: 32911021 DOI: 10.1016/j.tiv.2020.104993] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
The endocrine disruptor and food contaminant bisphenol A (BPA) is frequently present in consumer plastics and can produce several adverse health effects participating in the development of inflammatory and autoimmune diseases. Regulatory restrictions have been established to prevent risks for human health, leading to the substitution of BPA by structural analogues, such as bisphenol S (BPS) and F (BPF). In this study, we aimed at comparing the in vitro impact of these bisphenols from 0.05 to 50,000 nM on Th17 differentiation, frequency and function in mouse systemic and intestinal immune T cells and in human blood T cells. This study reports the ability of these bisphenols, at low and environmentally relevant concentration, i.e, 0.05 nM, to increase significantly IL-17 production in mouse T cells but not in human T lymphocytes. The use of an aryl hydrocarbon receptor (AhR) specific inhibitor demonstrated its involvement in this bisphenol-induced IL-17 production. We also observed an increased IL-17 secretion by BPS and BPF, and not by BPA, in mouse naive T cells undergoing in vitro Th17 differentiation. In total, this study emphasizes the link between bisphenol exposures and the susceptibility to develop immune diseases, questioning thus the rational of their use to replace BPA.
Collapse
Affiliation(s)
- Yann Malaisé
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Hélène Le Mentec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000 Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000 Rennes, France
| | - Laurence Guzylack-Piriou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France.
| |
Collapse
|
82
|
Oral Bisphenol A Worsens Liver Immune-Metabolic and Mitochondrial Dysfunction Induced by High-Fat Diet in Adult Mice: Cross-Talk between Oxidative Stress and Inflammasome Pathway. Antioxidants (Basel) 2020; 9:antiox9121201. [PMID: 33265944 PMCID: PMC7760359 DOI: 10.3390/antiox9121201] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Lines of evidence have shown the embryogenic and transgenerational impact of bisphenol A (BPA), an endocrine-disrupting chemical, on immune-metabolic alterations, inflammation, and oxidative stress, while BPA toxic effects in adult obese mice are still overlooked. Here, we evaluate BPA’s worsening effect on several hepatic maladaptive processes associated to high-fat diet (HFD)-induced obesity in mice. After 12 weeks HFD feeding, C57Bl/6J male mice were exposed daily to BPA (50 μg/kg per os) along with HFD for 3 weeks. Glucose tolerance and lipid metabolism were examined in serum and/or liver. Hepatic oxidative damage (reactive oxygen species, malondialdehyde, antioxidant enzymes), and mitochondrial respiratory capacity were evaluated. Moreover, liver damage progression and inflammatory/immune response were determined by histological and molecular analysis. BPA amplified HFD-induced alteration of key factors involved in glucose and lipid metabolism, liver triglycerides accumulation, and worsened mitochondrial dysfunction by increasing oxidative stress and reducing antioxidant defense. The exacerbation by BPA of hepatic immune-metabolic dysfunction induced by HFD was shown by increased toll-like receptor-4 and its downstream pathways (i.e., NF-kB and NLRP3 inflammasome) amplifying inflammatory cytokine transcription and promoting fibrosis progression. This study evidences that BPA exposure represents an additional risk factor for the progression of fatty liver diseases strictly related to the cross-talk between oxidative stress and immune-metabolic impairment due to obesity.
Collapse
|
83
|
Orešič M, McGlinchey A, Wheelock CE, Hyötyläinen T. Metabolic Signatures of the Exposome-Quantifying the Impact of Exposure to Environmental Chemicals on Human Health. Metabolites 2020; 10:metabo10110454. [PMID: 33182712 PMCID: PMC7698239 DOI: 10.3390/metabo10110454] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Human health and well-being are intricately linked to environmental quality. Environmental exposures can have lifelong consequences. In particular, exposures during the vulnerable fetal or early development period can affect structure, physiology and metabolism, causing potential adverse, often permanent, health effects at any point in life. External exposures, such as the “chemical exposome” (exposures to environmental chemicals), affect the host’s metabolism and immune system, which, in turn, mediate the risk of various diseases. Linking such exposures to adverse outcomes, via intermediate phenotypes such as the metabolome, is one of the central themes of exposome research. Much progress has been made in this line of research, including addressing some key challenges such as analytical coverage of the exposome and metabolome, as well as the integration of heterogeneous, multi-omics data. There is strong evidence that chemical exposures have a marked impact on the metabolome, associating with specific disease risks. Herein, we review recent progress in the field of exposome research as related to human health as well as selected metabolic and autoimmune diseases, with specific emphasis on the impacts of chemical exposures on the host metabolome.
Collapse
Affiliation(s)
- Matej Orešič
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Aidan McGlinchey
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
| | - Craig E. Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden;
| | - Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
- Correspondence:
| |
Collapse
|
84
|
Physical, Biochemical, and Biologic Properties of Fat Graft Processed via Different Methods. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e3010. [PMID: 32983771 PMCID: PMC7489744 DOI: 10.1097/gox.0000000000003010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/10/2020] [Indexed: 11/26/2022]
Abstract
Clinical use of autologous fat for correction of soft-tissue defects in cosmetic and reconstructive procedures has grown in popularity. Graft processing is implicated as one of the variable factors affecting quality, viability, and subsequent graft survival. This study analyzed the in vitro physical and biologic characteristics of lipoaspirate processed using different techniques. Methods Fresh lipoaspirates from patients with informed consent were processed by 4 methods: decantation, centrifugation, the REVOLVE System, and PureGraft. Processed fat grafts were analyzed for yield, composition, tissue particle size and morphology, and viability and function of adipocytes and stem cells. Fat tissue harvested from waste containers of REVOLVE and PureGraft and trapped on REVOLVE paddles was also evaluated. Results Grafts produced by the filtration systems contained the highest percentage of fat tissue, whereas those from decantation contained the lowest percentage, although they have the highest volume yield. In addition, grafts from REVOLVE and PureGraft showed more large-sized particles (>1000 μm) than those from decantation or centrifugation. REVOLVE also preserved significantly higher populations of viable and functional adipocytes and stromal vascular fraction cells when compared with other processing methods. Tissue particles in waste containers of REVOLVE and PureGraft were mostly (>85%) <300 μm and demonstrated a minimal number of viable adipocytes and stem cells. Fat tissues trapped on REVOLVE paddles contained a higher percentage of noninjectable and fibrous collagen bundles. Conclusion Different processing methods result in fat grafts with varying physical and biologic properties, which may contribute to fat graft viability and retention in vivo.
Collapse
|
85
|
Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Prakash A, Tiwari R. Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Front Public Health 2020; 8:553850. [PMID: 33072697 PMCID: PMC7541969 DOI: 10.3389/fpubh.2020.553850] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 01/09/2023] Open
Abstract
The exponential growth of pollutant discharges into the environment due to increasing industrial and agricultural activities is a rising threat for human health and a biggest concern for environmental health globally. Several synthetic chemicals, categorized as potential environmental endocrine-disrupting chemicals (EDCs), are evident to affect the health of not only livestock and wildlife but also humankind. In recent years, human exposure to environmental EDCs has received increased awareness due to their association with altered human health as documented by several epidemiological and experimental studies. EDCs are associated with deleterious effects on male and female reproductive health; causes diabetes, obesity, metabolic disorders, thyroid homeostasis and increase the risk of hormone-sensitive cancers. Sewage effluents are a major source of several EDCs, which eventually reach large water bodies and potentially contaminate the drinking water supply. Similarly, water storage material such as different types of plastics also leaches out EDCs in drinking Water. Domestic wastewater containing pharmaceutical ingredients, metals, pesticides and personal care product additives also influences endocrine activity. These EDCs act via various receptors through a variety of known and unknown mechanisms including epigenetic modification. They differ from classic toxins in several ways such as low-dose effect, non-monotonic dose and trans-generational effects. This review aims to highlight the hidden burden of EDCs on human health and discusses the non-classical toxic properties of EDCs in an attempt to understand the magnitude of the exposome on human health. Present data on the environmental EDCs advocate that there may be associations between human exposure to EDCs and several undesirable health outcomes that warrants further human bio-monitoring of EDCs.
Collapse
Affiliation(s)
- Manoj Kumar
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Swasti Shubham
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Manoj Kumawat
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Vinod Verma
- Department of Stem Cell Research Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Anil Prakash
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Rajnarayan Tiwari
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| |
Collapse
|
86
|
Ren XM, Kuo Y, Blumberg B. Agrochemicals and obesity. Mol Cell Endocrinol 2020; 515:110926. [PMID: 32619583 PMCID: PMC7484009 DOI: 10.1016/j.mce.2020.110926] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Obesity has become a very large concern worldwide, reaching pandemic proportions over the past several decades. Lifestyle factors, such as excess caloric intake and decreased physical activity, together with genetic predispositions, are well-known factors related to obesity. There is accumulating evidence suggesting that exposure to some environmental chemicals during critical windows of development may contribute to the rapid increase in the incidence of obesity. Agrochemicals are a class of chemicals extensively used in agriculture, which have been widely detected in human. There is now considerable evidence linking human exposure to agrochemicals with obesity. This review summarizes human epidemiological evidence and experimental animal studies supporting the association between agrochemical exposure and obesity and outlines possible mechanistic underpinnings for this link.
Collapse
Affiliation(s)
- Xiao-Min Ren
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Yun Kuo
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697-2300, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
87
|
Bisphenol-A exposure during pregnancy alters pancreatic β-cell division and mass in male mice offspring: A role for ERβ. Food Chem Toxicol 2020; 145:111681. [PMID: 32805339 DOI: 10.1016/j.fct.2020.111681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/19/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Bisphenol-A (BPA) is a widespread endocrine disrupting chemical that constitutes a risk factor for type 2 diabetes mellitus (T2DM). Data from animal and human studies have demonstrated that early exposure to BPA results in adverse metabolic outcomes in adult life. In the present work, we exposed pregnant heterozygous estrogen receptor β (ERβ) knock out (BERKO) mice to 10 μg/kg/day BPA, during days 9-16 of pregnancy, and measured β-cell mass and proliferation in wildtype (WT) and BERKO male offspring at postnatal day 30. We observed increased pancreatic β-cell proliferation and mass in WT, yet no effect was produced in BERKO mice. Dispersed islet cells in primary culture treated with 1 nM BPA showed an enhanced pancreatic β-cell replication rate, which was blunted in pancreatic β-cells from BERKO mice and mimicked by the selective ERβ agonist WAY200070. This increased β-cell proliferation was found in male adult as well as in neonate pancreatic β-cells, suggesting that BPA directly impacts β-cell division at earliest stages of life. These findings strongly indicate that BPA during pregnancy upregulates pancreatic β-cell division and mass in an ERβ-dependent manner. Thus, other natural or artificial chemicals may use this ERβ-mediated pathway to promote similar effects.
Collapse
|
88
|
Cimmino I, Fiory F, Perruolo G, Miele C, Beguinot F, Formisano P, Oriente F. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease. Int J Mol Sci 2020; 21:E5761. [PMID: 32796699 PMCID: PMC7460848 DOI: 10.3390/ijms21165761] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA) is an organic synthetic compound serving as a monomer to produce polycarbonate plastic, widely used in the packaging for food and drinks, medical devices, thermal paper, and dental materials. BPA can contaminate food, beverage, air, and soil. It accumulates in several human tissues and organs and is potentially harmful to human health through different molecular mechanisms. Due to its hormone-like properties, BPA may bind to estrogen receptors, thereby affecting both body weight and tumorigenesis. BPA may also affect metabolism and cancer progression, by interacting with GPR30, and may impair male reproductive function, by binding to androgen receptors. Several transcription factors, including PPARγ, C/EBP, Nrf2, HOX, and HAND2, are involved in BPA action on fat and liver homeostasis, the cardiovascular system, and cancer. Finally, epigenetic changes, such as DNA methylation, histones modification, and changes in microRNAs expression contribute to BPA pathological effects. This review aims to provide an extensive and comprehensive analysis of the most recent evidence about the potential mechanisms by which BPA affects human health.
Collapse
Affiliation(s)
| | | | | | | | | | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT “Genomic of Diabetes” of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), 80131 Naples, Italy; (I.C.); (F.F.); (G.P.); (C.M.); (F.B.); (F.O.)
| | | |
Collapse
|
89
|
Badraoui R, Ben-Nasr H, Bardakçi F, Rebai T. Pathophysiological impacts of exposure to an endocrine disruptor (tetradifon) on α-amylase and lipase activities associated metabolic disorders. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104606. [PMID: 32527427 DOI: 10.1016/j.pestbp.2020.104606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
We have investigated the effect of subchronic exposure to tetradifon (TDF), as an endocrine disruptor chemical, on some parameters related to serious metabolomic disorders such as obesity, type 2 diabetes and hyperlipidemia. TDF promoted significant increases in both duodenal and pancreatic α-amylase and lipase especially in the 12-weeks treated rats. Plasmatic glucose and lipid profile; total cholesterol (T-cholesterol), low density lipoprotein-cholesterol (LDL-c), high-density lipoprotein-cholesterol (HDL-c) and glyceride, were markedly disrupted. Compared with controls, biochemical liver injury parameters: aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT) and lactate dehydrogenase (LDH) were significantly increased. Moreover, notable pathological features were reported in liver tissues. These results confirm a strong relationship between exposure to an endocrine disruptor and metabolic disorders. In fact, subchronic exposure to TDF lead to lipidemic and glycemic disruption associated hyperactivity in both α-amylase and lipase. Overall, these disruptions could be an important step on the pathway to metabolic pathology.
Collapse
Affiliation(s)
- Riadh Badraoui
- Department of Biology, University of Ha'il, 81451 Ha'il, Saudi Arabia; Laboratory of Histology - Cytology, Medicine College of Tunis, Tunis El Manar University, 1007 La Rabta-Tunis, Tunisia; Laboratory of Histo-Embryology and Cytogenetic, Medicine College of Sfax, Sfax University, Sfax 3029, Tunisia.
| | - Hmed Ben-Nasr
- Laboratory of Pharmacology, Medicine College of Sfax, Sfax University, Sfax 3029, Tunisia
| | - Fevzi Bardakçi
- Department of Biology, University of Ha'il, 81451 Ha'il, Saudi Arabia; Department of Biology, Adnan Menderes University, Aydin 09100, Turkey
| | - Tarek Rebai
- Laboratory of Histo-Embryology and Cytogenetic, Medicine College of Sfax, Sfax University, Sfax 3029, Tunisia
| |
Collapse
|
90
|
Sun L, Ling Y, Jiang J, Wang D, Wang J, Li J, Wang X, Wang H. Differential mechanisms regarding triclosan vs. bisphenol A and fluorene-9-bisphenol induced zebrafish lipid-metabolism disorders by RNA-Seq. CHEMOSPHERE 2020; 251:126318. [PMID: 32143076 DOI: 10.1016/j.chemosphere.2020.126318] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 05/23/2023]
Abstract
Exposure of endocrine disrupting chemicals (EDCs) is closely related to induction of obesity, nonalcoholic fatty liver disease (NAFLD) and other lipid-metabolism diseases. Herein, we compared the effects of three EDCs exposure (triclosan, bisphenol A and fluorene-9-bisphenol) on lipid metabolism in zebrfish (Danio rerio). The differential lipid-metabolism disorders were analyzed in depth through RNA-Seq and qRT-PCR, as well as assessment of the relationship between lipid disorder and RNA methylation. Histopathological observation along with varying physiological and biochemical indexes all identified that triclosan and bisphenol A induced liver fat accumulation in acute and chronic exposure. RNA-Seq analysis showed that triclosan exposure disrupted multiple physiological processes including drug metabolism, sucrose metabolism, fat metabolism and bile secretion. The dysregulation of lipid-metabolism related genes indicated that liver steatosis in triclosan and BPA-exposed zebrafish resulted from increased fatty acid synthetase, and uptake and suppression of β-oxidation. Besides, the dysregulation of pro-inflammatory genes and endoplasmic reticulum stress showed that triclosan and bisphenol A exposure not only induced occurrence of NAFLD, but also promoted progression of hepatic inflammation. However, no significant effect on lipid metabolism was observed in fluorene-9-bisphenol-exposed treatment although the larval phenotypic malformation was found compared to the control group. Moreover, EDCs exposure led to decreased global m6A level and abnormal expression of m6A modulators in larvae. Especially, the expression of demethylase FTO (fat mass and obesity-associated protein) was significantly increased in triclosan-exposure treatment. These findings are conductive for us to deeply understand the underlying molecular mechanisms regarding the obesity and NAFLD from EDCs exposure.
Collapse
Affiliation(s)
- Limei Sun
- Key Laboratory of Laboratory Medicine of Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuhang Ling
- Key Laboratory of Laboratory Medicine of Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiahui Jiang
- Key Laboratory of Laboratory Medicine of Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Danting Wang
- Key Laboratory of Laboratory Medicine of Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junxia Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jieyi Li
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Huili Wang
- Key Laboratory of Laboratory Medicine of Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
91
|
Akash MSH, Sabir S, Rehman K. Bisphenol A-induced metabolic disorders: From exposure to mechanism of action. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 77:103373. [PMID: 32200274 DOI: 10.1016/j.etap.2020.103373] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is considered as ubiquitous xenooestrogen and an endocrine disrupting chemical which has deleterious effects on endocrine functions. Human populations are continuously exposed to BPA as it is abundant in daily life. It has been found to be associated with wide range of metabolic disorders notably type 2 diabetes mellitus (DM). Numerous epidemiological studies have been conducted to find its role in development of DM. Experimental studies have found that BPA exposure is associated with pathogenesis of DM and also considered as a risk factor for gestational diabetes. Being a lipophilic compound, BPA is preferably accumulated in adipose tissues where it alters the production of adipokines that play important roles in insulin resistance. BPA induces apoptosis by caspase activation after mitochondrial damage and it impairs insulin signaling pathways by altering associated ion channel activity especially potassium channels. Perinatal exposure of BPA makes offspring more susceptible to develop DM in early years. Epigenetic modifications are the key mechanisms for BPA-induced metabolic re-programming, where BPA alters the expression of DNA methyltransferases involved in methylation of various genes. In this way, DNA methyltransferase controls the expression of numerous genes including genes important for insulin secretion and signaling. Furthermore, BPA induces histone modifications and alters miRNA expression. In this article, we have briefly described the sources of BPA exposure to human being and summarized the evidence from epidemiological studies linking DM with BPA exposure. Additionally, we have also highlighted the potential molecular pathways for BPA-induced DM.
Collapse
Affiliation(s)
| | - Shakila Sabir
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
92
|
Basak S, Das MK, Duttaroy AK. Plastics derived endocrine-disrupting compounds and their effects on early development. Birth Defects Res 2020; 112:1308-1325. [PMID: 32476245 DOI: 10.1002/bdr2.1741] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Despite the fact that the estrogenic effects of bisphenols were first described 80 years ago, recent data about its potential negative impact on birth outcome parameters raises a strong rationale to investigate further. The adverse health effects of plastics recommend to measure the impacts of endocrine-disrupting compounds (EDCs) such as bisphenols (BPA, BPS, BPF), bis(2-ethylhexyl) phthalate, and dibutyl phthalate (DBP) in human health. Exposure to these compounds in utero may program the diseases of the testis, prostate, kidney and abnormalities in the immune system, and cause tumors, uterine hemorrhage during pregnancy and polycystic ovary. These compounds also control the processes of epigenetic transgenerational inheritance of adult-onset diseases by modulating DNA methylation and epimutations in reproductive cells. The early developmental stage is the most susceptible window for developmental and genomic programming. The critical stages of the events for a normal human birth lie between the many transitions occurring between spermatogenesis, egg fertilization and the fully formed fetus. As the cells begin to grow and differentiate, there are critical balances of hormones, and protein synthesis. Data are emerging on how these plastic-derived compounds affect embryogenesis, placentation and feto-placental development since pregnant women and unborn fetuses are often exposed to these factors during preconception and throughout gestation. Impaired early development that ultimately influences fetal outcomes is at the center of many developmental disorders and contributes an independent risk factor for adult chronic diseases. This review will summarize the current status on the impact of exposure to plastic derived EDCs on the growth, gene expression, epigenetic and angiogenic activities of the early fetal development process and their possible effects on birth outcomes.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Mrinal K Das
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
93
|
Puttabyatappa M, Sargis RM, Padmanabhan V. Developmental programming of insulin resistance: are androgens the culprits? J Endocrinol 2020; 245:R23-R48. [PMID: 32240982 PMCID: PMC7219571 DOI: 10.1530/joe-20-0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Insulin resistance is a common feature of many metabolic disorders. The dramatic rise in the incidence of insulin resistance over the past decade has enhanced focus on its developmental origins. Since various developmental insults ranging from maternal disease, stress, over/undernutrition, and exposure to environmental chemicals can all program the development of insulin resistance, common mechanisms may be involved. This review discusses the possibility that increases in maternal androgens associated with these various insults are key mediators in programming insulin resistance. Additionally, the intermediaries through which androgens misprogram tissue insulin sensitivity, such as changes in inflammatory, oxidative, and lipotoxic states, epigenetic, gut microbiome and insulin, as well as data gaps to be filled are also discussed.
Collapse
Affiliation(s)
| | - Robert M. Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | | |
Collapse
|
94
|
Taylor JA, Jones MB, Besch-Williford CL, Berendzen AF, Ricke WA, vom Saal FS. Interactive Effects of Perinatal BPA or DES and Adult Testosterone and Estradiol Exposure on Adult Urethral Obstruction and Bladder, Kidney, and Prostate Pathology in Male Mice. Int J Mol Sci 2020; 21:ijms21113902. [PMID: 32486162 PMCID: PMC7313472 DOI: 10.3390/ijms21113902] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Obstructive voiding disorder (OVD) occurs during aging in men and is often, but not always, associated with increased prostate size, due to benign prostatic hyperplasia (BPH), prostatitis, or prostate cancer. Estrogens are known to impact the development of both OVD and prostate diseases, either during early urogenital tract development in fetal–neonatal life or later in adulthood. To examine the potential interaction between developmental and adult estrogen exposure on the adult urogenital tract, male CD-1 mice were perinatally exposed to bisphenol A (BPA), diethylstilbestrol (DES) as a positive control, or vehicle negative control, and in adulthood were treated for 4 months with Silastic capsules containing testosterone and estradiol (T+E2) or empty capsules. Animals exposed to BPA or DES during perinatal development were more likely than negative controls to have urine flow/kidney problems and enlarged bladders, as well as enlarged prostates. OVD in adult T+E2-treated perinatal BPA and DES animals was associated with dorsal prostate hyperplasia and prostatitis. The results demonstrate a relationship between elevated exogenous estrogen levels during urogenital system development and elevated estradiol in adulthood and OVD in male mice. These findings support the two-hit hypothesis for the development of OVD and prostate diseases.
Collapse
Affiliation(s)
- Julia A. Taylor
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA; (J.A.T.); (M.B.J.)
| | - Maren Bell Jones
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA; (J.A.T.); (M.B.J.)
| | | | - Ashley F. Berendzen
- Biomolecular Imaging Center, Harry S Truman VA Hospital and University of Missouri, Columbia, MO 65211, USA;
| | - William A. Ricke
- George M. O’Brien Center of Research Excellence, Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA;
| | - Frederick S. vom Saal
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA; (J.A.T.); (M.B.J.)
- Correspondence: ; Tel.: +1-(573)-356-9621
| |
Collapse
|
95
|
Rotondo E, Chiarelli F. Endocrine-Disrupting Chemicals and Insulin Resistance in Children. Biomedicines 2020; 8:E137. [PMID: 32481506 PMCID: PMC7344713 DOI: 10.3390/biomedicines8060137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022] Open
Abstract
The purpose of this article is to review the evidence linking background exposure to endocrine-disrupting chemicals (EDCs) with insulin resistance in children. Although evidence in children is scarce since very few prospective studies exist even in adults, evidence that EDCs might be involved in the development of insulin resistance and related diseases such as obesity and diabetes is accumulating. We reviewed the literature on both cross-sectional and prospective studies in humans and experimental studies. Epidemiological studies show a statistical link between exposure to pesticides, polychlorinated bisphenyls, bisphenol A, phthalates, aromatic polycyclic hydrocarbides, or dioxins and insulin resistance.
Collapse
Affiliation(s)
- Eleonora Rotondo
- Department of Pediatrics, University of Chieti, I-66100 Chieti, Italy;
| | | |
Collapse
|
96
|
Yan S, Wang D, Teng M, Meng Z, Yan J, Li R, Jia M, Tian S, Zhou Z, Zhu W. Perinatal exposure to 2-Ethylhexyl Diphenyl Phosphate (EHDPHP) affected the metabolic homeostasis of male mouse offspring: Unexpected findings help to explain dose- and diet- specific phenomena. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122034. [PMID: 31951990 DOI: 10.1016/j.jhazmat.2020.122034] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/26/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
The environmental health risks of a new type of organophosphate flame retardant, 2-ethylhexyl diphenyl phosphate (EHDPHP), which is present in large quantities in various Nordic foods, have attracted the attention of scientists recently. In this study, the metabolic homeostasis of low-fat diet (LFD) and high-fat diet (HFD) fed male mice offspring was assessed after perinatal exposure to two doses (30 μg/kg bw/day and 300 μg/kg bw/day) of EHDPHP. Perinatal exposure to EHDPHP resulted in weight changes in male mice offspring, altered glucose tolerance and induced liver damage, and surprisingly these changes were dose- and diet- specific. Then the 1H NMR-based metabolomics, 16S rRNA sequencing, and qRT-PCR techniques were used to explore the mechanisms of these specific changes. The results indicate that the increase in short-chain fatty acids and the increase in Clostridium in the high-dose group may be responsible for the dose-specificity, while the attenuation of the purine metabolic pathway and the decrease in glutamine levels in the HFD group are accountable for the diet-specificity. In addition, down-regulation of PPARG (peroxisome proliferator-activated receptor gamma) gene expression levels might have caused the decrease in body weight in the H + HFD (high dose exposure with HFD feeding) group. Over all, these results elucidated the effects of dosage and diet on the toxicology of EHDPHP.
Collapse
Affiliation(s)
- Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Ruisheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Ming Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
97
|
Gao S, Liu H, Chang H, Zhang Z, Hu J, Tao S, Wan Y. Visualized Metabolic Disorder and Its Chemical Inducer in Wild Crucian Carp from Taihu Lake, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3343-3352. [PMID: 32091217 DOI: 10.1021/acs.est.0c00099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A variety of anthropogenic chemicals can disrupt the equilibrium of intrinsic biological metabolites in organisms, leading to metabolic disorders and an increased risk of metabolic syndromes. However, exposure to pollutants that induce metabolic disorders in wildlife as a cause of adverse effects is unknown. In this study, approximately 3108 compounds, including 11 groups of metabolites and 388 pollutants, were simultaneously identified in the blood of wild crucian carp (Carassius auratus) captured in three bays of Taihu Lake, China. A visualized network linking thousands of co-regulated metabolites was automatically produced for the screened signals. This comprehensive view of the differences in blood metabolite profiles in carp from the north and south bays showed that triglycerides (TGs) were the intrinsic molecules most affected by differing environmental pollution in each bay. The regional differences in metabolite profiles were linked to exposure to screened perfluorinated compounds that displayed corresponding regional differences in concentrations and effects on TGs in in vivo exposure tests. Perfluoroundecanoic acid (PFUnDA) was the key pollutant responsible for the variation in blood TGs in wild crucian carp, and exposure to PFUnDA resulted in extremely high biological activity on lipid deposition in the liver tissues of crucian carp at environmental levels.
Collapse
Affiliation(s)
- Shixiong Gao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hang Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hong Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhaobin Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
98
|
Wade M, Delawder V, Reneau P, Dos Santos JM. The effect of BPA exposure on insulin resistance and type 2 diabetes - The impact of muscle contraction. Med Hypotheses 2020; 140:109675. [PMID: 32200183 DOI: 10.1016/j.mehy.2020.109675] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/23/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) is considered one of the leading causes of death worldwide. In addition to physical inactivity and obesity, established risk factors for T2D, chemical contaminants consumed in industrialized food such as BPA might also be a contributor to the development of T2D. Epidemiological studies have shown that BPA concentrations are higher in human specimens of T2D when compared to healthy subjects, while experimental studies suggested that bisphenol A (BPA) impairs the pathway by which insulin stimulates glucose uptake. In skeletal muscle and adipocytes, insulin resistance is developed by the impairment of the insulin pathway to stimulate the translocation of glucose transporter, GLUT4, to the cell membrane. Recent results demonstrated that BPA impairs several components of insulin-induced glucose uptake pathway and affect the expression of GLUT4. Regular physical exercise delays or inhibits the development of T2D due to the physiologic processes taking place during muscle contraction, and the fact that skeletal muscle is the site for almost 80% of the glucose transported under insulin stimulation. In fact, the mechanism by which contraction induces glucose uptake in skeletal muscle is partially independent of the insulin pathway, therefore, the effect of BPA on this mechanism is unknown. We hypothesize that during the development of insulin resistance, BPA contributes to the impairment of the molecular pathway by which insulin induces glucose uptake while contraction-induced glucose uptake is not impaired. At the late stages of T2D, BPA may affect GLUT4 expression that will decrease the ability of muscle contraction to induce glucose uptake.
Collapse
Affiliation(s)
- Madison Wade
- School of Education, Health and Human Performance, Fairmont State University, Fairmont, WV, United States
| | - Virginia Delawder
- School of Education, Health and Human Performance, Fairmont State University, Fairmont, WV, United States
| | - Paul Reneau
- School of Education, Health and Human Performance, Fairmont State University, Fairmont, WV, United States
| | - Julia M Dos Santos
- School of Education, Health and Human Performance, Fairmont State University, Fairmont, WV, United States; Detroit R&D, Inc, Detroit, MI, United States.
| |
Collapse
|
99
|
Elgawish RA, El-Beltagy MA, El-Sayed RM, Gaber AA, Abdelrazek HMA. Protective role of lycopene against metabolic disorders induced by chronic bisphenol A exposure in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9192-9201. [PMID: 31916151 DOI: 10.1007/s11356-019-07509-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
This study was conducted to elucidate the ameliorative potential of lycopene (LYC) against the metabolic toxicity induced by bisphenol A (BPA) in rats. Male rats (n = 28) were divided into 4 equal groups: control group, LYC group was given lycopene (10 mg/kg BW), BPA group was given 10 mg/kg BW of BPA, and the last group was administered BPA and LYC at 10 mg/kg via gavage for 90 consecutive days. Body weight (BW) gain, lipid profile, and total antioxidant capacity (TAC) were assessed. Oral glucose tolerance test (OGTT), homeostasis model assessment-estimated insulin resistance (HOMA-IR), thyroid hormones, interleukin-1 beta (IL-1β), leptin, and resistin were assayed. Moreover, immunohistochemistry of TNF-α was performed in adipose tissue. BPA-treated rats showed significant reduction in BW gain and deteriorations in lipid profile, TAC, OGTT, and thyroid hormones as well as significant increases in HOMA-IR, IL-1β, leptin, and resistin. While, improvement of metabolic parameters was observed when LYC was administrated with BPA. Intense TNF-α immunostaining was detected in the fat of BPA-treated rats but the intensity decreased when LYC was administrated with BPA. In conclusion, LYC ameliorated the adverse effects of BPA on metabolism through its antioxidant potential and its reduction of TNF-α expression in adipose tissue.
Collapse
Affiliation(s)
- Rania Abdelrahman Elgawish
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Marwa A El-Beltagy
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Rehab M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-, Arish, Egypt
| | - Aya A Gaber
- Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
100
|
Azevedo LF, Hornos Carneiro MF, Dechandt CRP, Cassoli JS, Alberici LC, Barbosa F. Global liver proteomic analysis of Wistar rats chronically exposed to low-levels of bisphenol A and S. ENVIRONMENTAL RESEARCH 2020; 182:109080. [PMID: 31901629 DOI: 10.1016/j.envres.2019.109080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 05/26/2023]
Abstract
Exposure to bisphenol A (BPA) and bisphenol S (BPS) has been associated with the development of metabolic disorders, such as obesity, dyslipidemias, and nonalcoholic fatty liver disease. Nonetheless, the associated mechanisms are still not fully understood. BPS is being used with no restrictions to replace BPA, which increases the concern regarding its safety and claims for further investigation on its potential mechanisms of toxicity. The present study aims to access liver molecular disturbances which could be associated with systemic metabolic disorders following exposure to BPA or BPS. Therefore, body weight gain and serum biochemical parameters were measured in male Wistar rats chronically exposed to 50 or 500 µg/kg/day of BPA or BPS, while an extensive evaluation of liver protein expression changes was conducted after exposure to 50 µg/kg/day of both compounds. Exposure to the lowest dose of BPA led to the development of hyperglycemia and hypercholesterolemia, while the BPS lowest dose led to the development of hypertriglyceridemia. Besides, exposure to 500 µg/kg/day of BPS significantly increased body weight gain and LDL-cholesterol levels. Hepatic proteins differentially expressed in BPA and BPS-exposed groups compared to the control group were mostly related to lipid metabolism and synthesis, with upregulation of glucokinase activity-related sequence 1 (1.8-fold in BPA and 2.4-fold in BPS), which is involved in glycerol triglycerides synthesis, and hydroxymethylglutaryl-CoA synthase cytoplasmic (2-fold in BPS), an enzyme involved in mevalonate biosynthesis. Essential mitochondrial proteins of the electron transport chain were upregulated after exposure to both contaminants. Also, BPA and BPS dysregulated expression of liver antioxidant enzymes, which are involved in cellular reactive oxygen species detoxification. Altogether, the results of the present study contribute to expand the scientific understanding of how BPA and BPS lead to the development of metabolic disorders and reinforce the risks associated with exposure to these contaminants.
Collapse
Affiliation(s)
- Lara Ferreira Azevedo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Maria Fernanda Hornos Carneiro
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil; Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Carlos Roberto Porto Dechandt
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | | | - Luciane Carla Alberici
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil.
| |
Collapse
|