51
|
Peng J, Guo J, Lei Y, Mo J, Sun H, Song J. Integrative analyses of transcriptomics and metabolomics in Raphidocelis subcapitata treated with clarithromycin. CHEMOSPHERE 2021; 266:128933. [PMID: 33223212 DOI: 10.1016/j.chemosphere.2020.128933] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
As a macrolide antibiotic, clarithromycin (CLA) has a high detection rate in surface water and sewage treatment plant effluents worldwide, posing a considerably high ecological risk to aquatic ecosystem. However, algal transcriptome and metabolome in response to CLA remains largely unknown. In this study, a model alga Raphidocelis subcapitata (R. subcapitata), was exposed to CLA at the concentrations of 0, 3, 10, and 15 μg L-1. Transcriptomic analysis was performed for all the treatment groups, whereas metabolomics was merely applied to 0, 3, and 10 μg L-1 groups because of the limited amount of algal biomass. After 7 d cultivation, the growth of R. subcapitata was significantly hindered at the concentrations above 10 μg L-1. A total of 115, 1833, 2911 genes were differentially expressed in 3, 10, and 15 μg L-1 groups, respectively; meanwhile, 134 and 84 differentially accumulated metabolites (DAMs) were found in the 3 and 10 μg L-1 groups. Specifically, expression levels of DEGs and DAMs related to xenobiotic metabolism, electron transport and energy synthesis were dysregulated, leading to the produced reactive oxygen species (ROS). To confront the CLA-induced injury, the biosynthesis of unsaturated fatty acids and carotenoids of R. subcapitata in 3 μg L-1 were up-regulated; although the photosynthesis was up-regulated in both 10 μg L-1 and 15 μg L-1 groups, the energy synthesis and the ability to resist ROS in these two groups were down-regulated. Overall, this study shed light on the mechanism underlying the inhibitory effects of macrolide antibiotics in algae.
Collapse
Affiliation(s)
- Jianglin Peng
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| | - Yuan Lei
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
52
|
Saaristo M, Craft JA, Tyagi S, Johnstone CP, Allinson M, Ibrahim KS, Wong BBM. Transcriptome-wide changes associated with the reproductive behaviour of male guppies exposed to 17α-ethinyl estradiol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116286. [PMID: 33360600 DOI: 10.1016/j.envpol.2020.116286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Although many pharmaceutical compounds (and their metabolites) can induce harmful impacts at the molecular, physiological and behavioural levels, their underlying mechanistic associations have remained largely unexplored. Here, we utilized RNA-Seq to build a whole brain transcriptome profile to examine the impact of a common endocrine disrupting pharmaceutical (17α-ethinyl estradiol, EE2) on reproductive behaviour in wild guppies (Poecilia reticulata). Specifically, we annotated 16,791 coding transcripts in whole brain tissue in relation to the courtship behaviour (i.e. sigmoid display) of EE2 exposed (at environmentally relevant concentration of 8 ng/L for 28-days) and unexposed guppies. Further, we obtained 10,960 assembled transcripts matching in the non-coding orthologous genomes. Behavioural responses were assessed using a standard mate choice experiment, which allowed us to disentangle chemical cues from visual cues. We found that a high proportion of the RNAseq reads aligned back to our de novo assembled transcriptome with 80.59% mapping rate. Behavioural experiments showed that when males were presented only with female visual cues, there was a significant interaction between male treatment and female treatment in the time spent in the preference zone. This is one of the first studies to show that transcriptome-wide changes are associated with the reproductive behaviour of fish: EE2 exposed male guppies that performed high levels of courtship had a gene profile that deviated the most from the other treatment groups, while both non-courting EE2 and control males had similar gene signatures. Using Gene Ontology pathway analysis, our study shows that EE2-exposed males had gene transcripts enriched for pathways associated with altered immunity, starvation, altered metabolism and spermatogenesis. Our study demonstrates that multiple gene networks orchestrate courting behaviour, emphasizing the importance of investigating impacts of pharmaceuticals on gene networks instead of single genes.
Collapse
Affiliation(s)
- Minna Saaristo
- EPA Victoria, Water Sciences, Melbourne, Australia; School of Biological Sciences, Monash University, Australia; Department of Biosciences, Åbo Akademi University, Finland.
| | - John A Craft
- Life Sciences, Glasgow Caledonian University, UK
| | - Sonika Tyagi
- School of Biological Sciences, Monash University, Australia
| | | | - Mayumi Allinson
- Department of Chemical Engineering, University of Melbourne, Australia
| | - Khalid S Ibrahim
- Life Sciences, Glasgow Caledonian University, UK; Department of Biology, University of Zakho, Kurdistan Region, Iraq
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Australia
| |
Collapse
|
53
|
Ajima MNO, Kumar K, Poojary N, Pandey PK. Oxidative stress biomarkers, biochemical responses and Na + -K + -ATPase activities in Nile tilapia, Oreochromis niloticus exposed to diclofenac. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108934. [PMID: 33160042 DOI: 10.1016/j.cbpc.2020.108934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
The residues and metabolites from pharmaceuticals have been noted to cause adverse effects to both target and non-target aquatic organisms. The sublethal effects of diclofenac at 0.17, 0.34 and 0.68 mg L-1 on oxidative stress biomarkers, biochemical responses and Na+ -K+ -ATPase activities in the gill tissue of Nile tilapia, Oreochromis niloticus were investigated for 60 days. Elevated levels of some serum biochemical parameters including protein, glutamic oxalacetic transaminase, glucose, glutamic pyruvic transaminase, lactate dehydrogenase, alkaline phosphatase and also some catalysts of gluconeogenic enzymes such as glucose-6-phosphatase, fructose 1, 6 bisphosphatase in the fish liver, increase as the concentration of the diclofenac increased. The reactions of glutathione-S-transferase, catalase, lipid peroxidation, superoxide dismutase, glutathione peroxidase, carbonyl protein and reduced glutathione were elevated (p < 0.05) while the activities of Na+ -K+ -ATPase was significantly reduced (p < 0.05) in fish gill, indicating an adaptive response strategies to mitigate the impact of the drug on the exposed fish. Chronic exposure to sublethal diclofenac can induce oxidative stress and modulates serum biochemical indexes of O. niloticus, suggesting the need for close monitoring of the drug and their metabolites in aquatic environment considering the possible potential adverse effects it may cause even to non-target organisms.
Collapse
Affiliation(s)
- Malachy N O Ajima
- Department of Fisheries and Aquaculture Technology, Federal University of Technology, Owerri, Nigeria.
| | - Kundan Kumar
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - Nalini Poojary
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - Pramod K Pandey
- College of Fisheries, Central Agriculture University, Agartala, Tripura, India
| |
Collapse
|
54
|
Development and Characterization of Composite Carbon Adsorbents with Photocatalytic Regeneration Ability: Application to Diclofenac Removal from Water. Catalysts 2021. [DOI: 10.3390/catal11020173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This paper presents results related to the development of a carbon composite intended for water purification. The aim was to develop an adsorbent that could be regenerated using light leading to complete degradation of pollutants and avoiding the secondary pollution caused by regeneration. The composites were prepared by hydrothermal carbonization of palm kernel shells, TiO2, and W followed by activation at 400 °C under N2 flow. To evaluate the regeneration using light, photocatalytic experiments were carried out under UV-A, UV-B, and visible lights. The materials were thoroughly characterized, and their performance was evaluated for diclofenac removal. A maximum of 74% removal was observed with the composite containing TiO2, carbon, and W (HCP25W) under UV-B irradiation and non-adjusted pH (~5). Almost similar results were observed for the material that did not contain tungsten. The best results using visible light were achieved with HCP25W providing 24% removal of diclofenac, demonstrating the effect of W in the composite. Both the composites had significant amounts of oxygen-containing functional groups. The specific surface area of HCP25W was about 3 m2g−1, while for HCP25, it was 160 m2g−1. Increasing the specific surface area using a higher activation temperature (600 °C) adversely affected diclofenac removal due to the loss of the surface functional groups. Regeneration of the composite under UV-B light led to a complete recovery of the adsorption capacity. These results show that TiO2- and W-containing carbon composites are interesting materials for water treatment and they could be regenerated using photocatalysis.
Collapse
|
55
|
Bunting SY, Lapworth DJ, Crane EJ, Grima-Olmedo J, Koroša A, Kuczyńska A, Mali N, Rosenqvist L, van Vliet ME, Togola A, Lopez B. Emerging organic compounds in European groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:115945. [PMID: 33261962 DOI: 10.1016/j.envpol.2020.115945] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
In Europe, emerging organic compounds (EOCs) in groundwater is a growing research area. Prioritisation for monitoring EOCs in Europe was formalised in 2019 through the development of the first voluntary groundwater watch list (GWWL). Despite this, groundwater occurrence data in the peer reviewed literature for Europe has not been reviewed to date. Questions surrounding the effect, toxicity, movement in the subsurface and unsaturated zone make the process of regulating EOC use difficult. The aim in Europe is to develop a unified strategy for the classification, and prioritisation of EOCs to be monitored in groundwater. This paper compiles evidence from the recent published studies from across Europe, since 2012, when the last major literature global review of EOCs in groundwater took place. A total of 39 studies were identified for review based on specific selection criteria (geography, publication date, sample size>10, inclusion of EOCs data). Data on specific compounds, and associated meta-data, are compiled and reviewed. The two most frequently detected EOCs, carbamazepine and caffeine, occurred in groundwater at concentrations of up to 2.3 and 14.8 μg/L, respectively. The most frequently reported category of compounds were 'Pharmaceuticals'; a highly studied group with 135 compounds identified within 31 of the 39 studies. In Europe, the majority of reviewed studies (23) were at a regional scale, looking specifically at EOCs in a specific city or aquifer. The use of analytical methods is not uniform across Europe, and this inevitably influences the current assessment of EOCs in groundwater. A correlation between the number of compounds analysed for, and the number detected in groundwater highlights the need for further studies, especially larger-scale studies throughout Europe. For the development of EU and national regulation, further work is required to understand the occurrence and impacts of EOCs in groundwater throughout Europe and elsewhere.
Collapse
Affiliation(s)
- S Y Bunting
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK.
| | - D J Lapworth
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK
| | - E J Crane
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK
| | | | - A Koroša
- Geological Survey of Slovenia, Department of Hydrogeology, Dimičeva ulica 14, Ljubljana, Slovenia
| | - A Kuczyńska
- Polish Geological Institute, National Research Institute, ul. Rakowiecka 4, 00-975, Warsaw, Poland
| | - N Mali
- Geological Survey of Slovenia, Department of Hydrogeology, Dimičeva ulica 14, Ljubljana, Slovenia
| | - L Rosenqvist
- Geological Survey of Sweden, Box 670, SE-751 28, Uppsala, Sweden
| | - M E van Vliet
- TNO Geological Survey of the Netherlands, Utrecht, the Netherlands
| | - A Togola
- BRGM, (French Geological Survey) BP 6009, 45060, Orléans Cedex 2, France
| | - B Lopez
- BRGM, (French Geological Survey) BP 6009, 45060, Orléans Cedex 2, France
| |
Collapse
|
56
|
Mohd Azmi LH, Williams DR, Ladewig BP. Polymer-assisted modification of metal-organic framework MIL-96 (Al): influence of HPAM concentration on particle size, crystal morphology and removal of harmful environmental pollutant PFOA. CHEMOSPHERE 2021; 262:128072. [PMID: 33182132 DOI: 10.1016/j.chemosphere.2020.128072] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
A new synthesis method was developed to prepare an aluminum-based metal organic framework (MIL-96) with a larger particle size and different crystal habits. A low cost and water-soluble polymer, hydrolyzed polyacrylamide (HPAM), was added in varying quantities into the synthesis reaction to achieve >200% particle size enlargement with controlled crystal morphology. The modified adsorbent, MIL-96-RHPAM2, was systematically characterized by SEM, XRD, FTIR, BET and TGA-MS. Using activated carbon (AC) as a reference adsorbent, the effectiveness of MIL-96-RHPAM2 for perfluorooctanoic acid (PFOA) removal from water was examined. The study confirms stable morphology of hydrated MIL-96-RHPAM2 particles as well as a superior PFOA adsorption capacity (340 mg/g) despite its lower surface area, relative to standard MIL-96. MIL-96-RHPAM2 suffers from slow adsorption kinetics as the modification significantly blocks pore access. The strong adsorption of PFOA by MIL-96-RHPAM2 was associated with the formation of electrostatic bonds between the anionic carboxylate of PFOA and the amine functionality present in the HPAM backbone. Thus, the strongly held PFOA molecules in the pores of MIL-96-RHPAM2 were not easily desorbed even after eluted with a high ionic strength solvent (500 mM NaCl). Nevertheless, this simple HPAM addition strategy can still chart promising pathways to impart judicious control over adsorbent particle size and crystal shapes while the introduction of amine functionality onto the surface chemistry is simultaneously useful for enhanced PFOA removal from contaminated aqueous systems.
Collapse
Affiliation(s)
- Luqman Hakim Mohd Azmi
- Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, United Kingdom; Grantham Institute - Climate Change and the Environment, Imperial College London, South Kensington Campus, SW7 2AZ, London, United Kingdom; Surfaces and Particle Engineering Laboratory (SPEL), Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, United Kingdom
| | - Daryl R Williams
- Surfaces and Particle Engineering Laboratory (SPEL), Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, United Kingdom
| | - Bradley P Ladewig
- Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, United Kingdom; Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
57
|
Nguyen PY, Carvalho G, Reis MAM, Oehmen A. A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes. WATER RESEARCH 2021; 188:116446. [PMID: 33038717 DOI: 10.1016/j.watres.2020.116446] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 05/18/2023]
Abstract
Wastewater effluent discharges have been considered as one of the main sources of synthetic chemicals entering into the aquatic environment. Even though they occur at low concentrations, pharmaceutically active compounds (PhACs) can have an impact on ecological toxicity that affects aquatic organisms. Moreover, new regulations in development toward preserving water quality reinforces the increasing need to monitor and abate some PhACs in wastewater treatment plants (WWTPs), where they are typically only partially eliminated. Unlike most previous reviews, we have focussed on how the main biological and chemical molecular factors impact the biotransformations of key PhACs in biological WWTP processes. Biotransformations have been found to be an important contributor towards the removal of PhACs from WWTP effluents. This review paper critically assesses these aspects and the recent advances that have been achieved in wastewater treatment processes for biodegradation of 7 PhACs; namely the non-steroidal anti-inflammatory drug (NSAID) diclofenac (DCF); the macrolide antibiotics azithromycin (AZM), erythromycin (ERY) and clarithromycin (CLR); the two natural estrogens estrone (E1) and 17β-estradiol (E2), and the synthetic estrogen 17α-ethinylesradiol (EE2). These represent the micropollutants of the EU Watch list in Decision 2015/495/EU that are most relevant to WWTPs due to their frequent detection. The metabolic pathways, transformation products and impact of relevant factors to biological WWTP processes is addressed in this review. The biokinetics of PhAC biodegradation in different engineered bioprocesses is also discussed. Promising technologies and operational strategies that are likely to have a high impact on controlling PhAC releases are highlighted and future research needs are also proposed.
Collapse
Affiliation(s)
- P Y Nguyen
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maria A M Reis
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
58
|
Rowan NJ, Galanakis CM. Unlocking challenges and opportunities presented by COVID-19 pandemic for cross-cutting disruption in agri-food and green deal innovations: Quo Vadis? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141362. [PMID: 32823223 PMCID: PMC9977645 DOI: 10.1016/j.scitotenv.2020.141362] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 04/13/2023]
Abstract
COVID-19 pandemic is on a trajectory to cause catastrophic global upheaval with the potential to alter geopolitical and socio-economic norms. Many countries are frantically responding with staggering financial stimulus recovery initiatives. This opinion-paper reviews challenges, opportunities, and potential solutions for the post-COVID-19 era that focuses on intensive sustaining of agri-food supply chain in tandem with meeting the high demand for new green deal innovation. For example, the development of wet peatland innovation, known as Paludiculture, can intensively sustain and blend agri-food and green innovations that will help support COVID-19 pandemic transitioning. The future looks bright for the creation of new sustainability multi-actor innovation hubs that will support, connect, and enable businesses to recover and pivot beyond the COVID-19 pandemic. The nexus between first 'Green Deal' initiative supporting 64 selected European Startups and SMEs (European Innovation Council) and 43 Irish Disruptive Technology projects are addressed in the context of cross-cutting developments and relevance to COVID-19. Candidate areas for future consideration will focus on climate action, digitization, manufacturing, and sustainable food production, security, and waste mitigation. Recommendations are also provided to facilitate community transitioning, training, enterprise, and employment to low carbon economy.
Collapse
Affiliation(s)
- Neil J Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Ireland; Centre for Disinfection, Sterilization, and Biosecurity, Athlone Institute of Technology, Ireland; Empower Eco Sustainability Hub, Lough Boora, Co. Offaly, Ireland.
| | - Charis M Galanakis
- Research & Innovation Department, Galanakis Laboratories, Chania, Greece; College of Science, King Saud University, Riyadh, Saudi Arabia; Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
59
|
Du B, Fan G, Yu W, Yang S, Zhou J, Luo J. Occurrence and risk assessment of steroid estrogens in environmental water samples: A five-year worldwide perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115405. [PMID: 33618485 DOI: 10.1016/j.envpol.2020.115405] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 05/15/2023]
Abstract
The ubiquitous occurrence of steroid estrogens (SEs) in the aquatic environment has raised global concern for their potential environmental impacts. This paper extensively compiled and reviewed the available occurrence data of SEs, namely estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), estriol (E3), and 17α-ethinyl estradiol (EE2), based on 145 published articles in different regions all over the world including 51 countries and regions during January 2015-March 2020. The data regarding SEs concentrations and estimated 17β-estradiol equivalency (EEQ) values are then compared and analyzed in different environmental matrices, including natural water body, drinking and tap water, and wastewater treatment plants (WWTPs) effluent. The detection frequencies of E1, 17β-E2, and E3 between the ranges of 53%-83% in natural water and WWTPs effluent, and the concentration of SEs varied considerably in different countries and regions. The applicability for EEQ estimation via multiplying relative effect potency (REPi) by chemical analytical data, as well as correlation between EEQbio and EEQcal was also discussed. The risk quotient (RQ) values were on the descending order of EE2 > 17β-E2 > E1 > 17α-E2 > E3 in the great majority of investigations. Furthermore, E1, 17β-E2, and EE2 exhibited high or medium risks in water environmental samples via optimized risk quotient (RQf) approach at the continental-scale. This overview provides the latest insights on the global occurrence and ecological impacts of SEs and may act as a supportive tool for future SEs investigation and monitoring.
Collapse
Affiliation(s)
- Banghao Du
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350002, Fujian, China; Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 350002, Fujian, China.
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, 400074, Chongqing, China
| | - Shuo Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, 400074, Chongqing, China
| | - Jinjin Zhou
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Jing Luo
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| |
Collapse
|
60
|
Diclofenac determination using CeO2 nanoparticle modified screen-printed electrodes – A study of background correction. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
61
|
Acuña V, Bregoli F, Font C, Barceló D, Corominas L, Ginebreda A, Petrovic M, Rodríguez-Roda I, Sabater S, Marcé R. Management actions to mitigate the occurrence of pharmaceuticals in river networks in a global change context. ENVIRONMENT INTERNATIONAL 2020; 143:105993. [PMID: 32738769 DOI: 10.1016/j.envint.2020.105993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Human consumption of pharmaceuticals leads to high concentrations of pharmaceuticals in wastewater, which is usually not or insufficiently collected and treated before release into freshwater ecosystems. There, pharmaceuticals may pose a threat to aquatic biota. Unfortunately, occurrence data of pharmaceuticals in freshwaters at the global scale is scarce and unevenly distributed, thus preventing the identification of hotspots, the prediction of the impact of Global Change (particularly streamflow and population changes) on their occurrence, and the design of appropriate mitigation actions. Here, we use diclofenac (DCL) as a typical pharmaceutical contaminant, and a global model of DCL chemical fate based on wastewater sanitation, population density and hydrology to estimate current concentrations in the river network, the impact of future changes in runoff and population, and potential mitigation actions in line with the Sustainable Development Goals. Our model is calibrated against measurements available in the literature. We estimate that 2.74 ± 0.63% of global river network length has DCL concentrations exceeding the proposed EU Watch list limit (100 ng L-1). Furthermore, many rivers downstream from highly populated areas show values beyond 1000 ng L-1, particularly those associated to megacities in Asia lacking sufficient wastewater treatment. This situation will worsen with Global Change, as streamflow changes and human population growth will increase the proportion of the river network above 100 ng L-1 up to 3.10 ± 0.72%. Given this background, we assessed feasible source and end-of-pipe mitigation actions, including per capita consumption reduction through eco-directed sustainable prescribing (EDSP), the implementation of the United Nations Sustainable Development Goal (SDG) 6 of halving the proportion of population without access to safely managed sanitation services, and improvement of wastewater treatment plants up to the Swiss standards. Among the considered end-of-pipe mitigation actions, implementation of SDG 6 was the most effective, reducing the proportion of the river network above 100 ng L-1 down to 2.95 ± 0.68%. However, EDSP brought this proportion down to 2.80 ± 0.64%. Overall, our findings indicate that the sole implementation of technological improvements will be insufficient to prevent the expected increase in pharmaceuticals concentration, and that technological solution need to be combined with source mitigation actions.
Collapse
Affiliation(s)
- V Acuña
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domenec 3, 17003 Girona, Spain
| | - F Bregoli
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; IHE Delft Institute for Water Education, Westvest 7, 2601 DA Delft, the Netherlands
| | - C Font
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domenec 3, 17003 Girona, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domenec 3, 17003 Girona, Spain; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Carrer Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ll Corominas
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domenec 3, 17003 Girona, Spain
| | - A Ginebreda
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Carrer Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Petrovic
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - I Rodríguez-Roda
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domenec 3, 17003 Girona, Spain; Laboratory of Chemical and Environmental Engineering (LEQUiA), University of Girona, 17071 Girona, Spain
| | - S Sabater
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Institute of Aquatic Ecology, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | - R Marcé
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domenec 3, 17003 Girona, Spain.
| |
Collapse
|
62
|
GuEstNBL: The Software for the Guided Estimation of the Natural Background Levels of the Aquifers. WATER 2020. [DOI: 10.3390/w12102728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Natural background levels (NBLs) for targeted chemical elements characterize a specific groundwater body, the knowledge of which represents a fundamental information for environmental agencies responsible for the protection, management, and remediation of territory. The large number of areas subject to strong anthropogenic pressures of a different nature and magnitude makes the job of control authorities particularly difficult. The process to distinguish effective anthropogenic contamination from natural conditions and to define realistic environmental clean-up goals goes through the computation of several mutually dependent statistical methods, some of which have non-trivial resolution and interpretation. In this study, we presented a new tool designed to drive those working in the sector into an articulated path towards NBL assessment. The application software was developed in order to read environmental input data provided by a user-friendly web-based geographic information system (GIS) and to return the NBL estimate of a given chemical element following a wizard that allows for the implementation of two methodologies, i.e., component separation or pre-selection. The project was born from a collaboration between the Department of Environmental Engineering of the University of Calabria and the Department of Environmental Policies of the Calabria Region. The software was used to estimate NBLs in selected chemical species at potentially contaminated industrial sites located in Lamezia Terme, Italy. In the future, the developed calculation program will be the official evaluation tool of the Calabria Region for identifying groundwater thresholds.
Collapse
|
63
|
Goeppert N, Goldscheider N, Berkowitz B. Experimental and modeling evidence of kilometer-scale anomalous tracer transport in an alpine karst aquifer. WATER RESEARCH 2020; 178:115755. [PMID: 32348930 DOI: 10.1016/j.watres.2020.115755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Karst aquifers are important drinking water resources, but highly vulnerable to contamination. Contaminants can be transported rapidly through a network of fractures and conduits, with only limited sorption or degradation, which usually leads to a fast and strong response at karst springs. During migration, contaminants can also enter less mobile zones, such as pools or water in intra-karstic sediments, or advance from conduits into the adjacent fractured rock matrix. As contaminant concentrations in the main flow path(s) decrease, contaminants may migrate back into the main flow path and reach the karst springs at low (but significant) concentrations over a long time span. This is the conventional interpretation for the oft-observed steep rising limb and the long-tailed falling limb of tracer breakthrough curves in karst systems. Here, field measurements are examined from an alpine karst system in Austria where a series of distinctive, long-tailed breakthrough curves (BTCs) of conservative tracers were observed over distances up to 7400 m. Recognizing that the conventional advection-dispersion equation (ADE) cannot usually quantify such behavior, two other modeling approaches are considered, namely the two-region non-equilibrium (2RNE) model, which explicitly includes mobile and immobile zones, and a continuous time random walk (CTRW) model, which is based on a physically-based, probabilistic approach that describes anomalous (or non-Fickian) transport behavior characteristic of heterogeneous systems such as karst. In most cases, the ADE and 2RNE models do not quantify the low concentrations at longer travel times. The CTRW, in contrast, accounts for the long-tailed breakthrough behavior found in this karst system.
Collapse
Affiliation(s)
- Nadine Goeppert
- Institute of Applied Geosciences (AGW), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany.
| | - Nico Goldscheider
- Institute of Applied Geosciences (AGW), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Brian Berkowitz
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
64
|
A Systematic Literature Review of Concepts and Factors Related to Pro-Environmental Consumer Behaviour in Relation to Waste Management Through an Interdisciplinary Approach. SUSTAINABILITY 2020. [DOI: 10.3390/su12114452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although there has been a steady increase in the number of studies on consumer behaviour in relation to sustainable development, there is limited focus on the product disposal phase. This systematic literature review intends to: (1) clarify how concepts related to pro-environmental consumer behaviour are understood and analysed in the academic literature on waste management; (2) discover any interplay between pro-environmental consumer behaviour and generic consumer behaviour, and the conditions and factors that favour it. A typical systematic literature review methodology was applied to the papers available on Web of Science, Science Direct and EBSCO (Elton Bryson Stephens Company) host between 1975 and 2019, leading to the selection of 699 final papers. The findings reveal that: (1) Although scholars tend to create a variety of pro-environmental consumer behaviour models depending on their specific field of inquiry, all approaches can be traced back to a limited number of reference theories; (2) The overall level of interplay between pro-environmental consumer behaviour and generic consumer behaviour is limited, nevertheless a favourable context or a supportive institutional-legal framework can significantly influence it; (3) A plethora of conditions and factors favour this type of interplay, involving social psychology, laws, economics, institutions and more; (4) Several critical issues appear in the analysed papers, especially some scholars’ assumptions to be able to identify all key factors. It follows the need for a more interdisciplinary approach, a deeper analysis of the effectiveness of the intervention measures at the governmental and institutional level, and a clear classification of factors and conditions (as proposed by this review).
Collapse
|
65
|
Valero Y, López-Cánovas AE, Rodenas MC, Cabas I, García-Hernández P, Arizcun M, García-Ayala A, Chaves-Pozo E. Endocrine disrupter chemicals affect the humoral antimicrobial activities of gilthead seabream males even upon the cease of the exposure. Sci Rep 2020; 10:7966. [PMID: 32409650 PMCID: PMC7224181 DOI: 10.1038/s41598-020-64522-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/06/2020] [Indexed: 12/17/2022] Open
Abstract
17α-ethynilestradiol (EE2) and tamoxifen (Tmx) are pollutants world-wide distributed in aquatic environments. Gilthead seabream, Sparus aurata L., is highlighted as a species model of intensively culture in anthropogenic disturbed environments. The effects of these pollutants on gilthead seabream reproduction and some immune responses have been described but, the humoral innate antimicrobial activities have never received attention. In this work we analysed the latest in the plasma of gilthead seabream males of different ages and reproductive stages treated with 0, 2.5, 5 or 50 μg EE2 or 100 μg Tmx g-1 food during different times of exposure and of reverting to commercial diet (recovery). The peroxidase and protease activities decreased as the spermatogenesis of the first reproductive cycle (RC) proceeded in control fish. However, only protease and antiprotease activities showed different level at different stages of the second RC in control fish, but showed scarce disruption in fish treated with EE2 or Tmx. Peroxidase and bactericide activities are more sensitive to EE2, than to Tmx. The effects induced by EE2 varied depending on the activity analyzed, the dose and the time of exposure and the reproductive stage and the age of the specimens.
Collapse
Affiliation(s)
- Yulema Valero
- Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO), Carretera de la Azohía s/n. 30860, Puerto de Mazarrón, Murcia, Spain
| | - Amanda E López-Cánovas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - M Carmen Rodenas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Isabel Cabas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Pilar García-Hernández
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Marta Arizcun
- Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO), Carretera de la Azohía s/n. 30860, Puerto de Mazarrón, Murcia, Spain
| | - Alfonsa García-Ayala
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Elena Chaves-Pozo
- Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO), Carretera de la Azohía s/n. 30860, Puerto de Mazarrón, Murcia, Spain.
| |
Collapse
|
66
|
O'Neill EA, Stejskal V, Clifford E, Rowan NJ. Novel use of peatlands as future locations for the sustainable intensification of freshwater aquaculture production - A case study from the Republic of Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136044. [PMID: 31855652 DOI: 10.1016/j.scitotenv.2019.136044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 05/29/2023]
Abstract
There has been an increasing interest in enhancing freshwater aquaculture processes without hindering the progress of the Water Framework Directive. This constitutes the first study to describe a new concept in integrated multitrophic aquaculture (IMTA) that uses cutaway peatlands (bogs) to farm rainbow trout and Eurasian perch with associated organic status that is powered by wind energy and utilizes algae and duckweed to treat rearing water. Approximately 5% of Ireland comprises bogs that support natural ecosystems where there is a pressing need to develop alternative innovation to that of burning peat in order to reduce Ireland's carbon emissions. Specifically, this study evaluates water quality from this new IMTA where intake and terminal holding tank samples were evaluated from May to August 2019. Physicochemical parameters (temperature, pH, nitrogen, phosphorus, oxygen, suspended solids, hardness and alkalinity), and ecotoxicological bioassays (Pseudokirchneriella subcapitata and Daphnia pulex), were used to investigate the potential effects that introducing aquaculture processes may have on peatlands. Nitrite (P < 0.001), nitrate (P = 0.016), and chemical oxygen demand (P = 0.011), were the only physicochemical parameters that differed significantly between the intake and holding tank water indicating that water quality for the most part remained unchanged. Low levels of toxicity were observed between the bioassays suggested the introduction of the processes into the bog were unlikely to cause adverse effects on the ecosystem and the organisms therein. Observations were similar to or lower than those reported previously by other researchers for intensive flow-through aquaculture processes that discharge to receiving water. Findings from this study support the use of peatlands as future locations for integrated aquaculture processes.
Collapse
Affiliation(s)
- Emer A O'Neill
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland; Department of Life & Physical Science, Faculty of Science & Health, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland.
| | - Vlastimil Stejskal
- University College Cork, School of Biological, Earth and Environmental Sciences & Environmental Research Institute, Cork, Ireland; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Vodňany, Czech Republic
| | - Eoghan Clifford
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland
| | - Neil J Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland; Department of Life & Physical Science, Faculty of Science & Health, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
| |
Collapse
|
67
|
Kassahun GS, Griveau S, Juillard S, Champavert J, Ringuedé A, Bresson B, Tran Y, Bedioui F, Slim C. Hydrogel Matrix-Grafted Impedimetric Aptasensors for the Detection of Diclofenac. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:827-836. [PMID: 31910020 DOI: 10.1021/acs.langmuir.9b02031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Driven by the growing concern about the release of untreated emerging pollutants and the need for determining small amounts of these pollutants present in the environment, novel biosensors dedicated to molecular recognition are developed. We have designed biosensors using a novel class of grafted polymers, surface-attached hydrogel thin films, on conductive transducers as a biocompatible matrix for biomolecule immobilization. We showed that they can be dedicated to the molecular recognition of diclofenac (DCL). The immobilization of the aptamer onto surface-attached hydrogel thin films by covalent attachment provides a biodegradable shelter, providing the aptamer with excellent environments to preserve its active and functional structure while allowing the detection of DCL. The grafting of the aptamer is obtained using the formation of amide bonds via the activation of carboxylic acid groups of the poly(acrylic acid) hydrogel thin film. For improved sensitivity and higher stability of the sensor, a high density of the immobilized aptamer is enabled. The aptamer-modified electrode was then incubated with DCL solutions at different concentrations. The performances of the aptasensor were investigated by electrochemical impedance spectroscopy. The change in charge-transfer resistance was found to be linear with DCL concentration in the 30 pM to 1 μM range. The detection limit was calculated to be 0.02 nM. The improvement of the limit of detection can be mainly attributed to the three-dimensional environment of the hydrogel matrix which improves the grafting density of the aptamer and the affinity of the aptamer to DCL.
Collapse
Affiliation(s)
- G S Kassahun
- Institute of Chemistry for Life and Health Sciences (iCLeHS), PSL Research University, CNRS, Chimie ParisTech , 11 Rue Pierre et Marie Curie , 75231 Paris Cedex 05, France
| | - S Griveau
- Institute of Chemistry for Life and Health Sciences (iCLeHS), PSL Research University, CNRS, Chimie ParisTech , 11 Rue Pierre et Marie Curie , 75231 Paris Cedex 05, France
| | - S Juillard
- Institute of Chemistry for Life and Health Sciences (iCLeHS), PSL Research University, CNRS, Chimie ParisTech , 11 Rue Pierre et Marie Curie , 75231 Paris Cedex 05, France
| | - J Champavert
- Institute of Chemistry for Life and Health Sciences (iCLeHS), PSL Research University, CNRS, Chimie ParisTech , 11 Rue Pierre et Marie Curie , 75231 Paris Cedex 05, France
| | - A Ringuedé
- Institut de Recherche de Chimie de Paris (IRCP), PSL Research University, CNRS, Chimie ParisTech , 11 Rue Pierre et Marie Curie , 75231 Paris Cedex 05, France
| | - B Bresson
- Soft Matter Engineering and Science, PSL Research University, UMR 7615 CNRS, ESPCI , 10 Rue Vauquelin , F-75231 Paris Cedex 05, France
| | - Y Tran
- Soft Matter Engineering and Science, PSL Research University, UMR 7615 CNRS, ESPCI , 10 Rue Vauquelin , F-75231 Paris Cedex 05, France
| | - F Bedioui
- Institute of Chemistry for Life and Health Sciences (iCLeHS), PSL Research University, CNRS, Chimie ParisTech , 11 Rue Pierre et Marie Curie , 75231 Paris Cedex 05, France
| | - C Slim
- Institute of Chemistry for Life and Health Sciences (iCLeHS), PSL Research University, CNRS, Chimie ParisTech , 11 Rue Pierre et Marie Curie , 75231 Paris Cedex 05, France
| |
Collapse
|
68
|
Chidichimo F, De Biase M, Straface S. Groundwater pollution assessment in landfill areas: Is it only about the leachate? WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:655-666. [PMID: 31785525 DOI: 10.1016/j.wasman.2019.11.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/28/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Groundwater is the environmental compartment very often involved in the broader issues related to contaminated sites characterization and reclamation. It is not uncommon to find areas in which some substances directly linked to the petrographic composition of the aquifer reach high values exceeding the limits set by the regulations. These concentrations are defined as Natural Background Levels (NBL) and the need to quantify their real contribution, in areas subject to strong anthropogenic pressures, represents an emerging problem. Global statistical analyses and laboratory testing are proposed here to distinguish between the impacts of different forcing influencing water quality in hydrogeological systems. The study focus on the application of a methodology based on the Component Separation analysis for the NBL estimation of selected chemical species in potentially contaminated aquifers flowing in the proximity of landfill areas, and on the subsequent validation of the results through experimental studies of field samples. A site located in Calabria, Italy, and constituting a typical example of an aquifer which has been subjected to possible contact with the leachate produced by waste degradation is considered. The work is keyed to NBLs characterization of aluminum, iron and manganese and to the identification of their natural component for a proper environmental assessment of the site. Estimated NBLs are consistent with the geochemical composition of site samples. The adopted methodology can represent a useful instrument to distinguish effective anthropogenic contamination from natural conditions and to define realistic environmental clean-up goals.
Collapse
Affiliation(s)
- Francesco Chidichimo
- University of Calabria - Department of Environmental and Chemical Engineering, via P. Bucci 42B, 87036 Rende, CS, Italy.
| | - Michele De Biase
- University of Calabria - Department of Environmental and Chemical Engineering, via P. Bucci 42B, 87036 Rende, CS, Italy
| | - Salvatore Straface
- University of Calabria - Department of Environmental and Chemical Engineering, via P. Bucci 42B, 87036 Rende, CS, Italy.
| |
Collapse
|
69
|
Guo J, Peng J, Lei Y, Kanerva M, Li Q, Song J, Guo J, Sun H. Comparison of oxidative stress induced by clarithromycin in two freshwater microalgae Raphidocelis subcapitata and Chlorella vulgaris. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 219:105376. [PMID: 31838304 DOI: 10.1016/j.aquatox.2019.105376] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Clarithromycin (CLA), a macrolide antibiotic, has been frequently detected in the global surface waters. Concerns have been raised over the potential impacts of CLA on the non-target aquatic species, particularly algae acting as the primary producers in the ecosystem. This study therefore evaluated the toxicological effects of CLA at a range of concentration levels (0, 5, 20, 40, 80 μg L-1) on two green algae, Raphidocelis subcapitata (R. subcapitata) and Chlorella vulgaris (C. vulgaris). The algal growth, photosynthetic pigment contents, lipid peroxidation biomarker malondialdehyde (MDA), responses of antioxidants including superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GP), and glutathione S-transferase (GST) were measured. After 7 d exposure, the growth of R. subcapitata was inhibited with the CLA exposure levels higher than 20 μg L-1, whereas the inhibition in C. vulgaris was detected at the concentration level of 80 μg L-1. The MDA contents in both species were elevated. To cope with the increased levels of ROS, the activities of enzymatic antioxidants (SOD, CAT, GP, and GST) and the content of non-enzymatic antioxidant (GSH) in R. subcapitata were all enhanced. However, in C. vulgaris, enhancement was detected only in the activities of antioxidant enzymes (SOD, CAT, and GP). In addition, chlorophyll a, b, and carotenoid contents were all significantly increased in R. subcapitata but decreased in C. vulgaris. The results suggested that R. subcapitata is more sensitive to CLA exposure than C. vulgaris. This study provides insights into the CLA - oxidative stress process in two algae.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jianglin Peng
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| | - Yuan Lei
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Mirella Kanerva
- Center for Marine Environmental Studies, Ehime University, Matsuyama 7908577, Japan
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| | - Jipu Guo
- State Grid Shaanxi Electric Power Research Institute, Xi'an, 710100, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| |
Collapse
|
70
|
Costa S, Coppola F, Pretti C, Intorre L, Meucci V, Soares AMVM, Freitas R, Solé M. The influence of climate change related factors on the response of two clam species to diclofenac. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109899. [PMID: 31771782 DOI: 10.1016/j.ecoenv.2019.109899] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/05/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Diclofenac (DIC) is one of the non-steroidal anti-inflammatory drugs (NSAID) with higher consumption rates, used in both human and veterinary medicine. Previous studies already demonstrated the presence of this drug in aquatic environments and adverse effects towards inhabiting organisms. However, with the predictions of ocean acidification and warming, the impacts induced by DIC may differ from what is presently known and can be species-dependent. Thus, the present study aimed to comparatively assess the effects caused by DIC in the clams Ruditapes philippinarum and Ruditapes decussatus and evaluate if these impacts were influenced by pH and temperature. For this, organisms were acclimated for 30 days at two different temperature and pH (control conditions: pH 8.1, 17 °C; climate change forecasted scenario: pH 7.7, 20 °C) in the absence of drugs (experimental period I) followed by 7 days exposure under the same water physical parameters but in absence or presence of the pharmaceutical drug (at 1 μg/L, experimental period II). Biochemical responses covering metabolic capacity, oxidative stress and damage-related biomarkers were contrasted in clams at the end of the second experimental period. The results showed that under actual conditions, R. philippinarum individuals exposed to DIC presented enhanced antioxidant activities and reduced their respiration rate compared with non-contaminated clams. When exposed to the predicted climate change conditions, a similar response was observed in contaminated clams, but in this case clams increased their metabolic activities probably to fight the stress caused by the combination of both stressors. When R. decussatus was exposed to DIC, even at actual pH and temperature conditions, their antioxidant defences were also elevated but their baseline enzymatic activities were also naturally higher in respect to R. philippinarum. Although clams may use different strategies to prevent DIC damage, both clam species showed under low pH and high temperature limited oxidative stress impacts in line with a lower DIC bioaccumulation. The present findings reveal that predicted climate change related factors may not enhance the impacts of DIC in Ruditapes clams in a species-dependent manner although both displayed particular mechanisms to face stress.
Collapse
Affiliation(s)
- Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per Il Centro Interuniversitario di Biologia Marina Ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | | | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Montserrat Solé
- Instituto de Ciencias Del Mar ICM-CSIC, E-08003, Barcelona, Spain
| |
Collapse
|
71
|
Sathishkumar P, Meena RAA, Palanisami T, Ashokkumar V, Palvannan T, Gu FL. Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota - a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134057. [PMID: 31783460 DOI: 10.1016/j.scitotenv.2019.134057] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 05/17/2023]
Abstract
Diclofenac, a nonsteroidal anti-inflammatory drug has turned into a contaminant of emerging concern; hence, it was included in the previous Watch List of the EU Water Framework Directive. This review paper aims to highlight the metabolism of diclofenac at different trophic levels, its occurrence, ecological risks, and interactive effects in the water cycle and biota over the past two decades. Increased exposure to diclofenac not only raises health concerns for vultures, aquatic organisms, and higher plants but also causes serious threats to mammals. The ubiquitous nature of diclofenac in surface water (river, lake canal, estuary, and sea) is compared with drinking water, groundwater, and wastewater effluent in the environment. This comprehensive survey from previous studies suggests the fate of diclofenac in wastewater treatment plants (WWTPs) and may predict its persistence in the environment. This review offers evidence of fragmentary available data for the water environment, soil, sediment, and biota worldwide and supports the need for further data to address the risks associated with the presence of diclofenac in the environment. Finally, we suggest that the presence of diclofenac and its metabolites in the environment may represent a high risk because of their synergistic interactions with existing contaminants, leading to the development of drug-resistant strains and the formation of newly emerging pollutants.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China
| | | | - Thavamani Palanisami
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thayumanavan Palvannan
- Laboratory of Bioprocess and Engineering, Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
72
|
Marques da Cunha L, Maitre D, Wedekind C. Low adaptive potential for tolerance to ethynylestradiol, but also low toxicity, in a grayling population (Thymallus thymallus). BMC Evol Biol 2019; 19:227. [PMID: 31842751 PMCID: PMC6916445 DOI: 10.1186/s12862-019-1558-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The presence of a novel pollutant can induce rapid evolution if there is additive genetic variance for the tolerance to the stressor. Continuous selection over some generations can then reduce the toxicity of the pollutant but also deplete the additive genetic variance for the tolerance and thereby slow down adaptation. One common pollutant that has been ecologically relevant for some time is 17alpha-ethynylestradiol (EE2), a synthetic compound of oral contraceptives since their market launch in the 1960s. EE2 is typically found in higher concentrations in rivers than in lakes. Recent experimental work revealed significant genetic variance for the tolerance to EE2 in two lake-spawning salmonid species but no such variance in river-spawning brown trout. We used another river-spawning salmonid, the European grayling Thymallus thymallus, to study the toxicity of an ecologically relevant concentration of EE2. We also used a full-factorial in vitro breeding design and singly rearing of 1555 embryos and larvae of 40 sib groups to test whether there is additive genetic variance for the tolerance to this pollutant. RESULTS We found that exposure to EE2 reduced larval growth after hatching, but contrary to what has been found in the other salmonids, there were no significant effects of EE2 on embryo growth and survival. We found additive genetic variance for embryo viability, i.e. heritability for fitness. However, there was no significant additive variance for the tolerance to EE2. CONCLUSIONS Our findings support the hypothesis that continuous selection has reduced the toxicity of EE2 and depleted genetic variance for tolerance to this synthetic stressor.
Collapse
Affiliation(s)
- Lucas Marques da Cunha
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Diane Maitre
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
73
|
Izzo F, Mercurio M, de Gennaro B, Aprea P, Cappelletti P, Daković A, Germinario C, Grifa C, Smiljanic D, Langella A. Surface modified natural zeolites (SMNZs) as nanocomposite versatile materials for health and environment. Colloids Surf B Biointerfaces 2019; 182:110380. [DOI: 10.1016/j.colsurfb.2019.110380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
|
74
|
Albuquerque MTD, Antunes IMHR, Oliveira NP, Pelletier G. Impact of sewage effluent discharges prediction using QUAL2Kw in a sensitive protected area: Portugal. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1095-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
75
|
Balbi T, Ciacci C, Canesi L. Estrogenic compounds as exogenous modulators of physiological functions in molluscs: Signaling pathways and biological responses. Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:135-144. [PMID: 31055067 DOI: 10.1016/j.cbpc.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022]
Abstract
Molluscs have been widely utilized to evaluate the effects of estrogenic compounds, one of the most widespread classes of Endocrine Disrupting Chemicals-EDCs. However, knowledge on steroid signaling and metabolism in molluscs has considerably increased in the last decade: from these studies, a considerable debate emerged on the role of 'natural' steroids in physiology, in particular in reproduction, of this invertebrate group. In this work, available information on the effects and mechanisms of action of estrogens in molluscs will be reviewed, with particular emphasis on bivalves that, widespread in aquatic ecosystems, are most likely affected by exposure to estrogenic EDCs. Recent advances in steroid uptake and metabolism, and estrogen receptors-ERs in molluscs, as well as in estrogen signaling in vertebrates, will be considered. The results so far obtained with 17β-estradiol and different estrogenic compounds in the model bivalve Mytilus spp., demonstrate specific effects on immune function, development and metabolism. Transcriptomic data reveal non genomic estrogen signaling pathways in mussel tissues that are supported by new observations at the cellular level. In vitro and in vivo data show, through independent lines of evidence, that estrogens act through non-genomic signaling pathways in bivalves. In this light, regardless of whether molluscs synthesize estrogens de novo or not, and despite their ERs are not directly activated by ligand binding, estrogens can interact with multiple signaling components, leading to modulation of different physiological functions. Increasing knowledge in endocrine physiology of molluscs will provide a framework for a better evaluation and interpretation of data on the impact of estrogenic EDCs in this invertebrate group.
Collapse
Affiliation(s)
- Teresa Balbi
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Caterina Ciacci
- Dept. of Biomolecular Sciences (DIBS), University 'Carlo Bo' of Urbino, Urbino, Italy
| | - Laura Canesi
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy.
| |
Collapse
|
76
|
Selmoni OM, Maitre D, Roux J, Wilkins LGE, Marques da Cunha L, Vermeirssen ELM, Knörr S, Robinson-Rechavi M, Wedekind C. Sex-specific changes in gene expression in response to estrogen pollution around the onset of sex differentiation in grayling (Salmonidae). BMC Genomics 2019; 20:583. [PMID: 31307399 PMCID: PMC6631537 DOI: 10.1186/s12864-019-5955-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
The synthetic 17α-ethinylestradiol (EE2) is a common estrogenic pollutant that has been suspected to affect the demography of river-dwelling salmonids. One possibility is that exposure to EE2 tips the balance during initial steps of sex differentiation, so that male genotypes show female-specific gene expression and gonad formation. Here we study EE2 effects on gene expression around the onset of sex differentiation in a population of European grayling (Thymallus thymallus) that suffers from sex ratio distortions. We exposed singly-raised embryos to one dose of 1 ng/L EE2, studied gene expression 10 days before hatching, at the day of hatching, and around the end of the yolk-sac stage, and related it to genetic sex (sdY genotype). We found that exposure to EE2 affects expression of a large number of genes, especially around hatching. These effects were strongly sex-dependent. We then raised fish for several months after hatching and found no evidence of sex reversal in the EE2-exposed fish. We conclude that ecologically relevant (i.e. low) levels of EE2 pollution do not cause sex reversal by simply tipping the balance at early stages of sex differentiation, but that they interfere with sex-specific gene expression.
Collapse
Affiliation(s)
- Oliver M Selmoni
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland.,Present Address: Swiss Federal Institute of Technology (EPFL), 1015, Lausanne, Switzerland
| | - Diane Maitre
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland
| | - Julien Roux
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Present Address: Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Laetitia G E Wilkins
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland.,Present Address: Department of Environmental Sciences, Policy and Management, University of California, Berkeley, CA, 94720, USA
| | - Lucas Marques da Cunha
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland
| | | | - Susanne Knörr
- Aquatic Ecology and Toxicology Group Center of Organismic Studies, University of Heidelberg, Heidelberg, Germany
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution Biophore, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
77
|
Gaston L, Lapworth DJ, Stuart M, Arnscheidt J. Prioritization Approaches for Substances of Emerging Concern in Groundwater: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6107-6122. [PMID: 31063369 DOI: 10.1021/acs.est.8b04490] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Risks from emerging contaminants (ECs) in groundwater to human health and aquatic ecology remain difficult to quantify. The number of ECs potentially found in groundwater presents challenges for regulators and water managers regarding selection for monitoring. This study is the first systematic review of prioritization approaches for selecting ECs that may pose a risk in groundwater. Online databases were searched for prioritization approaches relating to ECs in the aquatic environment using standardized key word search combinations. From a total of 672, 33 studies met the eligibility criteria based primarily on the relevance to prioritizing ECs in groundwater. The review revealed the lack of a groundwater specific contaminant prioritization methodology in spite of widely recognized differences between groundwater and surface water environments with regard to pathways to receptors. The findings highlight a lack of adequate evaluation of methodologies for predicting the likelihood of an EC entering groundwater and knowledge gaps regarding the occurrence and fate of ECs in this environment. The review concludes with a proposal for a prioritization framework for ECs in groundwater monitoring that enables priority lists to be updated as new information becomes available for substances with regard to their usage, physicochemical properties, and hazards.
Collapse
Affiliation(s)
- Lorraine Gaston
- Environmental Sciences Research Institute , Ulster University , Coleraine Campus, Cromore Road , Coleraine , County Londonderry BT52 1SA , United Kingdom
| | - Dan J Lapworth
- British Geological Survey , Maclean Building, Crowmarsh Gifford , Wallingford , Oxfordshire OX10 8BB , United Kingdom
| | - Marianne Stuart
- British Geological Survey , Maclean Building, Crowmarsh Gifford , Wallingford , Oxfordshire OX10 8BB , United Kingdom
| | - Joerg Arnscheidt
- Environmental Sciences Research Institute , Ulster University , Coleraine Campus, Cromore Road , Coleraine , County Londonderry BT52 1SA , United Kingdom
| |
Collapse
|
78
|
Jia Y, Schmid C, Shuliakevich A, Hammers-Wirtz M, Gottschlich A, der Beek TA, Yin D, Qin B, Zou H, Dopp E, Hollert H. Toxicological and ecotoxicological evaluation of the water quality in a large and eutrophic freshwater lake of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:809-820. [PMID: 30851614 DOI: 10.1016/j.scitotenv.2019.02.435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Effect-based methods (EBMs) are recommended as holistic approach for diagnosis and monitoring of water quality; however, the application of EBMs is still scare in China. In the present study, water quality of the freshwater lake Taihu (China) was investigated by EBMs. Different types of water samples were collected from three bays of the lake during 2015, 2016 and 2017. A battery of seven effect-based bioassays, including both specific and non-specific toxicity assays, was used. The bioassay battery was recently suggested based on joint activities of the EU project SOLUTIONS and the NORMAN network on emerging pollutants and is also under discussion for being implemented into monitoring activities in the context of the European Water Framework Directive (WFD). Adverse effects were observed towards the primary producer, primary consumer and fish, indicating the potential ecotoxicity of water in Taihu Lake. Mutagenic and estrogenic effects were found in the Ames fluctuation assay and ERα CALUX (Chemically Activated Luciferase Gene-eXpression) assay, respectively, highlighting the potential risks on human health. Algal growth inhibition and mutagenic effects can be observed during each of the three years. Acute toxicity towards Daphnia magna and estrogen receptor agonistic effects were found in at least one of the samples collected in 2016 and 2017, but not in 2015. The endpoints for fish toxicity in the Danio rerio fish embryo test included both lethal and additionally several sublethal effects (only for samples from 2017) and were not compared between years. Algal growth inhibition, fish embryo toxicity, mutagenic effect and estrogenicity were observed in each of the three bays, while Daphnia acute toxicity was only found in Zhushan Bay. Taking together, this study provides a big picture on the water quality of Taihu Lake. The battery of effect-based tools is promising to be a routine for water quality monitoring in China.
Collapse
Affiliation(s)
- Yunlu Jia
- RWTH Aachen University, ABBt- Aachen Biology and Biotechnology, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen, Germany.
| | - Cora Schmid
- IWW Water Centre, Mülheim a.d. Ruhr, Germany; University Duisburg-Essen, Zentrum für Wasser- und Umweltforschung (ZWU), Germany
| | - Aliaksandra Shuliakevich
- RWTH Aachen University, ABBt- Aachen Biology and Biotechnology, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen, Germany
| | - Monika Hammers-Wirtz
- Research Institute for Ecosystem Analysis and Assessment - gaiac, Aachen, Germany
| | | | | | - Daqiang Yin
- Tongji University, College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, China
| | - Boqiang Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Elke Dopp
- IWW Water Centre, Mülheim a.d. Ruhr, Germany; University Duisburg-Essen, Zentrum für Wasser- und Umweltforschung (ZWU), Germany
| | - Henner Hollert
- RWTH Aachen University, ABBt- Aachen Biology and Biotechnology, Institute for Environmental Research, Department of Ecosystem Analysis, Aachen, Germany; Research Institute for Ecosystem Analysis and Assessment - gaiac, Aachen, Germany; Tongji University, College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, China; Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing, China.
| |
Collapse
|
79
|
Marques da Cunha L, Uppal A, Seddon E, Nusbaumer D, Vermeirssen EL, Wedekind C. No additive genetic variance for tolerance to ethynylestradiol exposure in natural populations of brown trout ( Salmo trutta). Evol Appl 2019; 12:940-950. [PMID: 31080506 PMCID: PMC6503824 DOI: 10.1111/eva.12767] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
One of the most common and potent pollutants of freshwater habitats is 17-alpha-ethynylestradiol (EE2), a synthetic component of oral contraceptives that is not completely eliminated during sewage treatment and that threatens natural populations of fish. Previous studies found additive genetic variance for the tolerance against EE2 in different salmonid fishes and concluded that rapid evolution to this type of pollution seems possible. However, these previous studies were done with fishes that are lake-dwelling and hence typically less exposed to EE2 than river-dwelling species. Here, we test whether there is additive genetic variance for the tolerance against EE2 also in river-dwelling salmonid populations that have been exposed to various concentrations of EE2 over the last decades. We sampled 287 adult brown trout (Salmo trutta) from seven populations that show much genetic diversity within populations, are genetically differentiated, and that vary in their exposure to sewage-treated effluent. In order to estimate their potential to evolve tolerance to EE2, we collected their gametes to produce 730 experimental families in blockwise full-factorial in vitro fertilizations. We then raised 7,302 embryos singly in 2-ml containers each and either exposed them to 1 ng/L EE2 (an ecologically relevant concentration, i.e., 2 pg per embryo added in a single spike to the water) or sham-treated them. Exposure to EE2 increased embryo mortality, delayed hatching time, and decreased hatchling length. We found no population differences and no additive genetic variance for tolerance to EE2. We conclude that EE2 has detrimental effects that may adversely affect population even at a very low concentration, but that our study populations lack the potential for rapid genetic adaptation to this type of pollution. One possible explanation for the latter is that continuous selection over the last decades has depleted genetic variance for tolerance to this synthetic stressor.
Collapse
Affiliation(s)
| | - Anshu Uppal
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - Emily Seddon
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | - David Nusbaumer
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| | | | - Claus Wedekind
- Department of Ecology and Evolution, BiophoreUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
80
|
Rowan NJ. Pulsed light as an emerging technology to cause disruption for food and adjacent industries – Quo vadis? Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
81
|
Gallego-Schmid A, Tarpani RRZ. Life cycle assessment of wastewater treatment in developing countries: A review. WATER RESEARCH 2019; 153:63-79. [PMID: 30690219 DOI: 10.1016/j.watres.2019.01.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/24/2018] [Accepted: 01/04/2019] [Indexed: 05/03/2023]
Abstract
Within developing countries, wastewater treatment (WWT) has improved in recent years but remains a high priority sustainability challenge. Accordingly, life cycle assessment (LCA) studies have recently started to analyse the environmental impacts of WWT technologies on the specific context of less developed countries, mainly in China and India. This work presents a comprehensive review of this knowledge with the aim of critically analysing the main conclusions, gaps and challenges for future WWT-related LCAs in developing countries. The most commonly assessed technologies in the 43 reviewed articles are different variations of activated sludge and extensive treatments applied in decentralized systems; however, studies focused on advanced technologies or new sources of pollution (e.g. micropollutants) are still lacking. Goal and system boundaries are normally clearly defined, but significant stages for some technologies such as the construction and sludge management are frequently not included and functional units should be defined accordingly to specific conditions in developing countries. At the inventory level, a more concise description of sources and technical parameters would greatly improve the quality of the LCAs along with accountability of direct greenhouse gas emissions. Eutrophication and global warming are the two most commonly assessed impacts; however, the calculation of terrestrial ecotoxicity when the sludge is used for agricultural purposes, of water use and of the land use change impacts associated to extensive technologies should be encouraged. The estimation of more site-specific databases, characterization factors (especially for eutrophication) or normalization and weighting values combined with more affordable access to background databases and LCA software, would deeply increase the accuracy of WWT-related LCAs in developing countries. An increased usage of the uncertainty analysis should be encouraged to assess the influence of these gaps in the final interpretation of the results. The review finishes with a summary of the main challenges and research gaps identified and with specific guidelines for future researchers to avoid the most common shortcomings found in the reviewed studies.
Collapse
Affiliation(s)
- Alejandro Gallego-Schmid
- Sustainable Industrial Systems, School of Chemical Engineering and Analytical Science, The University of Manchester, The Mill, Sackville Street, Manchester, M13 9PL, UK; Tyndall Centre for Climate Change Research, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Pariser Building, Sackville Street, Manchester, M13 9PL, UK.
| | - Raphael Ricardo Zepon Tarpani
- Sustainable Industrial Systems, School of Chemical Engineering and Analytical Science, The University of Manchester, The Mill, Sackville Street, Manchester, M13 9PL, UK
| |
Collapse
|
82
|
Azuma T, Otomo K, Kunitou M, Shimizu M, Hosomaru K, Mikata S, Mino Y, Hayashi T. Removal of pharmaceuticals in water by introduction of ozonated microbubbles. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
83
|
Azuma T, Otomo K, Kunitou M, Shimizu M, Hosomaru K, Mikata S, Ishida M, Hisamatsu K, Yunoki A, Mino Y, Hayashi T. Environmental fate of pharmaceutical compounds and antimicrobial-resistant bacteria in hospital effluents, and contributions to pollutant loads in the surface waters in Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:476-484. [PMID: 30550911 DOI: 10.1016/j.scitotenv.2018.11.433] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 05/07/2023]
Abstract
Environmental fate of 58 pharmaceutical compounds (PhCs) grouped into 11 therapeutic classes in the three different waters, hospital effluent, sewage treatment plant (STP) and river water, was estimated by combination of their quantitative concentration analysis and evaluation of their extent of contribution as loading sources. At the same time, distribution of six classes of antimicrobial-resistant bacteria (AMRB) in the same water samples was estimated by screening of individual PhC-resistant microbes grown on each specific chromogenic medium. The results indicate that 48 PhCs were detected ranged from 1 ng/L (losartan carboxylic acid) to 228 μg/L (acetaminophen sulfate) in hospital effluent, and contribution of the pollution load derived from hospital effluent to STP influent was estimated as 0.1% to 15%. On the other hand, contribution of STP effluent to river water was high, 32% to 60% for antibacterials, antipertensives and X-ray contrast media. In the cases for AMRB, detected numbers of colonies of AMRB in hospital effluent ranged from 29 CFU/mL to 1805 CFU/mL, and the estimated contribution of the AMRB pollution load derived from hospital effluent to STP influent was as low as 0.1% (levofloxacin and olmesartan) to 5.1% (N-desmethyl tamoxifen). Although the contribution of STPs as loading sources of PhCs and AMRB in surface waters was large, ozonation as an advanced water treatment system effectively removed a wide range of both PhCs and AMRB in water samples. These results suggest the importance of reducing environmental pollutant loads (not only at STPs but also at medical facilities) before being discharged into the surface waters, to both conserve water and keep the water environment safe. To our knowledge, this is the first report to show the distribution and contribution of AMRB from hospital effluent to the surface waters.
Collapse
Affiliation(s)
- Takashi Azuma
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Kana Otomo
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mari Kunitou
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mai Shimizu
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kaori Hosomaru
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shiori Mikata
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mao Ishida
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kanae Hisamatsu
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ayami Yunoki
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yoshiki Mino
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tetsuya Hayashi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
84
|
Ogane H, Sato TA, Shinokawa C, Sawai J. Low-concentration Sorbic Acid Promotes the Induction of Escherichia coli into a Viable but Nonculturable State. Biocontrol Sci 2019; 24:67-71. [PMID: 30880315 DOI: 10.4265/bio.24.67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The effect of food preservatives and sanitizers at low concentrations on the induction of Escherichia coli into a viable but nonculturable (VBNC) state was investigated. When E. coli was incubated in physiological saline at 37℃, the viable cell count measured by plate counting was approximately 3-logs lower than that measured by flow cytometry after 30 days. This difference, and morphological changes in cells, confirmed the transition of E. coli into a VBNC state. Adding 10 μg/l of sorbic acid significantly promoted the induction of E. coli into a VBNC state. This effect was not seen with benzoic acid or sodium hypochlorite at the same concentration. Resuscitation of E. coli VBNC cells was successful when they were grown in nutrient broth containing sodium pyruvate. These results suggest that the presence of low concentrations of food additives in a food manufacturing environment may act as potential triggers for bacterial VBNC induction.
Collapse
Affiliation(s)
- Haruna Ogane
- Faculty of Applied Bioscience, Kanagawa Institute of Technology
| | - Taka-Aki Sato
- Faculty of Applied Bioscience, Kanagawa Institute of Technology
| | - Chika Shinokawa
- Faculty of Applied Bioscience, Kanagawa Institute of Technology
| | - Jun Sawai
- Faculty of Applied Bioscience, Kanagawa Institute of Technology
| |
Collapse
|
85
|
Saaristo M, Johnstone CP, Xu K, Allinson M, Wong BBM. The endocrine disruptor, 17α-ethinyl estradiol, alters male mate choice in a freshwater fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:118-125. [PMID: 30658282 DOI: 10.1016/j.aquatox.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Among the handful of studies on the behavioural effects of endocrine disrupting chemicals (EDCs), only a few have set out to disentangle the mechanisms underpinning behavioural changes. In fish, previous studies have shown that both visual and chemical cues play an important role in mate choice. As such, contaminant-induced changes in either transmission or perception of mate choice cues could have direct implications for individual's fitness. One widespread contaminant of environmental concern is 17α-ethinyl estradiol (EE2), a synthetic estrogen used in the contraceptive pill. Here, we investigated the impacts of EE2 exposure (28 days; measured concentration 14 ng/L) on visual and chemical communication in wild guppies (Poecilia reticulata). Using a standard dichotomous mate choice assay, we first gave individual males (either control or EE2-exposed) the opportunity to court two size-matched females (one control and one EE2-exposed) using only visual cues. We then introduced chemical cues of females (control and EE2-exposed) to the trial tank. We found that there was no significant effect of EE2-treatment on total time males spent associating with the females, when given only visual cues. There was, however, a significant effect on male courtship behaviour, with both control and EE2-exposed males spending more time performing 'sigmoid' displays towards the visual cues of control females compared to EE2-exposed females. When males were presented with both visual and chemical female cues simultaneously, we found that males spent more time courting control females that were paired with EE2-chemical cues. Not only does our study uncover a previously unknown behavioural impact of EE2-exposure on chemical cues, but demonstrates that EE2-exposure can exert complex effects on visual and chemical communication in a mate choice context. Finally, we contribute to the discussion of intraspecific variability by providing data on the potential trade-offs underpinning contaminant-induced behavioural changes.
Collapse
Affiliation(s)
- Minna Saaristo
- School of Biological Sciences, Monash University, Victoria, Australia.
| | | | - Kun Xu
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - Mayumi Allinson
- Department of Chemical Engineering, The University of Melbourne, Victoria, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Australia
| |
Collapse
|
86
|
Toušová Z, Vrana B, Smutná M, Novák J, Klučárová V, Grabic R, Slobodník J, Giesy JP, Hilscherová K. Analytical and bioanalytical assessments of organic micropollutants in the Bosna River using a combination of passive sampling, bioassays and multi-residue analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1599-1612. [PMID: 30308846 DOI: 10.1016/j.scitotenv.2018.08.336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Complex mixtures of contaminants from multiple sources, including agriculture, industry or wastewater enter aquatic environments and might pose hazards or risks to humans or wildlife. Targeted analyses of a few priority substances provide limited information about water quality. In this study, a combined chemical and effect screening of water quality in the River Bosna, in Bosnia and Herzegovina was carried out, with focus on occurrence and effects of contaminants of emerging concern. Chemicals in water were sampled at 10 sites along the Bosna River by use of passive sampling. The combination of semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS) enabled sampling of a broad range of contaminants from hydrophobic (PAHs, PCBs, OCPs) to hydrophilic compounds (pesticides, pharmaceuticals and hormones), which were determined by use of GC-MS and LC-MS (MS). In vitro, cell-based bioassays were applied to assess (anti)androgenic, estrogenic and dioxin-like potencies of extracts of the samplers. Of a total of 168 targeted compounds, 107 were detected at least once. Cumulative pollutant concentrations decreased downstream from the city of Sarajevo, which was identified as the major source of organic pollutants in the area. Responses in all bioassays were observed for samples from all sites. In general, estrogenicity could be well explained by analysis of target estrogens, while the drivers of the other observed effects remained largely unknown. Profiling of hazard quotients identified two sites downstream of Sarajevo as hotspots of biological potency. Risk assessment of detected compounds revealed, that 7 compounds (diazinon, diclofenac, 17β-estradiol, estrone, benzo[k]fluoranthene, fluoranthene and benzo[k]fluoranthene) might pose risks to aquatic biota in the Bosna River. The study brings unique results of a complex water quality assessment in a region with an insufficient water treatment infrastructure.
Collapse
Affiliation(s)
- Zuzana Toušová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic; Environmental Institute (EI), Okružná 784/42, 972 41 Koš, Slovakia
| | - Branislav Vrana
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic; Water Research Institute, Nabr. Arm. Gen. L. Svobodu 5, 812 49 Bratislava, Slovakia
| | - Marie Smutná
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jiří Novák
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Veronika Klučárová
- Slovak University of Technology, Faculty of Chemical and Food Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | | | - John Paul Giesy
- Dept. Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Saskatchewan, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Klára Hilscherová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
87
|
Lindo-Atichati D, Montero P, Rodil R, Quintana JB, Miró M. Modeling Dispersal of UV Filters in Estuaries. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1353-1363. [PMID: 30632364 DOI: 10.1021/acs.est.8b03725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lagrangian ocean analysis, where virtual parcels of water are tracked through hydrodynamic fields, provides an increasingly popular framework to predict the dispersal of water parcels carrying particles and chemicals. We conduct the first direct test of Lagrangian predictions for emerging contaminants using (1) the latitude, longitude, depth, sampling date, and concentrations of UV filters in raft cultured mussel ( Mytilus galloprovincialis) of the estuary Ria de Arousa, Spain (42.5°N, 8.9°W); (2) a hydrodynamic numerical model at 300 m spatial resolution; and (3) a Lagrangian dispersion scheme to trace polluted water parcels back to pollution sources. The expected dispersal distances (mean ± SD) are 2 ± 1 km and the expected dispersal times (mean ± SD) are 6 ± 2 h. Remarkably, the probability of dispersal of UV filters from potential sources to rafts decreases 5-fold over 5 km. In addition to predicting dispersal pathways and times, this study also provides a framework for quantitative investigations of concentrations of emerging contaminants and source apportionment using turbulent diffusion. In the coastline, the ranges of predicted concentrations of the UV-filters 4-methylbenzylidene-camphor, octocrylene, and benzophenone-4 are 3.2 × 10-4 to 0.023 ng/mL, 2.3 × 10-5 to 0.009 ng/mL, and 5.6 × 10-4 to 0.013 ng/mL, respectively. At the outfalls of urban wastewater treatment plants these respective ranges increase to 8.9 × 10-4 to 0.07 ng/mL, 6.2 × 10-5 to 0.027 ng/mL, and 1.6 × 10-3 to 0.040 ng/mL.
Collapse
Affiliation(s)
- David Lindo-Atichati
- Department of Engineering and Environmental Science , The City University of New York , Staten Island , New York 10314 , United States
- Department of Earth and Planetary Sciences , American Museum of Natural History , New York , New York 10024 , United States
- Department of Applied Ocean Physics and Engineering , Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02543 , United States
| | - Pedro Montero
- INTECMAR , Xunta de Galicia , Vilagarcía de Arousa s/n, 36611 , Spain
| | - Rosario Rodil
- Department of Analytical Chemistry , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - José Benito Quintana
- Department of Analytical Chemistry , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Manuel Miró
- FI-TRACE group, Department of Chemistry , University of the Balearic Islands , Carretera de Valldemossa km 7.5 , E-07122 Palma de Mallorca , Spain
| |
Collapse
|
88
|
Krzeminski P, Tomei MC, Karaolia P, Langenhoff A, Almeida CMR, Felis E, Gritten F, Andersen HR, Fernandes T, Manaia CM, Rizzo L, Fatta-Kassinos D. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:1052-1081. [PMID: 30340253 DOI: 10.1016/j.scitotenv.2018.08.130] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 05/18/2023]
Abstract
Contaminants of emerging concern (CEC) discharged in effluents of wastewater treatment plants (WWTPs), not specifically designed for their removal, pose serious hazards to human health and ecosystems. Their impact is of particular relevance to wastewater disposal and re-use in agricultural settings due to CEC uptake and accumulation in food crops and consequent diffusion into the food-chain. This is the reason why the chemical CEC discussed in this review have been selected considering, besides recalcitrance, frequency of detection and entity of potential hazards, their relevance for crop uptake. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been included as microbial CEC because of the potential of secondary wastewater treatment to offer conditions favourable to the survival and proliferation of ARB, and dissemination of ARGs. Given the adverse effects of chemical and microbial CEC, their removal is being considered as an additional design criterion, which highlights the necessity of upgrading conventional WWTPs with more effective technologies. In this review, the performance of currently applied biological treatment methods for secondary treatment is analysed. To this end, technological solutions including conventional activated sludge (CAS), membrane bioreactors (MBRs), moving bed biofilm reactors (MBBRs), and nature-based solutions such as constructed wetlands (CWs) are compared for the achievable removal efficiencies of the selected CEC and their potential of acting as reservoirs of ARB&ARGs. With the aim of giving a picture of real systems, this review focuses on data from full-scale and pilot-scale plants treating real urban wastewater. To achieve an integrated assessment, technologies are compared considering also other relevant evaluation parameters such as investment and management costs, complexity of layout and management, present scale of application and need of a post-treatment. Comparison results allow the definition of design and operation strategies for the implementation of CEC removal in WWTPs, when agricultural reuse of effluents is planned.
Collapse
Affiliation(s)
- Pawel Krzeminski
- Section of Systems Engineering and Technology, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| | - Maria Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione (Rome), Italy.
| | - Popi Karaolia
- Department of Civil and Environmental Engineering and Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Alette Langenhoff
- Sub-department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - C Marisa R Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Ewa Felis
- Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, Silesian University of Technology, ul. Akademicka 2, 44-100 Gliwice, Poland
| | - Fanny Gritten
- CEBEDEAU, Research and Expertise Center for Water, Allée de la Découverte 11 (B53), Quartier Polytech 1, B-4000 Liège, Belgium
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | - Telma Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Celia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Luigi Rizzo
- Department of Civil Engineering, University of Salerno, 84084 Fisciano, SA, Italy
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
89
|
Li W, Chen N, Zhu Y, Shou D, Zhi M, Zeng X. A nanocomposite consisting of an amorphous seed and a molecularly imprinted covalent organic framework shell for extraction and HPLC determination of nonsteroidal anti-inflammatory drugs. Mikrochim Acta 2019; 186:76. [DOI: 10.1007/s00604-018-3187-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/14/2018] [Indexed: 12/07/2022]
|
90
|
Balbi T, Montagna M, Fabbri R, Carbone C, Franzellitti S, Fabbri E, Canesi L. Diclofenac affects early embryo development in the marine bivalve Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:601-609. [PMID: 29909327 DOI: 10.1016/j.scitotenv.2018.06.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/29/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Diclofenac-DCF, one of the most widely prescribed non-steroidal anti-inflammatory drug, is globally detected in environmental compartments. Due to its occurrence in freshwater and potential impact on aquatic organisms, it has been added to the watch list of chemicals in the EU Water Directive; consequently, research on the impact of DCF in model aquatic organisms has great regulatory implications towards ecosystem health. DCF is also detected in coastal waters at concentrations from ng/L to 1 μg/L, as well as in marine organisms, such as the mussel Mytilus. Increasing evidence indicates that environmental concentrations of DCF have multiple impacts in adult mussels. Moreover, in M. galloprovincialis, DCF has been shown to affect early embryo development. The developmental effects of DCF in mussels were further investigated. DFC (1 and 10 μg/L) was added at different times post-fertilization (30 min and 24 hpf) and the effects were compared in the 48 hpf embryotoxicity assay. Shell mineralization and morphology were investigated by polarized light microscopy, X-Ray Spectrometry-XRD and Scanning Electron Microscopy-SEM. Transcriptional profiles of 12 selected genes physiologically regulated across early embryo development were assessed at 24 and 48 hpf. DCF induced shell malformations, irrespectively of concentration and time of exposure. DCF phenotypes were characterized by convex hinges, undulated edges, fractured shells. However, no changes in biomineralization were observed. DCF affected gene transcription at both times pf, in particular at 1 μg/L. The most affected genes were those involved in early shell formation (CS, CA, EP) and biotransformation (ABCB, GST). The results confirm that Mytilus early development represents a significant target for environmental concentrations of DCF. These data underline how the standard embryotoxicity assay, in combination with a structural and transcriptomic approach, represents a powerful tool for evaluating the early impact of pharmaceuticals on mussel embryos, and identification of the possible underlying mechanisms of action.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - Michele Montagna
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - Rita Fabbri
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - Cristina Carbone
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genova, Italy.
| |
Collapse
|
91
|
Escapa C, Torres T, Neuparth T, Coimbra RN, García AI, Santos MM, Otero M. Zebrafish embryo bioassays for a comprehensive evaluation of microalgae efficiency in the removal of diclofenac from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1024-1033. [PMID: 30021269 DOI: 10.1016/j.scitotenv.2018.05.353] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
This work deals with a preliminary study aimed at evaluating the efficiency of three different microalgae strains, namely Chlorella sorokiniana, Chlorella vulgaris and Scenedesmus obliquus in the bioremediation of diclofenac contaminated water. For this purpose, microalgae were cultured in bubbling column photobioreactors (PBRs) under batch operation until the end of the exponential growth phase. For the three strains, the concentration of diclofenac in the PBRs aquatic medium decreased along microalgae growing, which pointed to biodegradation as the main removal mechanism. Among the three strains, S. obliquus was the most capable to reduce diclofenac concentration (99% removal from an initial concentration of 25,000 μg l-1). However, such a large removal does not guarantee an efficient treatment since transformation products (TPs) exceeding the concentration and/or toxicity of the parent compound may be generated during biodegradation of diclofenac. Thus, for a comprehensive evaluation of the microalgae treatments efficiency, the final effluents from the PBRs were tested for their effects on the embryonic development of zebrafish. Again, the S. obliquus treatment was the most efficient in the reduction of toxicity, with the corresponding effluents having no effects on the embryo's mortality or abnormalities incidence (at 80 h post fertilization). In any case, for the three strains, the toxicity effects of effluents were equal or lower than those determined for diclofenac solutions with the same concentration. Therefore, it may be stated that, at the end of the batch culture, the removal of diclofenac by the considered strains did not involve the generation of toxic TPs to zebrafish embryos.
Collapse
Affiliation(s)
- Carla Escapa
- IMARENABIO-Institute of Environment, Natural Resources and Biodiversity, Department of Applied Chemistry and Physics, Universidad de León, Avenida de Portugal s/n, León, Spain.
| | - Tiago Torres
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Av. General Norton de Matos s/n, Porto, Portugal.
| | - Teresa Neuparth
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Av. General Norton de Matos s/n, Porto, Portugal.
| | - Ricardo N Coimbra
- IMARENABIO-Institute of Environment, Natural Resources and Biodiversity, Department of Applied Chemistry and Physics, Universidad de León, Avenida de Portugal s/n, León, Spain.
| | - Ana I García
- IMARENABIO-Institute of Environment, Natural Resources and Biodiversity, Department of Applied Chemistry and Physics, Universidad de León, Avenida de Portugal s/n, León, Spain.
| | - Miguel M Santos
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine Disruptors and Emerging Contaminants, Av. General Norton de Matos s/n, Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, Portugal.
| | - Marta Otero
- CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| |
Collapse
|
92
|
Distribution of Anticancer Drugs in River Waters and Sediments of the Yodo River Basin, Japan. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article reviews the pollution status of anticancer drugs present in the Yodo River basin located in the Kansai district of Japan, covering both the soluble and insoluble (adsorbed on the river sediments and suspended solids) levels. Procedures ranging from sampling in the field and instrumental analytical methods to the data processing for mass balance estimation of the target basin are also described. All anticancer drugs concerned with this article were detected in sewage and river waters, where the presence of bicalutamide (BLT) was identified at considerably high concentrations (maximum 254 ng/L in the main stream, 151 ng/L in tributaries, and 1032 ng/L in sewage treatment plant (STP) effluents). In addition, sorption distribution coefficient (logKd) values showed a tendency to become higher in the silty sediments at Suita Bridge than in the sandy sediments at Hirakata Bridge; these trends were supported by the results of the laboratory-scale sorption experiment. STPs were concluded to be the main sources of the anticancer drug load in the river, and a mass flux evaluation revealed that the effect of attenuation in the river environment was small. The effectiveness of ozonation in the sewage treatment process for removal of these anticancer drugs was further confirmed. The present article should be of value for facilitating the environmental risk assessment of a wide range of drugs in a broader geographical area.
Collapse
|
93
|
Simon RG, Stöckl M, Becker D, Steinkamp AD, Abt C, Jungfer C, Weidlich C, Track T, Mangold KM. Current to Clean Water - Electrochemical Solutions for Groundwater, Water, and Wastewater Treatment. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201800081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ramona G. Simon
- DECHEMA-Forschungsinstitut; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Markus Stöckl
- DECHEMA-Forschungsinstitut; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Dennis Becker
- DECHEMA e.V.; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | | | - Christian Abt
- DECHEMA-Forschungsinstitut; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Christina Jungfer
- DECHEMA e.V.; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Claudia Weidlich
- DECHEMA-Forschungsinstitut; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Thomas Track
- DECHEMA e.V.; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | | |
Collapse
|
94
|
Vystavna Y, Frkova Z, Celle-Jeanton H, Diadin D, Huneau F, Steinmann M, Crini N, Loup C. Priority substances and emerging pollutants in urban rivers in Ukraine: Occurrence, fluxes and loading to transboundary European Union watersheds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1358-1362. [PMID: 29801228 DOI: 10.1016/j.scitotenv.2018.05.095] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 05/20/2023]
Abstract
The occurrence and fluxes of 18 priority substances and emerging pollutants listed in the European Union Water Framework Directive and a Watch List (trace metals (Cd, Pb and Ni), nonylphenols, octylphenols, 8 polyaromatic hydrocarbons, 4 dioxin-like polychlorinated biphenyls and diclofenac) were investigated in a Ukrainian city and the mass discharge loads of these compounds into EU-transboundary watersheds were estimated. Fluxes of chemicals were calculated per capita and per area of the Ukrainian urban territory and used to estimate mass loading of priority and emerging concern compounds from Lviv, Uzhorod and Chernivtsi (West Ukraine) to neighbouring EU-transboundary rivers. The highest loading was found for trace metals (1.15 t a-1), diclofenac (0.7 t a-1) and nonylphenols (0.4 t a-1). Transboundary water contamination must be considered in order to successfully manage water resources in a manner that fulfils the requirements of EU environmental quality standards.
Collapse
Affiliation(s)
- Y Vystavna
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005 České Budějovice, Czech Republic; Department of Environmental Engineering and Management, O.M. Beketov National University of Urban Economy in Kharkiv, 17, Marshal Bazhanov Street, Kharkiv 61002, Ukraine.
| | - Z Frkova
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005 České Budějovice, Czech Republic; Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 37005 České Budějovice, Czech Republic.
| | - H Celle-Jeanton
- Université Bourgogne Franche-Comté, Laboratoire Chrono-Environnement, CNRS, UMR 6249, 16 route de Gray, F-25030 Besançon, France.
| | - D Diadin
- Department of Environmental Engineering and Management, O.M. Beketov National University of Urban Economy in Kharkiv, 17, Marshal Bazhanov Street, Kharkiv 61002, Ukraine
| | - F Huneau
- Université de Corse Pascal Paoli, Laboratoire d'Hydrogéologie, Campus Grimaldi, BP 52, F-20250 Corte, France; CNRS, UMR 6134 SPE, BP 52, F-20250 Corte, France.
| | - M Steinmann
- Université Bourgogne Franche-Comté, Laboratoire Chrono-Environnement, CNRS, UMR 6249, 16 route de Gray, F-25030 Besançon, France.
| | - N Crini
- Université Bourgogne Franche-Comté, Laboratoire Chrono-Environnement, CNRS, UMR 6249, 16 route de Gray, F-25030 Besançon, France.
| | - C Loup
- Université Bourgogne Franche-Comté, Laboratoire Chrono-Environnement, CNRS, UMR 6249, 16 route de Gray, F-25030 Besançon, France.
| |
Collapse
|
95
|
Plutzer J, Avar P, Keresztes D, Sári Z, Kiss-Szarvák I, Vargha M, Maász G, Pirger Z. Investigation of estrogen activity in the raw and treated waters of riverbank infiltration using a yeast estrogen screen and chemical analysis. JOURNAL OF WATER AND HEALTH 2018; 16:635-645. [PMID: 30067244 DOI: 10.2166/wh.2018.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Exposure to various endocrine disrupting chemicals (EDCs) can lead to adverse effects on reproductive physiology and behavior in both animals and humans. An adequate strategy for the prevention of environmental contamination and eliminating the effects of them must be established. Chemicals with estrogenic activity were selected, and the effectiveness of their removal during the purification processes in two drinking water treatment plants (DWTPs) using riverbank infiltrated water was determined. Thirty-five water samples in two sampling campaigns throughout different seasons were collected and screened with a yeast estrogen test; furthermore, bisphenol A (BPA), 17ß-estradiol (E2) and ethinyl-estradiol (EE2) content were measured using high-performance liquid chromatography-mass spectrometry (HPLC-MS). Our results confirm that estrogenic compounds are present in sewage effluents and raw surface river water of DWTPs. Very low estrogen activity and pg/L concentrations of BPA and E2 were detected during drinking water processing and occasionally in drinking water. Based on this study, applied riverbank filtration and water treatment procedures do not seem to be suitable for the total removal of estrogenic chemicals. Local contamination could play an important role in increasing the BPA content of the drinking water at the consumer endpoint.
Collapse
Affiliation(s)
- Judit Plutzer
- National Public Health Institute, Budapest, Hungary E-mail:
| | - Péter Avar
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Center for Ecological Research, Tihany, Hungary; NAP-B-Molecular Neuroendocrinology Research Group, Center for Neuroscience, Szentágothai Research Center, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Dóra Keresztes
- National Public Health Institute, Budapest, Hungary E-mail:
| | - Zsófia Sári
- National Public Health Institute, Budapest, Hungary E-mail:
| | | | - Márta Vargha
- National Public Health Institute, Budapest, Hungary E-mail:
| | - Gábor Maász
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Center for Ecological Research, Tihany, Hungary
| | - Zsolt Pirger
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Center for Ecological Research, Tihany, Hungary
| |
Collapse
|
96
|
Palma D, Bianco Prevot A, Brigante M, Fabbri D, Magnacca G, Richard C, Mailhot G, Nisticò R. New Insights on the Photodegradation of Caffeine in the Presence of Bio-Based Substances-Magnetic Iron Oxide Hybrid Nanomaterials. MATERIALS 2018; 11:ma11071084. [PMID: 29949864 PMCID: PMC6073507 DOI: 10.3390/ma11071084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 01/19/2023]
Abstract
The exploitation of organic waste as a source of bio-based substances to be used in environmental applications is gaining increasing interest. In the present research, compost-derived bio-based substances (BBS-Cs) were used to prepare hybrid magnetic nanoparticles (HMNPs) to be tested as an auxiliary in advanced oxidation processes. Hybrid magnetic nanoparticles can be indeed recovered at the end of the treatment and re-used in further water purification cycles. The research aimed to give new insights on the photodegradation of caffeine, chosen as marker of anthropogenic pollution in natural waters, and representative of the contaminants of emerging concern (CECs). Hybrid magnetic nanoparticles were synthetized starting from Fe(II) and Fe(III) salts and BBS-C aqueous solution, in alkali medium, via co-precipitation. Hybrid magnetic nanoparticles were characterized via X-ray diffraction (XRD), thermo-gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy. The effect of pH, added hydrogen peroxide, and dissolved oxygen on caffeine photodegradation in the presence of HMNPs was assessed. The results allow for the hypothesis that caffeine abatement can be obtained in the presence of HMNPs and hydrogen peroxide through a heterogeneous photo-Fenton mechanism. The role of hydroxyl radicals in the process was assessed examining the effect of a selective hydroxyl radical scavenger on the caffeine degradation kinetic.
Collapse
Affiliation(s)
- Davide Palma
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy.
- CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | | | - Marcello Brigante
- CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Debora Fabbri
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Giuliana Magnacca
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy.
- NIS (Nanostructured Interfaces and Surfaces) Centre, Via P. Giuria 7, 10125 Torino, Italy.
| | - Claire Richard
- CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Gilles Mailhot
- CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| | - Roberto Nisticò
- Polytechnic of Torino, Department of Applied Science and Technology DISAT, C.so Duca Degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
97
|
Screening and risk management solutions for steroidal estrogens in surface and wastewater. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
98
|
Barreales-Suárez S, Callejón-Mochón M, Azoulay S, Bello-López MÁ, Fernández-Torres R. Liquid chromatography quadrupole time-of-flight mass spectrometry determination of six pharmaceuticals in vegetal biota. Uptake study in Lavandula dentata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:655-663. [PMID: 29223892 DOI: 10.1016/j.scitotenv.2017.11.244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/19/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
A procedure based on microwave assisted extraction for the determination of 6 pharmaceuticals in samples of Lavandula dentata, Salicornia ramosissima and Juncus sp. by liquid chromatography-quadrupole time of flight mass spectrometry (LC-QTOF/MS) was optimized and validated. Best results were obtained using microwave assisted extraction of 1.0g of homogeneous lyophilized samples and 5mL of a mixture ACN:H2O (1:1 v/v) as extracting solvent. Analytical recoveries ranged from 60 to 107% with relative standard deviation (RSD) lower than 15%. Limits of quantitation (LOQ) for the 6 pharmaceuticals flumequine (FLM), carbamazepine (CBZ), ciprofloxacin (CPR), enrofloxacin (ENR), diclofenac (DCL), and ibuprofen (IBU) were in the range 20.8-125ngg-1. The method was satisfactory applied for an uptake study in Lavandula dentata samples finding quantifying concentrations of FLM and CBZ in roots, leaf and stem.
Collapse
Affiliation(s)
| | | | - Stéphane Azoulay
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, France
| | | | - Rut Fernández-Torres
- Departamento Química Analítica, Facultad Química, Universidad Sevilla, Spain; Centro de Investigación en Salud y Medio Ambiente (CYSMA), Universidad Huelva, Spain.
| |
Collapse
|
99
|
Abstract
Pharmaceuticals are indispensable to contemporary life. Recently, the emerging problem of pharmaceutical-based pollution of river environments, including drinking water sources and lakes, has begun to receive significant attention worldwide. Because pharmaceuticals are designed to perform specific physiological functions in targeted regions of the human body, there is increasing concern regarding their toxic effects, even at low concentrations, on aquatic ecosystems and human health, via residues in drinking water. Pharmaceuticals are consistently employed in hospitals to treat disease; and Japan, one of the most advanced countries in medical treatment, ranks second worldwide in the quantity of pharmaceuticals employed. Therefore, the development of technologies that minimize or lessen the related environmental risks for clinical effluent is an important task as well as that for sewage treatment plants (STPs). However, there has been limited research on clinical effluent, and much remains to be elucidated. In light of this, we are investigating the occurrence of pharmaceuticals, and the development of water treatment systems for clinical effluent. This review discusses the current research on clinical effluent and the development of advanced water treatment systems targeted at hospital effluent, and explores strategies for future environmental risk assessment and risk management.
Collapse
Affiliation(s)
- Takashi Azuma
- Graduate School of Pharmaceutical Sciences, Osaka University of Pharmaceutical Sciences
| |
Collapse
|
100
|
Tahar A, Tiedeken EJ, Rowan NJ. Occurrence and geodatabase mapping of three contaminants of emerging concern in receiving water and at effluent from waste water treatment plants - A first overview of the situation in the Republic of Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:187-197. [PMID: 29112842 DOI: 10.1016/j.scitotenv.2017.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
This constitutes the first study to address occurrence and geodatabase mapping of the anti-inflammatory drug diclofenac (DCL) and the natural (17-beta-estradiol or E2) and synthetic (17-alpha-ethynylestradiol or EE2) estrogenic hormones in Republic of Ireland receiving waters over the period 1999 to 2015. Among these data, 317 samples came from concentration studies, while 205 were from effect-based studies. Monitoring data came from 16 waste water treatment plants (WWTPs), 23 water bodies (including rivers, lakes, marine and transitional waters) and 7 from domestic locations. Out of approximately 1000 WWPTs in the Republic of Ireland, only 16 have been monitored for at least one of these compounds of emerging concern (CECs). Diclofenac is found in treated effluents from 5 WWTPs at levels at least as high as other European WWPTs, and sometime higher. Measurements of E2 and EE2 in WWPT effluents were rare and effluents were more often evaluated for total estrogens; these CECs were generally not detected using conventional analytical methods because of limits of detection being too high compared to environmental concentrations and WFD environmental quality standards. There was good agreement between occurrence of these CEC and regional drug dispensing data in Ireland. Mapping the aforementioned data onto appropriate river basin catchment management tools will inform predictive and simulated risk determinations to inform investment in infrastructure that is necessary to protect rivers and beaches and economic activities that rely on clean water. There is a pressing commensurate need to refine/develop new analytical methods with low levels of detection for future CEC intervention.
Collapse
Affiliation(s)
- Alexandre Tahar
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
| | - Erin Jo Tiedeken
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland; School of Science, National College of New Jersey, Pennington Road Ewing, NJ 08628-0718, USA
| | - Neil J Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland.
| |
Collapse
|