51
|
Kishi TT, Andersen ML, Luciano YM, Kakazu VA, Tufik S, Pires GN. Methods for REM Sleep Density Analysis: A Scoping Review. Clocks Sleep 2023; 5:793-805. [PMID: 38131750 PMCID: PMC10742531 DOI: 10.3390/clockssleep5040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Rapid eye movements (REM) sleep density is the parameter proposed to explain the variability in the amount of eye movements during REM sleep. Alterations in REM sleep density have been proposed as a screening criterion for individuals with depression and other mental health conditions, but its accuracy has not been properly evaluated. The lack of consensus and the variability of the methods used to score it reduces the external validity of the results, hindering an adequate analysis of its diagnostic accuracy and clinical applicability. This scoping review aimed to identify and quantify the methods used to score REM sleep density, describing their main characteristics. A literature search was conducted in PubMed, Scopus, PsycInfo, and Web of Science. Only studies with objective measures for REM sleep density analysis in individuals with depression were considered eligible. The final sample comprised 57 articles, covering 64 analyses of REM sleep density. The relative frequency methods were the predominant measurement parameter for analyzing REM sleep density across studies. The most frequently adopted REM estimation unit was the number of REM events followed by mini-epochs containing REM. The most common unit of measurement were frequency/time measures. The results demonstrate that there is no consistency in the methods used to calculate REM sleep density in the literature, and a high percentage of studies do not describe their methods in sufficient detail. The most used method was the number of REM episodes per minute of REM sleep, but its use is neither unanimous nor consensual. The methodological inconsistencies and omissions among studies limit the replicability, comparability, and clinical applicability of REM sleep density. Future guidelines should discuss and include a specific methodology for the scoring of REM sleep density, so it can be consensually implemented in clinical services and research.
Collapse
Affiliation(s)
- Tamires Tiemi Kishi
- Departamento de Psicobiologia, Federal University of São Paulo, São Paulo 04024-002, Brazil; (T.T.K.)
| | - Monica Levy Andersen
- Departamento de Psicobiologia, Federal University of São Paulo, São Paulo 04024-002, Brazil; (T.T.K.)
- Sleep Institute, São Paulo, 04020-060, Brazil
| | - Ygor Matos Luciano
- Departamento de Psicobiologia, Federal University of São Paulo, São Paulo 04024-002, Brazil; (T.T.K.)
| | - Viviane Akemi Kakazu
- Departamento de Psicobiologia, Federal University of São Paulo, São Paulo 04024-002, Brazil; (T.T.K.)
| | - Sergio Tufik
- Departamento de Psicobiologia, Federal University of São Paulo, São Paulo 04024-002, Brazil; (T.T.K.)
- Sleep Institute, São Paulo, 04020-060, Brazil
| | - Gabriel Natan Pires
- Departamento de Psicobiologia, Federal University of São Paulo, São Paulo 04024-002, Brazil; (T.T.K.)
- Sleep Institute, São Paulo, 04020-060, Brazil
| |
Collapse
|
52
|
Iotchev IB, Bognár Z, Tóth K, Reicher V, Kis A, Kubinyi E. Sleep-physiological correlates of brachycephaly in dogs. Brain Struct Funct 2023; 228:2125-2136. [PMID: 37742302 PMCID: PMC10587206 DOI: 10.1007/s00429-023-02706-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
The shape of the cranium is one of the most notable physical changes induced in domestic dogs through selective breeding and is measured using the cephalic index (CI). High CI (a ratio of skull width to skull length > 60) is characterized by a short muzzle and flat face and is referred to as brachycephaly. Brachycephalic dogs display some potentially harmful changes in neuroanatomy, and there are implications for differences in behavior, as well. The path from anatomy to cognition, however, has not been charted in its entirety. Here, we report that sleep-physiological markers of white-matter loss (high delta power, low frontal spindle frequency, i.e., spindle waves/s), along with a spectral profile for REM (low beta, high delta) associated with low intelligence in humans, are each linked to higher CI values in the dog. Additionally, brachycephalic subjects spent more time sleeping, suggesting that the sleep apnea these breeds usually suffer from increases daytime sleepiness. Within sleep, more time was spent in the REM sleep stage than in non-REM, while REM duration was correlated positively with the number of REM episodes across dogs. It is currently not clear if the patterns of sleep and sleep-stage duration are mainly caused by sleep-impairing troubles in breathing and thermoregulation, present a juvenile-like sleeping profile, or are caused by neuro-psychological conditions secondary to the effects of brachycephaly, e.g., frequent REM episodes are known to appear in human patients with depression. While future studies should more directly address the interplay of anatomy, physiology, and behavior within a single experiment, this represents the first description of how the dynamics of the canine brain covary with CI, as measured in resting companion dogs using a non-invasive sleep EEG methodology. The observations suggest that the neuroanatomical changes accompanying brachycephaly alter neural systems in a way that can be captured in the sleep EEG, thus supporting the utility of the latter in the study of canine brain health and function.
Collapse
Affiliation(s)
| | - Zsófia Bognár
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Katinka Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Vivien Reicher
- Doctoral School of Biology, Eötvös Loránd University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Developmental and Translational Neuroscience Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- ELTE-ELKH NAP Comparative Ethology Research Group, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
| |
Collapse
|
53
|
Leconte CE, Ng JW, Manzardo AM, Douglass MM. A Pediatric Patient with Severe Obstructive Sleep Apnea and Comorbid Depression and Substance Abuse. Case Rep Psychiatry 2023; 2023:9985503. [PMID: 38028754 PMCID: PMC10656197 DOI: 10.1155/2023/9985503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Obstructive sleep apnea (OSA), depression, and substance abuse problems share similar symptomatology and have significant interplay. An underlying diagnosis of OSA can often be overlooked in patients with significant psychiatric illness and polysubstance use. Pediatric OSA is often associated with adenotonsillar hypertrophy and frequently requires surgical intervention for resolution of symptoms. Untreated OSA can worsen mental status and encourage polysubstance abuse as a form of self-medication. Proper identification and management of OSA plays an important role in treating psychiatric conditions. We report a 16-year-old with major depressive disorder (MDD), suicide attempts, polysubstance use disorder, and severe OSA admitted to an inpatient psychiatric facility. History included sleep and mood disturbances started at age 12. Patient presented with apnea-hypopnea index greater than 50 and started on bilevel-positive airway pressure (BiPAP) prior to admission. Management of OSA led to significant improvement of MDD, insomnia, and polysubstance abuse. OSA can often be overlooked in patients with MDD or substance abuse. Among adolescent patients with poorly managed psychiatric conditions, significant sleep disturbances, and polysubstance abuse, providers should maintain a high degree of suspicion for OSA, as its proper management will aid in the management of the other conditions.
Collapse
Affiliation(s)
- Caitlin E. Leconte
- University of Kansas School of Medicine, 2060 W 39th Avenue, Kansas City, KS 66103, USA
| | - Joshua W. Ng
- University of Kansas School of Medicine-Wichita, 1010 N Kansas Street, Wichita, KS 67214, USA
| | - Ann M. Manzardo
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66103, USA
| | - Mitchell M. Douglass
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66103, USA
| |
Collapse
|
54
|
Sohi M, Jain L, Ang-Rabanes M, Mogallapu R. Sertraline-Induced Sleep Paralysis: A Case Report. Cureus 2023; 15:e49014. [PMID: 38024073 PMCID: PMC10657016 DOI: 10.7759/cureus.49014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2023] [Indexed: 12/01/2023] Open
Abstract
Major depressive disorder (MDD) is associated with both insomnia and hypersomnia, but it predominantly decreases sleep continuity and leads to a decrease in rapid eye movement (REM) latency, an increase in REM sleep duration, and an increase in REM density. Some of these changes persist even when MDD is treated and can be associated with a recurrence of MDD. Antidepressants can potentially complicate the relationship between REM sleep and depression, as a majority of patients report improved sleep when prescribed selective serotonin reuptake inhibitors (SSRIs) but some case reports mention that SSRIs have been associated with REM inhibition, resulting in decreased REM sleep. We present a case report of a young patient with MDD who started experiencing multiple episodes of distressing sleep paralysis after he started taking sertraline and resolved as he was tapered off the medication. Through references from the literature indicating a potential link between parasomnias and SSRIs, we were able to discuss that SSRIs can potentially lead to isolated sleep paralysis and should be considered as an uncommon yet distressing side effect although not listed in the package insert. Isolated sleep paralysis has been defined in the literature as the inability to perform voluntary movements of the trunk and all limbs for a period of seconds to minutes at the beginning of sleep or upon waking up. Further research is needed to clarify the impact of SSRIs on sleep and practice guidelines should be clarified in regard to their role.
Collapse
Affiliation(s)
- Maninder Sohi
- Psychiatry, West Virginia University School of Medicine, Martinsburg, USA
| | - Lakshit Jain
- Psychiatry, University of Connecticut, Hartford, USA
| | | | - Raja Mogallapu
- Psychiatry, West Virginia University School of Medicine, Martinsburg, USA
| |
Collapse
|
55
|
Collins HM, Pinacho R, Tam SKE, Sharp T, Bannerman DM, Peirson SN. Continuous home cage monitoring of activity and sleep in mice during repeated paroxetine treatment and discontinuation. Psychopharmacology (Berl) 2023; 240:2403-2418. [PMID: 37584734 PMCID: PMC10593620 DOI: 10.1007/s00213-023-06442-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
RATIONALE Non-invasive home cage monitoring is emerging as a valuable tool to assess the effects of experimental interventions on mouse behaviour. A field in which these techniques may prove useful is the study of repeated selective serotonin reuptake inhibitor (SSRI) treatment and discontinuation. SSRI discontinuation syndrome is an under-researched condition that includes the emergence of sleep disturbances following treatment cessation. OBJECTIVES We used passive infrared (PIR) monitoring to investigate changes in activity, sleep, and circadian rhythms during repeated treatment with the SSRI paroxetine and its discontinuation in mice. METHODS Male mice received paroxetine (10 mg/kg/day, s.c.) for 12 days, then were swapped to saline injections for a 13 day discontinuation period and compared to mice that received saline injections throughout. Mice were continuously tracked using the Continuous Open Mouse Phenotyping of Activity and Sleep Status (COMPASS) system. RESULTS Repeated paroxetine treatment reduced activity and increased behaviourally-defined sleep in the dark phase. These effects recovered to saline-control levels within 24 h of paroxetine cessation, yet there was also evidence of a lengthening of sleep bouts in the dark phase for up to a week following discontinuation. CONCLUSIONS This study provides the first example of how continuous non-invasive home cage monitoring can be used to detect objective behavioural changes in activity and sleep during and after drug treatment in mice. These data suggest that effects of paroxetine administration reversed soon after its discontinuation but identified an emergent change in sleep bout duration, which could be used as a biomarker in future preclinical studies to prevent or minimise SSRI discontinuation symptoms.
Collapse
Affiliation(s)
- Helen M Collins
- University Department of Pharmacology, Oxford, UK
- University Department of Experimental Psychology, Oxford, UK
| | - Raquel Pinacho
- University Department of Pharmacology, Oxford, UK
- University Department of Experimental Psychology, Oxford, UK
| | - S K Eric Tam
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Trevor Sharp
- University Department of Pharmacology, Oxford, UK
| | | | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
56
|
Mlyncekova Z, Hutka P, Visnovcova Z, Ferencova N, Kovacova V, Macejova A, Tonhajzerova I, Ondrejka I. Effects of Vortioxetine on Sleep Architecture of Adolescents with Major Depressive Disorder. Clocks Sleep 2023; 5:627-638. [PMID: 37987393 PMCID: PMC10660849 DOI: 10.3390/clockssleep5040042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/22/2023] Open
Abstract
The relationship between depression and insomnia is bidirectional and both conditions need to be treated adequately, especially in a vulnerable neurodevelopmental stage of adolescence. This study aimed to evaluate the effects of antidepressant treatment using vortioxetine (VOR) on the sleep architecture of depressed adolescents by using video-polysomnography (v-PSG), which has not been researched before. The v-PSG was performed on 30 adolescent in-patients (mean age of 15.0 years ± 1.5 SD, 21 girls) treated with VOR (dosage of 10/15/20 mg/day) administered orally once a day, before and after VOR treatment. The evaluated parameters were conventional sleep parameters, sleep fragmentation parameters, and selected spectral power indices. Symptoms of depression and insomnia before and after the treatment period were evaluated using valid and reliable questionnaires (the Children´s Depression Inventory and the Athens Insomnia Scale). Depressed adolescents showed higher REM latency and decreased REM sleep percentage after treatment than before the treatment period (p = 0.005, p = 0.009, respectively). Our study revealed REM suppression (increased REM latency and reduced REM sleep percentage), indicating altered sleep architecture as a potential result of VOR treatment, which seems to be dose-dependent.
Collapse
Affiliation(s)
- Zuzana Mlyncekova
- Clinic of Psychiatry, Jessenius Faculty of Medicine in Martin, University Hospital Martin, Comenius University in Bratislava, Kollarova 2, 03601 Martin, Slovakia; (Z.M.); (P.H.); (V.K.); (A.M.)
| | - Peter Hutka
- Clinic of Psychiatry, Jessenius Faculty of Medicine in Martin, University Hospital Martin, Comenius University in Bratislava, Kollarova 2, 03601 Martin, Slovakia; (Z.M.); (P.H.); (V.K.); (A.M.)
| | - Zuzana Visnovcova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia; (Z.V.); (N.F.)
| | - Nikola Ferencova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia; (Z.V.); (N.F.)
| | - Veronika Kovacova
- Clinic of Psychiatry, Jessenius Faculty of Medicine in Martin, University Hospital Martin, Comenius University in Bratislava, Kollarova 2, 03601 Martin, Slovakia; (Z.M.); (P.H.); (V.K.); (A.M.)
| | - Andrea Macejova
- Clinic of Psychiatry, Jessenius Faculty of Medicine in Martin, University Hospital Martin, Comenius University in Bratislava, Kollarova 2, 03601 Martin, Slovakia; (Z.M.); (P.H.); (V.K.); (A.M.)
| | - Ingrid Tonhajzerova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, 03601 Martin, Slovakia;
| | - Igor Ondrejka
- Clinic of Psychiatry, Jessenius Faculty of Medicine in Martin, University Hospital Martin, Comenius University in Bratislava, Kollarova 2, 03601 Martin, Slovakia; (Z.M.); (P.H.); (V.K.); (A.M.)
| |
Collapse
|
57
|
Thiesse L, Staner L, Bourgin P, Comtet H, Fuchs G, Kirscher D, Roth T, Schaffhauser JY, Saoud JB, Viola AU. Somno-Art Software identifies pathology-induced changes in sleep parameters similarly to polysomnography. PLoS One 2023; 18:e0291593. [PMID: 37862307 PMCID: PMC10588897 DOI: 10.1371/journal.pone.0291593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 08/13/2023] [Indexed: 10/22/2023] Open
Abstract
Polysomnographic sleep architecture parameters are commonly used to diagnose or evaluate treatment of sleep disorders. Polysomnography (PSG) having practical constraints, the development of wearable devices and algorithms to monitor and stage sleep is rising. Beside pure validation studies, it is necessary for a clinician to ensure that the conclusions drawn with a new generation wearable sleep scoring device are consistent to the ones of gold standard PSG, leading to similar interpretation and diagnosis. This paper reports on the performance of Somno-Art Software for the detection of differences in sleep parameters between patients suffering from obstructive sleep apnea (OSA), insomniac or major depressive disorder (MDD) compared to healthy subjects. On 244 subjects (n = 26 healthy, n = 28 OSA, n = 66 insomniacs, n = 124 MDD), sleep staging was obtained from PSG and Somno-Art analysis on synchronized electrocardiogram and actimetry signals. Mixed model analysis of variance was performed for each sleep parameter. Possible differences in sleep parameters were further assessed with Mann-Whitney U-test between the healthy subjects and each pathology group. All sleep parameters, except N1+N2, showed significant differences between the healthy and the pathology group. No significant differences were observed between Somno-Art Software and PSG, except a 3.6±2.2 min overestimation of REM sleep. No significant interaction 'group'*'technology' was observed, suggesting that the differences in pathologies are independent of the technology used. Overall, comparable differences between healthy subjects and pathology groups were observed when using Somno-Art Software or polysomnography. Somno-Art proposes an interesting valid tool as an aid for diagnosis and treatment follow-up in ambulatory settings.
Collapse
Affiliation(s)
| | - Luc Staner
- Unité d’exploration des Rythmes Veille Sommeil, Centre Hospitalier de Rouffach, Rouffach, France
| | - Patrice Bourgin
- Sleep Disorders Center & CIRCSom (International Research Center for ChronoSomnology), Strasbourg University Hospital, Strasbourg, France
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212, Strasbourg, France
| | - Henri Comtet
- Sleep Disorders Center & CIRCSom (International Research Center for ChronoSomnology), Strasbourg University Hospital, Strasbourg, France
- Institute for Cellular and Integrative Neurosciences, CNRS UPR 3212, Strasbourg, France
| | | | | | - Thomas Roth
- Sleep Disorders Center, Henry Ford Hospital, Detroit, MI, United States of America
| | | | - Jay B. Saoud
- PPRS Research Inc., Groton, Massachusetts, United States of America
- PPDA, LLC, Boston, Massachusetts, United States of America
| | | |
Collapse
|
58
|
Yao Z, Zhang BX, Chen H, Jiang XW, Qu WM, Huang ZL. Acute or Chronic Exposure to Corticosterone Promotes Wakefulness in Mice. Brain Sci 2023; 13:1472. [PMID: 37891839 PMCID: PMC10605150 DOI: 10.3390/brainsci13101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Elevated glucocorticoid levels triggered by stress potentially contribute to sleep disturbances in stress-induced depression. However, sleep changes in response to elevated corticosterone (CORT), the major glucocorticoid in rodents, remain unclear. Here, we investigated the effects of acute or chronic CORT administration on sleep using electroencephalogram (EEG) and electromyography (EMG) recordings in freely moving mice. Acute CORT exposure rapidly promoted wakefulness, marked by increased episodes and enhanced EEG delta power, while simultaneously suppressing rapid eye movement (REM) and non-rapid eye movement (NREM) sleep, with the latter marked by decreased mean duration and reduced delta power. Prolonged 28-day CORT exposure led to excessive wakefulness and REM sleep, characterized by higher episodes, and decreased NREM sleep, characterized by higher episodes and reduced mean duration. EEG theta activity during REM sleep and delta activity during NREM sleep were attenuated following 28-day CORT exposure. These effects persisted, except for REM sleep amounts, even 7 days after the drug withdrawal. Elevated plasma CORT levels and depressive phenotypes were identified and correlated with observed sleep changes during and after administration. Fos expression significantly increased in the lateral habenula, lateral hypothalamus, and ventral tegmental area following acute or chronic CORT treatment. Our findings demonstrate that CORT exposure enhanced wakefulness, suppressed and fragmented NREM sleep, and altered EEG activity across all stages. This study illuminates sleep alterations during short or extended periods of heightened CORT levels in mice, providing a neural link connecting insomnia and depression.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; (Z.Y.); (B.-X.Z.); (H.C.); (X.-W.J.); (W.-M.Q.)
| |
Collapse
|
59
|
Rosenblum Y, Bovy L, Weber FD, Steiger A, Zeising M, Dresler M. Increased Aperiodic Neural Activity During Sleep in Major Depressive Disorder. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:1021-1029. [PMID: 37881583 PMCID: PMC10593867 DOI: 10.1016/j.bpsgos.2022.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Background In major depressive disorder (MDD), patients often express subjective sleep complaints, while polysomnographic studies report only subtle alterations of the electroencephalographic signal. We hypothesize that differentiating the signal into its oscillatory and aperiodic components may bring new insights into our understanding of sleep abnormalities in MDD. Specifically, we investigated aperiodic neural activity during sleep and its relationships with sleep architecture, depression severity, and responsivity to antidepressant treatment. Methods Polysomnography was recorded in 38 patients with MDD (in unmedicated and 7-day-medicated states) and 38 age-matched healthy control subjects (N= 76). The aperiodic power component was calculated using irregularly resampled auto-spectral analysis. Depression severity was assessed with the Hamilton Depression Rating Scale. We replicated the analysis using 2 independently collected datasets of medicated patients and control subjects (N = 60 and N = 80, respectively). Results Unmedicated patients showed flatter aperiodic slopes compared with control subjects during non-rapid eye movement (non-REM) stage 2 sleep (p = .009). Medicated patients showed flatter aperiodic slopes compared with their earlier unmedicated state (p values < .001) and control subjects during all sleep stages (p values < .03). In medicated patients, flatter aperiodic slopes during non-REM sleep were linked to the higher proportion of N1, lower proportion of REM, delayed onset of N3 and REM, and shorter total sleep time. Conclusions Flatter slopes of aperiodic electroencephalographic power may reflect noisier neural activity due to increased excitation-to-inhibition balance, representing a new disease-relevant feature of sleep in MDD.
Collapse
Affiliation(s)
- Yevgenia Rosenblum
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leonore Bovy
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frederik D. Weber
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Axel Steiger
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Marcel Zeising
- Centre of Mental Health, Klinikum Ingolstadt, Ingolstadt, Germany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
60
|
Hong J, Lozano DE, Beier KT, Chung S, Weber F. Prefrontal cortical regulation of REM sleep. Nat Neurosci 2023; 26:1820-1832. [PMID: 37735498 DOI: 10.1038/s41593-023-01398-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/28/2023] [Indexed: 09/23/2023]
Abstract
Rapid eye movement (REM) sleep is accompanied by intense cortical activity, underlying its wake-like electroencephalogram. The neural activity inducing REM sleep is thought to originate from subcortical circuits in brainstem and hypothalamus. However, whether cortical neurons can also trigger REM sleep has remained unknown. Here we show in mice that the medial prefrontal cortex (mPFC) strongly promotes REM sleep. Bidirectional optogenetic manipulations demonstrate that excitatory mPFC neurons promote REM sleep through their projections to the lateral hypothalamus and regulate phasic events, reflected in accelerated electroencephalogram theta oscillations and increased eye movement density during REM sleep. Calcium imaging reveals that the majority of lateral hypothalamus-projecting mPFC neurons are maximally activated during REM sleep and a subpopulation is recruited during phasic theta accelerations. Our results delineate a cortico-hypothalamic circuit for the top-down control of REM sleep and identify a critical role of the mPFC in regulating phasic events during REM sleep.
Collapse
Affiliation(s)
- Jiso Hong
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - David E Lozano
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
61
|
Ranjan A, Biswas S, Mallick BN. Rapid eye movement sleep loss associated cytomorphometric changes and neurodegeneration. Sleep Med 2023; 110:25-34. [PMID: 37524037 DOI: 10.1016/j.sleep.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/10/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Rapid eye movement sleep (REMS) is essential for leading normal healthy living at least in higher-order mammals, including humans. In this review, we briefly survey the available literature for evidence linking cytomorphometric changes in the brain due to loss of REMS. As a mechanism of action, we add evidence that REMS loss elevates noradrenaline (NA) levels in the brain, which affects neuronal cytomorphology. These changes may be a compensatory mechanism as the changes return to normal after the subjects recover from the loss of REMS or if during REMS deprivation, the subjects are treated with NA-adrenoceptor antagonist prazosin (PRZ). We had proposed earlier that one of the fundamental functions of REMS is to maintain the level of NA in the brain. We elaborate on this idea to propose that if REMS loss continues without recovery, the sustained level of NA breaks down neurophysiologically active compensatory mechanism/s starting with changes in the neuronal cytomorphology, followed by their degeneration, leading to acute and chronic pathological conditions. Identification of neuronal cytomorphological changes could prove to be of significance for predicting future neuronal (brain) damage as well as an indicator for REMS health. Although current brain imaging techniques may not enable us to visualize changes in neuronal cytomorphology, given the rapid technological progress including use of artificial intelligence, we are optimistic that it may be a reality soon. Finally, we propose that maintenance of optimum REMS must be considered a criterion for leading a healthy life.
Collapse
Affiliation(s)
- Amit Ranjan
- Department of Zoology, Mahatma Gandhi Central University, Motihari, East Champaran, Bihar, 845401, India.
| | - Sudipta Biswas
- Math, Science, Engineering Department, South Mountain Community College, 7050 S 24th St, Phoenix, AZ, 85042, USA
| | - Birendra Nath Mallick
- Amity Institute of Neuropsychology & Neurosciences, Amity University Campus, Sector 125, Gautam Budh Nagar, Noida, 201313, Uttar Pradesh, India
| |
Collapse
|
62
|
Koncz S, Papp N, Pothorszki D, Bagdy G. (S)-Ketamine but Not (R)-Ketamine Shows Acute Effects on Depression-Like Behavior and Sleep-Wake Architecture in Rats. Int J Neuropsychopharmacol 2023; 26:618-626. [PMID: 37578355 PMCID: PMC10519815 DOI: 10.1093/ijnp/pyad050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Racemic ketamine consists of two enantiomers, namely (R)-ketamine and (S)-ketamine, with distinguishable pharmacological properties. Both enantiomers have been reported to show rapid antidepressant effects in rodents. Currently, the (S)-enantiomer has been approved for the treatment of major depression, whereas (R)-ketamine failed to show antidepressant effect in recent clinical studies. Major depressive disorder is frequently characterized by disinhibition of rapid eye movement (REM) sleep and disruption of non-REM (NREM) sleep. Racemic ketamine and most conventional antidepressants affect these parameters. However, it remains largely unknown which enantiomer is responsible for these effects. METHODS Here, we compared acute effects of the two ketamine enantiomers (15 mg/kg i.p.) on different sleep-wake stages in freely moving, EEG-equipped rats. We also evaluated the antidepressant-like activity of the enantiomers in a chronic restraint stress model of depression. RESULTS (S)-ketamine but not (R)-ketamine increased REM sleep latency and decreased REM sleep time at 2 and 3 hours, and increased electroencephalogram delta power during NREM sleep. In addition, only (S)-ketamine increased wakefulness and decreased NREM sleep in the first 2 hours. In the forced swimming test, only (S)-ketamine decreased the immobility time of chronically stressed rats. CONCLUSION Effects of the two ketamine enantiomers on rat sleep-wake architecture and behavior are markedly different when administered in the same dose. (S)-ketamine remarkably affects the sleep-wake cycle and very likely sleep-related neuroplasticity, which may be relevant for its antidepressant efficacy. Our results regarding (R)-ketamine's lack of effect on vigilance and behavior are in line with recent clinical studies.
Collapse
Affiliation(s)
- Szabolcs Koncz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Noémi Papp
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Dóra Pothorszki
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - György Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| |
Collapse
|
63
|
Karuga FF, Kaczmarski P, Białasiewicz P, Szmyd B, Jaromirska J, Grzybowski F, Gebuza P, Sochal M, Gabryelska A. REM-OSA as a Tool to Understand Both the Architecture of Sleep and Pathogenesis of Sleep Apnea-Literature Review. J Clin Med 2023; 12:5907. [PMID: 37762848 PMCID: PMC10531579 DOI: 10.3390/jcm12185907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Sleep is a complex physiological state, which can be divided into the non-rapid eye movement (NREM) phase and the REM phase. Both have some unique features and functions. This difference is best visible in electroencephalography recordings, respiratory system activity, arousals, autonomic nervous system activity, or metabolism. Obstructive sleep apnea (OSA) is a common condition characterized by recurrent episodes of pauses in breathing during sleep caused by blockage of the upper airways. This common condition has multifactorial ethiopathogenesis (e.g., anatomical predisposition, sex, obesity, and age). Within this heterogenous syndrome, some distinctive phenotypes sharing similar clinical features can be recognized, one of them being REM sleep predominant OSA (REM-OSA). The aim of this review was to describe the pathomechanism of REM-OSA phenotype, its specific clinical presentation, and its consequences. Available data suggest that in this group of patients, the severity of specific cardiovascular and metabolic complications is increased. Due to the impact of apneas and hypopneas predominance during REM sleep, patients are more prone to develop hypertension or glucose metabolism impairment. Additionally, due to the specific function of REM sleep, which is predominantly fragmented in the REM-OSA, this group presents with decreased neurocognitive performance, reflected in memory deterioration, and mood changes including depression. REM-OSA clinical diagnosis and treatment can alleviate these outcomes, surpassing the traditional treatment and focusing on a more personalized approach, such as using longer therapy of continuous positive airway pressure or oral appliance use.
Collapse
Affiliation(s)
- Filip Franciszek Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Piotr Kaczmarski
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Bartosz Szmyd
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Sporna St. 36/50, 91-738 Lodz, Poland
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland
| | - Julia Jaromirska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Filip Grzybowski
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Piotr Gebuza
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka St. 6/8, 92-251 Lodz, Poland (F.G.)
| |
Collapse
|
64
|
Kang J, Park M, Oh CM, Kim T. High-fat diet-induced dopaminergic dysregulation induces REM sleep fragmentation and ADHD-like behaviors. Psychiatry Res 2023; 327:115412. [PMID: 37607442 DOI: 10.1016/j.psychres.2023.115412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Consumption of a high-fat diet (HFD) has been associated with reduced wakefulness and various behavioral deficits, including anxiety, depression, and anhedonia. The dopaminergic system, which plays a crucial role in sleep and ADHD, is known to be vulnerable to chronic HFD. However, the association between HFD-induced behavioral and molecular changes remains unclear. Therefore, we investigated the effects of a HFD on the dopaminergic system and its association with behavioral deficits in male mice. The mice were divided into normal diet and HFD groups and were analyzed for sleep patterns, behavior tests, and transcription levels of dopamine-related genes in the brain. The HFD group showed decreased wakefulness, increased REM sleep with fragmented patterns, decreased time spent in the center zone of the open field test, shorter immobile time in the tail suspension test, impaired visuospatial memory, and reduced sucrose preference. Additionally, the HFD group had decreased mRNA levels of D1R, COMT, and DAT in the nucleus accumbens, which negatively correlated with REM sleep proportion and REM sleep bout count. The results suggest that HFD-induced behavioral deficits were resemblance to ADHD-like behavioral phenotypes and disturbs REM sleep by dysregulating the dopaminergic system.
Collapse
Affiliation(s)
- Jiseung Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Mincheol Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
65
|
Haldar P, Prasad K, Kant S, Dwivedi SN, Vibha D, Pandit AK, Srivastava AK, Kumar A, Ikram MA, Henning T. Metabolic risk factors and psychosocial problems independently explain poor sleep quality and obstructive sleep apnea symptoms among adults in urban India. Sleep Breath 2023; 27:1541-1555. [PMID: 36280653 DOI: 10.1007/s11325-022-02725-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
STUDY OBJECTIVES To determine if metabolic risk factors are associated with poor sleep quality and obstructive sleep apnea-like symptoms (OSA symptoms) independent of psychosocial problems and demographic and lifestyle factors in older Indian adults. METHODOLOGY We analyzed baseline data from adults (≥ 50 years) from a population-based cohort, the LoCARPoN study, in India. Variables were grouped as (a) demographic and lifestyle factors such as smoking, alcohol use, and physical activity; (b) psychosocial problems including symptoms of depression, anxiety, and perceived stress; and (c) metabolic risk factors including glycated hemoglobin, high-density lipoprotein, low-density lipoprotein, total cholesterol, body mass index, and hypertension. Variables were examined as predictors of poor sleep quality and OSA symptoms. Groups of variables were added stepwise to a logistic regression. Variance explained by nested models was quantified using McFadden's pseudo R2, and change was formally tested with the log-likelihood ratio test. RESULTS Among 7505 adults, the prevalence of poor sleep quality was 16.9% (95% CI: 16.0, 17.7), and OSA symptoms were present in 7.0% (95% CI: 6.4, 7.6). Psychosocial problems had a strong independent association with both poor sleep quality (pseudo R2 increased from 0.10 to 0.15, p < 0.001) and more OSA symptoms (pseudo R2 increased from 0.08 to 0.10, p < 0.001). Metabolic risk factors had a modest independent association with sleep quality (pseudo R2 increased from 0.14 to 0.15, p < 0.01), but a strong association with OSA symptoms (pseudo R2 increased from 0.08 to 0.10, p < 0.001). CONCLUSION Psychosocial and metabolic risk factors were independently associated with sleep quality and OSA symptoms. This fact implied that OSA symptoms may affect both mental health and physical health. Our findings have public health implications because the number and proportion of the elderly in India is increasing, while the prevalence of metabolic risk factors and psychosocial problems is high already. These facts have the potential to exacerbate not only the burden of sleep disorders and OSA symptoms but also associated cardiovascular and neurologic sequelae, further stretching the Indian health-care system.
Collapse
Affiliation(s)
- Partha Haldar
- Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Kameshwar Prasad
- Rajendra Institute of Medical Sciences, Ranchi, 834009, Jharkhand, India.
| | - Shashi Kant
- Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sada Nand Dwivedi
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Deepti Vibha
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Awadh Kishor Pandit
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Amit Kumar
- Rajendra Institute of Medical Sciences, Ranchi, 834009, Jharkhand, India
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tiemeier Henning
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
66
|
Wiest A, Chung S. Exploring non-rapid eye movement sleep substages in rats to develop biomarkers for depression. Sleep 2023; 46:zsad117. [PMID: 37084776 PMCID: PMC10334478 DOI: 10.1093/sleep/zsad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Indexed: 04/23/2023] Open
Affiliation(s)
- Alyssa Wiest
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
67
|
Sánchez-Narváez F, Velasco-Orozco JJ, Pérez-Archundia E. Burnout Syndrome and Sleep Quality in Basic Education Teachers in Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6276. [PMID: 37444122 PMCID: PMC10341465 DOI: 10.3390/ijerph20136276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Burnout syndrome (BS) is the result of chronic stress in the workplace. Moreover, chronic stress can affect sleep. A unidirectional relationship has been established between burnout and sleep, and it is known that white-collar workers with burnout syndrome have sleep fragmentation and marked daytime sleepiness. OBJECTIVE The aim of this study was to assess the relationships between burnout and sleep quality in elementary school teachers in Mexico. METHODS We collected data from more than 400 teachers who completed tests. Correlation analyses controlled for anxiety and depression, and Poisson logistic regression analyses were performed to examine the relationships of burnout with sleep quality, depression, and anxiety. RESULTS There was a significant correlation between burnout syndrome (mainly in the dimension of emotional exhaustion) and sleep disturbances; significant correlations were also observed with other burnout, depression, and anxiety dimensions. The strength of the correlations decreased after controlling for depression and anxiety. CONCLUSIONS The symptoms of burnout syndrome in teachers can overlap with sleep disorders, so it is necessary to make a differential diagnosis to differentiate burnout syndrome from depression and anxiety, among others.
Collapse
Affiliation(s)
- Francisco Sánchez-Narváez
- Faculty of Humanities-Enterprise, Universidad Estatal del Valle de Ecatepec, Valle de Anahuac, Ecatepec 55210, Mexico
- Mexican Institute of Integral Sleep Medicine, del Valle, Benito Juárez 03100, Mexico
| | - Juan Jesús Velasco-Orozco
- Faculty of Anthropology, Universidad Autónoma del Estado de México, Universidad, St. Toluca 50130, Mexico
- Instituto Superior de Ciencias de la Educación del Estado de México, Santa Cruz, Toluca 50030, Mexico
| | - Eduardo Pérez-Archundia
- Instituto Superior de Ciencias de la Educación del Estado de México, Santa Cruz, Toluca 50030, Mexico
| |
Collapse
|
68
|
Chai Y, Gehrman P, Yu M, Mao T, Deng Y, Rao J, Shi H, Quan P, Xu J, Zhang X, Lei H, Fang Z, Xu S, Boland E, Goldschmied JR, Barilla H, Goel N, Basner M, Thase ME, Sheline YI, Dinges DF, Detre JA, Zhang X, Rao H. Enhanced amygdala-cingulate connectivity associates with better mood in both healthy and depressive individuals after sleep deprivation. Proc Natl Acad Sci U S A 2023; 120:e2214505120. [PMID: 37339227 PMCID: PMC10293819 DOI: 10.1073/pnas.2214505120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/08/2023] [Indexed: 06/22/2023] Open
Abstract
Sleep loss robustly disrupts mood and emotion regulation in healthy individuals but can have a transient antidepressant effect in a subset of patients with depression. The neural mechanisms underlying this paradoxical effect remain unclear. Previous studies suggest that the amygdala and dorsal nexus (DN) play key roles in depressive mood regulation. Here, we used functional MRI to examine associations between amygdala- and DN-related resting-state connectivity alterations and mood changes after one night of total sleep deprivation (TSD) in both healthy adults and patients with major depressive disorder using strictly controlled in-laboratory studies. Behavioral data showed that TSD increased negative mood in healthy participants but reduced depressive symptoms in 43% of patients. Imaging data showed that TSD enhanced both amygdala- and DN-related connectivity in healthy participants. Moreover, enhanced amygdala connectivity to the anterior cingulate cortex (ACC) after TSD associated with better mood in healthy participants and antidepressant effects in depressed patients. These findings support the key role of the amygdala-cingulate circuit in mood regulation in both healthy and depressed populations and suggest that rapid antidepressant treatment may target the enhancement of amygdala-ACC connectivity.
Collapse
Affiliation(s)
- Ya Chai
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai201620, China
- Center for Functional Neuroimaging and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Philip Gehrman
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Meichen Yu
- Indiana Alzheimer’s Disease Research Center, School of Medicine, Indiana University, Indianapolis, IN46202
- Indiana University Network Science Institute, Bloomington, IN47408
| | - Tianxin Mao
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai201620, China
- Center for Functional Neuroimaging and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Yao Deng
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai201620, China
- Center for Functional Neuroimaging and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Joy Rao
- Center for Functional Neuroimaging and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Hui Shi
- Center for Functional Neuroimaging and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Beijing An Zhen Hospital, Capital Medical University, Beijing100029, China
| | - Peng Quan
- Center for Functional Neuroimaging and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Research Center for Quality of Life and Applied Psychology, Guangdong Medical University, Dongguan, Guangdong524023, China
| | - Jing Xu
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai201620, China
- Center for Functional Neuroimaging and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Xiaocui Zhang
- Center for Functional Neuroimaging and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan410017, China
| | - Hui Lei
- Center for Functional Neuroimaging and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- College of Education, Hunan Agricultural University, Changsha, Hunan410127, China
| | - Zhuo Fang
- Center for Functional Neuroimaging and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sihua Xu
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai201620, China
- Center for Functional Neuroimaging and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Elaine Boland
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Mental Illness Research Education and Clinical Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA19104
| | - Jennifer R. Goldschmied
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Holly Barilla
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Namni Goel
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL60612
| | - Mathias Basner
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Michael E. Thase
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Mental Illness Research Education and Clinical Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA19104
| | - Yvette I. Sheline
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Center for Neuromodulation in Depression and Stress, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - David F. Dinges
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - John A. Detre
- Center for Functional Neuroimaging and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Xiaochu Zhang
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai201620, China
- Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui230026, China
- Department of Psychology, School of Humanities and Social Science, University of Science and Technology of China, Anhui230026, China
| | - Hengyi Rao
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai201620, China
- Center for Functional Neuroimaging and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
69
|
Xia TJ, Wang Z, Jin SW, Liu XM, Liu YG, Zhang SS, Pan RL, Jiang N, Liao YH, Yan MZ, Du LD, Chang Q. Melatonin-related dysfunction in chronic restraint stress triggers sleep disorders in mice. Front Pharmacol 2023; 14:1210393. [PMID: 37408758 PMCID: PMC10318904 DOI: 10.3389/fphar.2023.1210393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023] Open
Abstract
Stress may trigger sleep disorders and are also risk factors for depression. The study explored the melatonin-related mechanisms of stress-associated sleep disorders on a mouse model of chronic stress by exploring the alteration in sleep architecture, melatonin, and related small molecule levels, transcription and expression of melatonin-related genes as well as proteins. Mice undergoing chronic restraint stress modeling for 28 days showed body weight loss and reduced locomotor activity. Sleep fragmentation, circadian rhythm disorders, and insomnia exhibited in CRS-treated mice formed sleep disorders. Tryptophan and 5-hydroxytryptamine levels were increased in the hypothalamus, while melatonin level was decreased. The transcription and expression of melatonin receptors were reduced, and circadian rhythm related genes were altered. Expression of downstream effectors to melatonin receptors was also affected. These results identified sleep disorders in a mice model of chronic stress. The alteration of melatonin-related pathways was shown to trigger sleep disorders.
Collapse
Affiliation(s)
- Tian-Ji Xia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Su-Wei Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Min Liu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yong-Guang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan-Shan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Le Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Hong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Zhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Da Du
- Institute of Molecular Medicine and Innovative Pharmaceutics, Qingdao University, Qingdao, China
- Department of Surgery, University of Toronto, Toronto, TO, Canada
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
70
|
Ratna D, Mondal AC, Mallick BN. Modulation of dopamine from ventral tegmental area neurons by the LC-REM-OFF and PPT-REM-ON neurons in REMS regulation in freely moving rats. Neuropharmacology 2023:109621. [PMID: 37276957 DOI: 10.1016/j.neuropharm.2023.109621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
The role of dopamine (DA)-ergic neurons in ventral tegmental area (VTA) in schizophrenia, depression, hallucinations have been extensively studied. Rapid eye movement sleep (REMS), the closest objective correlate of dream and hallucination, is disrupted during these psychological dysfunctions; however, it was unknown if there is any common neuronal substrate for their regulation. Interactions among locus coeruleus (LC) REM-OFF and pedunculopontine tegmentum (PPT) REM-ON neurons have been reported to regulate REMS in health and diseases. Recently we have reported that PPT neurons modulate VTA and REMS. However, although VTA-DA neurons receive projections from LC and PPT, their role in REMS regulation was unclear. We proposed that the LC and PPT might intermittently modulate VTA-DA neurons and modulate REMS. Male Wistar rats were surgically prepared and electrophysiological wakefulness-sleep-REMS recorded in chronic freely moving condition. We employed RNAi induced downregulation of tyrosine hydroxylase (TH) to evaluate the role of VTA-DA in regulating REMS. We observed that TH-knockdown in VTA decreased REMS in experimental rats, which returned to baseline upon PPT stimulation. Thus, VTA-DA neurons are activated by the REM-ON neurons to modulate REMS, the closest objectively recordable correlate of dreams. In these animals, LC stimulation altered Non-REMS and waking. Based on the findings we have discussed the role of VTA neurochemical circuitry in REMS regulation and their possible implications with REMS-associated dreaming and hallucination in health and diseases.
Collapse
Affiliation(s)
- Deshdeepak Ratna
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amal Chandra Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Birendra Nath Mallick
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Amity Institute of Neuropsychology & Neurosciences, Amity University Campus, Sector 125, Noida, 201313, Gautam Budh Nagar, Uttar Pradesh, India.
| |
Collapse
|
71
|
Fasiello E, Scarpelli S, Gorgoni M, Alfonsi V, Galbiati A, De Gennaro L. A systematic review of dreams and nightmares recall in patients with rapid eye movement sleep behaviour disorder. J Sleep Res 2023; 32:e13768. [PMID: 36316953 DOI: 10.1111/jsr.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/08/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Rapid eye movement (REM) sleep behaviour disorder is a REM sleep parasomnia characterised by the loss of the physiological muscle atonia during REM sleep, resulting in dream enactment behaviours that may cause injuries to patients or their bed partners. The nocturnal motor episodes seem to respond to the dream contents, which are often vivid and violent. These behavioural and oneiric features make the REM sleep behaviour disorder a potential model to study dreams. This review aims to unify the literature about dream recall in REM sleep behaviour disorder as a privileged approach to study dreams, systematically reviewing studies that applied retrospective and prospective experimental designs to provide a comprehensive overview of qualitative and quantitative aspects of dream recall in this REM sleep parasomnia. The present work highlights that the study of dreaming in REM sleep behaviour disorder is useful to understand unique aspects of this pathology and to explore neurobiological, electrophysiological, and cognitive mechanisms of REM sleep and dreaming.
Collapse
Affiliation(s)
| | - Serena Scarpelli
- Department of Psychology, Sapienza - University of Rome, Rome, Italy
| | - Maurizio Gorgoni
- Department of Psychology, Sapienza - University of Rome, Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Valentina Alfonsi
- Department of Psychology, Sapienza - University of Rome, Rome, Italy
| | - Andrea Galbiati
- "Vita-Salute", San Raffaele University, Milan, Italy
- Department of Clinical Neuroscience, Neurology and Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza - University of Rome, Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
72
|
Drakatos P, O'Regan D, Liao Y, Panayiotou C, Higgins S, Kabiljo R, Benson J, Pool N, Tahmasian M, Romigi A, Nesbitt A, Stokes PRA, Kumari V, Young AH, Rosenzweig I. Profile of sleep disturbances in patients with recurrent depressive disorder or bipolar affective disorder in a tertiary sleep disorders service. Sci Rep 2023; 13:8785. [PMID: 37258713 PMCID: PMC10232417 DOI: 10.1038/s41598-023-36083-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/29/2023] [Indexed: 06/02/2023] Open
Abstract
Bidirectional relationship between sleep disturbances and affective disorders is increasingly recognised, but its underlying mechanisms are far from clear, and there is a scarcity of studies that report on sleep disturbances in recurrent depressive disorder (RDD) and bipolar affective disorder (BPAD). To address this, we conducted a retrospective study of polysomnographic and clinical records of patients presenting to a tertiary sleep disorders clinic with affective disorders. Sixty-three BPAD patients (32 female; mean age ± S.D.: 41.8 ± 12.4 years) and 126 age- and gender-matched RDD patients (62 female; 41.5 ± 12.8) were studied. Whilst no significant differences were observed in sleep macrostructure parameters between BPAD and RDD patients, major differences were observed in comorbid sleep and physical disorders, both of which were higher in BPAD patients. Two most prevalent sleep disorders, namely obstructive sleep apnoea (OSA) (BPAD 50.8.0% vs RDD 29.3%, P = 0.006) and insomnia (BPAD 34.9% vs RDD 15.0%, P = 0.005) were found to be strongly linked with BPAD. In summary, in our tertiary sleep clinic cohort, no overt differences in the sleep macrostructure between BPAD and RDD patients were demonstrated. However, OSA and insomnia, two most prevalent sleep disorders, were found significantly more prevalent in patients with BPAD, by comparison to RDD patients. Also, BPAD patients presented with significantly more severe OSA, and with higher overall physical co-morbidity. Thus, our findings suggest an unmet/hidden need for earlier diagnosis of those with BPAD.
Collapse
Affiliation(s)
- Panagis Drakatos
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, Box 089, London, SE5 8AF, UK
| | - David O'Regan
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, Box 089, London, SE5 8AF, UK
| | - Yingqi Liao
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, Box 089, London, SE5 8AF, UK
| | - Constantinos Panayiotou
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, Box 089, London, SE5 8AF, UK
| | - Sean Higgins
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, Box 089, London, SE5 8AF, UK
| | - Renata Kabiljo
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, Box 089, London, SE5 8AF, UK
- Department of Biostatistics and Health Informatics, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK
| | - Joshua Benson
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Norman Pool
- Department of Neuropsychiatry, St George's Hospital, South West London and St George's Mental Health NHS Trust, London, UK
| | - Masoud Tahmasian
- Institute of Neuroscience and Medicine Research, Brain and Behaviour (INM-7), Jülich Research Center, Jülich, Germany & Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Andrea Romigi
- IRCCS Neuromed Istituto Neurologico Mediterraneo Pozzilli (IS), Pozzilli, Italy
| | - Alexander Nesbitt
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, Box 089, London, SE5 8AF, UK
- Department of Neurology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Paul R A Stokes
- Department of Psychological Medicine, Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Veena Kumari
- Division of Psychology, Department of Life Sciences, & Centre for Cognitive Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, UK
| | - Allan H Young
- Department of Psychological Medicine, King's College London & South London and Maudsley NHS Foundation Trust, Institute of Psychiatry, Psychology and Neuroscience, Bethlem Royal Hospital, Beckenham, UK
| | - Ivana Rosenzweig
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK.
- Department of Neuroimaging, Sleep and Brain Plasticity Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, Box 089, London, SE5 8AF, UK.
| |
Collapse
|
73
|
Kantor S, Lanigan M, Giggins L, Lione L, Magomedova L, de Lannoy I, Upton N, Duxon M. Ketamine supresses REM sleep and markedly increases EEG gamma oscillations in the Wistar Kyoto rat model of treatment-resistant depression. Behav Brain Res 2023; 449:114473. [PMID: 37146722 DOI: 10.1016/j.bbr.2023.114473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 05/07/2023]
Abstract
Wistar-Kyoto (WKY) rats exhibit depression-like characteristics and decreased sensitivity to monoamine-based antidepressants, making them a suitable model of treatment-resistant depression (TRD). Ketamine has emerged recently as a rapidly acting antidepressant with high efficacy in TRD. Our aim was to determine whether subanaesthetic doses of ketamine can correct sleep and electroencephalogram (EEG) alterations in WKY rats and whether any ketamine-induced changes differentially affect WKY rats compared to Sprague-Dawley (SD) rats. Thus, we surgically implanted 8SD and 8 WKY adult male rats with telemetry transmitters and recorded their EEG, electromyogram, and locomotor activity after vehicle or ketamine (3, 5 or 10mg/kg, s.c.) treatment. We also monitored the plasma concentration of ketamine and its metabolites, norketamine and hydroxynorketamine in satellite animals. We found that WKY rats, have an increased amount of rapid eye movement (REM) sleep, fragmented sleep-wake pattern, and increased EEG delta power during non-REM sleep compared to SD rats. Ketamine suppressed REM sleep and increased EEG gamma power during wakefulness in both strains, but the gamma increase was almost twice as large in WKY rats than in SD rats. Ketamine also increased beta oscillations, but only in WKY rats. These differences in sleep and EEG are unlikely to be caused by dissimilarities in ketamine metabolism as the plasma concentrations of ketamine and its metabolites were similar in both strains. Our data suggest an enhanced antidepressant-like response to ketamine in WKY rats, and further support the predictive validity of acute REM sleep suppression as a measure of antidepressant responsiveness.
Collapse
Affiliation(s)
- Sandor Kantor
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom; Transpharmation Canada, Fergus, ON, N1M 2W8, Canada.
| | - Michael Lanigan
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom; University of Hertfordshire, College Lane, Hatfield, Herts, AL10 9AD, United Kingdom
| | - Lauren Giggins
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom
| | - Lisa Lione
- University of Hertfordshire, College Lane, Hatfield, Herts, AL10 9AD, United Kingdom
| | | | | | - Neil Upton
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom
| | - Mark Duxon
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom; Transpharmation Canada, Fergus, ON, N1M 2W8, Canada
| |
Collapse
|
74
|
Rexrode L, Tennin M, Babu J, Young C, Bollavarapu R, Lawson LA, Valeri J, Pantazopoulos H, Gisabella B. Regulation of dendritic spines in the amygdala following sleep deprivation. FRONTIERS IN SLEEP 2023; 2:1145203. [PMID: 37928499 PMCID: PMC10624159 DOI: 10.3389/frsle.2023.1145203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The amygdala is a hub of emotional circuits involved in the regulation of cognitive and emotional behaviors and its critically involved in emotional reactivity, stress regulation, and fear memory. Growing evidence suggests that the amygdala plays a key role in the consolidation of emotional memories during sleep. Neuroimaging studies demonstrated that the amygdala is selectively and highly activated during rapid eye movement sleep (REM) and sleep deprivation induces emotional instability and dysregulation of the emotional learning process. Regulation of dendritic spines during sleep represents a morphological correlate of memory consolidation. Several studies indicate that dendritic spines are remodeled during sleep, with evidence for broad synaptic downscaling and selective synaptic upscaling in several cortical areas and the hippocampus. Currently, there is a lack of information regarding the regulation of dendritic spines in the amygdala during sleep. In the present work, we investigated the effect of 5 h of sleep deprivation on dendritic spines in the mouse amygdala. Our data demonstrate that sleep deprivation results in differential dendritic spine changes depending on both the amygdala subregions and the morphological subtypes of dendritic spines. We observed decreased density of mushroom spines in the basolateral amygdala of sleep deprived mice, together with increased neck length and decreased surface area and volume. In contrast, we observed greater densities of stubby spines in sleep deprived mice in the central amygdala, indicating that downscaling selectively occurs in this spine type. Greater neck diameters for thin spines in the lateral and basolateral nuclei of sleep deprived mice, and decreases in surface area and volume for mushroom spines in the basolateral amygdala compared to increases in the cental amygdala provide further support for spine type-selective synaptic downscaling in these areas during sleep. Our findings suggest that sleep promotes synaptic upscaling of mushroom spines in the basolateral amygdala, and downscaling of selective spine types in the lateral and central amygdala. In addition, we observed decreased density of phosphorylated cofilin immunoreactive and growth hormone immunoreactive cells in the amygdala of sleep deprived mice, providing further support for upscaling of dendritic spines during sleep. Overall, our findings point to region-and spine type-specific changes in dendritic spines during sleep in the amygdala, which may contribute to consolidation of emotional memories during sleep.
Collapse
Affiliation(s)
- Lindsay Rexrode
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Matthew Tennin
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jobin Babu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Caleb Young
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ratna Bollavarapu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lamiorkor Ameley Lawson
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
75
|
Geoffroy PA, Schroder CM, Bourgin P, Maruani J, Lejoyeux M, d'Ortho MP, Couffignal C. Validation of a data collection set for the psychiatric, addiction, sleep and chronobiological assessments of patients with depression: A Delphi study for the SoPsy-depression French national cohort. L'ENCEPHALE 2023; 49:117-123. [PMID: 36257850 DOI: 10.1016/j.encep.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Despite international efforts to identify biomarkers of depression, none has been transferred to clinical practice, neither for diagnosis, evolution, nor therapeutic response. This led us to build a French national cohort (through the clinical and research network named SoPsy within the French biological psychiatry society (AFPBN) and sleep society (SFRMS)), to better identify markers of sleep and biological rhythms and validate more homogeneous subgroups of patients, but also to specify the manifestations and pathogeneses of depressive disorders. Before inclusions, we sought to provide a predefined, standardized, and robust set of data to be collected in all centers. METHODS A Delphi process was performed to achieve consensus through the independent rating of invited experts, the SoPsy-depression co-investigators (n=34). The initial set open for vote included 94 questionnaires targeting adult and child psychiatry, sleep and addiction. RESULTS Two questionnaire rounds were completed with 94% participation in the first round and 100% participation in the second round. The results of the Delphi survey incorporated the consensus opinion of the 32 members who completed both rounds. Nineteen of the 94 questionnaires achieved consensus at the first round and seventy of 75 at the second round. The five remaining questionnaires were submitted to three experts involved in the steering committee during a dedicated meeting. At the end, 24 questionnaires were retained in the mandatory and 26 in the optional questionnaire set. CONCLUSIONS A validated data collection set of questionnaires is now available to assess psychiatry, addiction, sleep and chronobiology dimensions of depressive disorders.
Collapse
Affiliation(s)
- P A Geoffroy
- Département de psychiatrie et d'addictologie, GHU Paris Nord, DMU neurosciences, hôpital Bichat - Claude Bernard, AP-HP, 75018 Paris, France; GHU Paris - psychiatry & neurosciences, 1, rue Cabanis, 75014 Paris, France; NeuroDiderot, Inserm, FHU I2-D2, université Paris Cité, 75019 Paris, France; CNRS UPR 3212, Institute for cellular and integrative neurosciences, 67000 Strasbourg, France.
| | - C M Schroder
- CNRS UPR 3212, Institute for cellular and integrative neurosciences, 67000 Strasbourg, France; Department of child and adolescent psychiatry, Strasbourg university and Strasbourg university hospitals, Strasbourg, France; Sleep disorders center & CIRCSom (International Research Center for ChronoSomnology), CHRU, Strasbourg, France
| | - P Bourgin
- CNRS UPR 3212, Institute for cellular and integrative neurosciences, 67000 Strasbourg, France; Sleep disorders center & CIRCSom (International Research Center for ChronoSomnology), CHRU, Strasbourg, France
| | - J Maruani
- Département de psychiatrie et d'addictologie, GHU Paris Nord, DMU neurosciences, hôpital Bichat - Claude Bernard, AP-HP, 75018 Paris, France; GHU Paris - psychiatry & neurosciences, 1, rue Cabanis, 75014 Paris, France; NeuroDiderot, Inserm, FHU I2-D2, université Paris Cité, 75019 Paris, France
| | - M Lejoyeux
- Département de psychiatrie et d'addictologie, GHU Paris Nord, DMU neurosciences, hôpital Bichat - Claude Bernard, AP-HP, 75018 Paris, France; GHU Paris - psychiatry & neurosciences, 1, rue Cabanis, 75014 Paris, France; NeuroDiderot, Inserm, FHU I2-D2, université Paris Cité, 75019 Paris, France
| | - M-P d'Ortho
- NeuroDiderot, Inserm, FHU I2-D2, université Paris Cité, 75019 Paris, France; Service de physiologie - explorations fonctionnelles, centre du sommeil, hôpital Bichat, AP-HP, 75018 Paris, France
| | - C Couffignal
- Département de biostatistique, épidémiologie et recherche clinique, Hôpital Bichat, université Paris Cité, AP-HP, 75018 Paris, France
| | | |
Collapse
|
76
|
Foilb AR, Taylor-Yeremeeva EM, Fritsch EL, Ravichandran C, Lezak KR, Missig G, McCullough KM, Carlezon WA. Differential effects of the stress peptides PACAP and CRF on sleep architecture in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533872. [PMID: 36993188 PMCID: PMC10055371 DOI: 10.1101/2023.03.22.533872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Stress produces profound effects on behavior, including persistent alterations in sleep patterns. Here we examined the effects of two prototypical stress peptides, pituitary adenylate cyclase-activating polypeptide (PACAP) and corticotropin-releasing factor (CRF), on sleep architecture and other translationally-relevant endpoints. Male and female mice were implanted with subcutaneous transmitters enabling continuous measurement of electroencephalography (EEG) and electromyography (EMG), as well as body temperature and locomotor activity, without tethering that restricts free movement, body posture, or head orientation during sleep. At baseline, females spent more time awake (AW) and less time in slow wave sleep (SWS) than males. Mice then received intracerebral infusions of PACAP or CRF at doses producing equivalent increases in anxiety-like behavior. The effects of PACAP on sleep architecture were similar in both sexes and resembled those reported in male mice after chronic stress exposure. Compared to vehicle infusions, PACAP infusions decreased time in AW, increased time in SWS, and increased rapid eye movement sleep (REM) time and bouts on the day following treatment. In addition, PACAP effects on REM time remained detectable a week after treatment. PACAP infusions also reduced body temperature and locomotor activity. Under the same experimental conditions, CRF infusions had minimal effects on sleep architecture in either sex, causing only transient increases in SWS during the dark phase, with no effects on temperature or activity. These findings suggest that PACAP and CRF have fundamentally different effects on sleep-related metrics, and provide new insights into the mechanisms by which stress disrupts sleep.
Collapse
Affiliation(s)
- Allison R Foilb
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Elisa M Taylor-Yeremeeva
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Emma L Fritsch
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Caitlin Ravichandran
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Kimberly R Lezak
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Galen Missig
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Kenneth M McCullough
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - William A Carlezon
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
77
|
BaHammam AS, Pirzada AR, Pandi-Perumal SR. Neurocognitive, mood changes, and sleepiness in patients with REM-predominant obstructive sleep apnea. Sleep Breath 2023; 27:57-66. [PMID: 35318576 DOI: 10.1007/s11325-022-02602-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE This article focuses on recent evidence linking rapid eye movement (REM) obstructive sleep apnea (OSA) (REM-OSA) to neurocognitive dysfunction and mood changes; the proposed mechanisms for increased risk of neurocognitive dysfunction in REM-OSA, and future research prospects. METHODS PubMed and Google Scholar records were examined for articles utilizing pre-defined keywords. In this work, we mainly included studies published after 2017; nevertheless, critical studies published prior to 2017 were considered. RESULTS REM-OSA is an under-recognized stage-related sleep-disordered breathing in which obstructive respiratory events happen chiefly in stage REM. The disorder is commonly seen amongst younger patients and females and has recently been linked to cardiometabolic complications. Although less symptomatic than non-REM-OSA and non-stage-specific OSA, current findings indicate that REM-OSA may have neurocognitive repercussions and mood changes and could be linked to insomnia, increased dreams, and nightmares. CONCLUSION Currently available evidence indicates that REM-OSA may present with insomnia and nightmares and could affect cognitive function and mood.
Collapse
Affiliation(s)
- Ahmed S BaHammam
- Department of Medicine, The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia. .,Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation in the Kingdom of Saudi, Arabia (08-MED511-02), Riyadh, Saudi Arabia.
| | - Abdul Rouf Pirzada
- Department of Medicine, The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,North Cumbria Integrated Care (NCIC), NHS, Carlisle, UK
| | - Seithikurippu R Pandi-Perumal
- Department of Medicine, The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
78
|
A Narrative Review on REM Sleep Deprivation: A Promising Non-Pharmaceutical Alternative for Treating Endogenous Depression. J Pers Med 2023; 13:jpm13020306. [PMID: 36836540 PMCID: PMC9960519 DOI: 10.3390/jpm13020306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Endogenous depression represents a severe mental health condition projected to become one of the worldwide leading causes of years lived with disability. The currently available clinical and non-clinical interventions designed to alleviate endogenous depression-associated symptoms encounter a series of inconveniences, from the lack of intervention effectiveness and medication adherence to unpleasant side effects. In addition, depressive individuals tend to be more frequent users of primary care units, which markedly affects the overall treatment costs. In parallel with the growing incidence of endogenous depression, researchers in sleep science have discovered multiple links between rapid eye movement (REM) sleep patterns and endogenous depression. Recent findings suggest that prolonged periods of REM sleep are associated with different psychiatric disorders, including endogenous depression. In addition, a growing body of experimental work confidently describes REM sleep deprivation (REM-D) as the underlying mechanism of most pharmaceutical antidepressants, proving its utility as either an independent or adjuvant approach to alleviating the symptoms of endogenous depression. In this regard, REM-D is currently being explored for its potential value as a sleep intervention-based method for improving the clinical management of endogenous depression. Therefore, this narrative review represents a comprehensive inventory of the currently available evidence supporting the potential use of REM-D as a reliable, non-pharmaceutical approach for treating endogenous depression, or as an adjuvant practice that could improve the effectiveness of currently used medication.
Collapse
|
79
|
Daffre C, Oliver KI, Nazareno JRS, Mäder T, Seo J, Dominguez JP, Gannon K, Lasko NB, Orr SP, Pace-Schott EF. Rapid eye movement sleep parasympathetic activity predicts wake hyperarousal symptoms following a traumatic event. J Sleep Res 2023; 32:e13685. [PMID: 35915961 PMCID: PMC9851935 DOI: 10.1111/jsr.13685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 02/03/2023]
Abstract
Heart rate variability (HRV) can be used to assess changes in output of the parasympathetic nervous system (PNS). Considering that patients with post-traumatic stress disorder (PTSD) often experience disturbances in sleep, arousal, and autonomic functioning, we sought to explore the association of PNS activity during sleep with hyperarousal symptoms of PTSD. Because a broad literature supports the importance of rapid eye movement (REM) sleep in PTSD, REM-sleep features were specifically examined as predictors of PTSD symptom severity. A total of 90 participants, primarily civilian and female, aged 18-40 years who had experienced a traumatic event in the last 2 years, underwent an ambulatory polysomnography (PSG) acclimation night followed by a second PSG night from which sleep physiological measures were computed. Participants underwent an ambulatory polysomnography (PSG) acclimation night followed by a second PSG night from which sleep physiological measures were computed. PTSD severity was measured using the PTSD Checklist for the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (PCL-5). Dependent variables were total PCL-5 score as well as its hyperarousal symptom subscore. Predictors included REM latency, percentage, density, segment length, and an index of parasympathetic tone (root mean square of the successive differences in the R-R interval or RMSSD). Hierarchical regression models were conducted to analyse the association of REM features with PCL-5 total and hyperarousal subscales. Using hierarchical regression, REM-sleep RMSSD accounted for a significant proportion of the variation in outcome variables, even when accounting for other REM-sleep features. The present findings support hypothesised relationships between PTSD symptomatology and REM-sleep physiology and, specifically, that lowered parasympathetic tone in REM may be an important associate of the hyperarousal symptom cluster in PTSD.
Collapse
Affiliation(s)
- Carolina Daffre
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
| | - Katelyn I. Oliver
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
| | - Jovi R. S. Nazareno
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
| | - Thomas Mäder
- Department of Psychology, University of Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Jeehye Seo
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
- Korea University, Department of Brain & Cognitive Engineering, Seongbuk-gu, Seoul, KR
| | - Jarrod P. Dominguez
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
| | - Karen Gannon
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA
| | - Natasha B. Lasko
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
- Department of Psychiatry, Harvard Medical School, Charlestown, MA
| | - Scott P. Orr
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
- Department of Psychiatry, Harvard Medical School, Charlestown, MA
| | - Edward F. Pace-Schott
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
- Department of Psychiatry, Harvard Medical School, Charlestown, MA
| |
Collapse
|
80
|
Kroeger D, Vetrivelan R. To sleep or not to sleep - Effects on memory in normal aging and disease. AGING BRAIN 2023; 3:100068. [PMID: 36911260 PMCID: PMC9997183 DOI: 10.1016/j.nbas.2023.100068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Sleep behavior undergoes significant changes across the lifespan, and aging is associated with marked alterations in sleep amounts and quality. The primary sleep changes in healthy older adults include a shift in sleep timing, reduced slow-wave sleep, and impaired sleep maintenance. However, neurodegenerative and psychiatric disorders are more common among the elderly, which further worsen their sleep health. Irrespective of the cause, insufficient sleep adversely affects various bodily functions including energy metabolism, mood, and cognition. In this review, we will focus on the cognitive changes associated with inadequate sleep during normal aging and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Daniel Kroeger
- Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| |
Collapse
|
81
|
Abnormal sleep features in adolescent MDD and its potential in diagnosis and prediction of early efficacy. Sleep Med 2023; 106:116-122. [PMID: 36740544 DOI: 10.1016/j.sleep.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/06/2022] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Previous studies have shown that abnormal sleep architectures are the important indicator for diagnosing MDD and predicting the efficacy of antidepressants. However, few studies have focused specifically on adolescents. OBJECTIVE To explore the relationship between abnormal sleep features, including PSG parameters and scale evaluation, and the onset of adolescent MDD, as well as early SSRIs efficacy. METHODS 102 adolescent MDD patients (age 12 to 19-year-old) and 41 similarly age-marched controls were recruited. Demographic data, the HAMD24 and the PSQI scale assessment scores were collected at baseline, latter two were also collected at follow-up. Part of the participants underwent a minimum 7-d medication-free period, and two consecutive night polysomnography. In the follow-up study, MDD patients were treated with standardized SSRIs. Treatment response was assessed every two weeks. RESULTS MDD subjects' parental marital status, REM-sleep latency, N2, N2%, N3, REM-sleep duration, REM % showed significant differences at baseline. REM-sleep latency showed significant prediction of the onset of MDD. The HAMD24 and PSQI scale assessment scores decreased over time in the follow-up study. Specifically, the sleep disorder factor score of HAMD24, the scores of PSQI sleep latency, sleep disorder, sleep efficiency and total score showed significantly differences between responder and non-responder groups. PSQI baseline moderate group showed significant prediction of the early efficacy of SSRIs. CONCLUSION Abnormal sleep PSG parameters and self-evaluation could be predictors for the adolescent MDD onset and early SSRIs efficacy.
Collapse
|
82
|
Alcantara-Zapata DE, Lucero N, De Gregorio N, Astudillo Cornejo P, Ibarra Villanueva C, Baltodano-Calle MJ, Gonzales GF, Behn C. Women's mood at high altitude. sexual dimorphism in hypoxic stress modulation by the tryptophan-melatonin axis. Front Physiol 2023; 13:1099276. [PMID: 36733695 PMCID: PMC9887123 DOI: 10.3389/fphys.2022.1099276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Sexual (and gender)-dimorphism in tolerance to hypobaric hypoxia increasingly matters for a differential surveillance of human activities at high altitude (HA). At low altitudes, the prevalence of anxiety and depression in women has already been found to double when compared with men; it could be expected to even increase on exposure to HA. In purposefully caring for the health of women at HA, the present work explores the potential involvement of the tryptophan (Trp)-melatonin axis in mood changes on exposure to hypobaric hypoxia. The present work highlights some already known anxiogenic effects of HA exposure. Hypoxia and insomnia reduce serotonin (5-HT) availability; the latter defect being expressed as failure of brown adipose tissue (BAT) activation and mood disorders. Rapid eye movement (REM) sleep organization and synapsis restoration that are additionally affected by hypoxia impair memory consolidation. Affective complaints may thus surge, evolving into anxiety and depression. Sex-related differences in neural network organization and hormonal changes during the menstrual cycle, and certainly also during the life cycle, underscore the possibility of 5-HT-related mood alterations, particularly in women on HA exposure. The mean brain rate of 5-HT synthesis at sea level is already 1.5-fold higher in males than in females. sexual dimorphism also evidences the overexpression effects of SERT, a 5-HT transporter protein. Gonadal and thyroid hormones, as influenced by HA exposure, further modulate 5-HT availability and its effects in women. Besides caring for adequate oxygenation and maintenance of one's body core temperature, special precautions concerning women sojourning at HA should include close observations of hormonal cycles and, perhaps, also trials with targeted antidepressants.
Collapse
Affiliation(s)
- D. E. Alcantara-Zapata
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - N. Lucero
- Occupational Health Program, School of Public Health, University of Chile, Santiago, Chile
| | - N. De Gregorio
- Laboratory of Extreme Environments, Department of Physiology and Biophysics, Biomedical Science Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - P. Astudillo Cornejo
- Occupational Ergonomics Program, Department of Kinesiology, University of Atacama, Copiapó, Chile
| | - C. Ibarra Villanueva
- Occupational Ergonomics Program, Department of Kinesiology, University of Atacama, Copiapó, Chile
| | - M. J. Baltodano-Calle
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - G. F. Gonzales
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
- High Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - C. Behn
- Laboratory of Extreme Environments, Department of Physiology and Biophysics, Biomedical Science Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Faculty of Medicine, University of Atacama, Copiapó, Chile
| |
Collapse
|
83
|
Zhao Y, Tao Y, Bao X, Ding Q, Han C, Luo T, Zhang W, Sun J, Shi J. A study on differences about the influencing factors of depressive symptoms between medical staff and residents during 2022 city-wide temporary static management period to fighting against COVID-19 pandemic in Shanghai. Front Public Health 2023; 10:1083144. [PMID: 36699891 PMCID: PMC9868696 DOI: 10.3389/fpubh.2022.1083144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Objectives Our study aimed to identify the latent class of depressive symptoms in the Shanghai population during the city-wide temporary static management period and compare differences in the factors influencing depressive symptoms between medical staff and residents. Methods An online cross-sectional survey was conducted with 840 participants using questionnaires, including Patient Health Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder-7 (GAD-7), Pittsburgh Sleep Quality Index (PSQI), and self-compiled questionnaire (demographic characteristics and internet usage time). Latent class analysis (LCA) was performed based on participants' depressive symptoms. The latent class subgroups were compared using the chi-square test and t-test. Logistic regression was used in our study to analyze the factors influencing depressive symptoms within the medical staff group and residents group and then compare their differences. Results Two distinct subgroups were identified based on the LCA: the group with low-depressive symptoms and the group with high-depressive symptoms. There were significant differences between the two groups (P < 0.05) on age, education level, marital status, internet usage time, identity characteristics (medical staff or residents), family income level, living style, overall quality of sleep, and anxiety levels. Furthermore, logistic regression analysis results showed that compared with the residents group, the participants in the group of medical staff with "increasing internet usage time" and the "daytime dysfunction" would have nearly two times the possibility of getting serious depressive symptoms. Conclusions There are differences in the factors influencing depression symptoms between medical staff and residents during the 2022 city-wide temporary static management period to fighting against the COVID-19 pandemic in Shanghai. We should pay special attention to those with increasing internet usage time and daytime dysfunction in medical staff working in a special environment such as the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Psychological Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yiran Tao
- Department of General Medicine, Zhoupu Health Service Center, Pudong New Area, Shanghai, China
| | - Xiwen Bao
- Shanghai University of Medicine and Health Science Affiliated Zhoupu Hospital, Shanghai, China
| | - Qiang Ding
- Department of Psychological Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Changyan Han
- Department of General Medicine, Zhoupu Health Service Center, Pudong New Area, Shanghai, China
| | - Tingkun Luo
- Department of General Medicine, Zhoupu Health Service Center, Pudong New Area, Shanghai, China
| | - Weijia Zhang
- Department of General Medicine, Zhoupu Health Service Center, Pudong New Area, Shanghai, China
| | - Jinhua Sun
- Department of Psychological Medicine, Children's Hospital of Fudan University, Shanghai, China,*Correspondence: Jinhua Sun ✉
| | - Jiali Shi
- Department of Psychiatry, Tongji University Affiliated Shanghai Pudong New Area Mental Health Center, Shanghai, China,Jiali Shi ✉
| |
Collapse
|
84
|
English BA, Ereshefsky L. Experimental Medicine Approaches in Early-Phase CNS Drug Development. ADVANCES IN NEUROBIOLOGY 2023; 30:417-455. [PMID: 36928860 DOI: 10.1007/978-3-031-21054-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Traditionally, Phase 1 clinical trials were largely conducted in healthy normal volunteers and focused on collection of safety, tolerability, and pharmacokinetic data. However, in the CNS therapeutic area, with more drugs failing in later phase development, Phase 1 trials have undergone an evolution that includes incorporation of novel approaches involving novel study designs, inclusion of biomarkers, and early inclusion of patients to improve the pharmacologic understanding of novel CNS-active compounds early in clinical development with the hope of improving success in later phase pivotal trials. In this chapter, the authors will discuss the changing landscape of Phase 1 clinical trials in CNS, including novel trial methodology, inclusion of pharmacodynamic biomarkers, and experimental medicine approaches to inform early decision-making in clinical development.
Collapse
|
85
|
Park JH, Moon JH, Kim HJ, Kong MH, Oh B, Kim S, Oh YH. Association between weekend catch-up sleep and the risk of depression among Korean middle-aged adults. Sleep Biol Rhythms 2023; 21:51-58. [PMID: 38468911 PMCID: PMC10899926 DOI: 10.1007/s41105-022-00415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Determining whether weekend catch-up sleep (CUS) is related to high risk of depression in the general middle-aged population in Korea. This study is a cross-sectional study analyzing data from 2016 to 2017 collected in the Korea National Health and Nutrition Examination Survey VII-1, 2; less than 35 years, and more than 65 years were excluded. Interviews on sociodemographic characteristics, mood and sleep-related profiles, and comorbid medical conditions were conducted. Participants were divided into three groups according to weekday sleeping time (< 6 h, 6 to ≤ 8 h, and ≥ 8 h). Weekend CUS was identified when nocturnal sleep extension occurred over the weekend. The risk of depression was evaluated using the PHQ-9. The PHQ-9 score differed among the three groups. The prevalence of moderate to severe depressive symptom and PHQ-9 score ≥ 10 was the highest in the group sleep over 8 h and the next highest in the group sleep less than 6 h. In the group sleep less than 6 h, PHQ-9 score ≥ 10 was significantly higher in the without CUS group than the with CUS group. The risk of depression in middle-aged individuals was associated with both short and long sleep duration, and the severity and prevalence of depression were lower in the group with CUS when a shortened sleep pattern was observed. Supplementary Information The online version contains supplementary material available at 10.1007/s41105-022-00415-3.
Collapse
Affiliation(s)
- Jung Ha Park
- Department of Family Medicine, Jeju National University Hospital, Jeju, Republic of Korea
| | - Ji Hyun Moon
- Department of Family Medicine, Jeju National University Hospital, Jeju, Republic of Korea
- Department of Family Medicine, School of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Hyeon Ju Kim
- Department of Family Medicine, Jeju National University Hospital, Jeju, Republic of Korea
- Department of Family Medicine, School of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Mi Hee Kong
- Department of Family Medicine, Jeju National University Hospital, Jeju, Republic of Korea
- Department of Family Medicine, School of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Bumjo Oh
- Department of Family Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Sunyoung Kim
- Department of Family Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yun Hwan Oh
- Department of Family Medicine, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong-si, 110, Deokan-ro, Gwangmyeong-si, Gyeonggi-do Republic of Korea
| |
Collapse
|
86
|
Gabova AV, Sarkisova KY. Maternal Methyl-Enriched Diet Normalizes Characteristics of the Sleep–Wake Cycle and Sleep Spindles in Adult Offspring of WAG/Rij Rats with Genetic Absence Epilepsy. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s0022093023010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
87
|
Altena E, Buguet E, Higginson C, Lee E, Douglass A, Spitale N, Robillard R. Vestibular symptoms are related to the proportion of REM sleep in people with sleep complaints: A preliminary report. J Vestib Res 2023; 33:165-172. [PMID: 37066952 PMCID: PMC10357186 DOI: 10.3233/ves-220113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
OBJECTIVE/BACKGROUND Though sleep problems (apnea, insomnia) and related daytime symptoms (fatigue, anxiety, depression) have been associated with vestibular problems (falls, dizziness), it is not well known which particular sleep features relate to vestibular problems. We thus assessed symptoms of vestibular problems in patients visiting a sleep clinic and evaluated how they were associated with objective sleep parameters derived from polysomnography and relevant daytime symptoms. PATIENTS/METHODS The polysomnography data of thirty-one patients (61% female, between 20 and 79 years of age) who were referred for clinical sleep assessment was collated with subjective measures of symptoms linked to vestibular problems (rated on the Situational Characteristics Questionnaire), as well as fatigue, anxiety and depression symptoms. Multiple linear regression was used to identify factors associated with vestibular symptoms, including analyses adjusted for age, sex, medication use and total sleep time. RESULTS A higher percentage of REM sleep and more severe anxiety symptoms were independently associated with more severe vestibular symptoms, which survived adjusted analyses. Other sleep stages, as well as as sleep efficiency, apnea-hypopnea index and oxygen saturation were not significantly related to vestibular symptoms. CONCLUSIONS These results point at vestibular symptoms as possible important and overlooked correlates of variations in sleep architecture in individuals with sleep complaints. Though replication is needed to confirm findings from this limited sample, the results highlight the importance of assessing vestibular symptoms in people with sleep complaints. In particular, further investigations will need to address the potential implication of REM sleep for vestibular functions and the directionality of this relation.
Collapse
Affiliation(s)
| | - Estelle Buguet
- Université de Bordeaux, CNRS UMR 5287, INCIA, Bordeaux, France
| | - Caitlin Higginson
- Sleep Research Unit, Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Canada
- Sleep Disorders Clinic, Royal Ottawa Mental Health Centre, Ottawa, Canada
| | - Elliott Lee
- Sleep Research Unit, Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Canada
- Sleep Disorders Clinic, Royal Ottawa Mental Health Centre, Ottawa, Canada
| | - Alan Douglass
- Sleep Research Unit, Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Canada
- Sleep Disorders Clinic, Royal Ottawa Mental Health Centre, Ottawa, Canada
| | - Naomi Spitale
- Sleep Research Unit, Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Canada
- Sleep Disorders Clinic, Royal Ottawa Mental Health Centre, Ottawa, Canada
| | - Rebecca Robillard
- Sleep Research Unit, Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Canada
- School of Psychology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
88
|
Zhao YN, Jiang JB, Tao SY, Zhang Y, Chen ZK, Qu WM, Huang ZL, Yang SR. GABAergic neurons in the rostromedial tegmental nucleus are essential for rapid eye movement sleep suppression. Nat Commun 2022; 13:7552. [PMID: 36477665 PMCID: PMC9729601 DOI: 10.1038/s41467-022-35299-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Rapid eye movement (REM) sleep disturbances are prevalent in various psychiatric disorders. However, the neural circuits that regulate REM sleep remain poorly understood. Here, we found that in male mice, optogenetic activation of rostromedial tegmental nucleus (RMTg) GABAergic neurons immediately converted REM sleep to arousal and then initiated non-REM (NREM) sleep. Conversely, laser-mediated inactivation completely converted NREM to REM sleep and prolonged REM sleep duration. The activity of RMTg GABAergic neurons increased to a high discharge level at the termination of REM sleep. RMTg GABAergic neurons directly converted REM sleep to wakefulness and NREM sleep via inhibitory projections to the laterodorsal tegmentum (LDT) and lateral hypothalamus (LH), respectively. Furthermore, LDT glutamatergic neurons were responsible for the REM sleep-wake transitions following photostimulation of the RMTgGABA-LDT circuit. Thus, RMTg GABAergic neurons are essential for suppressing the induction and maintenance of REM sleep.
Collapse
Affiliation(s)
- Ya-Nan Zhao
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Jian-Bo Jiang
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Shi-Yuan Tao
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Yang Zhang
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Ze-Ka Chen
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Wei-Min Qu
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Zhi-Li Huang
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| | - Su-Rong Yang
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science; Institutes of Brain Science, Fudan University, Shanghai, 200032 China
| |
Collapse
|
89
|
Heglum HSA, Drews HJ, Kallestad H, Vethe D, Langsrud K, Sand T, Engstrøm M. Contact-free radar recordings of body movement can reflect ultradian dynamics of sleep. J Sleep Res 2022; 31:e13687. [PMID: 35794011 PMCID: PMC9786343 DOI: 10.1111/jsr.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/30/2022]
Abstract
This work aimed to evaluate if a contact-free radar sensor can be used to observe ultradian patterns in sleep physiology, by way of a data processing tool known as Locomotor Inactivity During Sleep (LIDS). LIDS was designed as a simple transformation of actigraphy recordings of wrist movement, meant to emphasise and enhance the contrast between movement and non-movement and to reveal patterns of low residual activity during sleep that correlate with ultradian REM/NREM cycles. We adapted the LIDS transformation for a radar that detects body movements without direct contact with the subject and applied it to a dataset of simultaneous recordings with polysomnography, actigraphy, and radar from healthy young adults (n = 12, four nights of polysomnography per participant). Radar and actigraphy-derived LIDS signals were highly correlated with each other (r > 0.84), and the LIDS signals were highly correlated with reduced-resolution polysomnographic hypnograms (rradars >0.80, ractigraph >0.76). Single-harmonic cosine models were fitted to LIDS signals and hypnograms; significant differences were not found between their amplitude, period, and phase parameters. Mixed model analysis revealed similar slopes of decline per cycle for radar-LIDS, actigraphy-LIDS, and hypnograms. Our results indicate that the LIDS technique can be adapted to work with contact-free radar measurements of body movement; it may also be generalisable to data from other body movement sensors. This novel metric could aid in improving sleep monitoring in clinical and real-life settings, by providing a simple and transparent way to study ultradian dynamics of sleep using nothing more than easily obtainable movement data.
Collapse
Affiliation(s)
- Hanne Siri Amdahl Heglum
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway,Novelda ASTrondheimNorway
| | - Henning Johannes Drews
- Department of Mental HealthNorwegian University of Science and TechnologyTrondheimNorway,Department of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - Håvard Kallestad
- Department of Mental HealthNorwegian University of Science and TechnologyTrondheimNorway,Division of Mental Health CareSt Olavs University HospitalTrondheimNorway
| | - Daniel Vethe
- Department of Mental HealthNorwegian University of Science and TechnologyTrondheimNorway,Division of Mental Health CareSt Olavs University HospitalTrondheimNorway
| | - Knut Langsrud
- Department of Mental HealthNorwegian University of Science and TechnologyTrondheimNorway,Division of Mental Health CareSt Olavs University HospitalTrondheimNorway
| | - Trond Sand
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway,Department of Neurology and Clinical NeurophysiologySt Olavs University HospitalTrondheimNorway
| | - Morten Engstrøm
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway,Department of Neurology and Clinical NeurophysiologySt Olavs University HospitalTrondheimNorway
| |
Collapse
|
90
|
Bovy L, Weber FD, Tendolkar I, Fernández G, Czisch M, Steiger A, Zeising M, Dresler M. Non-REM sleep in major depressive disorder. Neuroimage Clin 2022; 36:103275. [PMID: 36451376 PMCID: PMC9723407 DOI: 10.1016/j.nicl.2022.103275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Disturbed sleep is a key symptom in major depressive disorder (MDD). REM sleep alterations are well described in the current literature, but little is known about non-REM sleep alterations. Additionally, sleep disturbances relate to a variety of cognitive symptoms in MDD, but which features of non-REM sleep EEG contribute to this, remains unknown. We comprehensively analyzed non-REM sleep EEG features in two central channels in three independently collected datasets (N = 284 recordings of 216 participants). This exploratory and descriptive study included MDD patients with a broad age range, varying duration and severity of depression, unmedicated or medicated, age- and gender-matched to healthy controls. We explored changes in sleep architecture including sleep stages and cycles, spectral power, sleep spindles, slow waves (SW), and SW-spindle coupling. Next, we analyzed the association of these sleep features with acute measures of depression severity and overnight consolidation of procedural memory. Overall, no major systematic alterations in non-REM sleep architecture were found in patients compared to controls. For the microstructure of non-REM sleep, we observed a higher spindle amplitude in unmedicated patients compared to controls, and after the start of antidepressant medication longer SWs with lower amplitude and a more dispersed SW-spindle coupling. In addition, long-term, but not short-term medication seemed to lower spindle density. Overnight procedural memory consolidation was impaired in medicated patients and associated with lower sleep spindle density. Our results suggest that alterations of non-REM sleep EEG in MDD might be more subtle than previously reported. We discuss these findings in the context of antidepressant medication intake and age.
Collapse
Affiliation(s)
- Leonore Bovy
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center
| | - Frederik D. Weber
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center,Corresponding author.
| | - Indira Tendolkar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center
| | | | - Axel Steiger
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Marcel Zeising
- Klinikum Ingolstadt, Centre of Mental Health, Ingolstadt, Germany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center
| |
Collapse
|
91
|
Basal Forebrain Cholinergic Innervation Induces Depression-Like Behaviors Through Ventral Subiculum Hyperactivation. Neurosci Bull 2022; 39:617-630. [PMID: 36342657 PMCID: PMC10073402 DOI: 10.1007/s12264-022-00962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractMalfunction of the ventral subiculum (vSub), the main subregion controlling the output connections from the hippocampus, is associated with major depressive disorder (MDD). Although the vSub receives cholinergic innervation from the medial septum and diagonal band of Broca (MSDB), whether and how the MSDB-to-vSub cholinergic circuit is involved in MDD is elusive. Here, we found that chronic unpredictable mild stress (CUMS) induced depression-like behaviors with hyperactivation of vSub neurons, measured by c-fos staining and whole-cell patch-clamp recording. By retrograde and anterograde tracing, we confirmed the dense MSDB cholinergic innervation of the vSub. In addition, transient restraint stress in CUMS increased the level of ACh in the vSub. Furthermore, chemogenetic stimulation of this MSDB-vSub innervation in ChAT-Cre mice induced hyperactivation of vSub pyramidal neurons along with depression-like behaviors; and local infusion of atropine, a muscarinic receptor antagonist, into the vSub attenuated the depression-like behaviors induced by chemogenetic stimulation of this pathway and CUMS. Together, these findings suggest that activating the MSDB-vSub cholinergic pathway induces hyperactivation of vSub pyramidal neurons and depression-like behaviors, revealing a novel circuit underlying vSub pyramidal neuronal hyperactivation and its associated depression.
Collapse
|
92
|
Chen ZK, Dong H, Liu CW, Liu WY, Zhao YN, Xu W, Sun X, Xiong YY, Liu YY, Yuan XS, Wang B, Lazarus M, Chérasse Y, Li YD, Han F, Qu WM, Ding FF, Huang ZL. A cluster of mesopontine GABAergic neurons suppresses REM sleep and curbs cataplexy. Cell Discov 2022; 8:115. [PMID: 36280664 PMCID: PMC9592589 DOI: 10.1038/s41421-022-00456-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Physiological rapid eye movement (REM) sleep termination is vital for initiating non-REM (NREM) sleep or arousal, whereas the suppression of excessive REM sleep is promising in treating narcolepsy. However, the neuronal mechanisms controlling REM sleep termination and keeping sleep continuation remain largely unknown. Here, we reveal a key brainstem region of GABAergic neurons in the control of both physiological REM sleep and cataplexy. Using fiber photometry and optic tetrode recording, we characterized the dorsal part of the deep mesencephalic nucleus (dDpMe) GABAergic neurons as REM relatively inactive and two different firing patterns under spontaneous sleep–wake cycles. Next, we investigated the roles of dDpMe GABAergic neuronal circuits in brain state regulation using optogenetics, RNA interference technology, and celltype-specific lesion. Physiologically, dDpMe GABAergic neurons causally suppressed REM sleep and promoted NREM sleep through the sublaterodorsal nucleus and lateral hypothalamus. In-depth studies of neural circuits revealed that sublaterodorsal nucleus glutamatergic neurons were essential for REM sleep termination by dDpMe GABAergic neurons. In addition, dDpMe GABAergic neurons efficiently suppressed cataplexy in a rodent model. Our results demonstrated that dDpMe GABAergic neurons controlled REM sleep termination along with REM/NREM transitions and represented a novel potential target to treat narcolepsy.
Collapse
Affiliation(s)
- Ze-Ka Chen
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hui Dong
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Cheng-Wei Liu
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wen-Ying Liu
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ya-Nan Zhao
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wei Xu
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiao Sun
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yan-Yu Xiong
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuan-Yuan Liu
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiang-Shan Yuan
- grid.8547.e0000 0001 0125 2443Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bing Wang
- grid.8547.e0000 0001 0125 2443ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Michael Lazarus
- grid.20515.330000 0001 2369 4728International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Yoan Chérasse
- grid.20515.330000 0001 2369 4728International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Ya-Dong Li
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fang Han
- grid.411634.50000 0004 0632 4559Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Wei-Min Qu
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Feng-Fei Ding
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhi-Li Huang
- grid.8547.e0000 0001 0125 2443Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
93
|
Lipinska G, Austin H, Moonsamy JR, Henry M, Lewis R, Baldwin DS, Thomas KGF, Stuart B. Preferential consolidation of emotional reactivity during sleep: A systematic review and meta-analysis. Front Behav Neurosci 2022; 16:976047. [PMID: 36268469 PMCID: PMC9578377 DOI: 10.3389/fnbeh.2022.976047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
Many studies have investigated whether sleep affects cognitively unmodulated reactivity to emotional stimuli. These studies operationalize emotion regulation by using subjective and/or objective measures to compare pre- and post-sleep reactivity to the same emotional stimuli. Findings have been inconsistent: some show that sleep attenuates emotional reactivity, whereas others report enhanced or maintained reactivity. Across-study methodological differences may account for discrepant findings. To resolve the questions of whether sleep leads to the attenuation, enhancement, or maintenance of emotional reactivity, and under which experimental conditions particular effects are observed, we undertook a synthesized narrative and meta-analytic approach. We searched PubMed, PsycINFO, PsycARTICLES, Web of Science, and Cochrane Library databases for relevant articles, using search terms determined a priori and search limits of language = English, participants = human, and dates = January 2006–June 2021. Our final sample included 24 studies that investigated changes in emotional reactivity in response to negatively and/or positively valenced material compared to neutral material over a period of sleep compared to a matched period of waking. Primary analyses used random effects modeling to investigate whether sleep preferentially modulates reactivity in response to emotional stimuli; secondary analyses examined potential moderators of the effect. Results showed that sleep (or equivalent periods of wakefulness) did not significantly affect psychophysiological measures of reactivity to negative or neutral stimuli. However, self-reported arousal ratings of negative stimuli were significantly increased post-sleep but not post-waking. Sub-group analyses indicated that (a) sleep-deprived participants, compared to those who slept or who experienced daytime waking, reacted more strongly and negatively in response to positive stimuli; (b) nap-exposed participants, compared to those who remained awake or who slept a full night, rated negative pictures less negatively; and (c) participants who did not obtain substantial REM sleep, compared to those who did and those exposed to waking conditions, had attenuated reactivity to neutral stimuli. We conclude that sleep may affect emotional reactivity, but that studies need more consistency in methodology, commitment to collecting both psychophysiological and self-report measures, and should report REM sleep parameters. Using these methodological principles would promote a better understanding of under which conditions particular effects are observed.
Collapse
Affiliation(s)
- Gosia Lipinska
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Gosia Lipinska
| | - Holly Austin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jasmin R. Moonsamy
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Michelle Henry
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
- Numeracy Centre, Centre for Higher Education Development, University of Cape Town, Cape Town, South Africa
| | - Raphaella Lewis
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - David S. Baldwin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Kevin G. F. Thomas
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Beth Stuart
- Centre for Evaluation and Methods, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
94
|
Seol J, Lee J, Park I, Tokuyama K, Fukusumi S, Kokubo T, Yanagisawa M, Okura T. Bidirectional associations between physical activity and sleep in older adults: a multilevel analysis using polysomnography. Sci Rep 2022; 12:15399. [PMID: 36100642 PMCID: PMC9470065 DOI: 10.1038/s41598-022-19841-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractAlthough recent studies have examined the bidirectional associations between physical activity and sleep parameters, few have focused on older adults utilizing objective assessments, such as polysomnography. This micro-longitudinal observational study included 92 Japanese older adults (aged 65–86 years) who underwent objective evaluations of sleep quality using polysomnography and completed subjective sleep-related questionnaires. Activity levels were assessed using an accelerometer. Polysomnography, subjective sleep-related questionnaires, and accelerometer were administered for 7 consecutive days. Multilevel models (participant-, day-level) were used to examine the temporal associations of objective and subjective sleep parameters with sedentary behavior and physical activity. In the day-level analysis, higher levels of sedentary behavior during daytime were associated with longer rapid eye movement (REM) sleep, shorter REM latency, lower levels of non-REM sleep (stage N3), and reduced delta power during daytime. Higher levels of low-intensity physical activity during daytime were associated with lower levels of REM sleep, longer REM latency, and increased stage N3 sleep in the day-level analysis. Higher levels of moderate-to-vigorous physical activity were associated with increased REM latency. Longer subjective sleep time was associated with increased next-day moderate-to-vigorous physical activity. Thus, low-intensity physical activity may provide objective benefits related to deep sleep parameters in older adults.
Collapse
|
95
|
Carpenter JS, Zmicerevska N, Crouse JJ, Nichles A, Garland A, Song YJC, Wilson C, Rohleder C, McHugh C, Leweke FM, Koethe D, Scott EM, Hickie IB. Effects of adjunctive brexpiprazole on sleep-wake and circadian parameters in youth with depressive disorders: study protocol for a clinical trial. BMJ Open 2022; 12:e056298. [PMID: 36691133 PMCID: PMC9454051 DOI: 10.1136/bmjopen-2021-056298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/09/2022] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Sleep-wake and circadian disturbance is a key feature of mood disorders with a potential causal role and particular relevance to young people. Brexpiprazole is a second-generation antipsychotic medication with demonstrated efficacy as an adjunct to antidepressant treatment for major depressive disorder (MDD) in adults, with preliminary evidence suggesting greater effectiveness in subgroups of depressed patients with sleep disturbances. This clinical trial aims to evaluate the relationships between changes in sleep-wake and circadian parameters and changes in depressive symptoms following adjunctive brexpiprazole treatment in young adults with MDD and sleep-wake disturbance. METHODS AND ANALYSIS This study is designed as a 16 week (8 weeks active treatment, 8 weeks follow-up) mechanistic, open-label, single-arm, phase IV clinical trial and aims to recruit 50 young people aged 18-30 with MDD and sleep-wake cycle disturbance through an early intervention youth mental health clinic in Sydney, Australia. At baseline, participants will undergo multidimensional outcome assessment and subsequently receive 8 weeks of open-label treatment with brexpiprazole as adjunctive to their stable psychotropic medication. Following 4 weeks of treatment, clinical and self-report measures will be repeated. Ambulatory sleep-wake monitoring will be conducted continuously for the duration of treatment. After 8 weeks of treatment, all multidimensional outcome assessments will be repeated. Follow-up visits will be conducted 4 and 8 weeks after trial completion (including sleep-wake, clinical and self-report assessments). Circadian rhythm biomarkers including salivary melatonin, cortisol and core body temperature will be collected during an in-lab assessment. Additionally, metabolic, inflammatory and genetic risk markers will be collected at baseline and after 8 weeks of treatment. ETHICS AND DISSEMINATION This trial protocol has been approved by the Human Research Ethics Committee of the Sydney Local Health District (X19-0417 and 2019/ETH12986, Protocol Version 1-3, dated 25 February 2021). The results of this study, in deidentified form, will be disseminated through publication in peer-reviewed journals, scholarly book chapters, presentation at conferences and publication in conference proceedings. TRIAL REGISTRATION NUMBER ACTRN12619001456145.
Collapse
Affiliation(s)
- Joanne S Carpenter
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Natalia Zmicerevska
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jacob J Crouse
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Alissa Nichles
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Alexandra Garland
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Yun Ju Christine Song
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Chloe Wilson
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Cathrin Rohleder
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Catherine McHugh
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - F Markus Leweke
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Dagmar Koethe
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Elizabeth M Scott
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
- The University of Notre Dame Australia School of Medicine Sydney Campus, Darlinghurst, New South Wales, Australia
| | - Ian B Hickie
- Brain and Mind Centre, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
96
|
Swift KM, Thomas CL, Balkin TJ, Lowery-Gionta EG, Matson LM. Acute sleep interventions as an avenue for treatment of trauma-associated disorders. J Clin Sleep Med 2022; 18:2291-2312. [PMID: 35678060 PMCID: PMC9435330 DOI: 10.5664/jcsm.10074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022]
Abstract
Scientific evidence that acute, posttrauma sleep disturbances (eg, nightmares and insomnia) can contribute significantly to the pathogenesis of trauma-induced disorders is compelling. Sleep disturbances precipitating from trauma are uniquely predictive of daytime posttrauma symptom occurrence and severity, as well as subsequent onset of mental health disorders, including post-traumatic stress disorder. Conversely, adequate sleep during the acute posttrauma period is associated with reduced likelihood of adverse mental health outcomes. These findings, which are broadly consistent with what is known about the role of sleep in the regulation of emotion, suggest that the acute posttrauma period constitutes a "window of opportunity" during which treatment of sleep disturbances may be especially effective for preventing or mitigating progression of aberrant psychophysiological processes. At this point, the weight of the scientific evidence supporting this possibility warrants initiation of clinical trials to confirm the benefits of targeted prophylactic sleep enhancement, and to establish treatment guidelines as appropriate. CITATION Swift KM, Thomas CL, Balkin TJ, Lowery-Gionta EG, Matson LM. Acute sleep interventions as an avenue for treatment of trauma-associated disorders. J Clin Sleep Med. 2022;18(9):2291-2312.
Collapse
Affiliation(s)
- Kevin M. Swift
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Connie L. Thomas
- Department of Sleep Medicine, Walter Reed National Military Medical Center, Bethesda, Maryland
- Department of Psychiatry, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Thomas J. Balkin
- Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Emily G. Lowery-Gionta
- Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Liana M. Matson
- Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
97
|
Adaptive Solutions to the Problem of Vulnerability During Sleep. EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2022. [DOI: 10.1007/s40806-022-00330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractSleep is a behavioral state whose quantity and quality represent a trade-off between the costs and benefits this state provides versus the costs and benefits of wakefulness. Like many species, we humans are particularly vulnerable during sleep because of our reduced ability to monitor the external environment for nighttime predators and other environmental dangers. A number of variations in sleep characteristics may have evolved over the course of human history to reduce this vulnerability, at both the individual and group level. The goals of this interdisciplinary review paper are (1) to explore a number of biological/instinctual features of sleep that may have adaptive utility in terms of enhancing the detection of external threats, and (2) to consider relatively recent cultural developments that improve vigilance and reduce vulnerability during sleep and the nighttime. This paper will also discuss possible benefits of the proposed adaptations beyond vigilance, as well as the potential costs associated with each of these proposed adaptations. Finally, testable hypotheses will be presented to evaluate the validity of these proposed adaptations.
Collapse
|
98
|
Effects of melatonin supplementation on BDNF concentrations and depression: A systematic review and meta-analysis of randomized controlled trials. Behav Brain Res 2022; 436:114083. [DOI: 10.1016/j.bbr.2022.114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
|
99
|
REM-Predominant Obstructive Sleep Apnea in Patients with Coronary Artery Disease. J Clin Med 2022; 11:jcm11154402. [PMID: 35956019 PMCID: PMC9369551 DOI: 10.3390/jcm11154402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea (OSA) is common in adults with coronary artery disease (CAD). OSA that occurs predominantly during rapid-eye movement (REM) sleep has been identified as a specific phenotype (REM-predominant OSA) in sleep clinic cohorts. We aimed to examine the association of REM-predominant OSA with excessive sleepiness, functional outcomes, mood, and quality of life in a CAD cohort, of whom 286 OSA patients with total sleep time ≥ 240 min, and REM sleep ≥ 30 min, were included. REM-predominant OSA was defined as a REM-apnea-hypopnea-index (AHI) /non-REM (NREM) AHI ≥ 2. In all, 73 (25.5%) had REM-predominant OSA. They were more likely to be female (26.0% vs. 9.9%; p = 0.001), and more obese (42.5% vs. 24.4%; p = 0.003) but had less severe OSA in terms of AHI (median 22.6/h vs. 36.6/h; p < 0.001) compared to the patients with non-stage specific OSA. In adjusted logistic regression models, female sex (odds ratio [OR] 4.64, 95% confidence interval [CI] 1.85−11.64), body-mass-index (BMI; OR 1.17; 95% CI 1.07−1.28) and AHI (OR 0.93, 95% CI 0.91−0.95) were associated with REM-predominant OSA. In univariate linear regression models, there was a dose-response relationship between REM-AHI and Zung Self-rated Depression Scale but not excessive sleepiness, functional outcomes, and anxiety scores. Among the Short Form-36 subdomains, Vitality, Mental Health, and Mental Component Summary (MCS) scores were inversely correlated with REM-AHI. In multivariate linear models, only MCS remained significantly associated with REM-AHI after adjustment for age, BMI, and sex (β-coefficient −2.20, %95 CI [−0.56, −0.03]; p = 0.028). To conclude, female sex and BMI were related to REM-predominant OSA in this revascularized cohort. MCS was inversely associated with REM-AHI in the multivariate model.
Collapse
|
100
|
Depression and Catatonia Associated With Lansoprazole in an Adolescent With Phelan-McDermid Syndrome: A Case Report. J Clin Psychopharmacol 2022; 42:415-416. [PMID: 35551397 DOI: 10.1097/jcp.0000000000001555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|