51
|
Beltrán-Flores E, Sarrà M, Blánquez P. Pesticide bioremediation by Trametes versicolor: Application in a fixed-bed reactor, sorption contribution and bioregeneration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148386. [PMID: 34218143 DOI: 10.1016/j.scitotenv.2021.148386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Although immobilization on lignocellulosic materials has recently become a promising strategy in the fungal-based technology for micropollutant bioremediation, research evidence in this area is still scarce and significant knowledge gaps need to be addressed. In this study, Trametes versicolor immobilized on Quercus ilex wood chips was initially proposed to remove two pesticides, diuron and bentazon, from real agricultural wastewater. Thus, a bioremediation treatment was performed in a fixed-bed bioreactor at two empty bed contact times (EBCT) of 1 and 3 days. Bentazon saturation was achieved after 5 EBCTs, while diuron sorption remained below 50% even after 40 days of treatment. The differences in diuron and bentazon removals were linked to their different hydrophobicity and thus, affinity for wood. However, in any case, the sorption contribution of wood was found to be predominant compared to fungal biodegradation. These results motivated a comprehensive study to evaluate the pollutant sorption capacity of wood. Afterwards, pesticide-contaminated wood was successfully bioregenerated by T. versicolor in a biopile-like system, reaching high fungal colonization (up to 0.2451 mg ergosterol·g-1 dry weight), degradation rate (up to 2.55 mg·g-1·d-1) and degradation yields (up to 92.50%). The combined treatment consisting of the fixed-bed bioreactor followed by the re-inoculated biopile showed the best performance in terms of fungal content and pesticide degradation. This is an important step toward the implementation of fungal-based technology for the removal of pesticides from agricultural water.
Collapse
Affiliation(s)
- Eduardo Beltrán-Flores
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Montserrat Sarrà
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Paqui Blánquez
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
52
|
Song Y, Li X, Wang Y, Ma S, Li T, Chen X, Li Y, Jiang K. Adsorption and fouling behaviors of customized nanocomposite membrane to trace pharmaceutically active compounds under multiple influent matrices. WATER RESEARCH 2021; 206:117762. [PMID: 34678700 DOI: 10.1016/j.watres.2021.117762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/29/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Rare information is available on fouling behavior of customized nanofiltration (NF) membrane evoked by pharmaceutically active compounds (PhACs) under real multiple influent matrices pretreated by ultrafiltration module beforehand. To this end, a novel tight NF membrane with excellent perm-selectivity and antiadhesion was fabricated and used to assess its separation performance/mechanism and fouling behavior to a broad range of small molecular PhACs in the context. The adsorption ratio results revealed that the affinities between five selected PhACs and the customized nanocomposite membrane surface were all much weaker (below 5.5%) than the solute-solute interacting forces (between 23.6 and 83.2%), whether for natural or synthetic complex micropollutants. The predominant membrane fouling could be interpreted by the incomplete blocking model in the permeation of both influent conditions. For neat nanocomposite membrane, the order of critical factors important on separation mechanism was electrostatic effect, adsorption and steric hindrance. The fouling layer seemed to act as a secondary separating layer for those negatively charged or hydrophilic PhACs, but showed the cake enhanced concentration polarization effect for the neutral and hydrophobic ones. This study provides valuable insights for defining PhACs fate and NF membrane fouling behavior to fit increasingly stringent criteria for wastewater treatment.
Collapse
Affiliation(s)
- Yuefei Song
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China.
| | - Xifan Li
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| | - Yongxin Wang
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| | - Saifei Ma
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| | - Tiemei Li
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| | - Xiaomei Chen
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| | - Yajuan Li
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China.
| |
Collapse
|
53
|
Tiruneh Adugna A. Development in nanomembrane-based filtration of emerging contaminants. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Recently, the concentration of emerging contaminants is increasing in drinking water sources, industrial wastewater, and reclaimed water. It is not possible to remove the emerging contaminants using conventional methods, and the interest to use nanomembrane-based filtration is getting attention. A nanomembrane-based filtration can be manipulated without the use of any special equipment. Different research findings reported better removal of emerging contaminants has been achieved using nanomembrane-based filtration. Moreover, new developments have been examined and implemented at different levels and are expected to continue. Therefore, this chapter provides a brief overview of recent developments on nanomembrane-based filtration processes in the removal of emerging contaminants from drinking water sources, industrial wastewater, and reclaimed water.
Collapse
Affiliation(s)
- Amare Tiruneh Adugna
- Department of Environmental Engineering , Addis Ababa Science and Technology University, College of Biological and Chemical Engineering , Addis Ababa , Ethiopia
| |
Collapse
|
54
|
Tunç MS, Yıldız B, Taşar Ş. Removal of paracetamol from aqueous solution by wood sawdust-derived activated carbon: Process optimization using response surface methodology. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1978075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Müslün Sara Tunç
- Department of Environmental Engineering, Faculty of Engineering, Firat University, Elazığ, Turkey
| | - Burçin Yıldız
- Department of Environmental Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van, Turkey
| | - Şeyda Taşar
- Department of Chemical Engineering, Faculty of Engineering, Firat University, Elazig, Turkey
| |
Collapse
|
55
|
Hasse Palharim P, Lastre-Acosta AM, Mierzwa JC, Teixeira ACSC. Influence of low and high dosages of methyl and propyl parabens on membrane bioreactor (MBR) performance. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1965167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Priscila Hasse Palharim
- Research Group in Advanced Oxidation Processes (Adox), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil
| | - Arlen Mabel Lastre-Acosta
- Research Group in Advanced Oxidation Processes (Adox), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil
| | - José Carlos Mierzwa
- InternationalReference Center onWater Reuse (IRCWR), Universityof São Paulo, São Paulo, Brazil
| | - Antonio Carlos Silva Costa Teixeira
- Research Group in Advanced Oxidation Processes (Adox), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
56
|
Liang J, Zhang W, Zhao Z, Liu W, Ye J, Tong M, Li Y. Different degradation mechanisms of carbamazepine and diclofenac by single-atom Barium embedded g-C 3N 4: the role of photosensitation-like mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125936. [PMID: 34492865 DOI: 10.1016/j.jhazmat.2021.125936] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/02/2021] [Accepted: 04/18/2021] [Indexed: 05/23/2023]
Abstract
This study reports the different degradation mechanisms of carbamazepine (CBZ) and diclofenac (DCF) by single-atom Barium (Ba) embedded g-C3N4. Single-atom Ba is anchored onto g-C3N4 by forming ionic bond with triazine ring, thus greatly enhances the photocatalytic activity with an atom ratio of 1.78%. CBZ undergoes a typical photocatalysis mechanism, while DCF is degraded via a photosensitization-like process, which does not need band gap excitation of photocatalyst. By means of Density Functional Theory (DFT) calculation, the selectivity is found to be related with the different valence excitation modes of CBZ and DCF. Specifically, CBZ undergoes a local excitation, which does not obviously affect molecular configuration. In contrast, DCF undergoes a charge transfer excitation, which significantly changes the reactive sites distribution and facilitates photosensitization-like degradation. Due to the different degradation mechanism, the effects of pH, co-existed anions, and water matrix are also different. Since photosensitization-like mechanism does not rely on photo-generated holes mediated oxidation, the degradation efficient of DCF shows higher anti-interference capacity in real water.
Collapse
Affiliation(s)
- Jialiang Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Wei Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Zhiwei Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Peking University, Beijing 100871, China
| | - Jiangyu Ye
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yunyi Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
57
|
Taoufik N, Boumya W, Achak M, Sillanpää M, Barka N. Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112404. [PMID: 33780817 DOI: 10.1016/j.jenvman.2021.112404] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/26/2021] [Accepted: 03/13/2021] [Indexed: 05/12/2023]
Abstract
Nowadays, pharmaceuticals are the center of significant environmental research due to their complex and highly stable bioactivity, increasing concentration in the water streams and high persistence in aquatic environments. Conventional wastewater treatment techniques are generally inadequate to remove these pollutants. Aiming to tackle this issue effectively, various methods have been developed and investigated on the light of chemical, physical and biological procedures. Increasing attention has recently been paid to the advanced oxidation processes (AOPs) as efficient methods for the complete mineralization of pharmaceuticals. Their high operating costs compared to other processes, however, remain a challenge. Hence, this review summarizes the current and state of art related to AOPs, biological treatment and their effective exploitation for the degradation of various pharmaceuticals and other emerging molecules present in wastewater. The review covers the last decade with a particular focus on the previous five years. It is further envisioned that this review of advanced oxidation methods and biological treatments, discussed herein, will help readers to better understand the mechanisms and limitations of these methods for the removal of pharmaceuticals from the environment. In addition, we compared AOPs and biological treatments for the disposal of pharmaceuticals from the point of view of cost, effectiveness, and popularity of their use. The exploitation of coupling AOPs and biological procedures for the degradation of pharmaceuticals in wastewater was also presented. It is worthy of note that an integrated AOPs/biological system is essential to reach the complete degradation of pharmaceuticals; other advantages of this hybrid technique involve low energy cost, an efficient degradation process and generation of non-toxic by-products.
Collapse
Affiliation(s)
- Nawal Taoufik
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco.
| | - Wafaa Boumya
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco
| | - Mounia Achak
- Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaïb Doukkali University, El Jadida, Morocco; Chemical & Biochemical Sciences, Green Process Engineering, CBS, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Noureddine Barka
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco.
| |
Collapse
|
58
|
Zhang T, Lv K, Lu Q, Wang L, Liu X. Removal of antibiotic-resistant genes during drinking water treatment: A review. J Environ Sci (China) 2021; 104:415-429. [PMID: 33985744 DOI: 10.1016/j.jes.2020.12.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Once contaminate the drinking water source, antibiotic resistance genes (ARGs) will propagate in drinking water systems and pose a serious risk to human health. Therefore, the drinking water treatment processes (DWTPs) are critical to manage the risks posed by ARGs. This study summarizes the prevalence of ARGs in raw water sources and treated drinking water worldwide. In addition, the removal efficiency of ARGs and related mechanisms by different DWTPs are reviewed. Abiotic and biotic factors that affect ARGs elimination are also discussed. The data on presence of ARGs in drinking water help come to the conclusion that ARGs pollution is prevalent and deserves a high priority. Generally, DWTPs indeed achieve ARGs removal, but some biological treatment processes such as biological activated carbon filtration may promote antibiotic resistance due to the enrichment of ARGs in the biofilm. The finding that disinfection and membrane filtration are superior to other DWTPs adds weight to the advice that DWTPs should adopt multiple disinfection barriers, as well as keep sufficient chlorine residuals to inhibit re-growth of ARGs during subsequent distribution. Mechanistically, DWTPs obtain direct and inderect ARGs reduction through DNA damage and interception of host bacterias of ARGs. Thus, escaping of intracellular ARGs to extracellular environment, induced by DWTPs, should be advoided. This review provides the theoretical support for developping efficient reduction technologies of ARGs. Future study should focus on ARGs controlling in terms of transmissibility or persistence through DWTPs due to their biological related nature and ubiquitous presence of biofilm in the treatment unit.
Collapse
Affiliation(s)
- Tuqiao Zhang
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou 310058, China
| | - Kunyuan Lv
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou 310058, China
| | - Qingxiao Lu
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Lili Wang
- Environmental Engineering, Jiyang College of Zhejiang A & F University, Zhuji 311800, China
| | - Xiaowei Liu
- Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou 310058, China; Ocean College, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
59
|
Abstract
Water is an essential resource that facilitates the existence of human life forms. In recent years, the demand for the consumption of freshwater has substantially increased. Seawater contains a high concentration of salt particles and salinity, making it unfit for consumption and domestic use. Water treatment plants used to treat seawater are less efficient and reliable. Deep learning systems can prove to be efficient and highly accurate in analyzing salt particles in seawater with higher efficiency that can improve the performance of water treatment plants. Therefore, this work classified different concentrations of salt particles in water using convolutional neural networks with the implementation of transfer learning. Salt salinity concentration images were captured using a designed Raspberry Pi based model and these images were further used for training purposes. Moreover, a data augmentation technique was also employed for the state-of-the-art results. Finally, a deep learning neural network was used to classify saline particles of varied concentration range images. The experimental results show that the proposed approach exhibited superior outcomes by achieving an overall accuracy of 90% and f-score of 87% in classifying salt particles. The proposed model was also evaluated using other evaluation metrics such as precision, recall, and specificity, and showed robust results.
Collapse
|
60
|
Chen G, Yu Y, Liang L, Duan X, Li R, Lu X, Yan B, Li N, Wang S. Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124461. [PMID: 33172681 DOI: 10.1016/j.jhazmat.2020.124461] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/18/2020] [Accepted: 11/01/2020] [Indexed: 05/16/2023]
Abstract
Recently, antibiotics with high ecotoxicity have been ubiquitously detected in aquatic environment. The photocatalysis/persulfate-oxidation hybrid (PPOH) system has been proved as a promising strategy for antibiotic degradation. The efficient antibiotic removal is due to the favorable synergistic effects between photocatalysis and persulfate activation. To our best knowledge, relevant reviews on the photo-assisted persulfate activation (PPA) system have been reported, while the research progress on persulfate-assisted photocatalysis (PAP) and concurrent photocatalysis-persulfate activation (CPPA) systems for antibiotic wastewater treatment have yet been summarized. Hence, the PPOH systems are categorized into PPA, PAP and CPPA systems in this review. Besides, the performance of antibiotic degradation and internal mechanism in the coupled oxidation system are summarized and analyzed comprehensively. Finally, conclusions and future prospects of PPOH systems in antibiotic wastewater treatment are proposed. This study provides an overview of PPOH system and outlines the future research direction of the system in practical treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Guanyi Chen
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| | - Yang Yu
- Tianjin International Engineering Institute, Tianjin University, Tianjin 300072, China
| | - Lan Liang
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Rui Li
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Xukai Lu
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Beibei Yan
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China
| | - Ning Li
- School of Environmental Science and Engineering/Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin University, Tianjin 300072, China.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
61
|
Using Pressure-Driven Membrane Processes to Remove Emerging Pollutants from Aqueous Solutions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084036. [PMID: 33921335 PMCID: PMC8068841 DOI: 10.3390/ijerph18084036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/17/2022]
Abstract
Currently, there is great concern about global water pollution. Wastewater generally contains substances called emerging pollutants, and if the removal of these pollutants is not given sufficient attention, the pollutants can enter into the water cycle and reach the water supply for domestic use, causing adverse effects on the well-being of people. In order to avoid this menace, a multitude of techniques to reduce the high concentration levels of these substances dissolved in water are being researched and developed. One of the most-used techniques for this goal is the physical-chemical separation of contaminants in water through membrane technology. In this study, different membranes were tested with the objective of investigating the removal of three emerging pollutants: caffeine, metformin, and methyl-paraben. Initially, a nanofiltration (NF) membrane was selected, and the influence of pressure was evaluated in the rejection coefficients and permeate fluxes. Next, a screening of three new membranes to remove methyl paraben was completed. The influence of the operating variables, working pressure, and methyl paraben-feed concentration was checked. Finally, the solution-diffusion model was applied to predict the behavior of the different membranes in the removal of methyl paraben. A good correlation between experimental and calculated values of permeate flux and methyl paraben concentration was obtained.
Collapse
|
62
|
Biodegradation of Emerging Pharmaceuticals from Domestic Wastewater by Membrane Bioreactor: The Effect of Solid Retention Time. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073395. [PMID: 33805955 PMCID: PMC8036512 DOI: 10.3390/ijerph18073395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022]
Abstract
Although conventional biological treatment plants can remove basic pollutants, they are ineffective at removing recalcitrant pollutants. Membrane bioreactors contain promising technology and have the advantages of better effluent quality and lower sludge production compared to those of conventional biological treatment processes. In this study, the removal of pharmaceutical compounds by membrane bioreactors under different solid retention times (SRTs) was investigated. To study the effect of SRT on the removal of emerging pharmaceuticals, the levels of pharmaceuticals were measured over 96 days for the following retention times: 20, 30, and 40-day SRT. It was found that the 40-day SRT had the optimum performance in terms of the pharmaceuticals’ elimination. The removal efficiencies of the chemical oxygen demand (COD) for each selected SRT were higher than 96% at steady-state conditions. The highest degradation efficiency was observed for paracetamol. Paracetamol was the most removed compound followed by ranitidine, atenolol, bezafibrate, diclofenac, and carbamazepine. The microbial community at the phylum level was also analyzed to understand the biodegradability of pharmaceuticals. It was noticed that the Proteobacteria phylum increased from 46.8% to 60.0% after 96 days with the pharmaceuticals. The Actinobacteria class, which can metabolize paracetamol, carbamazepine, and atenolol, was also increased from 9.1% to 17.9% after adding pharmaceuticals. The by-products of diclofenac, bezafibrate, and carbamazepine were observed in the effluent samples.
Collapse
|
63
|
Fonseca MJDC, Silva JRPD, Borges CP, Fonseca FVD. Ethinylestradiol removal of membrane bioreactor effluent by reverse osmosis and UV/H 2O 2: A technical and economic assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111948. [PMID: 33486235 DOI: 10.1016/j.jenvman.2021.111948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Synthetic hormone 17α-ethinylestradiol (EE2) is not completely removed by conventional wastewater treatment plants and therefore is often detected in surface and groundwater, sludge and sediments. Due to its persistence in the environment and its estrogenic potential, a high removal of EE2 from wastewaters before its disposal has become a concern from an environmental point of view, particularly when considering urban reuse applications. This work investigated the application of advanced processes to treat synthetic municipal wastewater containing EE2 after treatment in a membrane bioreactor (MBR). Two advanced processes were assessed: the first is advanced oxidation process (AOP), using hydrogen peroxide (H2O2) and ultraviolet (UV) light (route MBR-AOP) and the second, reverse osmosis (RO), in this case using UV/H2O2 to treat the retentate from RO (route MBR-RO). EE2 concentration in final effluent was one order of magnitude lower in route MBR-AOP than in route MBR-RO. Implications for disposal or water reuse were discussed considering the importance of other water quality parameters as well. Economic estimates for CAPEX, OPEX and total cost were made. The introduction of the oxidative step (UV/H2O2) after MBR caused an increase in the total cost of US$ 0.39/m3. In turn, route MBR-RO increased the total process cost by US$ 0.86/m3, showing that reduction of volume to be treated by UV/H2O2 in this route did not offset the cost associated with the acquisition and operation of RO. The total cost was estimated at US$ 2.47/m3 for MBR-AOP and US$ 2.94/m3 for MBR-RO for a design flow of 10 m³/h.
Collapse
Affiliation(s)
| | | | - Cristiano Piacsek Borges
- School of Chemistry, Inorganic Processes Department, Federal University of Rio de Janeiro (UFRJ), Brazil; COPPE/Chemical Engineering Program, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Fabiana Valéria da Fonseca
- School of Chemistry, Inorganic Processes Department, Federal University of Rio de Janeiro (UFRJ), Brazil
| |
Collapse
|
64
|
Olasupo A, Suah FBM. Recent advances in the removal of pharmaceuticals and endocrine-disrupting compounds in the aquatic system: A case of polymer inclusion membranes. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124317. [PMID: 33307454 DOI: 10.1016/j.jhazmat.2020.124317] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 05/26/2023]
Abstract
The presence of pharmaceuticals and endocrine-disrupting compounds in aquatic systems is a matter of great concern. The occurrence, fate, and potential toxicity of these compounds have triggered the interest of the scientific community. As a result of their high solubility and low volatility, they are common in aquatic systems, and wastewater treatment plants (WWTP) are the main reservoir for these contaminants. Conventional WWTPs have demonstrated an inability to remove these contaminants completely; hence, different advanced treatment processes have been explored to compensate for the lapses of the conventional system. The outcome of this study revealed the significant improvements made using advanced treatment processes to diminish the number of contaminants; however, some contaminants have proven to be refractory. Thus, there is a need to modify various advanced treatment processes or employ additional treatment processes. Polymer inclusion membranes (PIMs) are a liquid membrane technology that is highly efficient at removing contaminants from water. They have been widely studied for the removal of heavy metals and nutrients from aquatic systems; however, only a few studies have investigated the use of PIMs to remove pharmaceutically active compounds from aquatic systems. This research aims to raise awareness on the application of PIMs as a promising water treatment technology which has a great potential for the remediation of pharmaceuticals and endocrine disruptors in the aquatic system, due to its versatility, ease/low cost of preparation and high contaminant selectivity.
Collapse
Affiliation(s)
- Ayo Olasupo
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Faiz Bukhari Mohd Suah
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| |
Collapse
|
65
|
Liang C, Wei D, Zhang S, Ren Q, Shi J, Liu L. Removal of antibiotic resistance genes from swine wastewater by membrane filtration treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111885. [PMID: 33421714 DOI: 10.1016/j.ecoenv.2020.111885] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/12/2020] [Accepted: 12/22/2020] [Indexed: 05/09/2023]
Abstract
Antibiotic resistance genes (ARGs) have attracted extensive attention as an emerging environmental contaminant potentially threatening humans. One of the main emission sources of ARGs is swine wastewater. In this study, integrated membrane filtration including ultrafiltration and two-stage reverse osmosis was conducted for swine wastewater treatment. The abundances of 16 target ARGs, which accounted for 72.64% of the total ARGs in swine wastewater according to metagenomic sequencing, were quantified by quantitative real-time PCR (qPCR) during each stage of the membrane filtration process. The results showed that integrated membrane filtration could reduce more than 99.0% of conventional pollutants and 99.79% of ARGs (from 3.02 × 108 copy numbers/mL to 6.45 × 105 copy numbers/mL). Principal component analysis (PCA) indicated that the removal efficiency of ARGs subtype by membrane filtration did not depend on ARGs type. However, strong correlations were found between ARGs and the wastewater quality indicators TP, SS and EC according to Cooccurrence patterns, indicating that ARG removal was closely associated with insoluble solid particles and soluble ions in swine wastewater. These results showed that membrane filtration could not only remove conventional pollutants such as nitrogen and phosphorus but also reduce the emerging pollutant of ARGs and decrease the risk of ARGs flowing into natural water.
Collapse
Affiliation(s)
- Chengyu Liang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wei
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China
| | - Siying Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuhui Ren
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| |
Collapse
|
66
|
Ashraf A, Ramamurthy R. WITHDRAWN: Progress in the removal of organic microcontaminants from wastewater using high retention membrane bioreactors: A critical review. ENVIRONMENTAL RESEARCH 2021:110930. [PMID: 33640499 DOI: 10.1016/j.envres.2021.110930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Adil Ashraf
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, 2601DA, Delft, the Netherlands; Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Racchana Ramamurthy
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, 2601DA, Delft, the Netherlands; Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
67
|
Abstract
The possibility of removing tetracycline (TRC) from water in an integrated advanced oxidation and membrane filtration process was investigated. Ozonation and UV/H2O2 photooxidation were applied for the destruction of TRC. Six oxidation products (OPs) retaining the structural core of TRC have been identified. One new TRC oxidation product, not reported so far in the literature, was identified—ethyl 4-ethoxybenzoate. All identified OPs were effectively retained on the membrane in the nanofiltration process. However, chemical oxygen demand (COD) measurements of the filtrates showed that in the case of UV/H2O2 oxidation, the OPs passed through the membrane into the filtrate. Various water matrices were used in the research, including the river water untreated and after ozone treatment. It has been shown that organic matter present in surface water can improve pharmaceutical retention, although it contributes to significant membrane fouling. Pre-ozonation of the river water reduced the membrane fouling. The XPS analysis was used to show ozone and H2O2 influence on the top polymer layer of the membrane. It was shown that the oxidants can damage the amide bond of the polyamide.
Collapse
|
68
|
Zhao Y, Tong T, Wang X, Lin S, Reid EM, Chen Y. Differentiating Solutes with Precise Nanofiltration for Next Generation Environmental Separations: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1359-1376. [PMID: 33439001 DOI: 10.1021/acs.est.0c04593] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Selective removal or enrichment of targeted solutes including micropollutants, valuable elements, and mineral scalants from complex aqueous matrices is both challenging and pivotal to the success of water purification and resource recovery from unconventional water resources. Membrane separation with precision at the subnanometer or even subangstrom scale is of paramount importance to address those challenges via enabling "fit-for-purpose" water and wastewater treatment. So far, researchers have attempted to develop novel membrane materials with precise and tailored selectivity by tuning membrane structure and chemistry. In this critical review, we first present the environmental challenges and opportunities that necessitate improved solute-solute selectivity in membrane separation. We then discuss the mechanisms and desired membrane properties required for better membrane selectivity. On the basis of the most recent progress reported in the literature, we examine the key principles of material design and fabrication, which create membranes with enhanced and more targeted selectivity. We highlight the important roles of surface engineering, nanotechnology, and molecular-level design in improving membrane selectivity. Finally, we discuss the challenges and prospects of highly selective NF membranes for practical environmental applications, identifying knowledge gaps that will guide future research to promote environmental sustainability through more precise and tunable membrane separation.
Collapse
Affiliation(s)
- Yangying Zhao
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Elliot M Reid
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
69
|
Pore model for nanofiltration: History, theoretical framework, key predictions, limitations, and prospects. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118809] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
70
|
Chen T, Li B, Huang W, Lin C, Li G, Ren H, Wu Y, Chen S, Zhang W, Ma H. Highly crystalline ionic covalent organic framework membrane for nanofiltration and charge-controlled organic pollutants removal. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117787] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
71
|
Wei X, Zhang Q, Cao S, Xu X, Chen Y, Liu L, Yang R, Chen J, Lv B. Removal of pharmaceuticals and personal care products (PPCPs) and environmental estrogens (EEs) from water using positively charged hollow fiber nanofiltration membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8486-8497. [PMID: 33067789 DOI: 10.1007/s11356-020-11103-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Nanofiltration (NF) membranes show great potential for advanced water treatment, especially for trace organic pollutant removal. The removal efficiency of pharmaceuticals and personal care products (PPCPs) and environmental estrogenic hormones (EEHs) by positively charged hollow fiber NF membranes (PEI-NF) were evaluated. The separation properties were evaluated by changing the operating pressure, temperature, ionic strength, and cation species. A relationship between the physicochemical characteristics of the pharmaceuticals and the NF membrane retention behavior was established. The results showed that the rejection rates of the PEI-NF membrane for the selected PPCPs and EEHs ranged from 81 to ~ 91.26%. For positively (negatively) charged pharmaceutical molecules, the electrostatic repulsion (attraction) effect and steric hindrance were the dominant rejection mechanisms of the PEI-NF membrane. For neutral pharmaceutical molecules, in addition to the size sieving effect, the hydration-induced size increase of hydrophilic substances improved the rejection rates. Both the molecular structure and diffusion coefficient of pharmaceutical molecules influenced their rejection by the PEI-NF membrane to a certain extent. Moreover, the PEI-NF membrane showed a high removal effect for PPCPs and EEHs in water samples from actual tap water plants.
Collapse
Affiliation(s)
- Xiuzhen Wei
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou, 310014, China.
| | - Qian Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou, 310014, China
| | - Shiyu Cao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou, 310014, China
| | - Xufeng Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou, 310014, China
| | - Yi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou, 310014, China
| | - Lu Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou, 310014, China
| | - Ruiyuan Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou, 310014, China
| | - Jinyuan Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou, 310014, China.
| | - Bosheng Lv
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou, 310014, China
| |
Collapse
|
72
|
Xia J, Gao Y, Yu G. Tetracycline removal from aqueous solution using zirconium-based metal-organic frameworks (Zr-MOFs) with different pore size and topology: Adsorption isotherm, kinetic and mechanism studies. J Colloid Interface Sci 2021; 590:495-505. [PMID: 33567374 DOI: 10.1016/j.jcis.2021.01.046] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/30/2020] [Accepted: 01/16/2021] [Indexed: 11/25/2022]
Abstract
The adsorptive removal of tetracycline (TC) was studied with three types of zirconium-based metal-organic frameworks (Zr-MOFs), UiO-66, NU-1000 and MOF-525. The adsorption kinetics best fitted with the pseudo-second-order kinetic model and the adsorption equilibrium was rapidly reached within 40 min on UiO-66 and NU-1000, and 120 min on MOF-525. The adsorption isotherms best fitted with Sips model, and the maximum Sips adsorption capacities of TC on UiO-66, NU-1000 and MOF-525 were 145 mg·g-1, 356 mg·g-1 and 807 mg·g-1 respectively, which were much higher than common adsorbents. The X-ray photoelectron spectra measurements and the influence of pH suggested that the π-π interaction played a crucial role during the adsorption. Pore characteristics and topology of MOFs showed great effect on adsorption performance. The cages whose size match well with TC helped MOF-525 to get highest adsorption amount per surface area among MOFs we studied. The proper topology of NU-1000 contributed to its high adsorption rate. River water was also used to confirm the excellent adsorptive performance of these three Zr-MOFs in practical application. These results might aid us to comprehend the adsorption of TC on Zr-MOFs and expand the application of Zr-MOFs in water treatment for removal of emerging contaminants.
Collapse
Affiliation(s)
- Jing Xia
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, PR China.
| | - Yanxin Gao
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China.
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
73
|
Du X, Mo Z, Li Z, Zhang W, Luo Y, Nie J, Wang Z, Liang H. Boron-doped diamond (BDD) electro-oxidation coupled with nanofiltration for secondary wastewater treatment: Antibiotics degradation and biofouling. ENVIRONMENT INTERNATIONAL 2021; 146:106291. [PMID: 33395938 DOI: 10.1016/j.envint.2020.106291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
In this study, a boron-doped diamond (BDD) electro-oxidation technology coupled with nanofiltration membrane (EO-NF) technology was investigated for its effectiveness in removing antibiotics (i.e., sulfamethazine:SMZ) and mitigating biofouling during secondary wastewater treatment. The result showed that EO obtained an effective SMZ removal, owing to the ·OH generation observed by Electron paramagnetic resonance (EPR) analysis; complete elimination of SMZ was found under the high current density (30 mA/cm2) and long Electrolysis Time (ET = 60 min). Meanwhile, EO-NF process enabled to reduce COD content from 60 mg/L to nearly 5 mg/L. Furthermore, regardless of the effect of EO process, NF could retain most NH3-N because of the excellent performance of NF for ions rejection, and its permeate concentration was below 0.5 mg/L. EO was able to reduce membrane fouling notably, increasing the final flux (15 L/(m2·h)) of NF by 25.1% during long-term operation (240 h). Scanning electron microscopy-Energy dispersive spectrometry (SEM-EDS) showed that a porous layer formed on the vicinity of NF membrane in the case of filtrating EO effluent, in contrast to a uniform and dense biofouling layer generated during the direct NF. Besides, the content of adenosine triphosphate (ATP) and the number of bacterial colonies in the retentate of the EO-NF process were greater than those of the direct NF process. This resulted in a smaller amount of extracellular polymeric substances (EPS) attaching to the membrane surface, decreasing the tightness and hardness of the fouling layer in the case of EO, as indicated by CLSM analysis. Overall, considering its ability to effectively eliminate persistent contaminants and reduce membrane fouling, BDD-based EO is considered a promising pre-treatment option for future NF applications.
Collapse
Affiliation(s)
- Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhuoyu Mo
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Ziyang Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Wenxiang Zhang
- School of Environmental Science and Engineering, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Jinxu Nie
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| |
Collapse
|
74
|
Yang Z, Sun PF, Li X, Gan B, Wang L, Song X, Park HD, Tang CY. A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15563-15583. [PMID: 33213143 DOI: 10.1021/acs.est.0c05377] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The separation properties of polyamide reverse osmosis and nanofiltration membranes, widely applied for desalination and water reuse, are constrained by the permeability-selectivity upper bound. Although thin-film nanocomposite (TFN) membranes incorporating nanomaterials exhibit enhanced water permeance, their rejection is only moderately improved or even impaired due to agglomeration of nanomaterials and formation of defects. A novel type of TFN membranes featuring an interlayer of nanomaterials (TFNi) has emerged in recent years. These novel TFNi membranes show extraordinary improvement in water flux (e.g., up to an order of magnitude enhancement) along with better selectivity. Such enhancements can be achieved by a wide selection of nanomaterials, ranging from nanoparticles, one-/two-dimensional materials, to interfacial coatings. The use of nanostructured interlayers not only improves the formation of polyamide rejection layers but also provides an optimized water transport path, which enables TFNi membranes to potentially overcome the longstanding trade-off between membrane permeability and selectivity. Furthermore, TFNi membranes can potentially enhance the removal of heavy metals and micropollutants, which is critical for many environmental applications. This review critically examines the recent developments of TFNi membranes and discusses the underlying mechanisms and design criteria. Their potential environmental applications are also highlighted.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| | - Peng-Fei Sun
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bowen Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Li Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiaoxiao Song
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| |
Collapse
|
75
|
Liu Q, Xu N, Fan L, Ding A, Dong Q. Polyacrylonitrile (PAN)/TiO2 mixed matrix membrane synthesis by thermally induced self-crosslinking for thermal and organic-solvent resistant filtration. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
76
|
Dogruel S, Cetinkaya Atesci Z, Aydin E, Pehlivanoglu-Mantas E. Ozonation in advanced treatment of secondary municipal wastewater effluents for the removal of micropollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45460-45475. [PMID: 32794092 DOI: 10.1007/s11356-020-10339-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/30/2020] [Indexed: 05/25/2023]
Abstract
The objective of this study was the experimental evaluation of ozonation as an additional treatment step for the removal emerging contaminants from secondary effluents of two wastewater treatment plants (WWTPs), one receiving a primarily domestic wastewater (WWTP-A), and the other one domestic sewage together with pretreated tannery wastewater streams (WWTP-B). The experimental runs were conducted at two different pH values (i.e., original pH and adjusted pH of 10) and at six different ozone doses ranging between 0.2 and 1.5 mg O3/mg DOC. A total of 20 compounds, including 12 micropollutants (MPs) and 8 metabolites, were selected as the target analytes for the evaluation of ozonation performance. When the tested MPs and metabolites were considered individually, the maximum elimination level for each compound was reached at different doses; therefore, optimum ozone doses were determined based on the reduction of the total MP content. Ozonation at the original pH with an ozone dose in the range of 0.4-0.6 and 0.8-1.0 mg O3/mg DOC was selected as the optimum operating condition for WWTP-A and WWTP-B, respectively, both resulting in an average overall removal efficiency of 55%. Ozone treatment yielded only poor elimination for o-desmethyl naproxen (15%), which was found to be by far the main contributor accounting alone for approximately 30% of the total MP concentration in the secondary effluents. The systematic approach used in this study could well be adopted as a guide to other domestic and municipal WWTPs, which are thought to have a highly variable composition in terms of the MPs and metabolites.
Collapse
Affiliation(s)
- Serdar Dogruel
- Environmental Engineering Department, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Zuhal Cetinkaya Atesci
- Environmental Engineering Department, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Egemen Aydin
- Agat Laboratories, 9770 Route Transcanadienne, St. Laurent, Quebec, H4S 1V9, Canada
| | - Elif Pehlivanoglu-Mantas
- Environmental Engineering Department, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| |
Collapse
|
77
|
Santos AV, Couto CF, Lebron YAR, Moreira VR, Foureaux AFS, Reis EO, Santos LVDS, de Andrade LH, Amaral MCS, Lange LC. Occurrence and risk assessment of pharmaceutically active compounds in water supply systems in Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141011. [PMID: 32763601 DOI: 10.1016/j.scitotenv.2020.141011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 05/06/2023]
Abstract
The presence of pharmaceutically active compounds (PhACs) in water supply systems has been generating great concern about their effects on the environment and human health. Twenty-eight PhACs were monitored during one year in four Brazilian water sources, aiming to understand the factors that influence their occurrence and removal in conventional drinking water treatment plants (DWTPs) and to assess the environmental and human health risks. Trace levels of PhACs were detected in surface and drinking water in all assessed water sources. Effects of seasonality and socioeconomic aspects were observed in PhACs occurrence, like their higher concentrations during winter and in locales with higher values of gross domestic product per capita and human development index. Betamethasone, prednisone, and fluconazole were the most commonly detected PhACs, and also presented the highest concentrations. However, they were not related to toxicological risks. Nonetheless, all surface waters were subject to toxicological risk owing to at least one PhAC. PhACs related to the highest toxicological risks were loratadine, atorvastatin, norfloxacin, caffeine, and ranitidine, however, all these PhACs presented low quantification frequency. DWTPs capacity to remove PhACs was only partial, so treated water was still contaminated with these compounds. Furthermore, atorvastatin presented a margin of exposure below 100, indicating possible risk for public health. Thus, additional advanced treatment steps should be considered to improve PhACs removal during drinking water treatment.
Collapse
Affiliation(s)
- Amanda Vitória Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil.
| | - Carolina Fonseca Couto
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil
| | - Yuri Abner Rocha Lebron
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil
| | - Ana Flávia Souza Foureaux
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil
| | - Eduarda Oliveira Reis
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil
| | - Lucilaine Valeria de Souza Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil; Department of Chemical Engineering, Pontifical Catholic University of Minas Gerais, P.O. Box 1.686, 30535-901 Belo Horizonte, MG, Brazil
| | - Laura Hamdan de Andrade
- Department of Chemical Engineering, Pontifical Catholic University of Minas Gerais, P.O. Box 1.686, 30535-901 Belo Horizonte, MG, Brazil
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil
| | - Liséte Celina Lange
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
78
|
Li L, Ma G, Pan Z, Zhang N, Zhang Z. Research Progress in Gas Separation Using Hollow Fiber Membrane Contactors. MEMBRANES 2020; 10:E380. [PMID: 33260435 PMCID: PMC7760880 DOI: 10.3390/membranes10120380] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
In recent years, gas-liquid membrane contactors have attracted increasing attention. A membrane contactor is a device that realizes gas-liquid or liquid-liquid mass transfer without being dispersed in another phase. The membrane gas absorption method combines the advantages of chemical absorption and membrane separation, in addition to exhibiting high selectivity, modularity, and compactness. This paper introduces the operating principle and wetting mechanism of hollow membrane contactors, shows the latest research progress of membrane contactors in gas separation, especially for the removal of carbon dioxide from gas mixtures by membrane contactors, and summarizes the main aspects of membrane materials, absorbents, and membrane contactor structures. Furthermore, recommendations are provided for the existing deficiencies or unsolved problems (such as membrane wetting), and the status and progress of membrane contactors are discussed.
Collapse
Affiliation(s)
- Linlin Li
- College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China; (L.L.); (G.M.); (Z.P.)
| | - Guiyang Ma
- College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China; (L.L.); (G.M.); (Z.P.)
| | - Zhen Pan
- College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China; (L.L.); (G.M.); (Z.P.)
| | - Na Zhang
- Shandong Gas Marketing Branch, Sinopec Gas Company, Jinan 250000, China;
| | - Zhien Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
79
|
Shi X, Karachi A, Hosseini M, Yazd MS, Kamyab H, Ebrahimi M, Parsaee Z. Ultrasound wave assisted removal of Ceftriaxone sodium in aqueous media with novel nano composite g-C 3N 4/MWCNT/Bi 2WO 6 based on CCD-RSM model. ULTRASONICS SONOCHEMISTRY 2020; 68:104460. [PMID: 30712851 DOI: 10.1016/j.ultsonch.2019.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/05/2018] [Accepted: 01/16/2019] [Indexed: 05/27/2023]
Abstract
The aim of this study was ultrasound assisted removal of Ceftriaxone sodium (CS) based on CCD model. Using sonochemical synthesized Bi2WO6 implanted on graphitic carbon nitride/Multiwall carbon nanotube (g-C3N4/MWCNT/Bi2WO6). For this purpose g-C3N4/MWCNT/Bi2WO6 was synthesized and characterized using diverse approaches including XRD, FE-SEM, XPS, EDS, HRTEM, FT-IR. Then, the contribution of conventional variables including pH, CS concentration, adsorbent dosage and ultrasound contact time were studied by central composite design (CCD) under response surface methodology (RSM). ANOVA was employed to the variable factors, and the most desirable operational conditions mass provided. Drug adsorption yield of 98.85% obtained under these defined conditions. Through conducting five experiments, the proper prediction of the optimum point were examined. The respective results showed that RSD% was lower than 5% while the t-test confirmed the high quality of fitting. Langmuir isotherm equation fits the experimental data best and the removal followed pseudo-second order kinetics. The estimation of the experimentally obtained maximum adsorption capacities was 19.57 mg.g- of g-C3N4/MWCNT/Bi2WO6 for CS. Boundary layer diffusion explained the mechanism of removal via intraparticle diffusion.
Collapse
Affiliation(s)
- Xiaolong Shi
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
| | - Aida Karachi
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Mojgan Hosseini
- Department of Science, Islamshahr Branch, Islamic Azad University, Sayad Shirazi St., Islamshahr, Tehran, Iran.
| | - Masoud Safari Yazd
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Kamyab
- Engineering Department, Razak Faculty of Technology and Informatics, UniversitiTeknologi Malaysia, Jln Sultan Yahya Petra, 56100 Kuala Lumpur, Malaysia; Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA.
| | - Mohsen Ebrahimi
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zohreh Parsaee
- Young Researchers and Elite Club, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| |
Collapse
|
80
|
Stefanello Cadore J, Fabro LF, Garcia Maraschin T, de Souza Basso NR, Rodrigues Pires MJ, Barbosa Brião V. Bibliometric approach to the perspectives and challenges of membrane separation processes to remove emerging contaminants from water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1721-1741. [PMID: 33201839 DOI: 10.2166/wst.2020.450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The presence of contaminants in water is concerning due to the potential impacts on human health and the environment, and ingested contaminants cause harm in various ways. The conventional water treatment systems are not efficient to remove these contaminants. Therefore, novel techniques and materials for the removal of contaminants are increasingly being developed. The separation process using modified membranes can remove these micropollutants; therefore, they have attracted significant research attention. Among the materials used for manufacturing of these membranes, composites based on graphene oxide and reduced graphene oxide are preferred owing to their promising properties, such as mechanical resistance, thermal and chemical stability, antifouling capacity, water permeability, high thermal and electrical conductivity, high optical transmittance and high surface area. Membrane separation processes (MSP) can be used as secondary or tertiary treatment during the supply of wastewater. However, the efficient and accessible applications of these technologies are challenging. This study aims to demonstrate the main concepts of membrane separation processes and their application in the removal of emerging contaminants. This study reports bibliometric mapping, relevant data on studies using membranes as water treatment processes, and their viability in industrial applications. The main challenges and perspectives of these technologies are discussed in detail as well.
Collapse
Affiliation(s)
- Jéssica Stefanello Cadore
- University of Passo Fundo (UPF), Faculty of Engineering and Architecture (FEAR), Postgraduate Program in Civil and Environmental Engineering (PPGEng), Passo Fundo, RS, Brazil E-mail:
| | - Lucas Fernando Fabro
- Postgraduate Program in Technology and Materials Engineering, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Thuany Garcia Maraschin
- Postgraduate Program in Technology and Materials Engineering, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Nara Regina de Souza Basso
- Postgraduate Program in Technology and Materials Engineering, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Marçal José Rodrigues Pires
- Postgraduate Program in Technology and Materials Engineering, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Vandré Barbosa Brião
- University of Passo Fundo (UPF), Faculty of Engineering and Architecture (FEAR), Postgraduate Program in Civil and Environmental Engineering (PPGEng), Passo Fundo, RS, Brazil E-mail:
| |
Collapse
|
81
|
Membrane Removal of Emerging Contaminants from Water: Which Kind of Membranes Should We Use? MEMBRANES 2020; 10:membranes10110305. [PMID: 33113828 PMCID: PMC7692316 DOI: 10.3390/membranes10110305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/02/2022]
Abstract
Membrane technologies are nowadays widely used; especially various types of filtration or reverse osmosis in households, desalination plants, pharmaceutical applications etc. Facing water pollution, they are also applied to eliminate emerging contaminants from water. Incomplete knowledge directs the composition of membranes towards more and more dense materials known for their higher selectivity compared to porous constituents. This paper evaluates advantages and disadvantages of well-known membrane materials that separate on the basis of particle size, usually exposed to a large amount of water, versus dense hydrophobic membranes with target transport of emerging contaminants through a selective barrier. In addition, the authors present several membrane processes employing the second type of membrane.
Collapse
|
82
|
Louafy R, Benelyamani A, Tarhouchi S, Kamal O, Touaj K, Hlaibi M. Parameters and mechanism of membrane-oriented processes for the facilitated extraction and recovery of norfloxacin active compound. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37572-37580. [PMID: 32468360 DOI: 10.1007/s11356-020-09311-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
In the present work, a polymer inclusion membrane (PIM) using an amphiphilic molecule Tween 20 (TW20) as the carrier was developed and characterized to hinder environmental contamination caused by norfloxacin (NRF), an antibiotic widely used in veterinary and human medicines. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) coupled with energy X-ray dispersion spectroscopy (EDS) were used to reveal the composition, porosity, and morphology of the elaborated membrane. In order to measure the performance of the as-developed membrane, the influences of NRF initial concentration (C0 = 0.04 mol L-1, 0.02 mol L-1, 0.01 mol L-1, and 0.005 mol L-1), pH (2.6, 4.5, and 10.5), and temperature (T = 298 K, 303 K, and 305 K) were investigated. The evolution of macroscopic (permeability (P) and initial flux (J0)), microscopic (association constant (Kass) and apparent diffusion coefficient (D*)), and activation parameters (activation energy (Ea), enthalpy (∆H≠ass), and entropy (∆S≠)) was analyzed. It was found that TW20 was an effective agent for the extraction and recovery of different forms of NRF, especially the zwitterion form appeared at pH = 4.5. On the other hand, for the biologically active NRF compound, the mechanisms of the studied processes were controlled by the kinetic aspect rather than the energetic counterpart. Graphical abstract.
Collapse
Affiliation(s)
- Rkia Louafy
- Laboratoire Génie des Matériaux pour Environnement et Valorisation (GeMEV), Faculté des Sciences Ain-Chock, Hassan II University of Casablanca (UH2C), B.P 5366 Maarif, Casablanca, Morocco
| | - Abderezzak Benelyamani
- Laboratoire de recherche et développement AFRIC-PHAR, Route régionale Casablanca/Mohammedia N° 322, Km 12, Aïn Harrouda, 28630, Casablanca, Morocco
| | - Sanae Tarhouchi
- Laboratoire Génie des Matériaux pour Environnement et Valorisation (GeMEV), Faculté des Sciences Ain-Chock, Hassan II University of Casablanca (UH2C), B.P 5366 Maarif, Casablanca, Morocco
| | - Oussama Kamal
- Laboratoire Génie des Matériaux pour Environnement et Valorisation (GeMEV), Faculté des Sciences Ain-Chock, Hassan II University of Casablanca (UH2C), B.P 5366 Maarif, Casablanca, Morocco
| | - Khalifa Touaj
- Laboratoire Génie des Matériaux pour Environnement et Valorisation (GeMEV), Faculté des Sciences Ain-Chock, Hassan II University of Casablanca (UH2C), B.P 5366 Maarif, Casablanca, Morocco
| | - Miloudi Hlaibi
- Laboratoire Génie des Matériaux pour Environnement et Valorisation (GeMEV), Faculté des Sciences Ain-Chock, Hassan II University of Casablanca (UH2C), B.P 5366 Maarif, Casablanca, Morocco.
- Laboratoire de recherche et développement AFRIC-PHAR, Route régionale Casablanca/Mohammedia N° 322, Km 12, Aïn Harrouda, 28630, Casablanca, Morocco.
| |
Collapse
|
83
|
Asif MB, Hou J, Price WE, Chen V, Hai FI. Removal of trace organic contaminants by enzymatic membrane bioreactors: Role of membrane retention and biodegradation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118345] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
84
|
Chen T, Zhu Z, Zhang H, Qiu Y, Yin D, Zhao G. Facile Construction of a Copper-Containing Covalent Bond for Peroxymonosulfate Activation: Efficient Redox Behavior of Copper Species via Electron Transfer Regulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42790-42802. [PMID: 32857501 DOI: 10.1021/acsami.0c11268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heterogeneous catalysis can be enhanced through the construction of effective atom connection for rapid electron transport on the catalyst surface. Hence, this study proposed a new strategy for electron transfer regulation to facilitate redox cycle of Cu(II)/Cu(I). The objective was achieved by successful construction of copper-containing covalent bond through the in situ growth of porous g-C3N4 with oxygen dopants and nitrogen defects (O-CND) on CuAlxOy substrate (CuAl@O-CND). On the basis of X-ray absorption fine structure (XAFS) and other characterization results, the facilitated redox behavior of copper species by electron transfer regulation was ascribed to the formation of a C-O-Cu bond on the porous-rich superficial of the catalyst; these covalent C-O-Cu bonds shortened the migration distance of electrons between Cu(II) and Cu(I) via Cu(I)-O-C-O-Cu(II) bridge. The construction of copper-containing covalent bonds in the catalyst resulted in efficient PMS activation for a rapid redox cycle of Cu(II)/Cu(I), triggering a series of reactions involving the continuous production of three highly active species (SO4·-, ·OH and 1O2). The rapid diffusion and transportation of the generated active species from porous structures directly attack typical pharmaceutically active compounds (PhACs), achieving superior catalytic performance. This study provides a new routine to construct a C-O-Cu bond for PMS activation by regulating the electron transfer to accelerate the redox behavior of copper species for environmental remediation.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
85
|
Kiefer K, Bader T, Minas N, Salhi E, Janssen EML, von Gunten U, Hollender J. Chlorothalonil transformation products in drinking water resources: Widespread and challenging to abate. WATER RESEARCH 2020; 183:116066. [PMID: 32652346 DOI: 10.1016/j.watres.2020.116066] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/25/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Chlorothalonil, a fungicide applied for decades worldwide, has recently been banned in the European Union (EU) and Switzerland due to its carcinogenicity and the presence of potentially toxic transformation products (TPs) in groundwater. The spread and concentration range of chlorothalonil TPs in different drinking water resources was examined (73 groundwater and four surface water samples mainly from Switzerland). The chlorothalonil sulfonic acid TPs (R471811, R419492, R417888) occurred more frequently and at higher concentrations (detected in 65-100% of the samples, ≤2200 ngL-1) than the phenolic TPs (SYN507900, SYN548580, R611968; detected in 10-30% of the samples, ≤130 ngL-1). The TP R471811 was found in all samples and even in 52% of the samples above 100 ngL-1, the drinking water standard in Switzerland and other European countries. Therefore, the abatement of chlorothalonil TPs was investigated in laboratory and pilot-scale experiments and along the treatment train of various water works, comprising aquifer recharge, UV disinfection, ozonation, advanced oxidation processes (AOPs), activated carbon treatment, and reverse osmosis. The phenolic TPs can be abated during ozonation (second order rate constant kO3 ∼104 M-1s-1) and by reaction with hydroxyl radicals (OH) in AOPs (kOH ∼109 M-1s-1). In contrast, the sulfonic acid TPs, which occurred in higher concentrations in drinking water resources, react only very slowly with ozone (kO3 <0.04 M-1s-1) and OH (kOH <5.0 × 107 M-1s-1) and therefore persist in ozonation and OH-based AOPs. Activated carbon retained the very polar TP R471811 only up to a specific throughput of 25 m3kg-1 (20% breakthrough), similarly to the X-ray contrast agent diatrizoic acid. Reverse osmosis was capable of removing all chlorothalonil TPs by ≥98%.
Collapse
Affiliation(s)
- Karin Kiefer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092, Zurich, Switzerland
| | - Tobias Bader
- Laboratory for Operation Control and Research, Zweckverband Landeswasserversorgung, 89129, Langenau, Germany
| | - Nora Minas
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Elisabeth Salhi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Elisabeth M-L Janssen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092, Zurich, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
86
|
Martí-Calatayud M, Heßler R, Schneider S, Bohner C, Yüce S, Wessling M, de Sena R, Athayde Júnior G. Transients of micropollutant removal from high-strength wastewaters in PAC-assisted MBR and MBR coupled with high-retention membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
87
|
Abdel-Aziz HM, Farag RS, Abdel-Gawad SA. Removal of caffeine from aqueous solution by green approach using Ficus Benjamina zero-valent iron/copper nanoparticles. ADSORPT SCI TECHNOL 2020. [DOI: 10.1177/0263617420947495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Green synthesis approach was successful used extract was successful in preparing bimetallic zero-valent Iron/Copper nanoparticles [FB-nZVFe/Cu]. Scanning Electron Microscope [SEM], Fourier Transform Infrared Spectroscopy [FTIR], and Dispersive X-ray Spectroscopy [EDX] showing the synthesizing of FB-nZVFe/Cu. The removal efficiency of Caffeine [5 mg L−1] reached 86% under the conditions [0.2 g L−1, 45 min, and pH 5]. The adsorption data are more appropriate by the Langmuir model [R2 = 0.9987] with qmax = 34.34 mg g−1. Kinetic results showed that Caffeine uptake is following pseudo-second-order. Langmuir and pseudo-second-order are more appropriate in linear and non-linear models. Overall, FB-Fe/Cu is a committed green substance for removal Caffeine from aqueous solutions. Functional parameters affect investigated using the Linear regression analysis, we found them to account for over 98% of the variables affecting the removal procedure.
Collapse
Affiliation(s)
- Hossam Mohammed Abdel-Aziz
- Chemical Industries Development (CID) Company, Giza, Egypt
- Faculty of Science, Chemistry department, Cairo University, Giza, Egypt
| | - Rabie Saad Farag
- Faculty of Science, Chemistry Department, Al-Azhar University, Cairo, Egypt
- Faculty of Science, Chemistry department, Cairo University, Giza, Egypt
| | | |
Collapse
|
88
|
Beltrán-Flores E, Torán J, Caminal G, Blánquez P, Sarrà M. The removal of diuron from agricultural wastewaters by Trametes versicolor immobilized on pinewood in simple channel reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138414. [PMID: 32344227 DOI: 10.1016/j.scitotenv.2020.138414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The presence of pesticides in agricultural wastewater entails harmful risks to both the environment and public health. In this study, two channel-type bioreactors with Trametes versicolor immobilized on pinewood chips were evaluated in terms of the removal efficiency of diuron from agricultural wastewater under non-sterile conditions. First, both single and successive sorption processes of diuron on pinewood chips were evaluated. The Freundlich model showed the best correlation in the sorption isotherm study (R2 = 0.993; Δq = 5.245), but according to repeated sorption experiments, the Langmuir model (R2 = 0.993; Δq = 5.757) was considered more representative. Equilibrium was reached after approximately 48 h, and the Elovich kinetic model gave the best fit with the experimental data. A packed-bed channel bioreactor (PBCB) was found to be a remarkable alternative able to remove up to 94% diuron from agricultural wastewater during 35 d. However, periodic manual mixing was required to guarantee an aerobic process, and a rotating drum bioreactor (RDB) was subsequently proposed as an enhanced version. The RDB removed up to 61% diuron during 16 d using almost 7 times lower wood dose (152 g wood·L-1) than in the PBCB (1000 g wood·L-1).
Collapse
Affiliation(s)
- Eduardo Beltrán-Flores
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Josefina Torán
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Glòria Caminal
- Institut de Química Avançada de Catalunya (IQAC) CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Paqui Blánquez
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Montserrat Sarrà
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
89
|
Cuhorka J, Wallace E, Mikulášek P. Removal of micropollutants from water by commercially available nanofiltration membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137474. [PMID: 32325567 DOI: 10.1016/j.scitotenv.2020.137474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/04/2020] [Accepted: 02/19/2020] [Indexed: 05/22/2023]
Abstract
The current work is focused on the use of nanofiltration in the removal of micropollutants, specially drugs (diclofenac and ibuprofen) and heavy metal (zinc sulphate and zinc nitrate) from wastewater. The commercially available nanofiltration (NF) membranes (AFC 80, AFC 40, AFC 30) were characterised by demineralised water and the ability of the membranes to reject drugs and zinc(II) was subsequently examined. The influence of the operating conditions on the rejection and the permeate flux was evaluated. The operating conditions tested included the transmembrane pressure (5-30 bar); the effect of the feed concentration on the heavy metals rejection (50-200 mg L-1); the effect of ionic strength on the diclofenac and ibuprofen rejection (0-10 g L-1 NaCl) and the volumetric flow rate (5-15 L min-1). It has been shown that increasing the transmembrane pressure increases the intensity of the permeate flow and rejection. Drugs rejection also increases with increasing bulk feed flow rates; however, decreases with increasing ionic strength (NaCl concentration in feed). Experimental data indicated that concentration polarisation existed in the membrane separation process. The stable permeation flux and high rejection of drugs and heavy metals indicated the potential of NF for the recovery of drugs and zinc(II) from wastewater.
Collapse
Affiliation(s)
- Jiří Cuhorka
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
| | - Edwin Wallace
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Petr Mikulášek
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| |
Collapse
|
90
|
García-Galán MJ, Arashiro L, Santos LHMLM, Insa S, Rodríguez-Mozaz S, Barceló D, Ferrer I, Garfí M. Fate of priority pharmaceuticals and their main metabolites and transformation products in microalgae-based wastewater treatment systems. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:121771. [PMID: 32127240 DOI: 10.1016/j.jhazmat.2019.121771] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 05/25/2023]
Abstract
The present study evaluates the removal capacity of two high rate algae ponds (HRAPs) to eliminate 12 pharmaceuticals (PhACs) and 26 of their corresponding main metabolites and transformation products. The efficiency of these ponds, operating with and without primary treatment, was compared in order to study their capacity under the best performance conditions (highest solar irradiance). Concentrations of all the target compounds were determined in both water and biomass samples. Removal rates ranged from moderate (40-60 %) to high (>60 %) for most of them, with the exception of the psychiatric drugs carbamazepine, the β-blocking agent metoprolol and its metabolite, metoprolol acid. O-desmethylvenlafaxine, despite its very low biodegradability in conventional wastewater treatment plants, was removed to certain extent (13-39 %). Biomass concentrations suggested that bioadsorption/bioaccumulation to microalgae biomass was decisive regarding the elimination of non-biodegradable compounds such as venlafaxine and its main metabolites. HRAP treatment with and without primary treatment did not yield significant differences in terms of PhACs removal efficiency. The implementation of HRAPs as secondary treatment is a feasible alternative to CAS in terms of overall wastewater treatment, including organic micropollutants, with generally higher removal performances and implying a green, low-cost and more sustainable technology.
Collapse
Affiliation(s)
- María Jesús García-Galán
- GEMMA, Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain.
| | - Larissa Arashiro
- GEMMA, Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Lúcia H M L M Santos
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona, Girona, Spain
| | - Sara Insa
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona, Girona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona, Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain; Universitat de Girona, Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, c/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Ivet Ferrer
- GEMMA, Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Marianna Garfí
- GEMMA, Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| |
Collapse
|
91
|
Li C, Sun W, Lu Z, Ao X, Li S. Ceramic nanocomposite membranes and membrane fouling: A review. WATER RESEARCH 2020; 175:115674. [PMID: 32200336 DOI: 10.1016/j.watres.2020.115674] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 05/26/2023]
Abstract
Membrane technologies have broad applications in the removal of contaminants from drinking water and wastewater. In recent decades, ceramic membrane has made rapid progress in industrial/municipal wastewater treatment and drinking water treatment owing to their advantageous properties over conventional polymeric membrane. The beneficial characteristics of ceramic membranes include fouling resistance, high permeability, good recoverability, chemical stability, and long life time, which have found applications with the recent innovations in both fabrication methods and nanotechnology. Therefore, ceramic membranes hold great promise for potential applications in water treatment. This paper mainly reviews the progress in the research and development of ceramic membranes, with key focus on porous ceramic membranes and nanomaterial-functionalized ceramic membranes for nanofiltration or catalysis. The current state of the available ceramic membranes in industry and academia, and their potential advantages, limitations and applications are reviewed. The last section of the review focuses on ceramic membrane fouling and the efforts towards ceramic membrane fouling mitigation. The advances in ceramic membrane technologies have rarely been widely reviewed before, therefore, this review could be served as a guide for the new entrants to the field, as well to the established researchers.
Collapse
Affiliation(s)
- Chen Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Zedong Lu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Simiao Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
92
|
Membranes with negatively-charged nanochannels fabricated from aqueous sulfonated polysulfone nanoparticles for enhancing the rejection of divalent anions. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
93
|
Matsubara ME, Helwig K, Hunter C, Roberts J, Subtil EL, Coelho LHG. Amoxicillin removal by pre-denitrification membrane bioreactor (A/O-MBR): Performance evaluation, degradation by-products, and antibiotic resistant bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110258. [PMID: 32036097 DOI: 10.1016/j.ecoenv.2020.110258] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/26/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Membrane bioreactors (MBRs) are one of the treatment technologies with the potential to remove emerging compounds from wastewater. The present work evaluated the efficiency of an MBR pilot system in removing amoxicillin from synthetic wastewater using a continuous flow pre-denitrification MBR (A/O-MBR) pilot unit. The system operated in three phases: (1) synthetic wastewater and hydraulic retention time (HRT) of 40 h; (2) adding amoxicillin 100 μg L-1 to the influent, and (3) varying flowrate to HRT of 20 h. Liquid chromatography coupled to high resolution mass spectrometry analysis confirmed the presence of five amoxicillin degradation by-products in the effluent. The addition of amoxicillin did not affect chemical oxygen demand (COD) or dissolved organic carbon (DOC) removal efficiencies. Respirometry showed that amoxicillin level did not inhibit heterotrophic bacteria metabolism. The change in HRT reduced the DOC removal (from 84% to 66%) but did not influence COD (>94%) or total nitrogen (>72%). The amoxicillin and by-products removal decreased from 80% to 54% with HRT change. Adsorption and biodegradation represented the largest removed fraction of the antibiotic in the A/O-MBR system (68%). Ecotoxicity assays showed P. fluorescens was more resistant and E. coli less resistant to amoxicillin residues at effluent sample matrix.
Collapse
Affiliation(s)
- Milena Emy Matsubara
- Environmental Science & Technology Post-Graduation Course, Centre of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo André, SP, 09210-580, Brazil
| | - Karin Helwig
- Environmental Management, School of Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
| | - Colin Hunter
- Environmental Management, School of Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
| | - Joanne Roberts
- Environmental Management, School of Engineering and Built Environment, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
| | - Eduardo Lucas Subtil
- Environmental Science & Technology Post-Graduation Course, Centre of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo André, SP, 09210-580, Brazil
| | - Lúcia Helena Gomes Coelho
- Environmental Science & Technology Post-Graduation Course, Centre of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo André, SP, 09210-580, Brazil.
| |
Collapse
|
94
|
Lee WJ, Goh PS, Lau WJ, Ismail AF. Removal of Pharmaceutical Contaminants from Aqueous Medium: A State-of-the-Art Review Based on Paracetamol. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04446-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
95
|
Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: A review. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117672] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
96
|
Effective photocatalytic degradation of sulfamethazine by CNTs/LaVO4 in suspension and dip coating modes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116138] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
97
|
A novel synthesis method of mesoporous carbon loaded with Fe3O4 composite for effective adsorption and degradation of sulfamethazine. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
98
|
Hu Z, Cai X, Wang Z, Li S, Wang Z, Xie X. Construction of carbon-doped supramolecule-based g-C 3N 4/TiO 2 composites for removal of diclofenac and carbamazepine: A comparative study of operating parameters, mechanisms, degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120812. [PMID: 31326838 DOI: 10.1016/j.jhazmat.2019.120812] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
An eco-friendly 2D heterojunction photocatalyst composites (BCCNT) consisting of carbon-doped supramolecule-based g-C3N4 (BCCN) layers and TiO2 nanoparticles has been fabricated via an in-situ method. Based on the SEM and XPS results affirmed that the coaction of doped carbon and supramolecule precursors lead to the different morphology of pure g-C3N4, C-doped g-C3N4 have improved the photodegradation diclofenac (DCF) and carbamazepine (CBZ). And the degradation efficiencies of DCF and CBZ could reach 98.92% and 99.77%, which were separately corresponded to 30 min (min) and 6 h (h) of LED lamp illumination. Additionally, the effects of catalysis dosage, solution pH, natural organic matter (NOM), inorganic anions (Cl-, SO42-, NO3-) and different water matrices were deeply investigated. The scavenger experiments demonstrated that •O2-, h+ were main active species under visible irradiation. Furthermore, the photodegradation pathways of DCF and CBZ were detected by high-resolution mass spectrometry (HRMS) instruments and three-dimensional excitation-emission matrix fluorescence spectra (3D EEMs). Eventually, the possible photocatalytic mechanisms of BCCNT were proposed.
Collapse
Affiliation(s)
- Zhongzheng Hu
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xuewei Cai
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zirun Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shan Li
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhaowei Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyun Xie
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
99
|
Fujioka T, Takeuchi H, Tanaka H, Kodamatani H. A surrogate-based approach for trace organic chemical removal by a high-rejection reverse osmosis membrane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:134002. [PMID: 31470318 DOI: 10.1016/j.scitotenv.2019.134002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/12/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Public confidence in the safety of recycled water for potable water reuse can be improved by providing assurance regarding high removal of trace organic chemicals (TOrCs) by reverse osmosis (RO) treatment. This pilot-scale study assessed the effectiveness of a surrogate indicator-N-Nitrosodimethlyamine (NDMA)-for ensuring a high level of TOrC removal by a high-rejection RO membrane. The pilot-scale tests showed that the rejection of 23 TOrCs by the high-rejection RO membrane was consistently greater than NDMA rejection. In addition, NDMA rejection was highly correlated with TOrC rejection across varied operating conditions, indicating that NDMA can be used as a conservative surrogate indicator for TOrC removal. The RO treatment at a permeate flux of 20 L/m2 h and feed temperature of 13-27 °C resulted in as high as 75-87% NDMA rejection, which was considerably greater than a conventional low-pressure RO membrane (26-47%). However, the high-rejection RO membrane required a transmembrane pressure that was greater than that of the low-pressure RO membrane. Despite this disadvantage, this study suggests that the high-rejection RO membrane can effectively ensure a high level of TOrC removal (≥65%) when NDMA is used as a surrogate indicator, which cannot be ensured by assessing conventional conductivity rejection.
Collapse
Affiliation(s)
- Takahiro Fujioka
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 85 2-8521, Japan.
| | - Haruka Takeuchi
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu 520-0811, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu 520-0811, Japan
| | - Hitoshi Kodamatani
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| |
Collapse
|
100
|
Asif MB, Ansari AJ, Chen SS, Nghiem LD, Price WE, Hai FI. Understanding the mechanisms of trace organic contaminant removal by high retention membrane bioreactors: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34085-34100. [PMID: 30259242 DOI: 10.1007/s11356-018-3256-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
High retention membrane bioreactors (HR-MBR) combine a high retention membrane separation process such as membrane distillation, forward osmosis, or nanofiltration with a conventional activated sludge (CAS) process. Depending on the physicochemical properties of the trace organic contaminants (TrOCs) as well as the selected high retention membrane process, HR-MBR can achieve effective removal (80-99%) of a broad spectrum of TrOCs. An in-depth assessment of the available literature on HR-MBR performance suggests that compared to CAS and conventional MBRs (using micro- or ultra-filtration membrane), aqueous phase removal of TrOCs in HR-MBR is significantly better. Conceptually, longer retention time may significantly improve TrOC biodegradation, but there are insufficient data in the literature to evaluate the extent of TrOC biodegradation improvement by HR-MBR. The accumulation of hardly biodegradable TrOCs within the bioreactor of an HR-MBR system may complicate further treatment and beneficial reuse of sludge. In addition to TrOCs, accumulation of salts gradually increases the salinity in bioreactor and can adversely affect microbial activities. Strategies to mitigate these limitations are discussed. A qualitative framework is proposed to predict the contribution of the different key mechanisms of TrOC removal (i.e., membrane retention, biodegradation, and sorption) in HR-MBR.
Collapse
Affiliation(s)
- Muhammad B Asif
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Ashley J Ansari
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Long D Nghiem
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - William E Price
- Strategic Water Infrastructure Lab, School of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Lab, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|