51
|
Huang S, Xiong C, Tan K. Neoadjuvant PD-1/PD-L1 axis blockade for patients with head and neck squamous cell carcinoma. Am J Otolaryngol 2023; 44:103985. [PMID: 37442083 DOI: 10.1016/j.amjoto.2023.103985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common type of cancer, and approximately 64 % are in a locally advanced stage at diagnosis. Therefore, neoadjuvant therapy is of great importance. However, traditional neoadjuvant strategies for HNSCC have shown limited efficacy and high complications. And it is urgent to explore new neoadjuvant approaches. With the breakthrough progress of PD-1/PD-L1 axis blockade in recurrent/metastatic HNSCC, neoadjuvant PD-1/PD-L1 axis blockade is gradually showing positive prospects for HNSCC. This study found that the combination of PD-1/PD-L1 axis blockade and chemotherapy or radiotherapy are potential with the overall response rate (ORR) of 45.0 %-96.7 % and 47.6 %-56.7 %, the pathological complete response (pCR) of 16.7 %-42.3 % and 33.3 %-100.0 %, and the main pathological response (MPR) of 26.9 %-74.1 % and 60.0 %-100.0 %, respectively. But the combination of PD-1/PD-L1 axis blockade and CTLA-4 blockade is worth questioning. And we also found pCR and MPR can be early indicators for long-term prognosis and provide five directions for neoadjuvant PD-1/PD-L1 axis blockade in the future.
Collapse
Affiliation(s)
- Shuang Huang
- Department of Stomatology, The Affiliated Shapingba Hospital of Chongqing University, Chongqing, China.
| | - Chuang Xiong
- Department of Bone and Soft Tissue Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Kui Tan
- Department of Stomatology, Chongqing University Jiangjin Hospital, Chongqing, China
| |
Collapse
|
52
|
Li Y, Ju M, Miao Y, Zhao L, Xing L, Wei M. Advancement of anti-LAG-3 in cancer therapy. FASEB J 2023; 37:e23236. [PMID: 37846808 DOI: 10.1096/fj.202301018r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/18/2023]
Abstract
Immune checkpoint inhibitors have effectively transformed the treatment of many cancers, particularly those highly devastating malignancies. With their widespread popularity, the drawbacks of immune checkpoint inhibitors are also recognized, such as drug resistance and immune-related systematic side effects. Thus, it never stops investigating novel immune checkpoint inhibitors. Lymphocyte Activation Gene-3 (LAG-3) is a well-established co-inhibitory receptor that performs negative regulation on immune responses. Recently, a novel FDA-approved LAG-3 blocking agent, together with nivolumab as a new combinational immunotherapy for metastatic melanoma, brought LAG-3 back into focus. Clinical data suggests that anti-LAG-3 agents can amplify the therapeutic response of other immune checkpoint inhibitors with manageable side effects. In this review, we elucidate the intercellular and intracellular mechanisms of LAG-3, clarify the current understanding of LAG-3 in the tumor microenvironment, identify present LAG-3-associated therapeutic agents, discuss current LAG-3-involving clinical trials, and eventually address future prospects for LAG-3 inhibitors.
Collapse
Affiliation(s)
- Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, P.R. China
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, P.R. China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, P.R. China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, P.R. China
| | - Lijuan Xing
- Precision Laboratory, Panjin Central Hospital, Panjin, P.R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, P.R. China
- Shenyang Kangwei Medical Laboratory Analysis Co. Ltd, Shenyang, P.R. China
| |
Collapse
|
53
|
He X, Peng Y, He G, Ye H, Liu L, Zhou Q, Shi J, Fu S, Wang J, Zhou Z, Li W. Increased co-expression of PD1 and TIM3 is associated with poor prognosis and immune microenvironment heterogeneity in gallbladder cancer. J Transl Med 2023; 21:717. [PMID: 37828574 PMCID: PMC10571407 DOI: 10.1186/s12967-023-04589-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The effectiveness of immune checkpoint inhibitors in treating gallbladder cancer (GBC) remains unsatisfactory. Recently, several new immune checkpoints have been identified. However, investigations exploring these immune checkpoints in GBC are limited. In this study, we aim to investigate the expression patterns and clinical implications of various immune checkpoints, and further characterize the spatial and quantitative heterogeneity of immune components in GBC. METHODS We employed single and multiplex immunohistochemistry to evaluate the expression of five immune checkpoint markers and four immune cell markers in the primary tumor core, hepatic invasion margin, and liver metastasis. Subsequently, we analyzed their interrelationships and their prognostic significance. RESULTS We observed a robust positive correlation between PD1/TIM3 expression in GBC (R = 0.614, P < 0.001). The co-expression of PD1/TIM3 exhibited a synergistic effect in predicting poor prognosis among postoperative GBC patients. Further analysis revealed that the prognostic significance of PD1/TIM3 was prominent in the subgroup with high infiltration of CD8 + T cells (P < 0.001). Multiplex immunohistochemistry reveals that PD1 + TIM3 + FOXP3 + cells constitute a significant proportion of FOXP3 + TILs in GBC tissue. Moreover, the co-high expression of PD1 and TIM3 is positively correlated with the accumulation of CD8 + TILs at the hepatic invasion margin. Lastly, our findings indicated reduced expression levels of immune checkpoints and diminished immune cell infiltration in liver metastases compared to primary tumors. CONCLUSIONS Increased co-expression of PD1/TIM3 is associated with poor prognosis in GBC patients and is related to the heterogeneity of immune microenvironment between GBC primary tumor and its hepatic invasion margin or liver metastases, which may be a potential target for future immunotherapy of GBC.
Collapse
Affiliation(s)
- Xing He
- Department of Biliary and Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Yaorong Peng
- Department of Biliary and Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Gui He
- Cellular & Molecular Diagnostics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Huilin Ye
- Department of Biliary and Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Liqiang Liu
- Department of Biliary and Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Qixian Zhou
- Department of Biliary and Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Juanyi Shi
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Sha Fu
- Cellular & Molecular Diagnostics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
| | - Wenbin Li
- Department of Biliary and Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107 Yanjiang West Road, Yuexiu District, Guangzhou, 510120, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
54
|
Sharma S, Chepurna O, Sun T. Drug resistance in glioblastoma: from chemo- to immunotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:688-708. [PMID: 38239396 PMCID: PMC10792484 DOI: 10.20517/cdr.2023.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 01/22/2024]
Abstract
As the most common and aggressive type of primary brain tumor in adults, glioblastoma is estimated to end over 10,000 lives each year in the United States alone. Stand treatment for glioblastoma, including surgery followed by radiotherapy and chemotherapy (i.e., Temozolomide), has been largely unchanged since early 2000. Cancer immunotherapy has significantly shifted the paradigm of cancer management in the past decade with various degrees of success in treating many hematopoietic cancers and some solid tumors, such as melanoma and non-small cell lung cancer (NSCLC). However, little progress has been made in the field of neuro-oncology, especially in the application of immunotherapy to glioblastoma treatment. In this review, we attempted to summarize the common drug resistance mechanisms in glioblastoma from Temozolomide to immunotherapy. Our intent is not to repeat the well-known difficulty in the area of neuro-oncology, such as the blood-brain barrier, but to provide some fresh insights into the molecular mechanisms responsible for resistance by summarizing some of the most recent literature. Through this review, we also hope to share some new ideas for improving the immunotherapy outcome of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
55
|
Chen P, Sun C, Wang H, Zhao W, Wu Y, Guo H, Zhou C, He Y. YAP1 expression is associated with survival and immunosuppression in small cell lung cancer. Cell Death Dis 2023; 14:636. [PMID: 37752152 PMCID: PMC10522695 DOI: 10.1038/s41419-023-06053-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023]
Abstract
Immunotherapy is considered a major breakthrough in the treatment of small cell lung cancer (SCLC), although its anti-tumor efficacy is limited. With a high degree of malignancy and high heterogeneity, SCLC is difficult to treat in the clinic. A new combination strategy is urgently needed to further improve the efficacy of immunotherapy in patients with SCLC. By immunofluorescence, 100 SCLC patients in a local cohort were classified into the SCLC-A (high ASCL1 expression; n = 36), SCLC-N (high NEUROD1 expression; n = 32), SCLC-P (high POU2F3 expression; n = 14), and SCLC-Y (high YAP1 expression; n = 18) subtypes. Each SCLC molecular subtype represented different prognoses, tumor microenvironment traits, and immunotherapy sensitivities. Analysis of both the local and public cohorts suggested that the SCLC-Y subtype exhibited the worst clinical outcome (p < 0.05) when compared with other subtypes. SCLC with high YAP1 expression was characterized by high PD-L1 expression, high stromal score, T-cell functional impairment, and a close relationship with immune-related pathways. YAP1 upregulated PD-L1 expression and suppressed T cell activation, thus leading to immune evasion. In in vitro experiments, blockade of YAP1 promoted cancer cell apoptosis, immune cell proliferation, T-cell activation, and cytotoxic T-cell infiltration, thus further potentiating the efficacy of immunotherapy in patients with the SCLC-Y subtype.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
- Tongji University, No 1239 Siping Road, Shanghai, 200433, People's Republic of China
| | - Chenglong Sun
- Radiotherapy Department, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, Anhui, People's Republic of China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
- Tongji University, No 1239 Siping Road, Shanghai, 200433, People's Republic of China
| | - Wencheng Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
- Tongji University, No 1239 Siping Road, Shanghai, 200433, People's Republic of China
| | - Yan Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
- Tongji University, No 1239 Siping Road, Shanghai, 200433, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China.
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
56
|
Guan H, Chen X, Liu J, Sun J, Guo H, Jiang Y, Zhang H, Zhang B, Lin J, Yuan Q. Molecular characteristics and therapeutic implications of Toll-like receptor signaling pathway in melanoma. Sci Rep 2023; 13:13788. [PMID: 37666853 PMCID: PMC10477197 DOI: 10.1038/s41598-023-38850-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/16/2023] [Indexed: 09/06/2023] Open
Abstract
Melanoma is a malignant tumor of melanocytes and is often considered immunogenic cancer. Toll-like receptor-related genes are expressed differently in most types of cancer, depending on the immune microenvironment inside cancer, and the key function of Toll-like receptors (TLRs) for melanoma has not been fully elucidated. Based on multi-omics data from TCGA and GEO databases, we first performed pan-cancer analysis on TLR, including CNV, SNV, and mRNA changes in TLR-related genes in multiple human cancers, as well as patient prognosis characterization. Then, we divided melanoma patients into three subgroups (clusters 1, 2, and 3) according to the expression of the TLR pathway, and explored the correlation between TLR pathway and melanoma prognosis, immune infiltration, metabolic reprogramming, and oncogene expression characteristics. Finally, through univariate Cox regression analysis and LASSO algorithm, we selected six TLR-related genes to construct a survival prognostic model, divided melanoma patients into the training set, internal validation set 1, internal validation set 2, and external validation set for multiple validations, and discussed the correlation between model genes and clinical features of melanoma patients. In conclusion, we constructed a prognostic survival model based on TLR-related genes that precisely and independently demonstrated the potential to assess the prognosis and immune traits of melanoma patients, which is critical for patients' survival.
Collapse
Affiliation(s)
- Hewen Guan
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xu Chen
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jifeng Liu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiaao Sun
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hui Guo
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yuankuan Jiang
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Huimin Zhang
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Jingrong Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
57
|
Dhasmana A, Dhasmana S, Haque S, Cobos E, Yallapu MM, Chauhan SC. Next-generation immune checkpoint inhibitors as promising functional molecules in cancer therapeutics. Cancer Metastasis Rev 2023; 42:597-600. [PMID: 37728815 DOI: 10.1007/s10555-023-10139-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Affiliation(s)
- Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Swati Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Everardo Cobos
- Department of Medicine, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
58
|
Khan NA, Asim M, Biswas KH, Alansari AN, Saman H, Sarwar MZ, Osmonaliev K, Uddin S. Exosome nanovesicles as potential biomarkers and immune checkpoint signaling modulators in lung cancer microenvironment: recent advances and emerging concepts. J Exp Clin Cancer Res 2023; 42:221. [PMID: 37641132 PMCID: PMC10463467 DOI: 10.1186/s13046-023-02753-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/08/2023] [Indexed: 08/31/2023] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths globally, and the survival rate remains low despite advances in diagnosis and treatment. The progression of lung cancer is a multifaceted and dynamic phenomenon that encompasses interplays among cancerous cells and their microenvironment, which incorporates immune cells. Exosomes, which are small membrane-bound vesicles, are released by numerous cell types in normal and stressful situations to allow communication between cells. Tumor-derived exosomes (TEXs) possess diverse neo-antigens and cargoes such as proteins, RNA, and DNA and have a unique molecular makeup reflecting tumor genetic complexity. TEXs contain both immunosuppressive and immunostimulatory factors and may play a role in immunomodulation by influencing innate and adaptive immune components. Moreover, they transmit signals that contribute to the progression of lung cancer by promoting metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and immunosuppression. This makes them a valuable resource for investigating the immune environment of tumors, which could pave the way for the development of non-invasive biomarkers that could aid in the prognosis, diagnosis, and immunotherapy of lung cancer. While immune checkpoint inhibitor (ICI) immunotherapy has shown promising results in treating initial-stage cancers, most patients eventually develop adaptive resistance over time. Emerging evidence demonstrates that TEXs could serve as a prognostic biomarker for immunotherapeutic response and have a significant impact on both systemic immune suppression and tumor advancement. Therefore, understanding TEXs and their role in lung cancer tumorigenesis and their response to immunotherapies is an exciting research area and needs further investigation. This review highlights the role of TEXs as key contributors to the advancement of lung cancer and their clinical significance in lung immune-oncology, including their possible use as biomarkers for monitoring disease progression and prognosis, as well as emerging shreds of evidence regarding the possibility of using exosomes as targets to improve lung cancer therapy.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar.
- Faculty of Medical Sciences, Ala-Too International University, Bishkek, Kyrgyzstan.
| | - Mohammad Asim
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar
| | - Kabir H Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Amani N Alansari
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar
| | - Harman Saman
- Department of Medicine, Hazm Maubrairek Hospital, Al-Rayyan, Doha, 3050, Qatar
| | | | | | - Shahab Uddin
- Translational Research Institute & Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.
- Department of Biosciences, Integral University, Lucknow, 226026, UP, India.
| |
Collapse
|
59
|
Ryschich A, Dong Y, Schäfer M, Ryschich E, Karakhanova S. DWH24: a new antibody for fluorescence-based cell death analysis. Methods Appl Fluoresc 2023; 11:045006. [PMID: 37612784 DOI: 10.1088/2050-6120/aceed0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Antibodies have gained considerable importance in laboratory and clinical settings. Currently, antibodies are extensively employed for the diagnosis and treatment of several human diseases. Herein, using targeted and cell immunisation approaches, we developed and characterised an antibody clone, DWH24. We found that DWH24 is an IgMκtype antibody that enables excellent visualisation and quantification of dead cells using immunofluorescence, fluorescence microscopy, and flow cytometry. This property was proved by the spontaneous cell death of several tumour cell lines and stimulated T cells, as well as after chemo- and photodynamic therapy. Unlike conventional apoptosis and cell death markers, DWH24 binding occurred in a Ca2+- and protein-independent manner and enabled live imaging of cell death progress, as shown using time-lapse microscopy. The binding specificity of DWH24 was analysed using a human proteome microarray, which revealed a complex response profile with very high spot intensities against various proteins, such as tropomyosin variants and FAM131C. Accordingly, DWH24 can be employed as a suitable tool for the cost-effective and universal analysis of cell death using fluorescence imaging and flow cytometry.
Collapse
Affiliation(s)
- Anna Ryschich
- Section of Surgical Research, Clinic of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Yan Dong
- Section of Surgical Research, Clinic of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Michael Schäfer
- Section of Surgical Research, Clinic of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Eduard Ryschich
- Section of Surgical Research, Clinic of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Svetlana Karakhanova
- Section of Surgical Research, Clinic of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
60
|
Lei X, Wang Y, Broens C, Borst J, Xiao Y. Immune checkpoints targeting dendritic cells for antibody-based modulation in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:145-179. [PMID: 38225102 DOI: 10.1016/bs.ircmb.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Dendritic cells (DC) are professional antigen-presenting cells which link innate to adaptive immunity. DC play a central role in regulating antitumor T-cell responses in both tumor-draining lymph nodes (TDLN) and the tumor microenvironment (TME). They modulate effector T-cell responses via immune checkpoint proteins (ICPs) that can be either stimulatory or inhibitory. Functions of DC are often impaired by the suppressive TME leading to tumor immune escape. Therefore, better understanding of the mechanisms of action of ICPs expressed by (tumor-infiltrating) DC will lead to potential new treatment strategies. Genetic manipulation and high-dimensional analyses have provided insight in the interactions between DC and T-cells in TDLN and the TME upon ICP targeting. In this review, we discuss (tumor-infiltrating) DC lineage cells and tumor tissue specific "mature" DC states and their gene signatures in relation to anti-tumor immunity. We also review a number of ICPs expressed by DC regarding their functions in phagocytosis, DC activation, or inhibition and outline position in, or promise for clinical trials in cancer immunotherapy. Collectively, we highlight the critical role of DC and their exact status in the TME for the induction and propagation of T-cell immunity to cancer.
Collapse
Affiliation(s)
- Xin Lei
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Yizhi Wang
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Chayenne Broens
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Yanling Xiao
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
61
|
Han L, Zhang Y, Li L, Zhang Q, Liu Z, Niu H, Hu J, Ding Z, Shi X, Qian X. Exploring the Expression and Prognosis of Mismatch Repair Proteins and PD-L1 in Colorectal Cancer in a Chinese Cohort. Cancer Manag Res 2023; 15:791-801. [PMID: 37575316 PMCID: PMC10417781 DOI: 10.2147/cmar.s417470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose Exploring the expression and prognosis of mismatch repair proteins and PD-L1 in colorectal cancer. Patients and Methods A total of 272 patients with surgically resected CRC were enrolled in the study from January 2018 to May 2022 at Nanjing Drum Tower Hospital (The Affiliated Hospital of Nanjing University Medical School). Surgically resected samples were collected from patients along with general, clinicopathological, and imaging data for each patient. Immunohistochemistry (IHC) was used to detect expression of MSH2, MSH6, MLH1, and PMS2 proteins in tumor tissue. X-squared (X2) testing was performed to investigate the correlation between expression of MMR proteins and PD-L1 in CRC tumor tissues and clinicopathological characteristics. Correlation analysis was also used to compare the deletion of four MMR proteins in CRC tumor tissues. A survival curve and Log rank test were used to investigate the relationship between the expression of MMR proteins and PD-L1 with regard to CRC patient prognosis and survival. Results MMR protein expression deletion was correlated with tumor location, the degree of tissue differentiation, and TNM stage (P<0.05). PD-L1 expression was correlated with TNM stage (P<0.05). Correlation analysis of deletion of MMR protein isoform expression found that PMS2 deletion was significantly correlated with MLH1 deletion (P<0.05). Similarly, MSH2 deletion was significantly correlated with MSH6 deletion (P<0.05). PMS2 deletion was also found to be correlated with PD-L1 expression (P<0.05). Progression-free survival was found to be significantly longer in mismatch repair-proficient (pMMR) patients compared with mismatch repair-deficient (dMMR) patients. Conclusion Deletion of MMR proteins and expression of PD-L1 are closely related to clinicopathological characteristics and overall prognosis of CRC patients. This suggests the relevance of MMR and PD-L1 as potential biomarkers for treatment of CRC patients.
Collapse
Affiliation(s)
- Lu Han
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Yaping Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, People’s Republic of China
- Department of Pathology, The First People’s Hospital of Yangzhou, Yangzhou, People’s Republic of China
| | - Li Li
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Qun Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Zhihao Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, People’s Republic of China
| | - Haiqing Niu
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Jing Hu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Zhou Ding
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Xiao Shi
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Xiaoping Qian
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
62
|
Srivastava SK, Kim SH. Special issue: Modulation of immune checkpoint proteins and their networks in cancer progression. Semin Cancer Biol 2023; 93:1-2. [PMID: 37031897 DOI: 10.1016/j.semcancer.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Affiliation(s)
- Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, Texas 79601, United States.
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyunghee University, Hoegi-dong, Dongdaemun-ku, Seoul 131-701, South Korea.
| |
Collapse
|
63
|
Ellison JM, Nohria A. An Increased Understanding of the Association Between Atherosclerosis and Immune Checkpoint Inhibitors. Curr Cardiol Rep 2023; 25:879-887. [PMID: 37395892 DOI: 10.1007/s11886-023-01908-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitor (ICI) therapy activates the host immune system to promote tumor cell death. This activation of the immune system can lead to off-target immune-related adverse events (irAEs). There is an established link between inflammation and atherosclerosis. The purpose of this manuscript is to review the existing body of literature discussing the potential association between ICI treatment and atherosclerosis. RECENT FINDINGS Pre-clinical studies suggest that ICI therapy may lead to T-cell-mediated progression of atherosclerosis. Recent retrospective clinical studies have shown higher rates of myocardial infarction and stroke with ICI therapy, particularly in patients with pre-existing cardiovascular risk factors. Additionally, small observational cohort studies have used imaging modalities to demonstrate higher rates of atherosclerotic progression with ICI treatment. Early pre-clinical and clinical evidence suggests an association between ICI treatment and the progression of atherosclerosis. However, these findings are preliminary, and adequately powered prospective studies are needed to demonstrate a conclusive association. As ICI therapy is increasingly used to treat a variety of solid tumors, it is important to evaluate and mitigate the potential adverse atherosclerotic effects of ICI treatment.
Collapse
Affiliation(s)
- Judah M Ellison
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Anju Nohria
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
64
|
Yang R, Huang S, Huang C, Fay NS, Wang Y, Putrevu S, Wright K, Zaman MS, Cai W, Huang B, Wang B, Wright M, Hoag MR, Titong A, Liu Y. Fc-competent multispecific PDL-1/TIGIT/LAG-3 antibodies potentiate superior anti-tumor T cell response. Sci Rep 2023; 13:9865. [PMID: 37332070 DOI: 10.1038/s41598-023-36942-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023] Open
Abstract
The landscape of current cancer immunotherapy is dominated by antibodies targeting PD-1/PD-L1 and CTLA-4 that have transformed cancer therapy, yet their efficacy is limited by primary and acquired resistance. The blockade of additional immune checkpoints, especially TIGIT and LAG-3, has been extensively explored, but so far only a LAG-3 antibody has been approved for combination with nivolumab to treat unresectable or metastatic melanoma. Here we report the development of a PDL1 × TIGIT bi-specific antibody (bsAb) GB265, a PDL1 × LAG3 bsAb GB266, and a PDL1 × TIGIT × LAG3 tri-specific antibody (tsAb) GB266T, all with intact Fc function. In in vitro cell-based assays, these antibodies promote greater T cell expansion and tumor cell killing than benchmark antibodies and antibody combinations in an Fc-dependent manner, likely by facilitating T cell interactions (bridging) with cancer cells and monocytes, in addition to blocking immune checkpoints. In animal models, GB265 and GB266T antibodies outperformed benchmarks in tumor suppression. This study demonstrates the potential of a new generation of multispecific checkpoint inhibitors to overcome resistance to current monospecific checkpoint antibodies or their combinations for the treatment of human cancers.
Collapse
Affiliation(s)
- Riyao Yang
- Ab Therapeutics Inc., 3541 Investment Blvd., Suite 2, Hayward, CA, 94545, USA
| | - Su Huang
- Ab Therapeutics Inc., 3541 Investment Blvd., Suite 2, Hayward, CA, 94545, USA
| | - Cai Huang
- Ab Therapeutics Inc., 3541 Investment Blvd., Suite 2, Hayward, CA, 94545, USA
| | - Nathan S Fay
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Yanan Wang
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Saroja Putrevu
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Kimberly Wright
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Mohd Saif Zaman
- Ab Therapeutics Inc., 3541 Investment Blvd., Suite 2, Hayward, CA, 94545, USA
| | - Wenyan Cai
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Betty Huang
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Bo Wang
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Meredith Wright
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Matthew R Hoag
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Allison Titong
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA
| | - Yue Liu
- Ab Therapeutics Inc., 3541 Investment Blvd., Suite 2, Hayward, CA, 94545, USA.
- Ab Studio Inc., 3541 Investment Blvd., Suite 3, Hayward, CA, 94545, USA.
| |
Collapse
|
65
|
Liang X, Du L, Fan Y. The potential of FCRL genes as targets for cancer treatment: insights from bioinformatics and immunology. Aging (Albany NY) 2023; 15:204766. [PMID: 37285836 PMCID: PMC10292877 DOI: 10.18632/aging.204766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Cancer is a prevalent and dangerous disease that requires a multifaceted approach to treatment. The FCRL family gene has been linked to immune function and tumor progression. Bioinformatics may help unravel their role in cancer treatment. We conducted a comprehensive analysis of the FCRL family genes in pan-cancer using publicly available databases and online tools. Specifically, we examined gene expression, prognostic significance, mutation profiles, drug resistance, as well as biological and immunomodulatory roles. Our data were sourced from The Cancer Genome Atlas, Genotype-Tissue Expression, cBioPortal, STRING, GSCALite, Cytoscape, and R software. The expression of FCRL genes varies significantly across different tumor types and normal tissues. While high expression of most FCRL genes is associated with a protective effect in many cancers, FCRLB appears to be a risk factor in several types of cancer. Alterations in FCRL family genes, particularly through amplification and mutation, are common in cancers. These genes are closely linked to classical cancer pathways such as apoptosis, epithelial-mesenchymal transition (EMT), estrogen receptor (ER) signaling, and DNA damage response. Enrichment analysis indicates that FCRL family genes are predominantly associated with immune cell activation and differentiation. Immunological assays demonstrate a strong positive correlation between FCRL family genes and tumor-infiltrating lymphocytes (TILs), immunostimulators, and immunoinhibitors. Furthermore, FCRL family genes can enhance the sensitivity of various anticancer drugs. The FCRL family genes are vital in cancer pathogenesis and progression. Targeting these genes in conjunction with immunotherapy could enhance cancer treatment efficacy. Further research is required to determine their potential as therapeutic targets.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lei Du
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuchao Fan
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| |
Collapse
|
66
|
Chen M, Lu H, Copley SJ, Han Y, Logan A, Viola P, Cortellini A, Pinato DJ, Power D, Aboagye EO. A Novel Radiogenomics Biomarker for Predicting Treatment Response and Pneumotoxicity From Programmed Cell Death Protein or Ligand-1 Inhibition Immunotherapy in NSCLC. J Thorac Oncol 2023; 18:718-730. [PMID: 36773776 DOI: 10.1016/j.jtho.2023.01.089] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/23/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Patient selection for checkpoint inhibitor immunotherapy is currently guided by programmed death-ligand 1 (PD-L1) expression obtained from immunohistochemical staining of tumor tissue samples. This approach is susceptible to limitations resulting from the dynamic and heterogeneous nature of cancer cells and the invasiveness of the tissue sampling procedure. To address these challenges, we developed a novel computed tomography (CT) radiomic-based signature for predicting disease response in patients with NSCLC undergoing programmed cell death protein 1 (PD-1) or PD-L1 checkpoint inhibitor immunotherapy. METHODS This retrospective study comprises a total of 194 patients with suitable CT scans out of 340. Using the radiomic features computed from segmented tumors on a discovery set of 85 contrast-enhanced chest CTs of patients diagnosed with having NSCLC and their CD274 count, RNA expression of the protein-encoding gene for PD-L1, as the response vector, we developed a composite radiomic signature, lung cancer immunotherapy-radiomics prediction vector (LCI-RPV). This was validated in two independent testing cohorts of 66 and 43 patients with NSCLC treated with PD-1 or PD-L1 inhibition immunotherapy, respectively. RESULTS LCI-RPV predicted PD-L1 positivity in both NSCLC testing cohorts (area under the curve [AUC] = 0.70, 95% confidence interval [CI]: 0.57-0.84 and AUC = 0.70, 95% CI: 0.46-0.94). In one cohort, it also demonstrated good prediction of cases with high PD-L1 expression exceeding key treatment thresholds (>50%: AUC = 0.72, 95% CI: 0.59-0.85 and >90%: AUC = 0.66, 95% CI: 0.45-0.88), the tumor's objective response to treatment at 3 months (AUC = 0.68, 95% CI: 0.52-0.85), and pneumonitis occurrence (AUC = 0.64, 95% CI: 0.48-0.80). LCI-RPV achieved statistically significant stratification of the patients into a high- and low-risk survival group (hazard ratio = 2.26, 95% CI: 1.21-4.24, p = 0.011 and hazard ratio = 2.45, 95% CI: 1.07-5.65, p = 0.035). CONCLUSIONS A CT radiomics-based signature developed from response vector CD274 can aid in evaluating patients' suitability for PD-1 or PD-L1 checkpoint inhibitor immunotherapy in NSCLC.
Collapse
Affiliation(s)
- Mitchell Chen
- Department of Surgery and Cancer, Imperial College, London, United Kingdom; Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Haonan Lu
- Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Susan J Copley
- Department of Surgery and Cancer, Imperial College, London, United Kingdom; Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Yidong Han
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Andrew Logan
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Patrizia Viola
- North West London Pathology, Charing Cross Hospital, London, United Kingdom
| | - Alessio Cortellini
- Department of Surgery and Cancer, Imperial College, London, United Kingdom; Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - David J Pinato
- Department of Surgery and Cancer, Imperial College, London, United Kingdom; Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom; Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Danielle Power
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College, London, United Kingdom.
| |
Collapse
|
67
|
Yuan D, Zhang Y, Liu W, He X, Chen W, Liu L, Yang L, Wang Y, Wu Y, Liu J. Transcriptome profiling reveals transcriptional regulation of VISTA in T cell activation. Mol Immunol 2023; 157:101-111. [PMID: 37004501 DOI: 10.1016/j.molimm.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
PURPOSE V-domain immunoglobulin suppressor of T-cell activation (VISTA) is a novel type of immune checkpoint. This study was performed to explore the potential mechanism by which different domains of VISTA affect T-cell activation and search for potential interacting proteins. METHODS Stably transfected Jurkat cell lines were constructed to overexpress human VISTA (VISTA-FL), cytoplasmic domain deletion mutants (VISTA-ΔECD) and extracellular domain deletion mutants (VISTA- ΔCD). Empty vector (EV) control cell lines were constructed. Four stable cell lines were subjected to transcriptome sequencing after stimulation with PMA and PHA. The differentially expressed genes (DEGs) were analysed to explore the potential pathway by which VISTA inhibits T-cell activation. Proteinprotein interaction (PPI) network analysis was used to search for potential interacting proteins of VISTA. RESULTS In this study, 1256 DEGs were identified in Jurkat-VISTA-FL cells, 740 DEGs in Jurkat-VISTA-ΔCD cells, and 5605 DEGs in Jurkat-VISTA-ΔECD cells compared with Jurkat-EV cells. DEGs were mainly enriched in pathways related to T-cell differentiation, T-cell receptor signalling pathway and T-cell migration in Jurkat-VISTA-ΔECD cells; with cholesterol biosynthesis in Jurkat-VISTA-ΔCD cells; and with the inflammatory response in Jurkat-VISTA-FL cells. HHLA2 and CTH were identified as potential partners that interact directly with VISTA. The results also show an indirect interaction between VISTA and PSGL-1. CONCLUSIONS This study revealed the pathways by which VISTA is involved in T-cell activation and identified the potential binding partners of VISTA through RNA-seq, providing valuable resources for developing in-depth studies of the action mechanisms of VISTA as a potential target for cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Dingyi Yuan
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxin Zhang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Wanmei Liu
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoyu He
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Wenting Chen
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Liu Liu
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Yang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Yixin Wang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Yinhao Wu
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Liu
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
68
|
Yang R, Yu Y. Patient-derived organoids in translational oncology and drug screening. Cancer Lett 2023; 562:216180. [PMID: 37061121 DOI: 10.1016/j.canlet.2023.216180] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Patient-derived organoids (PDO) are a new biomedical research model that can reconstruct phenotypic and genetic characteristics of the original tissue and are useful for research on pathogenesis and drug screening. To introduce the progression in this field, we review the key factors of constructing organoids derived from epithelial tissues and cancers, covering culture medium and matrix, morphological characteristics, genetic profiles, high-throughput drug screening, and application potential. We also discuss the co-culture system of cancer organoids with tumor microenvironment (TME) associated cells. The co-culture system is widely used in evaluating crosstalk of cancer cells with TME components, such as fibroblasts, endothelial cells, immune cells, and microorganisms. The article provides a prospective for standardized cultivation mode, automatic morphological evaluation, and drug sensitivity screening using high-throughput methods.
Collapse
Affiliation(s)
- Ruixin Yang
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingyan Yu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
69
|
Ao YQ, Gao J, Wang S, Jiang JH, Deng J, Wang HK, Xu B, Ding JY. Immunotherapy of thymic epithelial tumors: molecular understandings and clinical perspectives. Mol Cancer 2023; 22:70. [PMID: 37055838 PMCID: PMC10099901 DOI: 10.1186/s12943-023-01772-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Immunotherapy has emerged to play a rapidly expanding role in the treatment of cancers. Currently, many clinical trials of therapeutic agents are on ongoing with majority of immune checkpoint inhibitors (ICIs) especially programmed death receptor 1 (PD-1) and its ligand 1 (PD-L1) inhibitors. PD-1 and PD-L1, two main immune checkpoints, are expressed at high levels in thymic epithelial tumors (TETs) and could be predictors of the progression and immunotherapeutic efficacy of TETs. However, despite inspiring efficacy reported in clinical trials and clinical practice, significantly higher incidence of immune-related adverse events (irAEs) than other tumors bring challenges to the administration of ICIs in TETs. To develop safe and effective immunotherapeutic patterns in TETs, understanding the clinical properties of patients, the cellular and molecular mechanisms of immunotherapy and irAEs occurrence are crucial. In this review, the progress of both basic and clinical research on immune checkpoints in TETs, the evidence of therapeutic efficacy and irAEs based on PD-1 /PD-L1 inhibitors in TETs treatment are discussed. Additionally, we highlighted the possible mechanisms underlying irAEs, prevention and management strategies, the insufficiency of current research and some worthy research insights. High PD-1/PD-L1 expression in TETs provides a rationale for ICI use. Completed clinical trials have shown an encouraging efficacy of ICIs, despite the high rate of irAEs. A deeper mechanism understanding at molecular level how ICIs function in TETs and why irAEs occur will help maximize the immunotherapeutic efficacy while minimizing irAEs risks in TET treatment to improve patient prognosis.
Collapse
Affiliation(s)
- Yong-Qiang Ao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Deng
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Bei Xu
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
70
|
Gonzalez-Gil A, Li TA, Kim J, Schnaar RL. Human sialoglycan ligands for immune inhibitory Siglecs. Mol Aspects Med 2023; 90:101110. [PMID: 35965135 DOI: 10.1016/j.mam.2022.101110] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/08/2023]
Abstract
Most human Siglecs (sialic acid binding immunoglobulin-like lectins) are expressed on the surfaces of overlapping subsets of immune cells, and most carry immunoreceptor tyrosine-based inhibitory domains on their intracellular motifs. When immune inhibitory Siglecs bind to complementary sialoglycans in their local milieu, engagement results in down-regulation of the immune response. Siglecs have come under scrutiny as potential targets of drugs to modify the course of inflammation (and other immune system responses) and as immune checkpoints in cancer. Human Siglecs bind to endogenous human sialoglycans. The identities of these endogenous human sialoglycan immune regulators are beginning to emerge, along with some general principles that may inform future investigations in this area. Among these principles is the finding that a cell type or tissue may express a ligand for a particular Siglec on a single or a very few of its sialoglycoproteins. The selected protein carrier for a particular Siglec may be unique in a certain tissue, but vary tissue-to-tissue. The binding affinity of endogenous Siglec ligands may surpass that of its binding to synthetic sialoglycan determinants by several orders of magnitude. Since most human Siglecs have evolved rapidly and are distinct from those in most other mammals, this review describes endogenous human Siglec ligands for several human immune inhibitory Siglecs. As the identities of these immune regulatory sialoglycan ligands are defined, additional opportunities to target Siglecs therapeutically may emerge.
Collapse
Affiliation(s)
- Anabel Gonzalez-Gil
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - T August Li
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Jean Kim
- Department Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
71
|
Zhang J, Hu C, Xie X, Qi L, Li C, Li S. Immune Checkpoint Inhibitors in HBV-Caused Hepatocellular Carcinoma Therapy. Vaccines (Basel) 2023; 11:vaccines11030614. [PMID: 36992198 DOI: 10.3390/vaccines11030614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Hepatitis B virus (HBV) infection is the main risk factor for the development of hepatocellular carcinoma (HCC), the most common type of liver cancer, with high incidence and mortality worldwide. Surgery, liver transplantation, and ablation therapies have been used to treat early HBV-caused HCC (HBV-HCC); meanwhile, in the advanced stage, chemoradiotherapy and drug-targeted therapy are regularly considered, but with limited efficacy. Recently, immunotherapies, such as tumor vaccine therapy, adoptive cell transfer therapy, and immune checkpoint inhibitor therapy, have demonstrated promising efficacy in cancer treatment. In particular, immune checkpoint inhibitors can successfully prevent tumors from achieving immune escape and promote an anti-tumor response, thereby boosting the therapeutic effect in HBV-HCC. However, the advantages of immune checkpoint inhibitors in the treatment of HBV-HCC remain to be exploited. Here, we describe the basic characteristics and development of HBV-HCC and introduce current treatment strategies for HBV-HCC. Of note, we review the principles of immune checkpoint molecules, such as programmed cell death protein 1(PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) in HBV-HCC, as well as related inhibitors being considered in the clinic. We also discuss the benefits of immune checkpoint inhibitors in the treatment of HBV-HCC and the efficacy of those inhibitors in HCC with various etiologies, aiming to provide insights into the use of immune checkpoint inhibitors for the treatment of HBV-HCC.
Collapse
Affiliation(s)
- Jin Zhang
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Changwei Hu
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Xiaoxiao Xie
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Linzhi Qi
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shangze Li
- School of Medicine, Chongqing University, Chongqing 400044, China
| |
Collapse
|
72
|
Li Z, Kim H, Kim J, Park JH. EP400NL is involved in PD-L1 gene activation by forming a transcriptional coactivator complex. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194889. [PMID: 36328277 DOI: 10.1016/j.bbagrm.2022.194889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
EP400 is an ATP-dependent chromatin remodelling enzyme that regulates DNA double-strand break repair and transcription, including cMyc-dependent gene expression. We previously showed that the N-terminal domain of EP400 increases the efficacy of chemotherapeutic drugs against cancer cells. As the EP400 N-terminal-Like (EP400NL) gene resides next to the EP400 gene locus, this prompted us to investigate whether EP400NL plays a similar role in transcriptional regulation to the full-length EP400 protein. We found that EP400NL forms a human NuA4-like chromatin remodelling complex that lacks both the TIP60 histone acetyltransferase and EP400 ATPase. However, this EP400NL complex displays H2A.Z deposition activity on a chromatin template comparable to the human NuA4 complex, suggesting another associated ATPase such as BRG1 or RuvBL1/RuvBL2 catalyses the reaction. We demonstrated that the transcriptional coactivator function of EP400NL is required for serum and IFNγ-induced PD-L1 gene activation. Furthermore, transcriptome analysis indicates that EP400NL contributes to cMyc-responsive mitochondrial biogenesis. Taken together, our studies show that EP400NL plays a role as a transcription coactivator of PD-L1 gene regulation and provides a potential target to modulate cMyc functions in cancer therapy.
Collapse
Affiliation(s)
- Zidong Li
- School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Hyoungmin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| | - Jeong Hyeon Park
- School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
73
|
Nguyen HM, Gaikwad S, Oladejo M, Agrawal MY, Srivastava SK, Wood LM. Interferon stimulated gene 15 (ISG15) in cancer: An update. Cancer Lett 2023; 556:216080. [PMID: 36736853 DOI: 10.1016/j.canlet.2023.216080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Among the plethora of defense mechanisms which a host elicits after pathogen invasion, type 1 interferons play a central role in regulating the immune system's response. They induce several interferon-stimulated genes (ISGs) which play a diverse role once activated. Over the past few decades, there have been several studies exploring the role of ISGs in cancer and ISG15 is among the most studied for its pro and anti-tumorigenic role. In this review, we aim to provide an update on the recent observations and findings related to ISG15 in cancer. We provide a brief overview about the initial observations and important historical findings which helped scientists understand structure and function of ISG15. We aim to provide an overview of ISG15 in cancer with an emphasis on studies which delve into the molecular mechanism of ISG15 in modulating the tumor microenvironment. Further, the dysregulation of ISG15 in cancer and the molecular mechanisms associated with its pro and anti-tumor roles are discussed in respective cancer types. Finally, we discuss multiple therapeutic applications of ISG15 in current cancer therapy.
Collapse
Affiliation(s)
- Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Shreyas Gaikwad
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Manas Yogendra Agrawal
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Laurence M Wood
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
74
|
Wan S, Zhao E, Freeman D, Weissinger D, Krantz BA, Werba G, Khanna LG, Siolas D, Oberstein PE, Chattopadhyay PK, Simeone DM, Welling TH. Tumor infiltrating T cell states and checkpoint inhibitor expression in hepatic and pancreatic malignancies. Front Immunol 2023; 14:1067352. [PMID: 36798126 PMCID: PMC9927010 DOI: 10.3389/fimmu.2023.1067352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Hepato-pancreatico-biliary (HPB) malignancies are difficult-to-treat and continue to to have a high mortality and significant therapeutic resistance to standard therapies. Immune oncology (IO) therapies have demonstrated efficacy in several solid malignancies when combined with chemotherapy, whereas response rates in pancreatic ductal adenocarcinoma (PDA) are poor. While promising in hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), there remains an unmet need to fully leverage IO therapies to treat HPB tumors. We therefore defined T cell subsets in the tumor microenvironment of HPB patients utilizing a novel, multiparameter flow cytometry and bioinformatics analysis. Our findings quantify the T cell phenotypic states in relation to checkpoint receptor expression. We demonstrate the presence of CD103+ tissue resident memory T cells (TRM), CCR7+ central memory T cells, and CD57+ terminally differentiated effector cells across all HPB cancers, while the anti-tumor function was dampened by expression of multiple co-inhibitory checkpoint receptors. Terminally exhausted T cells lacking co-stimulatory receptors were more prevalent in PDA, whereas partially exhausted T cells expressing both co-inhibitory and co-stimulatory receptors were most prevalent in HCC, especially in early stage. HCC patients had significantly higher TRM with a phenotype that could confer restored activation in response to immune checkpoint therapies. Further, we found a lack of robust alteration in T cell activation state or checkpoint expression in response to chemotherapy in PDA patients. These results support that HCC patients might benefit most from combined checkpoint therapies, whereas efforts other than cytotoxic chemotherapy will likely be necessary to increase overall T cell activation in CCA and PDA for future clinical development.
Collapse
Affiliation(s)
- Shanshan Wan
- Department of Surgery, NYU Langone Health, New York, NY, United States
| | - Ende Zhao
- Department of Surgery, NYU Langone Health, New York, NY, United States
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, United States
| | - Daniel Freeman
- Pathology, NYU Langone Health, New York, NY, United States
| | - Daniel Weissinger
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, United States
| | - Benjamin A. Krantz
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, United States
- Internal Medicine, NYU Langone Health, New York, NY, United States
| | - Gregor Werba
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, United States
| | - Lauren G. Khanna
- Internal Medicine, NYU Langone Health, New York, NY, United States
| | - Despina Siolas
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, United States
- Internal Medicine, NYU Langone Health, New York, NY, United States
| | - Paul E. Oberstein
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, United States
- Internal Medicine, NYU Langone Health, New York, NY, United States
| | - Pratip K. Chattopadhyay
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, United States
- Pathology, NYU Langone Health, New York, NY, United States
- Talon Biomarkers, Mendham, NJ, United States
| | - Diane M. Simeone
- Department of Surgery, NYU Langone Health, New York, NY, United States
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, United States
- Pathology, NYU Langone Health, New York, NY, United States
| | - Theodore H. Welling
- Department of Surgery, NYU Langone Health, New York, NY, United States
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, United States
| |
Collapse
|
75
|
Loch FN, Kamphues C, Beyer K, Schineis C, Rayya W, Lauscher JC, Horst D, Dragomir MP, Schallenberg S. The Immune Checkpoint Landscape in Tumor Cells of Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24032160. [PMID: 36768480 PMCID: PMC9917344 DOI: 10.3390/ijms24032160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Immune checkpoint therapy (ICT) has shown promising potential in the treatment of multiple solid tumors. However, the role of ICT in pancreatic ductal adenocarcinoma (PDAC) remains limited. Patterns of immune checkpoints (ICs) in PDAC represent the basis for establishing a potent ICT. The aim of this study is to create a profile of IC expression and its prognostic relevance in cancer cells of PDAC. Therefore, tumor cells from peripheral and central tissue microarray (TMA) spots from histologically confirmed PDAC of 68 patients after tumor resection were investigated in terms of expressions of TIM3, IDO, B7H4, LAG3, VISTA, and PD-L1 using immunohistochemistry. The presence of the respective ICs was compared to overall survival (OS). The presence of VISTA and PD-L1 significantly correlates with shorter OS (median OS: 22 months vs. 7 months and 22 months vs. 11 months, respectively, p < 0.05). For the presence of TIM3, IDO, B7H4, and LAG3, no difference in OS was observed (p > 0.05). The analysis of OS of combined subgroups for VISTA and PD-L1 (VISTA and PD-L1 neg., VISTA pos. and PD-L1 neg., VISTA neg. and PD-L1 pos., and VISTA and PD-L1 pos.) yielded overall statistical significance difference (p = 0.02). These results suggest that the presence of VISTA and PD-L1 is of prognostic relevance and potentially qualifies them as targets for ICT.
Collapse
Affiliation(s)
- Florian N. Loch
- Department of Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)30-450552722
| | - Carsten Kamphues
- Department of Surgery, Park-Klinik Weißensee, 13086 Berlin, Germany
| | - Katharina Beyer
- Department of Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Christian Schineis
- Department of Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Wael Rayya
- Department of Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Johannes C. Lauscher
- Department of Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Mihnea P. Dragomir
- Institute of Pathology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health at Charité, Charitéplatz 1, 10117 Berlin, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Berlin, 69210 Heidelberg, Germany
| | - Simon Schallenberg
- Institute of Pathology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
76
|
Andrzejczak A, Partyka A, Wiśniewski A, Porębska I, Pawełczyk K, Ptaszkowski K, Kuśnierczyk P, Jasek M, Karabon L. The association of BTLA gene polymorphisms with non-small lung cancer risk in smokers and never-smokers. Front Immunol 2023; 13:1006639. [PMID: 36741370 PMCID: PMC9893504 DOI: 10.3389/fimmu.2022.1006639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Lung cancer is the predominant cause of death among cancer patients and non-small cell lung cancer (NSCLC) is the most common type. Cigarette smoking is the prevailing risk factor for NSCLC, nevertheless, this cancer is also diagnosed in never-smokers. B and T lymphocyte attenuator (BTLA) belongs to immunological checkpoints which are key regulatory molecules of the immune response. A growing body of evidence highlights the important role of BTLA in cancer. In our previous studies, we showed a significant association between BTLA gene variants and susceptibility to chronic lymphoblastic leukemia and renal cell carcinoma in the Polish population. The present study aimed to analyze the impact of BTLA polymorphic variants on the susceptibility to NSCLC and NSCLC patients' overall survival (OS). Methods Using TaqMan probes we genotyped seven BTLA single-nucleotide polymorphisms (SNPs): rs2705511, rs1982809, rs9288952, rs9288953, rs1844089, rs11921669 and rs2633582 with the use of ViiA 7 Real-Time PCR System. Results We found that rs1982809 within BTLA is associated with NSCLC risk, where carriers of rs1982809G allele (AG+GG genotypes) were more frequent in patients compared to controls. In subgroup analyses, we also noticed that rs1982809G carriers are significantly overrepresented in never-smokers, but not in smokers compared to controls. Additionally, the global distribution of the haplotypes differed between the never-smokers and smokers, where haplotypes A G G C A, C G A C G, and C G A T G were more frequent in never-smoking patients. Furthermore, the presence rs1982809G (AG+GG genotypes) allele as well as the presence of rs9288953T allele (CT+TT genotypes) increased NSCLC risk in females' patients. After stratification by histological type, we noticed that rs1982809G and rs2705511C carriers were more frequent among adenocarcinoma patients. Moreover, rs1982809G and rs2705511C correlated with the more advanced stages of NSCLC (stage II and III), but not with stage IV. Furthermore, we showed that rs2705511 and rs1982809 significantly modified OS, while rs9288952 tend to be associated with patients' survival. Conclusion Our results indicate that BTLA polymorphic variants may be considered low penetrating risk factors for NSCLC especially in never-smokers, and in females, and are associated with OS of NSCLC patients.
Collapse
Affiliation(s)
- Anna Andrzejczak
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland,*Correspondence: Anna Andrzejczak, ; Lidia Karabon,
| | - Anna Partyka
- Laboratory of Immunopathology, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Irena Porębska
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Wrocław, Poland
| | - Konrad Pawełczyk
- Departament of Thoracic Surgery, Lower Silesian Centre of Oncology, Pulmonology and Haematology, Wrocław, Poland
| | - Kuba Ptaszkowski
- Department of Clinical Biomechanics and Physiotherapy in Motor System Disorders, Wrocław Medical University, Wrocław, Poland
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Monika Jasek
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Lidia Karabon
- Laboratory of Genetics and Epigenetics of Human Diseases, Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland,*Correspondence: Anna Andrzejczak, ; Lidia Karabon,
| |
Collapse
|
77
|
Cao J, Hong K, Cao Y, Cen K, Mai Y, Dai Y, Ouyang G, Mu Q, Guo Y. Development of anoikis-related genes signature to predict the prognosis in gastric cancer patients. Front Oncol 2023; 12:1096608. [PMID: 36713571 PMCID: PMC9878391 DOI: 10.3389/fonc.2022.1096608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Background It is well known that the prognosis of Gastric cancer (GC) patient is affected by many factors. However, the latent impact of anoikis on the prognosis of GC patients is insufficient understood. Methods According to the Cancer Genome Atlas (TCGA) database, we elected discrepantly expressed anoikis-related genes (ARGs). Univariate cox and the least absolute shrinkage and selection operator (lasso) analysis were applied to build the ARGs signature. The prognostic effect of the ARGs signature was also evaluated. A series of algorithms were performed to evaluate the discrepancies in the immune microenvironment. Moreover, the correlation between drug sensitivity and ARGs signature was analyzed. We also performed Real-Time Polymerase Chain Reaction (RT-PCR) to probe the signature. Results The ARGs signature of 9 genes was constructed, which was apparently interrelated with the prognosis. The nomogram was established by combining the ARGs signature with clinicopathological characteristics. We found that the predictive power was noteworthily superior to other individual predictors. The immune microenvironment analysis indicated that ESTIMATEscore, ImmuneScores, StromalScores, tumor immune dysfunction and exclusion (TIDE) score were lower in the low-risk group, while immunophenoscore (IPS) was on the contrary. The infiltrated immune cells and immune checkpoint (ICP) expression levels were significantly different between the two groups. Furthermore, nine drugs were positively associated with the ARGs signature score. The results of RT-PCR analysis were consistent with our previous differential expression analysis. Conclusion The developed ARGs signature could act as the biomarker and provide a momentous reference for Individual therapy of GC patients.
Collapse
Affiliation(s)
- Jie Cao
- Laboratory of Stem Cell Transplantation, Ningbo First Hospital, Ningbo, China
| | - Kai Hong
- Department of General Surgery, Ningbo First Hospital, Ningbo, China
| | - Yuepeng Cao
- Department of General Surgery, Ningbo First Hospital, Ningbo, China
| | - Kenan Cen
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yifeng Mai
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Ying Dai
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, China,*Correspondence: Yangyang Guo, ; Qitian Mu, ; Guifang Ouyang,
| | - Qitian Mu
- Laboratory of Stem Cell Transplantation, Ningbo First Hospital, Ningbo, China,*Correspondence: Yangyang Guo, ; Qitian Mu, ; Guifang Ouyang,
| | - Yangyang Guo
- Laboratory of Stem Cell Transplantation, Ningbo First Hospital, Ningbo, China,Department of General Surgery, Ningbo First Hospital, Ningbo, China,*Correspondence: Yangyang Guo, ; Qitian Mu, ; Guifang Ouyang,
| |
Collapse
|
78
|
Oladejo M, Paulishak W, Wood L. Synergistic potential of immune checkpoint inhibitors and therapeutic cancer vaccines. Semin Cancer Biol 2023; 88:81-95. [PMID: 36526110 DOI: 10.1016/j.semcancer.2022.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Cancer vaccines and immune checkpoint inhibitors (ICIs) function at different stages of the cancer immune cycle due to their distinct mechanisms of action. Therapeutic cancer vaccines enhance the activation and infiltration of cytotoxic immune cells into the tumor microenvironment (TME), while ICIs, prevent and/or reverse the dysfunction of these immune cells. The efficacy of both classes of immunotherapy has been evaluated in monotherapy, but they have been met with several challenges. Although therapeutic cancer vaccines can activate anti-tumor immune responses, these responses are susceptible to attenuation by immunoregulatory molecules. Similarly, ICIs are ineffective in the absence of tumor-infiltrating lymphocytes (TILs). Further, ICIs are often associated with immune-related adverse effects that may limit quality of life and compliance. However, the combination of the improved immunogenicity afforded by cancer vaccines and restrained immunosuppression provided by immune checkpoint inhibitors may provide a suitable platform for therapeutic synergism. In this review, we revisit the history and various classifications of therapeutic cancer vaccines. We also provide a summary of the currently approved ICIs. Finally, we provide mechanistic insights into the synergism between ICIs and cancer vaccines.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Wyatt Paulishak
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Laurence Wood
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
79
|
Pan M, Zhao H, Jin R, Leung PSC, Shuai Z. Targeting immune checkpoints in anti-neutrophil cytoplasmic antibodies associated vasculitis: the potential therapeutic targets in the future. Front Immunol 2023; 14:1156212. [PMID: 37090741 PMCID: PMC10115969 DOI: 10.3389/fimmu.2023.1156212] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Anti-neutrophil cytoplasmic autoantibodies (ANCA) associated vasculitis (AAV) is a necrotizing vasculitis mainly involving small blood vessels. It is demonstrated that T cells are important in the pathogenesis of AAV, including regulatory T cells (Treg) and helper T cells (Th), especially Th2, Th17, and follicular Th cells (Tfh). In addition, the exhaustion of T cells predicted the favorable prognosis of AAV. The immune checkpoints (ICs) consist of a group of co-stimulatory and co-inhibitory molecules expressed on the surface of T cells, which maintains a balance between the activation and exhaustion of T cells. CD28, inducible T-cell co-stimulator (ICOS), OX40, CD40L, glucocorticoid induced tumor necrosis factor receptor (GITR), and CD137 are the common co-stimulatory molecules, while the programmed cell death 1 (PD-1), cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), T cell immunoglobulin (Ig) and mucin domain-containing protein 3 (TIM-3), B and T lymphocyte attenuator (BTLA), V-domain Ig suppressor of T cell activation (VISTA), T-cell Ig and ITIM domain (TIGIT), CD200, and lymphocyte activation gene 3 (LAG-3) belong to co-inhibitory molecules. If this balance was disrupted and the activation of T cells was increased, autoimmune diseases (AIDs) might be induced. Even in the treatment of malignant tumors, activation of T cells by immune checkpoint inhibitors (ICIs) may result in AIDs known as rheumatic immune-related adverse events (Rh-irAEs), suggesting the importance of ICs in AIDs. In this review, we summarized the features of AAV induced by immunotherapy using ICIs in patients with malignant tumors, and then reviewed the biological characteristics of different ICs. Our aim was to explore potential targets in ICs for future treatment of AAV.
Collapse
Affiliation(s)
- Menglu Pan
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huanhuan Zhao
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruimin Jin
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Patrick S. C. Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- *Correspondence: Zongwen Shuai, ; Patrick S. C. Leung,
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- *Correspondence: Zongwen Shuai, ; Patrick S. C. Leung,
| |
Collapse
|
80
|
Zhang J, Jin H, Pan S, Han C, Sun Q, Han X. Immune checkpoints expression patterns in early-stage triple-negative breast cancer predict prognosis and remodel the tumor immune microenvironment. Front Immunol 2023; 14:1073550. [PMID: 36814908 PMCID: PMC9939840 DOI: 10.3389/fimmu.2023.1073550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Background Currently, targeting immune checkpoint molecules holds great promise for triple-negative breast cancer (TNBC). However, the expression landscape of immune checkpoint genes (ICGs) in TNBC remains largely unknown. Method Herein, we systematically investigated the ICGs expression patterns in 422 TNBC samples. We evaluated the ICGs molecular typing based on the ICGs expression profile and explored the associations between ICGs molecular subtypes and tumor immune characteristics, clinical significance, and response to immune checkpoint inhibitors (ICIs). Results Two ICGs clusters and two ICGs-related gene clusters were determined, which were involved in different survival outcomes, biological roles and infiltration levels of immune cells. We established a quantification system ICGs riskscore (named IRS) to assess the ICGs expression patterns for individuals. TNBC patients with lower IRS were characterized by increased immune cell infiltration, favorable clinical outcomes and high sensitivity to ICIs therapy. We also developed a nomogram model combining clinicopathological variables to predict overall survival in TNBC. Genomic feature analysis revealed that high IRS group presented an increased tumor mutation burden compared with the low IRS group. Conclusion Collectively, dissecting the ICGs expression patterns not only provides a new insight into TNBC subtypes but also deepens the understanding of ICGs in the tumor immune microenvironment.
Collapse
Affiliation(s)
- Jinguo Zhang
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,School of Medical Oncology, Wan Nan Medical College, Wuhu, China
| | - Chaoqiang Han
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Qingqing Sun
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Xinghua Han
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.,Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,School of Medical Oncology, Anhui Medical University, Hefei, China
| |
Collapse
|
81
|
Shang S, Liu J, Hua F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct Target Ther 2022; 7:396. [PMID: 36577755 PMCID: PMC9797573 DOI: 10.1038/s41392-022-01245-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 11/06/2022] [Indexed: 12/30/2022] Open
Abstract
Metabolic reprogramming is involved in the pathogenesis of not only cancers but also neurodegenerative diseases, cardiovascular diseases, and infectious diseases. With the progress of metabonomics and proteomics, metabolites have been found to affect protein acylations through providing acyl groups or changing the activities of acyltransferases or deacylases. Reciprocally, protein acylation is involved in key cellular processes relevant to physiology and diseases, such as protein stability, protein subcellular localization, enzyme activity, transcriptional activity, protein-protein interactions and protein-DNA interactions. Herein, we summarize the functional diversity and mechanisms of eight kinds of nonhistone protein acylations in the physiological processes and progression of several diseases. We also highlight the recent progress in the development of inhibitors for acyltransferase, deacylase, and acylation reader proteins for their potential applications in drug discovery.
Collapse
Affiliation(s)
- Shuang Shang
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Jing Liu
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Fang Hua
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| |
Collapse
|
82
|
Immune Checkpoint and Other Receptor-Ligand Pairs Modulating Macrophages in Cancer: Present and Prospects. Cancers (Basel) 2022; 14:cancers14235963. [PMID: 36497444 PMCID: PMC9736575 DOI: 10.3390/cancers14235963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapy, especially immune checkpoint blocking, has become the primary anti-tumor treatment in recent years. However, the current immune checkpoint inhibitor (ICI) therapy is far from satisfactory. Macrophages are a key component of anti-tumor immunity as they are a common immune cell subset in tumor tissues and act as a link between innate and adaptive immunity. Hence, understanding the regulation of macrophage activation in tumor tissues by receptor-ligand interaction will provide promising macrophage-targeting strategies to complement current adaptive immunity-based immunotherapy and traditional anti-tumor treatment. This review aims to offer a systematic summary of the current advances in number, structure, expression, biological function, and interplay of immune checkpoint and other receptor-ligand between macrophages and tumor cells.
Collapse
|
83
|
Oludada OE, Idowu TO, Jeon Y, Choi I. VSTM5 is a novel immune checkpoint that promotes oral tolerance of cell-mediated and antibody responses. Biochem Biophys Res Commun 2022; 635:283-290. [DOI: 10.1016/j.bbrc.2022.10.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022]
|
84
|
Lu H, Zhou L, Zhang B, Xie Y, Yang H, Wang Z. Cuproptosis key gene FDX1 is a prognostic biomarker and associated with immune infiltration in glioma. Front Med (Lausanne) 2022; 9:939776. [PMID: 36523779 PMCID: PMC9745336 DOI: 10.3389/fmed.2022.939776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/26/2022] [Indexed: 07/27/2023] Open
Abstract
Recent studies have found that the protein encoded by the FDX1 gene is involved in mediating Cuproptosis as a regulator of protein lipoylation and related to immune response process of tumors. However, the specific biological function of FDX1 in glioma is currently unclear. To explore the potential function of FDX1, this study explored the correlation between the expression of FDX1 in cancers and survival prognosis by analyzing the public databases of GEPIA and Cbioportal. Immune infiltration was analyzed by the TIMER2.0 database in tumors. The possible biological processes and functions of FDX1-related in glioma were annotated through gene enrichment. Relationship between Cuproptosis and autophagy was explored through gene co-expression studies. Summary and conclusions of this study: (1) FDX1 is highly expressed in gliomas and associated with poor prognosis in low-grade gliomas (LGG). (2) Gene annotation indicates that FDX1 is mainly involved in the tumor protein lipoylation and cell death. (3) FDX1 expression is positively correlated with the infiltration of immune cells. (4) LIPT2 and NNAT, two other genes involved in lipoylation, may be unidentified marker gene for Cuproptosis. And the Cuproptosis genes related to FDX1 were positively correlated with the expression of autophagy marker genes Atg5, Atg12, and BECN-1. This evidence suggests that there may be some interaction between FDX1 mediated Cuproptosis and autophagy. In summary, FDX1 may serve as a potential immunotherapy target and prognostic marker for Glioma.
Collapse
Affiliation(s)
- Hanwen Lu
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Liwei Zhou
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Bingchang Zhang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yuanyuan Xie
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Huiyin Yang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
85
|
Agrawal MY, Gaikwad S, Srivastava S, Srivastava SK. Research Trend and Detailed Insights into the Molecular Mechanisms of Food Bioactive Compounds against Cancer: A Comprehensive Review with Special Emphasis on Probiotics. Cancers (Basel) 2022; 14:5482. [PMID: 36428575 PMCID: PMC9688469 DOI: 10.3390/cancers14225482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
In an attempt to find a potential cure for cancer, scientists have been probing the efficacy of the food we eat and its bioactive components. Over the decades, there has been an exponentially increasing trend of research correlating food and cancer. This review explains the molecular mechanisms by which bioactive food components exhibit anticancer effects in several cancer models. These bioactive compounds are mainly plant based or microbiome based. While plants remain the primary source of these phytochemicals, little is known about probiotics, i.e., microbiome sources, and their relationships with cancer. Thus, the molecular mechanisms underlying the anticancer effect of probiotics are discussed in this review. The principal mode of cell death for most food bioactives is found to be apoptosis. Principal oncogenic signaling axes such as Akt/PI3K, JAK/STAT, and NF-κB seem to be modulated due to these bioactives along with certain novel targets that provide a platform for further oncogenic research. It has been observed that probiotics have an immunomodulatory effect leading to their chemopreventive actions. Various foods exhibit better efficacy as complete extracts than their individual phytochemicals, indicating an orchestrated effect of the food components. Combining bioactive agents with available chemotherapies helps synergize the anticancer action of both to overcome drug resistance. Novel techniques to deliver bioactive agents enhance their therapeutic response. Such combinations and novel approaches are also discussed in this review. Notably, most of the food components that have been studied for cancer have shown their efficacy in vivo. This bolsters the claims of these studies and, thus, provides us with hope of discovering anticancer agents in the food that we eat.
Collapse
Affiliation(s)
- Manas Yogendra Agrawal
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Shreyas Gaikwad
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | | | - Sanjay K. Srivastava
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
- Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| |
Collapse
|
86
|
Wang X, Cheng W, Zeng X, Dou X, Zhou Z, Pei Q. EPSTI1 as an immune biomarker predicts the prognosis of patients with stage III colon cancer. Front Immunol 2022; 13:987394. [PMID: 36330510 PMCID: PMC9623419 DOI: 10.3389/fimmu.2022.987394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The poor prognosis and heterogeneity of stage III colon cancer (CC) suggest the need for more prognostic biomarkers. The tumor microenvironment (TME) plays a crucial role in tumor progression. We aimed to explore novel immune infiltration-associated molecules that serve as potential prognostic and therapeutic targets. Methods TME immune scores were calculated using “TMEscore” algorithm. Differentially expressed genes between the high and low TME immune score groups were identified and further investigated through a protein-protein interaction network and the Molecular Complex Detection algorithm. Cox regression, meta-analysis and immunohistochemistry were applied to identify genes significantly correlated with relapse-free survival (RFS). We estimated immune infiltration using three different algorithms (TIMER 2.0, CIBERSORTx, and TIDE). Single-cell sequencing data were processed by Seurat software. Results Poor RFS was observed in the low TME immune score groups (log-rank P < 0.05). EPSTI1 was demonstrated to be significantly correlated with RFS (P < 0.05) in stage III CC. Meta-analysis comprising 547 patients revealed that EPSTI1 was a protective factor (HR = 0.79, 95% CI, 0.65-0. 96; P < 0.05)). More immune infiltrates were observed in the high EPSTI1 group, especially M1 macrophage and myeloid dendritic cell infiltration (P < 0.05). Conclusion The TME immune score is positively associated with better survival outcomes. EPSTI1 could serve as a novel immune prognostic biomarker for stage III CC.
Collapse
Affiliation(s)
- Xitao Wang
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Cheng
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xingzhi Zeng
- Department of General Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, China
| | - Xiaolin Dou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongyi Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Pei
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Qian Pei,
| |
Collapse
|
87
|
Guan MC, Wang MD, Wang WY, Li C, Yao LQ, Zhu H, Yang T. Exosomes as mediators of tumor immune escape and immunotherapy in hepatocellular carcinoma. LIVER RESEARCH (BEIJING, CHINA) 2022; 6:132-138. [PMID: 39958202 PMCID: PMC11791807 DOI: 10.1016/j.livres.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/16/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC), a typical inflammatory-related cancer, mainly occurs in patients with chronic liver diseases. Moreover, the liver is an immunologically privileged apparatus with multiple immunosuppressive cell groups. The long process of inflammation-mediated carcinogenesis turns the HCC tumor microenvironment (TME) into one with strong immunosuppression, facilitating the immune escape of HCC cells. Accumulated data have manifested that tumor-associated cell-derived exosomes carry diverse molecular cargoes (e.g., proteins and nucleic acids) for mediating cell-to-cell communication and are implicated in TME remodeling to promote tumor-infiltrating immune cell reprogramming, ultimately creating a tumor-friendly microenvironment. Characterized by several intrinsic attributes, such as good stability (bilayer-like structure) and high biocompatibility (cell secretion), exosomes can be modified or engineered as nanocarriers to deliver tumor-specific antigens or antitumor drugs to targeted cells or organs, thus effectively triggering the HCC cell elimination by the immune system. This review aimed to highlight the pivotal role of exosomes in regulating immune escape mechanisms in HCC and recent advances in exosome-mediated immunotherapy for HCC.
Collapse
Affiliation(s)
- Ming-Cheng Guan
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Wan-Yin Wang
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Lan-Qing Yao
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Hong Zhu
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Navy Medical University, Shanghai, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
88
|
Liang X, Cheng H, Liu C, Liu G. Antigen self-presenting nanovaccine for cancer immunotherapy. Sci Bull (Beijing) 2022; 67:1611-1613. [PMID: 36546034 DOI: 10.1016/j.scib.2022.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaoliu Liang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
89
|
Chen C, Shang A, Gao Y, Huang J, Liu G, Cho WC, Li D. PTBPs: An immunomodulatory-related prognostic biomarker in pan-cancer. Front Mol Biosci 2022; 9:968458. [PMID: 36203873 PMCID: PMC9531344 DOI: 10.3389/fmolb.2022.968458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Background: The polypyrimidine tract-binding protein (PTBP) nuclear ribonucleoprotein family of proteins, including PTBP1, PTBP2 and PTBP3, regulate the process of cell proliferation, differentiation, apoptosis and carcinogenesis. PTBPs exhibit oncogenic effects in certain tumors. However, the role of PTBPs in pan-cancer remains unclear. Our study examined the clinical significance and mechanism of PTBPs in pan-cancer. Methods: We compared the expression of PTBPs in paired and unpaired tissue samples from the Cancer Genome Atlas (TCGA) database. Univariate and multivariate Cox regression, Kaplan-Meier curves, and time-dependent receiver operating characteristic (ROC) curves were used to assess the prognostic significance of PTBPs in pan-cancer. The cBioPortal database also identified genomic abnormalities in PTBPs. TISIDB, TCGA, and Cellminer were used to investigate the relationship between PTBP expression and immune subtypes, immune checkpoint (ICP) genes, tumor mutational burden (TMB), microsatellite instability (MSI), tumor-infiltrating immune cells, and chemosensitivity. cBioPortal was used to search for PTBP co-expressing genes in pan-cancer, and GO and KEGG enrichment analyses were performed to search for PTBP-related signaling pathways. Results: PTBPs were shown to be widely upregulated in human tumor tissues. PTBP1 showed good prognostic value in ACC, KIRP, and LGG; PTBP2 in ACC and KICH; and PTBP3 in ACC, LGG, and PAAD, with AUC >0.7. PTBPs were differentially expressed in tumor immune subtypes and had a strong correlation with tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment (TME). In addition, PTBP expressions were related to ICP, TMB, and MSI, suggesting that these three PTBPs may be potential tumor immunotherapeutic targets and predict the efficacy of immunotherapy. Enrichment analysis of co-expressed genes of PTBPs showed that they may be involved in alternative splicing, cell cycle, cellular senescence, and protein modification. Conclusion: PTBPs are involved in the malignant progression of tumors. PTBP1, PTBP2 and PTBP3 may be potential biomarkers for prognosis and immunotherapy in pan-cancer and may be novel immunotherapeutic targets.
Collapse
Affiliation(s)
- Chen Chen
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anquan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuting Gao
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingjuan Huang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gege Liu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
| | - Dong Li
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
90
|
Lopatina T, Sarcinella A, Brizzi MF. Tumour Derived Extracellular Vesicles: Challenging Target to Blunt Tumour Immune Evasion. Cancers (Basel) 2022; 14:cancers14164020. [PMID: 36011012 PMCID: PMC9406972 DOI: 10.3390/cancers14164020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tumour onset and development occur because of specific immune support. The immune system, which is originally able to perceive and eliminate incipient cancer cells, becomes suppressed and hijacked by cancer. For these purposes, tumour cells use extracellular vesicles (TEVs). Specific molecular composition allows TEVs to reprogram immune cells towards tumour tolerance. Circulating TEVs move from their site of origin to other organs, preparing “a fertile soil” for metastasis formation. This implies that TEV molecular content can provide a valuable tool for cancer biomarker discovery and potential targets to reshape the immune system into tumour recognition and eradication. Abstract Control of the immune response is crucial for tumour onset and progression. Tumour cells handle the immune reaction by means of secreted factors and extracellular vesicles (EV). Tumour-derived extracellular vesicles (TEV) play key roles in immune reprogramming by delivering their cargo to different immune cells. Tumour-surrounding tissues also contribute to tumour immune editing and evasion, tumour progression, and drug resistance via locally released TEV. Moreover, the increase in circulating TEV has suggested their underpinning role in tumour dissemination. This review brings together data referring to TEV-driven immune regulation and antitumour immune suppression. Attention was also dedicated to TEV-mediated drug resistance.
Collapse
|
91
|
Bao G, Li T, Guan X, Yao Y, Liang J, Xiang Y, Zhong X. Development of a Prognostic Alternative Splicing Signature Associated With Tumor Microenvironment Immune Profiles in Lung Adenocarcinoma. Front Oncol 2022; 12:880478. [PMID: 35832557 PMCID: PMC9271776 DOI: 10.3389/fonc.2022.880478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Alternative splicing (AS), a pivotal post-transcriptional process across more than 95% of human transcripts, is involved in transcript structural variations and protein complexity. Clinical implications of AS events and their interaction with tumor immunity were systematically analyzed in lung adenocarcinoma (LUAD). METHODS Transcriptome profiling as well as AS data of LUAD were retrospectively curated. Then, the network of the overall survival (OS)-relevant AS events with splicing factors was established. After screening OS-relevant AS events, a LASSO prognostic model was conducted and evaluated with ROC curves. A nomogram that integrated independent prognostic indicators was created. Immune response and immune cell infiltration were estimated with ESTIMATE, CIBERSORT, and ssGSEA algorithms. Drug sensitivity was inferred with pRRophetic package. RESULTS In total, 2415 OS-relevant AS events were identified across LUAD patients. The interaction network of splicing factors with OS-relevant AS events uncovered the underlying regulatory mechanisms of AS events in LUAD. Thereafter, a prognostic model containing 12 AS events was developed, which acted as a reliable and independent prognostic indicator following verification. A nomogram that constituted stage and risk score displayed great effectiveness in evaluating the survival likelihood. Moreover, the AS-based prognostic model was in relation to immune response and immune cell infiltration. Patients with a high-risk score displayed therapeutic superiority to cisplatin, erlotinib, gefitinib, and gemcitabine. Finally, three AS-relevant genes (CDKN2A, TTC39C, and PKIB) were identified as prognostic markers. CONCLUSION Collectively, our findings developed an AS event signature with powerful prognostic predictive efficacy in LUAD.
Collapse
Affiliation(s)
- Guangyao Bao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Xiaojiao Guan
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yao Yao
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jie Liang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yifan Xiang
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xinwen Zhong
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
92
|
Xu Z, Chen S, Zhang Y, Liu R, Chen M. Roles of m5C RNA Modification Patterns in Biochemical Recurrence and Tumor Microenvironment Characterization of Prostate Adenocarcinoma. Front Immunol 2022; 13:869759. [PMID: 35603206 PMCID: PMC9114358 DOI: 10.3389/fimmu.2022.869759] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background Prostate cancer is the second most common cancer with a high risk of biochemical recurrence (BCR) among men. Recently, 5-methylcytosine (m5C) modification has attracted more attention as a new layer of RNA post-transcriptional regulation. Hence, we aimed at investigating the potential roles of m5C modification regulators in the BCR of prostate adenocarcinoma (PRAD). Methods CNV data, mutation annotation data, mRNA expression profiles, and clinical data were downloaded from TCGA and GEO databases. Kaplan-Meier curves analysis, log-rank test, univariate and multivariate Cox regression, and time-dependent ROC curves analysis were performed to evaluate the prognostic factors. Principal components analysis (PCA) was applied to validate the distinction between subgroups. Gene set variation analysis (GSVA) was used to investigate the underlying pathways associated with m5C modification patterns. Single sample gene set enrichment analysis (ssGSEA) was utilized to assess the infiltration of distinct immune cells. Tumor Immune Dysfunction and Exclusion (TIDE) prediction was carried out to assess the potential response to immune checkpoint blockade (ICB) therapy. The m5C modification signature was constructed via LASSO Cox's proportional hazards regression method. Results After comprehensively analyzing various types of data from TCGA dataset, and exploring the differential expression and prognostic value of each m5C regulator, we identified m5C modification patterns based on 17 m5C regulators. Two patterns presented a significant difference in the risk of BCR, the tumor microenvironment (TME), and immunotherapy response in PRAD. We found that TET2, which was highly expressed in adjacent normal tissues compared to tumor tissues, was closely associated with many infiltrating immune cells. The m5C modification signature was constructed for the clinical application. Risk score calculated by m5C signature was associated with T stage, N stage, Gleason score, and the possibility of BCR (HR, 4.197; 95% CI, 3.016-5.842; p < 0.001). A higher risk score also represented the possibility of immunotherapy response. Finally, the potential roles of m5C modification signature were validated in the testing dataset. Conclusions Our study revealed the potential roles of m5C modification in the PRAD BCR and TME diversity, which may provide new insight into the field of prostate cancer in future research.
Collapse
Affiliation(s)
- Zhipeng Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Yuxi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruiji Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
- Department of Urology, Zhongda Hospital Lishui Branch, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
- Department of Urology, Zhongda Hospital Lishui Branch, Nanjing, China
| |
Collapse
|
93
|
Abstract
OPINION STATEMENT Immunotherapy is revolutionizing tumor treatment by activating the immune response to tumors. Among them, immunotherapy represented by immune checkpoint inhibitors is considered to be a milestone in tumor treatment. It has revolutionized the management of advanced malignant tumors by activating T cells, promoting cytotoxic signaling pathways, and killing tumor cells, effectively improving the overall survival of patients. However, resistance to immunotherapy and immune-related adverse events remain challenges for immunotherapy. It has been demonstrated in previous studies that modulating intestinal microbiota can enhance immunotherapy response and reduce complications. Currently, the more mature method for microbiota regulation is fecal microbiota transplantation, which involves transfering a donor's microbiome to the recipient in the form of capsules or fecal microbiota suspension to restore the richness of the recipient's intestinal microbiota. In terms of cancer immunotherapy, fecal microbiota transplantation in patients who fail to respond to immune checkpoint inhibitors is expected to produce better prognosis for patients.
Collapse
|