51
|
Giannopoulou AI, Kanakoglou DS, Papavassiliou AG, Piperi C. Insights into the multi-faceted role of Pioneer transcription factors in glioma formation and progression with targeting options. Biochim Biophys Acta Rev Cancer 2022; 1877:188801. [PMID: 36113627 DOI: 10.1016/j.bbcan.2022.188801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Pioneer transcription factors (TFs) present an important subtype of transcription factors which are vital for cell programming during embryonic development and cellular memory during mitotic growth, as well as cell fate reprogramming. Pioneer TFs can engage specific target binding sites on nucleosomal DNA to attract chromatin remodeling complexes, cofactors, and other transcription factors, ultimately controlling gene expression by shaping locally the epigenome. The priority of binding that they exhibit in contrast to other transcription factors and their involvement in crucial events regarding cell fate, has implicated their aberrant function in the pathogenesis of several disorders including carcinogenesis. Emerging experimental data indicate that certain Pioneer TFs are highly implicated in gliomas development, in neoplastic cell proliferation, angiogenic processes, resistance to therapy, and patient survival. Herein, we describe the main structural characteristics and functional mechanisms of pioneer TFs, focusing on their central role in the pathogenesis and progression of gliomas. We further highlight the current treatment options ranging from natural agents (oleanolic acid) to a variety of chemical compounds (APR-246, COTI-2) and discuss potential delivery systems, including nanoparticles, viral vectors, and intracellular protein delivery techniques.
Collapse
Affiliation(s)
- Angeliki-Ioanna Giannopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,.
| | - Dimitrios S Kanakoglou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,.
| |
Collapse
|
52
|
Cheng X, Lou K, Ding L, Zou X, Huang R, Xu G, Zou J, Zhang G. Clinical potential of the Hippo-YAP pathway in bladder cancer. Front Oncol 2022; 12:925278. [PMID: 35912245 PMCID: PMC9336529 DOI: 10.3389/fonc.2022.925278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer (BC) is one of the world’s most frequent cancers. Surgery coupled with adjuvant platinum-based chemotherapy is the current standard of therapy for BC. However, a high proportion of patients progressed to chemotherapy-resistant or even neoplasm recurrence. Hence, identifying novel treatment targets is critical for clinical treatment. Current studies indicated that the Hippo-YAP pathway plays a crucial in regulating the survival of cancer stem cells (CSCs), which is related to the progression and reoccurrence of a variety of cancers. In this review, we summarize the evidence that Hippo-YAP mediates the occurrence, progression and chemotherapy resistance in BC, as well as the role of the Hippo-YAP pathway in regulating bladder cancer stem-like cells (BCSCs). Finally, the clinical potential of Hippo-YAP in the treatment of BC was prospected.
Collapse
Affiliation(s)
- Xin Cheng
- First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Kecheng Lou
- First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Liang Ding
- First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
| | - Ruohui Huang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
| | - Gang Xu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
| | - Junrong Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
- *Correspondence: Guoxi Zhang,
| |
Collapse
|
53
|
Antonica F, Aiello G, Soldano A, Abballe L, Miele E, Tiberi L. Modeling Brain Tumors: A Perspective Overview of in vivo and Organoid Models. Front Mol Neurosci 2022; 15:818696. [PMID: 35706426 PMCID: PMC9190727 DOI: 10.3389/fnmol.2022.818696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Brain tumors are a large and heterogeneous group of neoplasms that affect the central nervous system and include some of the deadliest cancers. Almost all the conventional and new treatments fail to hinder tumoral growth of the most malignant brain tumors. This is due to multiple factors, such as intra-tumor heterogeneity, the microenvironmental properties of the human brain, and the lack of reliable models to test new therapies. Therefore, creating faithful models for each tumor and discovering tailored treatments pose great challenges in the fight against brain cancer. Over the years, different types of models have been generated, and, in this review, we investigated the advantages and disadvantages of the models currently used.
Collapse
Affiliation(s)
- Francesco Antonica
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giuseppe Aiello
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Luana Abballe
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- *Correspondence: Luca Tiberi,
| |
Collapse
|
54
|
Martin CA, Radhakrishnan S, Ribelles JLG, Trentz O, Eak N, Reddy MS, Rela M, Subbaraya NK. Adipose tissue derived stromal cells in a gelatin based 3D matrix with exclusive ascorbic acid signalling emerged as a novel neural tissue engineering construct – An innovative prototype for soft tissue. Regen Biomater 2022; 9:rbac031. [PMID: 35702348 PMCID: PMC9188297 DOI: 10.1093/rb/rbac031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
The current study investigated a triad, which comprises of adipose tissue derived stem cells isolated from infrapatellar fat pad and gelatin/polyvinyl alcohol (PVA)-based matrix with exclusive ascorbic acid signalling. Though, the bio-mechanical properties of the gelatin–PVA blended scaffolds in wet condition are equivalent to the ECM of soft tissues in general, in this study, the triad was tested as a model for neural tissue engineering. Apart from being cytocompatible and biocompatible, the porosity of the scaffold has been designed in such a manner that it facilitates the cell signalling and enables the exchange of nutrients and gases. The highly proliferative stem cells from Passage 2 were characterized using both, mesenchymal and embryonic stem cell markers. As an initial exploration the mesenchymal stem cells at Passage 4 were exposed to ascorbic acid and basic fibroblast growth factor signalling for neuronal differentiation in 2D environment independently. The MSCs successfully differentiated and acquired neuron specific markers related to cytoskeleton and synapses. Subsequently, three phases of experiments have been conducted on the 3D gelatin/PVA matrix to prove their efficacy, the growth of stem cells, growth of differentiated neurons and the in situ growth and differentiation of MSCs. The scaffold was conducive and directed MSCs to neuronal lineage under specific signalling. Overall, this organotypic model triad could open a new avenue in the field of soft tissue engineering as a simple and effective tissue construct.
Collapse
Affiliation(s)
- Catherine Ann Martin
- Crystal Growth Centre, Anna University, Chennai-600025, India
- Cell Laboratory, National Foundation for Liver Research, Chrompet, Chennai-600044, India
| | - Subathra Radhakrishnan
- Cell Laboratory, National Foundation for Liver Research, Chrompet, Chennai-600044, India
| | - Jose Luis Gómez Ribelles
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n., 46022, Valencia, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Omana Trentz
- MIOT Institute of Research, MIOT Hospitals, Chennai-600089, India
| | - Nivethaa Eak
- Crystal Growth Centre, Anna University, Chennai-600025, India
| | - Mettu Srinivas Reddy
- Cell Laboratory, National Foundation for Liver Research, Chrompet, Chennai-600044, India
| | - Mohamed Rela
- Cell Laboratory, National Foundation for Liver Research, Chrompet, Chennai-600044, India
| | | |
Collapse
|
55
|
Lewis NA, Klein RH, Kelly C, Yee J, Knoepfler PS. Histone H3.3 K27M chromatin functions implicate a network of neurodevelopmental factors including ASCL1 and NEUROD1 in DIPG. Epigenetics Chromatin 2022; 15:18. [PMID: 35590427 PMCID: PMC9121554 DOI: 10.1186/s13072-022-00447-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background The histone variant H3.3 K27M mutation is a defining characteristic of diffuse intrinsic pontine glioma (DIPG)/diffuse midline glioma (DMG). This histone mutation is responsible for major alterations to histone H3 post-translational modification (PTMs) and subsequent aberrant gene expression. However, much less is known about the effect this mutation has on chromatin structure and function, including open versus closed chromatin regions as well as their transcriptomic consequences. Results Recently, we developed isogenic CRISPR-edited DIPG cell lines that are wild-type for histone H3.3 that can be compared to their matched K27M lines. Here we show via ATAC-seq analysis that H3.3K27M glioma cells have unique accessible chromatin at regions corresponding to neurogenesis, NOTCH, and neuronal development pathways and associated genes that are overexpressed in H3.3K27M compared to our isogenic wild-type cell line. As to mechanisms, accessible enhancers and super-enhancers corresponding to increased gene expression in H3.3K27M cells were also mapped to genes involved in neurogenesis and NOTCH signaling, suggesting that these pathways are key to DIPG tumor maintenance. Motif analysis implicates specific transcription factors as central to the neuro-oncogenic K27M signaling pathway, in particular, ASCL1 and NEUROD1. Conclusions Altogether our findings indicate that H3.3K27M causes chromatin to take on a more accessible configuration at key regulatory regions for NOTCH and neurogenesis genes resulting in increased oncogenic gene expression, which is at least partially reversible upon editing K27M back to wild-type. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00447-6.
Collapse
Affiliation(s)
- Nichole A Lewis
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Rachel Herndon Klein
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Cailin Kelly
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Jennifer Yee
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA, 95817, USA. .,Genome Center, University of California Davis School of Medicine, Sacramento, CA, 95817, USA. .,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA.
| |
Collapse
|
56
|
ASC proneural factors are necessary for chromatin remodeling during neuroectodermal to neuroblast fate transition to ensure the timely initiation of the neural stem cell program. BMC Biol 2022; 20:107. [PMID: 35549704 PMCID: PMC9102361 DOI: 10.1186/s12915-022-01300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 04/20/2022] [Indexed: 11/11/2022] Open
Abstract
Background In both Drosophila and mammals, the achaete-scute (ASC/ASCL) proneural bHLH transcription factors are expressed in the developing central and peripheral nervous systems, where they function during specification and maintenance of the neural stem cells in opposition to Notch signaling. In addition to their role in nervous system development, ASC transcription factors are oncogenic and exhibit chromatin reprogramming activity; however, the impact of ASC on chromatin dynamics during neural stem cell generation remains elusive. Here, we investigate the chromatin changes accompanying neural commitment using an integrative genetics and genomics methodology. Results We found that ASC factors bind equally strongly to two distinct classes of cis-regulatory elements: open regions remodeled earlier during maternal to zygotic transition by Zelda and less accessible, Zelda-independent regions. Both classes of cis-elements exhibit enhanced chromatin accessibility during neural specification and correlate with transcriptional regulation of genes involved in a variety of biological processes necessary for neuroblast function/homeostasis. We identified an ASC-Notch regulated TF network that includes likely prime regulators of neuroblast function. Using a cohort of ASC target genes, we report that ASC null neuroblasts are defectively specified, remaining initially stalled, unable to divide, and lacking expression of many proneural targets. When mutant neuroblasts eventually start proliferating, they produce compromised progeny. Reporter lines driven by proneural-bound enhancers display ASC dependency, suggesting that the partial neuroblast identity seen in the absence of ASC genes is likely driven by other, proneural-independent, cis-elements. Neuroblast impairment and the late differentiation defects of ASC mutants are corrected by ectodermal induction of individual ASC genes but not by individual members of the TF network downstream of ASC. However, in wild-type embryos, the induction of individual members of this network induces CNS hyperplasia, suggesting that they synergize with the activating function of ASC to consolidate the chromatin dynamics that promote neural specification. Conclusions We demonstrate that ASC proneural transcription factors are indispensable for the timely initiation of the neural stem cell program at the chromatin level by regulating a large number of enhancers in the vicinity of neural genes. This early chromatin remodeling is crucial for both neuroblast homeostasis as well as future progeny fidelity. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01300-8.
Collapse
|
57
|
Shafi O, Siddiqui G. Tracing the origins of glioblastoma by investigating the role of gliogenic and related neurogenic genes/signaling pathways in GBM development: a systematic review. World J Surg Oncol 2022; 20:146. [PMID: 35538578 PMCID: PMC9087910 DOI: 10.1186/s12957-022-02602-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/15/2022] [Indexed: 02/16/2023] Open
Abstract
Background Glioblastoma is one of the most aggressive tumors. The etiology and the factors determining its onset are not yet entirely known. This study investigates the origins of GBM, and for this purpose, it focuses primarily on developmental gliogenic processes. It also focuses on the impact of the related neurogenic developmental processes in glioblastoma oncogenesis. It also addresses why glial cells are at more risk of tumor development compared to neurons. Methods Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving glioblastoma, gliogenesis, neurogenesis, stemness, neural stem cells, gliogenic signaling and pathways, neurogenic signaling and pathways, and astrocytogenic genes. Results The origin of GBM is dependent on dysregulation in multiple genes and pathways that accumulatively converge the cells towards oncogenesis. There are multiple layers of steps in glioblastoma oncogenesis including the failure of cell fate-specific genes to keep the cells differentiated in their specific cell types such as p300, BMP, HOPX, and NRSF/REST. There are genes and signaling pathways that are involved in differentiation and also contribute to GBM such as FGFR3, JAK-STAT, and hey1. The genes that contribute to differentiation processes but also contribute to stemness in GBM include notch, Sox9, Sox4, c-myc gene overrides p300, and then GFAP, leading to upregulation of nestin, SHH, NF-κB, and others. GBM mutations pathologically impact the cell circuitry such as the interaction between Sox2 and JAK-STAT pathway, resulting in GBM development and progression. Conclusion Glioblastoma originates when the gene expression of key gliogenic genes and signaling pathways become dysregulated. This study identifies key gliogenic genes having the ability to control oncogenesis in glioblastoma cells, including p300, BMP, PAX6, HOPX, NRSF/REST, LIF, and TGF beta. It also identifies key neurogenic genes having the ability to control oncogenesis including PAX6, neurogenins including Ngn1, NeuroD1, NeuroD4, Numb, NKX6-1 Ebf, Myt1, and ASCL1. This study also postulates how aging contributes to the onset of glioblastoma by dysregulating the gene expression of NF-κB, REST/NRSF, ERK, AKT, EGFR, and others.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
58
|
Gao H, Cao M, Deng K, Yang Y, Song J, Ni M, Xie C, Fan W, Ou C, Huang D, Lin L, Liu L, Li Y, Sun H, Cheng X, Wu J, Xia C, Deng X, Mou L, Chen P. The Lineage Differentiation and Dynamic Heterogeneity of Thymic Epithelial Cells During Thymus Organogenesis. Front Immunol 2022; 13:805451. [PMID: 35273595 PMCID: PMC8901506 DOI: 10.3389/fimmu.2022.805451] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Although much progress has been made recently in revealing the heterogeneity of the thymic stromal components, the molecular programs of cell lineage divergency and temporal dynamics of thymic epithelial cell (TEC) development are largely elusive. Here, we constructed a single-cell transcriptional landscape of non-hematopoietic cells from mouse thymus spanning embryonic to adult stages, producing transcriptomes of 30,959 TECs. We resolved the transcriptional heterogeneity of developing TECs and highlighted the molecular nature of early TEC lineage determination and cortico-medullary thymic epithelial cell lineage divergency. We further characterized the differentiation dynamics of TECs by clarification of molecularly distinct cell states in the thymus developing trajectory. We also identified a population of Bpifa1+ Plet1+ mTECs that was preserved during thymus organogenesis and highly expressed tissue-resident adult stem cell markers. Finally, we highlighted the expression of Aire-dependent tissue-restricted antigens mainly in Aire+ Csn2+ mTECs and Spink5+ Dmkn+ mTECs in postnatal thymus. Overall, our data provided a comprehensive characterization of cell lineage differentiation, maturation, and temporal dynamics of thymic epithelial cells during thymus organogenesis.
Collapse
Affiliation(s)
- Hanchao Gao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Mengtao Cao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Kai Deng
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Yang Yang
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jinqi Song
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Ming Ni
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Chuntao Xie
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Wenna Fan
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Chunpei Ou
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Dinggen Huang
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lizhong Lin
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lixia Liu
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Yangyang Li
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xinyu Cheng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jinmei Wu
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Cuilan Xia
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xuefeng Deng
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Pengfei Chen
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China.,Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
59
|
ASCL1 activates neuronal stem cell-like lineage programming through remodeling of the chromatin landscape in prostate cancer. Nat Commun 2022; 13:2282. [PMID: 35477723 PMCID: PMC9046280 DOI: 10.1038/s41467-022-29963-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/08/2022] [Indexed: 12/21/2022] Open
Abstract
Treatment with androgen receptor pathway inhibitors (ARPIs) in prostate cancer leads to the emergence of resistant tumors characterized by lineage plasticity and differentiation toward neuroendocrine lineage. Here, we find that ARPIs induce a rapid epigenetic alteration mediated by large-scale chromatin remodeling to support activation of stem/neuronal transcriptional programs. We identify the proneuronal transcription factor ASCL1 motif to be enriched in hyper-accessible regions. ASCL1 acts as a driver of the lineage plastic, neuronal transcriptional program to support treatment resistance and neuroendocrine phenotype. Targeting ASCL1 switches the neuroendocrine lineage back to the luminal epithelial state. This effect is modulated by disruption of the polycomb repressive complex-2 through UHRF1/AMPK axis and change the chromatin architecture in favor of luminal phenotype. Our study provides insights into the epigenetic alterations induced by ARPIs, governed by ASCL1, provides a proof of principle of targeting ASCL1 to reverse neuroendocrine phenotype, support luminal conversion and re-addiction to ARPIs. Following androgen receptor pathway inhibition prostate cancers can differentiate towards the neuroendocrine lineage. Here, the authors identify epigenetic alterations regulated by ASCL1 and suggest targeting ASCL1 to reverse the neuroendocrine phenotype.
Collapse
|
60
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
61
|
Woods LM, Ali FR, Gomez R, Chernukhin I, Marcos D, Parkinson LM, Tayoun ANA, Carroll JS, Philpott A. Elevated ASCL1 activity creates de novo regulatory elements associated with neuronal differentiation. BMC Genomics 2022; 23:255. [PMID: 35366798 PMCID: PMC8977041 DOI: 10.1186/s12864-022-08495-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background The pro-neural transcription factor ASCL1 is a master regulator of neurogenesis and a key factor necessary for the reprogramming of permissive cell types to neurons. Endogenously, ASCL1 expression is often associated with neuroblast stem-ness. Moreover, ASCL1-mediated reprogramming of fibroblasts to differentiated neurons is commonly achieved using artificially high levels of ASCL1 protein, where ASCL1 acts as an “on-target” pioneer factor. However, the genome-wide effects of enhancing ASCL1 activity in a permissive neurogenic environment has not been thoroughly investigated. Here, we overexpressed ASCL1 in the neuronally-permissive context of neuroblastoma (NB) cells where modest endogenous ASCL1 supports the neuroblast programme. Results Increasing ASCL1 in neuroblastoma cells both enhances binding at existing ASCL1 sites and also leads to creation of numerous additional, lower affinity binding sites. These extensive genome-wide changes in ASCL1 binding result in significant reprogramming of the NB transcriptome, redirecting it from a proliferative neuroblastic state towards one favouring neuronal differentiation. Mechanistically, ASCL1-mediated cell cycle exit and differentiation can be increased further by preventing its multi-site phosphorylation, which is associated with additional changes in genome-wide binding and gene activation profiles. Conclusions Our findings show that enhancing ASCL1 activity in a neurogenic environment both increases binding at endogenous ASCL1 sites and also results in additional binding to new low affinity sites that favours neuronal differentiation over the proliferating neuroblast programme supported by the endogenous protein. These findings have important implications for controlling processes of neurogenesis in cancer and cellular reprogramming. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08495-8.
Collapse
|
62
|
Balsalobre A, Drouin J. Pioneer factors as master regulators of the epigenome and cell fate. Nat Rev Mol Cell Biol 2022; 23:449-464. [PMID: 35264768 DOI: 10.1038/s41580-022-00464-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/23/2022]
Abstract
Pioneer factors are transcription factors with the unique ability to initiate opening of closed chromatin. The stability of cell identity relies on robust mechanisms that maintain the epigenome and chromatin accessibility to transcription factors. Pioneer factors counter these mechanisms to implement new cell fates through binding of DNA target sites in closed chromatin and introduction of active-chromatin histone modifications, primarily at enhancers. As master regulators of enhancer activation, pioneers are thus crucial for the implementation of correct cell fate decisions in development, and as such, they hold tremendous potential for therapy through cellular reprogramming. The power of pioneer factors to reshape the epigenome also presents an Achilles heel, as their misexpression has major pathological consequences, such as in cancer. In this Review, we discuss the emerging mechanisms of pioneer factor functions and their roles in cell fate specification, cellular reprogramming and cancer.
Collapse
Affiliation(s)
- Aurelio Balsalobre
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montreal, QC, Canada.
| |
Collapse
|
63
|
ASCL1 phosphorylation and ID2 upregulation are roadblocks to glioblastoma stem cell differentiation. Sci Rep 2022; 12:2341. [PMID: 35149717 PMCID: PMC8837758 DOI: 10.1038/s41598-022-06248-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
The growth of glioblastoma (GBM), one of the deadliest adult cancers, is fuelled by a subpopulation of stem/progenitor cells, which are thought to be the source of resistance and relapse after treatment. Re-engagement of a latent capacity of these cells to re-enter a trajectory resulting in cell differentiation is a potential new therapeutic approach for this devastating disease. ASCL1, a proneural transcription factor, plays a key role in normal brain development and is also expressed in a subset of GBM cells, but fails to engage a full differentiation programme in this context. Here, we investigated the barriers to ASCL1-driven differentiation in GBM stem cells. We see that ASCL1 is highly phosphorylated in GBM stem cells where its expression is compatible with cell proliferation. However, overexpression of a form of ASCL1 that cannot be phosphorylated on Serine–Proline sites drives GBM cells down a neuronal lineage and out of cell cycle more efficiently than its wild-type counterpart, an effect further enhanced by deletion of the inhibitor of differentiation ID2, indicating mechanisms to reverse the block to GBM cell differentiation.
Collapse
|
64
|
Unraveling unique and common cell type-specific mechanisms in glioblastoma multiforme. Comput Struct Biotechnol J 2022; 20:90-106. [PMID: 34976314 PMCID: PMC8688884 DOI: 10.1016/j.csbj.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma multiforme persists to be an enigmatic distress in neuro-oncology. Its untethering capacity to thrive in a confined microenvironment, metastasize intracranially, and remain resistant to the systemic treatments, renders this tumour incurable. The glial cell type specificity in GBM remains exploratory. In our study, we aimed to address this problem by studying the GBM at the cell type level in the brain. The cellular makeup of this tumour is composed of genetically altered glial cells which include astrocyte, microglia, oligodendrocyte precursor cell, newly formed oligodendrocyte and myelinating oligodendrocyte. We extracted cell type-specific solid tumour as well as recurrent solid tumour glioma genes, and studied their functional networks and contribution towards gliomagenesis. We identified the principal transcription factors that are found to be regulating vital tumorigenic processes. We also assessed the protein-protein interaction networks at their domain level to get a more microscopic view of the structural and functional operations that transpire in these cells. This yielded the eminent protein regulators exhibiting their regulation in signaling pathways. Overall, our study unveiled regulatory mechanisms in glioma cell types that can be targeted for a more efficient glioma therapy.
Collapse
Key Words
- CAMs, Cell adhesion molecules
- CNS, Cental nervous system
- DEG, Differentially expressed genes
- EMT, Epithelial-mesenchymal transistion
- GBM, Glioblastoma multiforme
- GSC, Glioblastoma Stem Cell
- Glial cell types
- Glioblastoma multiforme
- INstruct, a database of structurally resolved protein interactome
- MO, Myelinating oligodendrocyte
- NCBI, National Centre for Biotechnology Information
- NFO, Newly formed oligodendrocyte
- NPC, Neural progenitor cell
- OPC, Oligodendrocyte precursor cell
- PDI, Protein domain interactions
- PDIN, Protein domain interaction network
- PPI, Protein-protein interactions
- Primary solid tumour
- Protein domains
- Protein interaction networks
- RSEM, RNA-seq by Expectation-Maximization
- Recurrent solid tumour transcription factors
- SIGNOR, Signaling Network Open Resource
- TCGA, The Cancer Genome Atlas
- TF, Transcription factor
- TP, Primary solid tumour
- TR, Recurrent solid tumour
- WHO, World health organization
- iDEP, Integrated Differential Expression and Pathway analysis
Collapse
|
65
|
Isaev K, Jiang L, Wu S, Lee CA, Watters V, Fort V, Tsai R, Coutinho FJ, Hussein SMI, Zhang J, Wu J, Dirks PB, Schramek D, Reimand J. Pan-cancer analysis of non-coding transcripts reveals the prognostic onco-lncRNA HOXA10-AS in gliomas. Cell Rep 2021; 37:109873. [PMID: 34686327 DOI: 10.1016/j.celrep.2021.109873] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/21/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are increasingly recognized as functional units in cancer and powerful biomarkers; however, most remain uncharacterized. Here, we analyze 5,592 prognostic lncRNAs in 9,446 cancers of 30 types using machine learning. We identify 166 lncRNAs whose expression correlates with survival and improves the accuracy of common clinical variables, molecular features, and cancer subtypes. Prognostic lncRNAs are often characterized by switch-like expression patterns. In low-grade gliomas, HOXA10-AS activation is a robust marker of poor prognosis that complements IDH1/2 mutations, as validated in another retrospective cohort, and correlates with developmental pathways in tumor transcriptomes. Loss- and gain-of-function studies in patient-derived glioma cells, organoids, and xenograft models identify HOXA10-AS as a potent onco-lncRNA that regulates cell proliferation, contact inhibition, invasion, Hippo signaling, and mitotic and neuro-developmental pathways. Our study underscores the pan-cancer potential of the non-coding transcriptome for identifying biomarkers and regulators of cancer progression.
Collapse
Affiliation(s)
- Keren Isaev
- Ontario Institute for Cancer Research, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lingyan Jiang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Shuai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Christian A Lee
- Ontario Institute for Cancer Research, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Valérie Watters
- Cancer Research Center, Université Laval, Quebec City, QC, Canada; CHU of Québec-Université Laval Research Center, Oncology Division, Quebec City, QC, Canada
| | - Victoire Fort
- Cancer Research Center, Université Laval, Quebec City, QC, Canada; CHU of Québec-Université Laval Research Center, Oncology Division, Quebec City, QC, Canada
| | - Ricky Tsai
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Samer M I Hussein
- Cancer Research Center, Université Laval, Quebec City, QC, Canada; CHU of Québec-Université Laval Research Center, Oncology Division, Quebec City, QC, Canada
| | - Jie Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Peter B Dirks
- SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniel Schramek
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Jüri Reimand
- Ontario Institute for Cancer Research, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
66
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
67
|
King P, Wan J, Guo AA, Guo S, Jiang Y, Liu M. Regulation of gliomagenesis and stemness through acid sensor ASIC1a. Int J Oncol 2021; 59:82. [PMID: 34515325 PMCID: PMC8448544 DOI: 10.3892/ijo.2021.5262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive type of adult gliomas. Despite intensive therapy including surgery, radiation, and chemotherapy, invariable tumor recurrence occurs, which suggests that glioblastoma stem cells (GSCs) render these tumors persistent. Recently, the induction of GSC differentiation has emerged as an alternative method to treat GBM, and most of the current studies aim to convert GSCs to neurons by a combination of transcriptional factors. As the tumor microenvironment is typically acidic due to increased glycolysis and consequently leads to an increased production of lactic acid in tumor cells, in the present study, the role of acid‑sensing ion channel 1a (ASIC1a), an acid sensor, was explored as a tumor suppressor in gliomagenesis and stemness. The bioinformatics data from The Cancer Genome Atlas revealed that ASIC1 expression levels in GBM tumor tissues were lower than those in normal brain, and glioma patients with high ASIC1 expression had longer survival than those with low ASIC1 expression. Our immunohistochemistry data from tissue microarray revealed that ASIC1a expression was negatively associated with glioma grading. Functional studies revealed that the downregulation of ASIC1a promoted glioma cell proliferation and invasion, while upregulation of ASIC1a inhibited their proliferation and invasion. Furthermore, ASIC1a suppressed growth and proliferation of glioma cells through G1/S arrest and apoptosis induction. Mechanistically, ASIC1a negatively modulated glioma stemness via inhibition of the Notch signaling pathway and GSC markers CD133 and aldehyde dehydrogenase 1. ASIC1a is a tumor suppressor in gliomagenesis and stemness and may serve as a promising prognostic biomarker and target for GBM patients.
Collapse
Affiliation(s)
- Pendelton King
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Jingwei Wan
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Alyssa Aihui Guo
- Department of Biomedical Sciences, School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA
| | - Shanchun Guo
- Department of Chemistry, Xavier University, New Orleans, LA 70125, USA
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
68
|
Gatti G, Vilardo L, Musa C, Di Pietro C, Bonaventura F, Scavizzi F, Torcinaro A, Bucci B, Saporito R, Arisi I, De Santa F, Raspa M, Guglielmi L, D’Agnano I. Role of Lamin A/C as Candidate Biomarker of Aggressiveness and Tumorigenicity in Glioblastoma Multiforme. Biomedicines 2021; 9:biomedicines9101343. [PMID: 34680461 PMCID: PMC8533312 DOI: 10.3390/biomedicines9101343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear lamina components have long been regarded as scaffolding proteins, forming a dense fibrillar structure necessary for the maintenance of the nucleus shape in all the animal kingdom. More recently, mutations, aberrant localisation and deregulation of these proteins have been linked to several diseases, including cancer. Using publicly available data we found that the increased expression levels of the nuclear protein Lamin A/C correlate with a reduced overall survival in The Cancer Genome Atlas Research Network (TCGA) patients affected by glioblastoma multiforme (GBM). We show that the expression of the LMNA gene is linked to the enrichment of cancer-related pathways, particularly pathways related to cell adhesion and cell migration. Mimicking the modulation of LMNA in a GBM preclinical cancer model, we confirmed both in vitro and in vivo that the increased expression of LMNA is associated with an increased aggressiveness and tumorigenicity. In addition, delving into the possible mechanism behind LMNA-induced GBM aggressiveness and tumorigenicity, we found that the mTORC2 component, Rictor, plays a central role in mediating these effects.
Collapse
Affiliation(s)
- Giuliana Gatti
- Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy;
| | - Laura Vilardo
- Institute for Biomedical Technologies (ITB), CNR, 20054 Segrate, Italy; (L.V.); (C.M.)
| | - Carla Musa
- Institute for Biomedical Technologies (ITB), CNR, 20054 Segrate, Italy; (L.V.); (C.M.)
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Fabrizio Bonaventura
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Alessio Torcinaro
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Barbara Bucci
- UOC Clinical Pathology, San Pietro Hospital FBF, 00189 Rome, Italy; (B.B.); (R.S.)
| | - Raffaele Saporito
- UOC Clinical Pathology, San Pietro Hospital FBF, 00189 Rome, Italy; (B.B.); (R.S.)
| | - Ivan Arisi
- Bioinformatics Facility, European Brain Research Institute (EBRI) “Rita Levi Montalcini”, 00161 Rome, Italy;
| | - Francesca De Santa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Loredana Guglielmi
- Institute for Biomedical Technologies (ITB), CNR, 20054 Segrate, Italy; (L.V.); (C.M.)
- Correspondence: (L.G.); (I.D.)
| | - Igea D’Agnano
- Institute for Biomedical Technologies (ITB), CNR, 20054 Segrate, Italy; (L.V.); (C.M.)
- Correspondence: (L.G.); (I.D.)
| |
Collapse
|
69
|
An androgen receptor switch underlies lineage infidelity in treatment-resistant prostate cancer. Nat Cell Biol 2021; 23:1023-1034. [PMID: 34489572 DOI: 10.1038/s41556-021-00743-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
Cancers adapt to increasingly potent targeted therapies by reprogramming their phenotype. Here we investigated such a phenomenon in prostate cancer, in which tumours can escape epithelial lineage confinement and transition to a high-plasticity state as an adaptive response to potent androgen receptor (AR) antagonism. We found that AR activity can be maintained as tumours adopt alternative lineage identities, with changes in chromatin architecture guiding AR transcriptional rerouting. The epigenetic regulator enhancer of zeste homologue 2 (EZH2) co-occupies the reprogrammed AR cistrome to transcriptionally modulate stem cell and neuronal gene networks-granting privileges associated with both fates. This function of EZH2 was associated with T350 phosphorylation and establishment of a non-canonical polycomb subcomplex. Our study provides mechanistic insights into the plasticity of the lineage-infidelity state governed by AR reprogramming that enabled us to redirect cell fate by modulating EZH2 and AR, highlighting the clinical potential of reversing resistance phenotypes.
Collapse
|
70
|
Gorniak-Walas M, Nizinska K, Lukasiuk K. Cloning and Functional Analysis of Rat Tweety-Homolog 1 Gene Promoter. Neurochem Res 2021; 46:2463-2472. [PMID: 34173119 PMCID: PMC8302521 DOI: 10.1007/s11064-021-03374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 11/06/2022]
Abstract
Tweety-homolog 1 protein (Ttyh1) is abundantly expressed in neurons in the healthy brain, and its expression is induced under pathological conditions. In hippocampal neurons in vitro, Ttyh1 was implicated in the regulation of primary neuron morphology. However, the mechanisms that underlie transcriptional regulation of the Ttyh1 gene in neurons remain elusive. The present study sought to identify the promoter of the Ttyh1 gene and functionally characterize cis-regulatory elements that are potentially involved in the transcriptional regulation of Ttyh1 expression in rat dissociated hippocampal neurons in vitro. We cloned a 592 bp rat Ttyh1 promoter sequence and designed deletion constructs of the transcription factors specificity protein 1 (Sp1), E2F transcription factor 3 (E2f3), and achaete-scute homolog 1 (Ascl1) that were fused upstream of a luciferase reporter gene in pGL4.10[luc2]. The luciferase reporter gene assay showed the possible involvement of Ascl1, Sp1, and responsive cis-regulatory elements in Ttyh1 expression. These findings provide novel information about Ttyh1 gene regulation in neurons.
Collapse
Affiliation(s)
- Malgorzata Gorniak-Walas
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Karolina Nizinska
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Katarzyna Lukasiuk
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
71
|
Sharanek A, Burban A, Hernandez-Corchado A, Madrigal A, Fatakdawala I, Najafabadi HS, Soleimani VD, Jahani-Asl A. Transcriptional control of brain tumor stem cells by a carbohydrate binding protein. Cell Rep 2021; 36:109647. [PMID: 34469737 DOI: 10.1016/j.celrep.2021.109647] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/29/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Brain tumor stem cells (BTSCs) and intratumoral heterogeneity represent major challenges in glioblastoma therapy. Here, we report that the LGALS1 gene, encoding the carbohydrate binding protein, galectin1, is a key regulator of BTSCs and glioblastoma resistance to therapy. Genetic deletion of LGALS1 alters BTSC gene expression profiles and results in downregulation of gene sets associated with the mesenchymal subtype of glioblastoma. Using a combination of pharmacological and genetic approaches, we establish that inhibition of LGALS1 signaling in BTSCs impairs self-renewal, suppresses tumorigenesis, prolongs lifespan, and improves glioblastoma response to ionizing radiation in preclinical animal models. Mechanistically, we show that LGALS1 is a direct transcriptional target of STAT3 with its expression robustly regulated by the ligand OSM. Importantly, we establish that galectin1 forms a complex with the transcription factor HOXA5 to reprogram the BTSC transcriptional landscape. Our data unravel an oncogenic signaling pathway by which the galectin1/HOXA5 complex maintains BTSCs and promotes glioblastoma.
Collapse
Affiliation(s)
- Ahmad Sharanek
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montréal, QC H4A 3T2, Canada
| | - Audrey Burban
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montréal, QC H4A 3T2, Canada
| | - Aldo Hernandez-Corchado
- Department of Human Genetics, McGill University, Montréal, QC H3A OC7, Canada; McGill Genome Centre, Montréal, QC H3A 0G1, Canada
| | - Ariel Madrigal
- Department of Human Genetics, McGill University, Montréal, QC H3A OC7, Canada; McGill Genome Centre, Montréal, QC H3A 0G1, Canada
| | - Idris Fatakdawala
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montréal, QC H3A OC7, Canada; McGill Genome Centre, Montréal, QC H3A 0G1, Canada
| | - Vahab D Soleimani
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Human Genetics, McGill University, Montréal, QC H3A OC7, Canada
| | - Arezu Jahani-Asl
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montréal, QC H4A 3T2, Canada; Integrated program in Neuroscience, Montréal Neurological Institute, Montréal, QC H3A 2B4, Canada.
| |
Collapse
|
72
|
Modulating cell differentiation in cancer models. Biochem Soc Trans 2021; 49:1803-1816. [PMID: 34436513 DOI: 10.1042/bst20210230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Cancer has been traditionally viewed as a disease characterised by excessive and uncontrolled proliferation, leading to the development of cytotoxic therapies against highly proliferating malignant cells. However, tumours frequently relapse due to the presence of slow-cycling cancer stem cells eluding chemo and radiotherapy. Since these malignant stem cells are largely undifferentiated, inducing their lineage commitment has been proposed as a potential intervention strategy to deplete tumours from their most resistant components. Pro-differentiation approaches have thus far yielded clinical success in the reversion of acute promyelocytic leukaemia (APL), and new developments are fast widening their therapeutic applicability to solid carcinomas. Recent advances in cancer differentiation discussed here highlight the potential and outstanding challenges of differentiation-based approaches.
Collapse
|
73
|
Mechanisms of Binding Specificity among bHLH Transcription Factors. Int J Mol Sci 2021; 22:ijms22179150. [PMID: 34502060 PMCID: PMC8431614 DOI: 10.3390/ijms22179150] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptome of every cell is orchestrated by the complex network of interaction between transcription factors (TFs) and their binding sites on DNA. Disruption of this network can result in many forms of organism malfunction but also can be the substrate of positive natural selection. However, understanding the specific determinants of each of these individual TF-DNA interactions is a challenging task as it requires integrating the multiple possible mechanisms by which a given TF ends up interacting with a specific genomic region. These mechanisms include DNA motif preferences, which can be determined by nucleotide sequence but also by DNA’s shape; post-translational modifications of the TF, such as phosphorylation; and dimerization partners and co-factors, which can mediate multiple forms of direct or indirect cooperative binding. Binding can also be affected by epigenetic modifications of putative target regions, including DNA methylation and nucleosome occupancy. In this review, we describe how all these mechanisms have a role and crosstalk in one specific family of TFs, the basic helix-loop-helix (bHLH), with a very conserved DNA binding domain and a similar DNA preferred motif, the E-box. Here, we compile and discuss a rich catalog of strategies used by bHLH to acquire TF-specific genome-wide landscapes of binding sites.
Collapse
|
74
|
Sueda R, Kageyama R. Oscillatory expression of Ascl1 in oligodendrogenesis. Gene Expr Patterns 2021; 41:119198. [PMID: 34175456 DOI: 10.1016/j.gep.2021.119198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 11/29/2022]
Abstract
The proneural gene Ascl1 promotes formation of both neurons and oligodendrocytes from neural stem cells (NSCs), but it remains to be analyzed how its different functions are coordinated. It was previously shown that Ascl1 enhances proliferation of NSCs when its expression oscillates but induces differentiation into transit-amplifying precursor cells and neurons when its expression is up-regulated and sustained. By time-lapse imaging and immunohistological analyses, we found that Ascl1 expression oscillated in proliferating oligodendrocyte precursor cells (OPCs) at lower levels than in transit-amplifying precursor cells and was repressed when OPCs differentiated into mature oligodendrocytes. Induction of sustained overexpression of Ascl1 reduced oligodendrocyte differentiation and promoted neuronal differentiation. These results suggest that oscillatory expression of Ascl1 plays an important role in proliferating OPCs during oligodendrocyte formation.
Collapse
Affiliation(s)
- Risa Sueda
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Biostudies, Kyoto, 606-8501, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Biostudies, Kyoto, 606-8501, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan; RIKEN Center for Brain Science, Wako, 351-0198, Japan.
| |
Collapse
|
75
|
Xiang C, Frietze KK, Bi Y, Li Y, Dal Pozzo V, Pal S, Alexander N, Baubet V, D’Acunto V, Mason CE, Davuluri RV, Dahmane N. RP58 Represses Transcriptional Programs Linked to Nonneuronal Cell Identity and Glioblastoma Subtypes in Developing Neurons. Mol Cell Biol 2021; 41:e0052620. [PMID: 33903225 PMCID: PMC8315738 DOI: 10.1128/mcb.00526-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/01/2020] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
How mammalian neuronal identity is progressively acquired and reinforced during development is not understood. We have previously shown that loss of RP58 (ZNF238 or ZBTB18), a BTB/POZ-zinc finger-containing transcription factor, in the mouse brain leads to microcephaly, corpus callosum agenesis, and cerebellum hypoplasia and that it is required for normal neuronal differentiation. The transcriptional programs regulated by RP58 during this process are not known. Here, we report for the first time that in embryonic mouse neocortical neurons a complex set of genes normally expressed in other cell types, such as those from mesoderm derivatives, must be actively repressed in vivo and that RP58 is a critical regulator of these repressed transcriptional programs. Importantly, gene set enrichment analysis (GSEA) analyses of these transcriptional programs indicate that repressed genes include distinct sets of genes significantly associated with glioma progression and/or pluripotency. We also demonstrate that reintroducing RP58 in glioma stem cells leads not only to aspects of neuronal differentiation but also to loss of stem cell characteristics, including loss of stem cell markers and decrease in stem cell self-renewal capacities. Thus, RP58 acts as an in vivo master guardian of the neuronal identity transcriptome, and its function may be required to prevent brain disease development, including glioma progression.
Collapse
Affiliation(s)
- Chaomei Xiang
- Weill Cornell Medical College, Department of Neurological Surgery, New York, New York, USA
| | - Karla K. Frietze
- Weill Cornell Medical College, Department of Neurological Surgery, New York, New York, USA
| | - Yingtao Bi
- Northwestern University Feinberg School of Medicine, Department of Preventive Medicine, Chicago, Illinois, USA
| | - Yanwen Li
- Weill Cornell Medical College, Department of Neurological Surgery, New York, New York, USA
| | - Valentina Dal Pozzo
- Weill Cornell Medical College, Department of Neurological Surgery, New York, New York, USA
| | - Sharmistha Pal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Noah Alexander
- Weill Cornell Medical College, Department of Physiology and Biophysics, New York, New York, USA
| | - Valerie Baubet
- Children's Hospital of Philadelphia, Center for Data Driven Discovery in Biomedicine (D3b), Philadelphia, Pennsylvania, USA
| | - Victoria D’Acunto
- Weill Cornell Medical College, Department of Neurological Surgery, New York, New York, USA
| | - Christopher E. Mason
- Weill Cornell Medical College, Department of Physiology and Biophysics, New York, New York, USA
| | - Ramana V. Davuluri
- Northwestern University Feinberg School of Medicine, Department of Preventive Medicine, Chicago, Illinois, USA
| | - Nadia Dahmane
- Weill Cornell Medical College, Department of Neurological Surgery, New York, New York, USA
- University of Pennsylvania School of Medicine, Department of Neurosurgery, Philadelphia, Pennsylvania, USA
| |
Collapse
|
76
|
Curry RN, Glasgow SM. The Role of Neurodevelopmental Pathways in Brain Tumors. Front Cell Dev Biol 2021; 9:659055. [PMID: 34012965 PMCID: PMC8127784 DOI: 10.3389/fcell.2021.659055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Disruptions to developmental cell signaling pathways and transcriptional cascades have been implicated in tumor initiation, maintenance and progression. Resurgence of aberrant neurodevelopmental programs in the context of brain tumors highlights the numerous parallels that exist between developmental and oncologic mechanisms. A deeper understanding of how dysregulated developmental factors contribute to brain tumor oncogenesis and disease progression will help to identify potential therapeutic targets for these malignancies. In this review, we summarize the current literature concerning developmental signaling cascades and neurodevelopmentally-regulated transcriptional programs. We also examine their respective contributions towards tumor initiation, maintenance, and progression in both pediatric and adult brain tumors and highlight relevant differentiation therapies and putative candidates for prospective treatments.
Collapse
Affiliation(s)
- Rachel N. Curry
- Department of Neuroscience, Baylor College of Medicine, Center for Cell and Gene Therapy, Houston, TX, United States
- Integrative Molecular and Biomedical Sciences, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Stacey M. Glasgow
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
- Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
77
|
Brooks LJ, Clements MP, Burden JJ, Kocher D, Richards L, Devesa SC, Zakka L, Woodberry M, Ellis M, Jaunmuktane Z, Brandner S, Morrison G, Pollard SM, Dirks PB, Marguerat S, Parrinello S. The white matter is a pro-differentiative niche for glioblastoma. Nat Commun 2021; 12:2184. [PMID: 33846316 PMCID: PMC8042097 DOI: 10.1038/s41467-021-22225-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 02/02/2023] Open
Abstract
Glioblastomas are hierarchically organised tumours driven by glioma stem cells that retain partial differentiation potential. Glioma stem cells are maintained in specialised microenvironments, but whether, or how, they undergo lineage progression outside of these niches remains unclear. Here we identify the white matter as a differentiative niche for glioblastomas with oligodendrocyte lineage competency. Tumour cells in contact with white matter acquire pre-oligodendrocyte fate, resulting in decreased proliferation and invasion. Differentiation is a response to white matter injury, which is caused by tumour infiltration itself in a tumoursuppressive feedback loop. Mechanistically, tumour cell differentiation is driven by selective white matter upregulation of SOX10, a master regulator of normal oligodendrogenesis. SOX10 overexpression or treatment with myelination-promoting agents that upregulate endogenous SOX10, mimic this response, leading to niche-independent pre-oligodendrocyte differentiation and tumour suppression in vivo. Thus, glioblastoma recapitulates an injury response and exploiting this latent programme may offer treatment opportunities for a subset of patients.
Collapse
Affiliation(s)
- Lucy J Brooks
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Melanie P Clements
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Jemima J Burden
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Daniela Kocher
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Luca Richards
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Sara Castro Devesa
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Leila Zakka
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Megan Woodberry
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Michael Ellis
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, Queen Square, WC1N 3BG, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, Queen Square, WC1N 3BG, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| | - Gillian Morrison
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Peter B Dirks
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Departments of Surgery and Molecular Genetics, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK.
| |
Collapse
|
78
|
Jing N, Gao WQ, Fang YX. Regulation of Formation, Stemness and Therapeutic Resistance of Cancer Stem Cells. Front Cell Dev Biol 2021; 9:641498. [PMID: 33898430 PMCID: PMC8058412 DOI: 10.3389/fcell.2021.641498] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past 20 years cancer stem cells (CSCs) have been proposed as key players in the tumorigenesis and progression, which are closely related to the initiation, metastasis and therapeutic resistance of cancer. Evidences have been provided that both genetic and epigenetic factors contribute to the regulation of the formation and stemness maintenance as well as the therapeutic resistance of CSCs via affecting various signal pathways. In addition, the interaction between CSCs and tumor microenvironment has also been revealed to be involved in the above-described processes. With the aim of targeting CSCs to improve treatment outcome, we herein discuss the mechanisms that orchestrate the characteristic of CSCs by the three elements and potential therapeutic strategies. We also summarize how several key regulatory factors function in the regulation of not only the formation and stemness maintenance, but also the therapeutic resistance of CSCs. Thus, future studies focusing on these key factors would be helpful for the development of novel drugs targeting CSCs.
Collapse
Affiliation(s)
- Nan Jing
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Xiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
79
|
Salnikov L, Baramiya MG. From Autonomy to Integration, From Integration to Dynamically Balanced Integrated Co-existence: Non-aging as the Third Stage of Development. FRONTIERS IN AGING 2021; 2:655315. [PMID: 35822034 PMCID: PMC9261420 DOI: 10.3389/fragi.2021.655315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 01/03/2023]
Abstract
Reversible senescence at the cellular level emerged together with tissue specialization in Metazoans. However, this reversibility (ability to permanently rejuvenate) through recapitulation of early stages of development, was originally a part of ontogenesis, since the pressure of integrativeness was not dominant. The complication of specialization in phylogenesis narrowed this "freedom of maneuver", gradually "truncating" remorphogenesis to local epimorphosis and further up to the complete disappearance of remorphogenesis from the ontogenesis repertoire. This evolutionary trend transformed cellular senescence into organismal aging and any recapitulation of autonomy into carcinogenesis. The crown of specialization, Homo sapiens, completed this post-unicellular stage of development, while in the genome all the potential for the next stage of development, which can be called the stage of balanced coexistence of autonomous and integrative dominants within a single whole. Here, completing the substantiation of the new section of developmental biology, we propose to call it Developmental Biogerontology.
Collapse
Affiliation(s)
- Lev Salnikov
- SibEnzyme US LLC, West Roxbury, MA, United States
| | | |
Collapse
|
80
|
Wang X, Pei Z, Hossain A, Bai Y, Chen G. Transcription factor-based gene therapy to treat glioblastoma through direct neuronal conversion. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0499. [PMID: 33755378 PMCID: PMC8330525 DOI: 10.20892/j.issn.2095-3941.2020.0499] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Glioblastoma (GBM) is the most prevalent and aggressive adult primary cancer in the central nervous system. Therapeutic approaches for GBM treatment are under intense investigation, including the use of emerging immunotherapies. Here, we propose an alternative approach to treat GBM through reprogramming proliferative GBM cells into non-proliferative neurons. METHODS Retroviruses were used to target highly proliferative human GBM cells through overexpression of neural transcription factors. Immunostaining, electrophysiological recording, and bulk RNA-seq were performed to investigate the mechanisms underlying the neuronal conversion of human GBM cells. An in vivo intracranial xenograft mouse model was used to examine the neuronal conversion of human GBM cells. RESULTS We report efficient neuronal conversion from human GBM cells by overexpressing single neural transcription factor Neurogenic differentiation 1 (NeuroD1), Neurogenin-2 (Neurog2), or Achaete-scute homolog 1 (Ascl1). Subtype characterization showed that the majority of Neurog2- and NeuroD1-converted neurons were glutamatergic, while Ascl1 favored GABAergic neuron generation. The GBM cell-converted neurons not only showed pan-neuronal markers but also exhibited neuron-specific electrophysiological activities. Transcriptome analyses revealed that neuronal genes were activated in glioma cells after overexpression of neural transcription factors, and different signaling pathways were activated by different neural transcription factors. Importantly, the neuronal conversion of GBM cells was accompanied by significant inhibition of GBM cell proliferation in both in vitro and in vivo models. CONCLUSIONS These results suggest that GBM cells can be reprogrammed into different subtypes of neurons, leading to a potential alternative approach to treat brain tumors using in vivo cell conversion technology.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Zifei Pei
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Aasma Hossain
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Yuting Bai
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| |
Collapse
|
81
|
Wang Z, Zhang H, Xu S, Liu Z, Cheng Q. The adaptive transition of glioblastoma stem cells and its implications on treatments. Signal Transduct Target Ther 2021; 6:124. [PMID: 33753720 PMCID: PMC7985200 DOI: 10.1038/s41392-021-00491-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most malignant tumor occurring in the human central nervous system with overall median survival time <14.6 months. Current treatments such as chemotherapy and radiotherapy cannot reach an optimal remission since tumor resistance to therapy remains a challenge. Glioblastoma stem cells are considered to be responsible for tumor resistance in treating glioblastoma. Previous studies reported two subtypes, proneural and mesenchymal, of glioblastoma stem cells manifesting different sensitivity to radiotherapy or chemotherapy. Mesenchymal glioblastoma stem cells, as well as tumor cells generate from which, showed resistance to radiochemotherapies. Besides, two metabolic patterns, glutamine or glucose dependent, of mesenchymal glioblastoma stem cells also manifested different sensitivity to radiochemotherapies. Glutamine dependent mesenchymal glioblastoma stem cells are more sensitive to radiotherapy than glucose-dependent ones. Therefore, the transition between proneural and mesenchymal subtypes, or between glutamine-dependent and glucose-dependent, might lead to tumor resistance to radiochemotherapies. Moreover, neural stem cells were also hypothesized to participate in glioblastoma stem cells mediated tumor resistance to radiochemotherapies. In this review, we summarized the basic characteristics, adaptive transition and implications of glioblastoma stem cells in glioblastoma therapy.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, P.R. China.
- National Clinical Research Center for Geriatric Disorders, Changsha, P.R. China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, P.R. China.
- National Clinical Research Center for Geriatric Disorders, Changsha, P.R. China.
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China.
| |
Collapse
|
82
|
Pryszlak M, Wiggans M, Chen X, Jaramillo JE, Burns SE, Richards LM, Pugh TJ, Kaplan DR, Huang X, Dirks PB, Pearson BJ. The DEAD-box helicase DDX56 is a conserved stemness regulator in normal and cancer stem cells. Cell Rep 2021; 34:108903. [PMID: 33789112 DOI: 10.1016/j.celrep.2021.108903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 10/28/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Across the animal kingdom, adult tissue homeostasis is regulated by adult stem cell activity, which is commonly dysregulated in human cancers. However, identifying key regulators of stem cells in the milieu of thousands of genes dysregulated in a given cancer is challenging. Here, using a comparative genomics approach between planarian adult stem cells and patient-derived glioblastoma stem cells (GSCs), we identify and demonstrate the role of DEAD-box helicase DDX56 in regulating aspects of stemness in four stem cell systems: planarians, mouse neural stem cells, human GSCs, and a fly model of glioblastoma. In a human GSC line, DDX56 localizes to the nucleolus, and using planarians, when DDX56 is lost, stem cells dysregulate expression of ribosomal RNAs and lose nucleolar integrity prior to stem cell death. Together, a comparative genomic approach can be used to uncover conserved stemness regulators that are functional in both normal and cancer stem cells.
Collapse
Affiliation(s)
- Michael Pryszlak
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada
| | - Mallory Wiggans
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada
| | - Xin Chen
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada
| | - Julia E Jaramillo
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada
| | - Sarah E Burns
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada
| | - Laura M Richards
- Department of Medical Biophysics, University of Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Trevor J Pugh
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Medical Biophysics, University of Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - David R Kaplan
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada
| | - Xi Huang
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumor Research Centre, Toronto, ON M5G 0A4, Canada
| | - Peter B Dirks
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumor Research Centre, Toronto, ON M5G 0A4, Canada
| | - Bret J Pearson
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G 0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON M5S 1A8, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada.
| |
Collapse
|
83
|
Zhu C, Zhang Y, Li YE, Lucero J, Behrens MM, Ren B. Joint profiling of histone modifications and transcriptome in single cells from mouse brain. Nat Methods 2021; 18:283-292. [PMID: 33589836 PMCID: PMC7954905 DOI: 10.1038/s41592-021-01060-3] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Genome-wide profiling of histone modifications can reveal not only the location and activity state of regulatory elements, but also the regulatory mechanisms involved in cell-type-specific gene expression during development and disease pathology. Conventional assays to profile histone modifications in bulk tissues lack single-cell resolution. Here we describe an ultra-high-throughput method, Paired-Tag, for joint profiling of histone modifications and transcriptome in single cells to produce cell-type-resolved maps of chromatin state and transcriptome in complex tissues. We used this method to profile five histone modifications jointly with transcriptome in the adult mouse frontal cortex and hippocampus. Integrative analysis of the resulting maps identified distinct groups of genes subject to divergent epigenetic regulatory mechanisms. Our single-cell multiomics approach enables comprehensive analysis of chromatin state and gene regulation in complex tissues and characterization of gene regulatory programs in the constituent cell types.
Collapse
Affiliation(s)
- Chenxu Zhu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Yanxiao Zhang
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Yang Eric Li
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Jacinta Lucero
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
84
|
Sachamitr P, Ho JC, Ciamponi FE, Ba-Alawi W, Coutinho FJ, Guilhamon P, Kushida MM, Cavalli FMG, Lee L, Rastegar N, Vu V, Sánchez-Osuna M, Coulombe-Huntington J, Kanshin E, Whetstone H, Durand M, Thibault P, Hart K, Mangos M, Veyhl J, Chen W, Tran N, Duong BC, Aman AM, Che X, Lan X, Whitley O, Zaslaver O, Barsyte-Lovejoy D, Richards LM, Restall I, Caudy A, Röst HL, Bonday ZQ, Bernstein M, Das S, Cusimano MD, Spears J, Bader GD, Pugh TJ, Tyers M, Lupien M, Haibe-Kains B, Artee Luchman H, Weiss S, Massirer KB, Prinos P, Arrowsmith CH, Dirks PB. PRMT5 inhibition disrupts splicing and stemness in glioblastoma. Nat Commun 2021; 12:979. [PMID: 33579912 PMCID: PMC7881162 DOI: 10.1038/s41467-021-21204-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a deadly cancer in which cancer stem cells (CSCs) sustain tumor growth and contribute to therapeutic resistance. Protein arginine methyltransferase 5 (PRMT5) has recently emerged as a promising target in GBM. Using two orthogonal-acting inhibitors of PRMT5 (GSK591 or LLY-283), we show that pharmacological inhibition of PRMT5 suppresses the growth of a cohort of 46 patient-derived GBM stem cell cultures, with the proneural subtype showing greater sensitivity. We show that PRMT5 inhibition causes widespread disruption of splicing across the transcriptome, particularly affecting cell cycle gene products. We identify a GBM splicing signature that correlates with the degree of response to PRMT5 inhibition. Importantly, we demonstrate that LLY-283 is brain-penetrant and significantly prolongs the survival of mice with orthotopic patient-derived xenografts. Collectively, our findings provide a rationale for the clinical development of brain penetrant PRMT5 inhibitors as treatment for GBM.
Collapse
Affiliation(s)
- Patty Sachamitr
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Jolene C Ho
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Felipe E Ciamponi
- Center for Molecular Biology and Genetic Engineering, University of Campinas (UNICAMP), Campinas, Brazil
- The Structural Genomics Consortium, University of Campinas (UNICAMP), Campinas, Brazil
| | - Wail Ba-Alawi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Fiona J Coutinho
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paul Guilhamon
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michelle M Kushida
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Florence M G Cavalli
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lilian Lee
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Naghmeh Rastegar
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - María Sánchez-Osuna
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
| | | | - Evgeny Kanshin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
| | - Heather Whetstone
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mathieu Durand
- RNomics Platform, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Kirsten Hart
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Maria Mangos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Joseph Veyhl
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Wenjun Chen
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Nhat Tran
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Bang-Chi Duong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Ahmed M Aman
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Xinghui Che
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xiaoyang Lan
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Owen Whitley
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Olga Zaslaver
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Laura M Richards
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ian Restall
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Amy Caudy
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Maple Flavored Solutions, LLC, Stony Brook, NY, USA
| | - Hannes L Röst
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Sunit Das
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D Cusimano
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Julian Spears
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
| | - H Artee Luchman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
- Clark H. Smith Brain Tumor Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Samuel Weiss
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
- Clark H. Smith Brain Tumor Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Katlin B Massirer
- Center for Molecular Biology and Genetic Engineering, University of Campinas (UNICAMP), Campinas, Brazil
- The Structural Genomics Consortium, University of Campinas (UNICAMP), Campinas, Brazil
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
85
|
Unlocking the Secrets of Cancer Stem Cells with γ-Secretase Inhibitors: A Novel Anticancer Strategy. Molecules 2021; 26:molecules26040972. [PMID: 33673088 PMCID: PMC7917912 DOI: 10.3390/molecules26040972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
The dysregulation of Notch signaling is associated with a wide variety of different human cancers. Notch signaling activation mostly relies on the activity of the γ-secretase enzyme that cleaves the Notch receptors and releases the active intracellular domain. It is well-documented that γ-secretase inhibitors (GSIs) block the Notch activity, mainly by inhibiting the oncogenic activity of this pathway. To date, several GSIs have been introduced clinically for the treatment of various diseases, such as Alzheimer's disease and various cancers, and their impacts on Notch inhibition have been found to be promising. Therefore, GSIs are of great interest for cancer therapy. The objective of this review is to provide a systematic review of in vitro and in vivo studies for investigating the effect of GSIs on various cancer stem cells (CSCs), mainly by modulation of the Notch signaling pathway. Various scholarly electronic databases were searched and relevant studies published in the English language were collected up to February 2020. Herein, we conclude that GSIs can be potential candidates for CSC-targeting therapy. The outcome of our study also indicates that GSIs in combination with anticancer drugs have a greater inhibitory effect on CSCs.
Collapse
|
86
|
Kaarijärvi R, Kaljunen H, Ketola K. Molecular and Functional Links between Neurodevelopmental Processes and Treatment-Induced Neuroendocrine Plasticity in Prostate Cancer Progression. Cancers (Basel) 2021; 13:cancers13040692. [PMID: 33572108 PMCID: PMC7915380 DOI: 10.3390/cancers13040692] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Treatment-induced neuroendocrine prostate cancer (t-NEPC) is a subtype of castration-resistant prostate cancer (CRPC) which develops under prolonged androgen deprivation therapy. The mechanisms and pathways underlying the t-NEPC are still poorly understood and there are no effective treatments available. Here, we summarize the literature on the molecules and pathways contributing to neuroendocrine phenotype in prostate cancer in the context of their known cellular neurodevelopmental processes. We also discuss the role of tumor microenvironment in neuroendocrine plasticity, future directions, and therapeutic options under clinical investigation for neuroendocrine prostate cancer. Abstract Neuroendocrine plasticity and treatment-induced neuroendocrine phenotypes have recently been proposed as important resistance mechanisms underlying prostate cancer progression. Treatment-induced neuroendocrine prostate cancer (t-NEPC) is highly aggressive subtype of castration-resistant prostate cancer which develops for one fifth of patients under prolonged androgen deprivation. In recent years, understanding of molecular features and phenotypic changes in neuroendocrine plasticity has been grown. However, there are still fundamental questions to be answered in this emerging research field, for example, why and how do the prostate cancer treatment-resistant cells acquire neuron-like phenotype. The advantages of the phenotypic change and the role of tumor microenvironment in controlling cellular plasticity and in the emergence of treatment-resistant aggressive forms of prostate cancer is mostly unknown. Here, we discuss the molecular and functional links between neurodevelopmental processes and treatment-induced neuroendocrine plasticity in prostate cancer progression and treatment resistance. We provide an overview of the emergence of neurite-like cells in neuroendocrine prostate cancer cells and whether the reported t-NEPC pathways and proteins relate to neurodevelopmental processes like neurogenesis and axonogenesis during the development of treatment resistance. We also discuss emerging novel therapeutic targets modulating neuroendocrine plasticity.
Collapse
|
87
|
Traylor JI, Pernik MN, Sternisha AC, McBrayer SK, Abdullah KG. Molecular and Metabolic Mechanisms Underlying Selective 5-Aminolevulinic Acid-Induced Fluorescence in Gliomas. Cancers (Basel) 2021; 13:cancers13030580. [PMID: 33540759 PMCID: PMC7867275 DOI: 10.3390/cancers13030580] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary 5-aminolevulinic acid (5-ALA) is a medication that produces fluorescence in certain cancers, which enables surgeons to visualize tumor margins during surgery. Gliomas are brain tumors that can be difficult to fully resect due to their infiltrative nature. In this review we explored what is known about the mechanism of 5-ALA, recent discoveries that increase our understanding of that mechanism, and potential targets to increase fluorescence in lower grade gliomas. Abstract 5-aminolevulinic acid (5-ALA) is a porphyrin precursor in the heme synthesis pathway. When supplied exogenously, certain cancers consume 5-ALA and convert it to the fluorogenic metabolite protoporphyrin IX (PpIX), causing tumor-specific tissue fluorescence. Preoperative administration of 5-ALA is used to aid neurosurgical resection of high-grade gliomas such as glioblastoma, allowing for increased extent of resection and progression free survival for these patients. A subset of gliomas, especially low-grade tumors, do not accumulate PpIX intracellularly or readily fluoresce upon 5-ALA administration, making gross total resection difficult to achieve in diffuse lesions. We review existing literature on 5-ALA metabolism and PpIX accumulation to explore potential mechanisms of 5-ALA-induced glioma tissue fluorescence. Targeting the heme synthesis pathway and understanding its dysregulation in malignant tissues could aid the development of adjunct therapies to increase intraoperative fluorescence after 5-ALA treatment.
Collapse
Affiliation(s)
- Jeffrey I. Traylor
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.)
| | - Mark N. Pernik
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.)
| | - Alex C. Sternisha
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Correspondence: (S.K.M.); (K.G.A.); Tel.: +1-(214)-648-3730 (S.K.M.); +1-(214)-645-2300 (K.G.A.)
| | - Kalil G. Abdullah
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (J.I.T.); (M.N.P.)
- Correspondence: (S.K.M.); (K.G.A.); Tel.: +1-(214)-648-3730 (S.K.M.); +1-(214)-645-2300 (K.G.A.)
| |
Collapse
|
88
|
El-Sehemy A, Selvadurai H, Ortin-Martinez A, Pokrajac N, Mamatjan Y, Tachibana N, Rowland K, Lee L, Park N, Aldape K, Dirks P, Wallace VA. Norrin mediates tumor-promoting and -suppressive effects in glioblastoma via Notch and Wnt. J Clin Invest 2021; 130:3069-3086. [PMID: 32182224 DOI: 10.1172/jci128994] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma multiforme (GBM) contains a subpopulation of cells, GBM stem cells (GSCs), that maintain the bulk tumor and represent a key therapeutic target. Norrin is a Wnt ligand that binds Frizzled class receptor 4 (FZD4) to activate canonical Wnt signaling. Although Norrin, encoded by NDP, has a well-described role in vascular development, its function in human tumorigenesis is largely unexplored. Here, we show that NDP expression is enriched in neurological cancers, including GBM, and its levels positively correlated with survival in a GBM subtype defined by low expression of ASCL1, a proneural factor. We investigated the function of Norrin and FZD4 in GSCs and found that it mediated opposing tumor-suppressive and -promoting effects on ASCL1lo and ASCL1hi GSCs. Consistent with a potential tumor-suppressive effect of Norrin suggested by the tumor outcome data, we found that Norrin signaling through FZD4 inhibited growth in ASCL1lo GSCs. In contrast, in ASCL1hi GSCs Norrin promoted Notch signaling, independently of WNT, to promote tumor progression. Forced ASCL1 expression reversed the tumor-suppressive effects of Norrin in ASCL1lo GSCs. Our results identify Norrin as a modulator of human brain cancer progression and reveal an unanticipated Notch-mediated function of Norrin in regulating cancer stem cell biology. This study identifies an unanticipated role of Norrin in human brain cancer progression. In addition, we provide preclinical evidence suggesting Norrin and canonical Wnt signaling as potential therapeutic targets for GBM subtype-restricted cancer stem cells.
Collapse
Affiliation(s)
- Ahmed El-Sehemy
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Hayden Selvadurai
- Developmental and Stem Cell Biology Program and.,Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Arturo Ortin-Martinez
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Neno Pokrajac
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Yasin Mamatjan
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, Canada
| | - Nobuhiko Tachibana
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Katherine Rowland
- Developmental and Stem Cell Biology Program and.,Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Lilian Lee
- Developmental and Stem Cell Biology Program and.,Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Nicole Park
- Developmental and Stem Cell Biology Program and.,Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Kenneth Aldape
- MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, Canada.,Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Peter Dirks
- Developmental and Stem Cell Biology Program and.,Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Toronto, Canada
| | - Valerie A Wallace
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
89
|
Richards LM, Whitley OKN, MacLeod G, Cavalli FMG, Coutinho FJ, Jaramillo JE, Svergun N, Riverin M, Croucher DC, Kushida M, Yu K, Guilhamon P, Rastegar N, Ahmadi M, Bhatti JK, Bozek DA, Li N, Lee L, Che C, Luis E, Park NI, Xu Z, Ketela T, Moore RA, Marra MA, Spears J, Cusimano MD, Das S, Bernstein M, Haibe-Kains B, Lupien M, Luchman HA, Weiss S, Angers S, Dirks PB, Bader GD, Pugh TJ. Gradient of Developmental and Injury Response transcriptional states defines functional vulnerabilities underpinning glioblastoma heterogeneity. NATURE CANCER 2021; 2:157-173. [PMID: 35122077 DOI: 10.1038/s43018-020-00154-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/16/2020] [Indexed: 12/27/2022]
Abstract
Glioblastomas harbor diverse cell populations, including rare glioblastoma stem cells (GSCs) that drive tumorigenesis. To characterize functional diversity within this population, we performed single-cell RNA sequencing on >69,000 GSCs cultured from the tumors of 26 patients. We observed a high degree of inter- and intra-GSC transcriptional heterogeneity that could not be fully explained by DNA somatic alterations. Instead, we found that GSCs mapped along a transcriptional gradient spanning two cellular states reminiscent of normal neural development and inflammatory wound response. Genome-wide CRISPR-Cas9 dropout screens independently recapitulated this observation, with each state characterized by unique essential genes. Further single-cell RNA sequencing of >56,000 malignant cells from primary tumors found that the majority organize along an orthogonal astrocyte maturation gradient yet retain expression of founder GSC transcriptional programs. We propose that glioblastomas grow out of a fundamental GSC-based neural wound response transcriptional program, which is a promising target for new therapy development.
Collapse
Affiliation(s)
- Laura M Richards
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Owen K N Whitley
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Graham MacLeod
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Florence M G Cavalli
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fiona J Coutinho
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julia E Jaramillo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nataliia Svergun
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mazdak Riverin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Danielle C Croucher
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michelle Kushida
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kenny Yu
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Paul Guilhamon
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Naghmeh Rastegar
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Moloud Ahmadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jasmine K Bhatti
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Danielle A Bozek
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Naijin Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lilian Lee
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Clare Che
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Erika Luis
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicole I Park
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Zhiyu Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Spears
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Michael D Cusimano
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Sunit Das
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Benjamin Haibe-Kains
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - H Artee Luchman
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Weiss
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Stephane Angers
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Peter B Dirks
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
| | - Trevor J Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| |
Collapse
|
90
|
Guilhamon P, Chesnelong C, Kushida MM, Nikolic A, Singhal D, MacLeod G, Madani Tonekaboni SA, Cavalli FM, Arlidge C, Rajakulendran N, Rastegar N, Hao X, Hassam R, Smith LJ, Whetstone H, Coutinho FJ, Nadorp B, Ellestad KI, Luchman HA, Chan JAW, Shoichet MS, Taylor MD, Haibe-Kains B, Weiss S, Angers S, Gallo M, Dirks PB, Lupien M. Single-cell chromatin accessibility profiling of glioblastoma identifies an invasive cancer stem cell population associated with lower survival. eLife 2021; 10:64090. [PMID: 33427645 PMCID: PMC7847307 DOI: 10.7554/elife.64090] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/08/2021] [Indexed: 01/22/2023] Open
Abstract
Chromatin accessibility discriminates stem from mature cell populations, enabling the identification of primitive stem-like cells in primary tumors, such as glioblastoma (GBM) where self-renewing cells driving cancer progression and recurrence are prime targets for therapeutic intervention. We show, using single-cell chromatin accessibility, that primary human GBMs harbor a heterogeneous self-renewing population whose diversity is captured in patient-derived glioblastoma stem cells (GSCs). In-depth characterization of chromatin accessibility in GSCs identifies three GSC states: Reactive, Constructive, and Invasive, each governed by uniquely essential transcription factors and present within GBMs in varying proportions. Orthotopic xenografts reveal that GSC states associate with survival, and identify an invasive GSC signature predictive of low patient survival, in line with the higher invasive properties of Invasive state GSCs compared to Reactive and Constructive GSCs as shown by in vitro and in vivo assays. Our chromatin-driven characterization of GSC states improves prognostic precision and identifies dependencies to guide combination therapies.
Collapse
Affiliation(s)
- Paul Guilhamon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain tumor Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Charles Chesnelong
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain tumor Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Michelle M Kushida
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain tumor Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Ana Nikolic
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Divya Singhal
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Graham MacLeod
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Seyed Ali Madani Tonekaboni
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Florence Mg Cavalli
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain tumor Research Centre, The Hospital for Sick Children, Toronto, Canada
| | | | | | - Naghmeh Rastegar
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain tumor Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Xiaoguang Hao
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Cell Biology & Anatomy, University of Calgary, Calgary, Canada
| | - Rozina Hassam
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Cell Biology & Anatomy, University of Calgary, Calgary, Canada
| | - Laura J Smith
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Heather Whetstone
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain tumor Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Fiona J Coutinho
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain tumor Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Bettina Nadorp
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Katrina I Ellestad
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - H Artee Luchman
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Cell Biology & Anatomy, University of Calgary, Calgary, Canada
| | - Jennifer Ai-Wen Chan
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
| | - Molly S Shoichet
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain tumor Research Centre, The Hospital for Sick Children, Toronto, Canada.,Division of Neurosurgery, University of Toronto, Toronto, Canada.,Departments of Molecular Genetics and Surgery, University of Toronto, Toronto, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Computer Science, University of Toronto, Toronto, Canada.,Ontario Institute for Cancer Research, Toronto, Canada.,Vector Institute, Toronto, Canada
| | - Samuel Weiss
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Cell Biology & Anatomy, University of Calgary, Calgary, Canada.,Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada
| | - Stephane Angers
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada.,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Marco Gallo
- Clark Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Physiology & Pharmacology, University of Calgary, Calgary, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain tumor Research Centre, The Hospital for Sick Children, Toronto, Canada.,Division of Neurosurgery, University of Toronto, Toronto, Canada.,Ontario Institute for Cancer Research, Toronto, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
91
|
Dong B, Miao J, Wang Y, Luo W, Ji Z, Lai H, Zhang M, Cheng X, Wang J, Fang Y, Zhu HH, Chua CW, Fan L, Zhu Y, Pan J, Wang J, Xue W, Gao WQ. Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer. Commun Biol 2020; 3:778. [PMID: 33328604 PMCID: PMC7745034 DOI: 10.1038/s42003-020-01476-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroendocrine prostate cancer is one of the most aggressive subtypes of prostate tumor. Although much progress has been made in understanding the development of neuroendocrine prostate cancer, the cellular architecture associated with neuroendocrine differentiation in human prostate cancer remain incompletely understood. Here, we use single-cell RNA sequencing to profile the transcriptomes of 21,292 cells from needle biopsies of 6 castration-resistant prostate cancers. Our analyses reveal that all neuroendocrine tumor cells display a luminal-like epithelial phenotype. In particular, lineage trajectory analysis suggests that focal neuroendocrine differentiation exclusively originate from luminal-like malignant cells rather than basal compartment. Further tissue microarray analysis validates the generality of the luminal phenotype of neuroendocrine cells. Moreover, we uncover neuroendocrine differentiation-associated gene signatures that may help us to further explore other intrinsic molecular mechanisms deriving neuroendocrine prostate cancer. In summary, our single-cell study provides direct evidence into the cellular states underlying neuroendocrine transdifferentiation in human prostate cancer.
Collapse
Affiliation(s)
- Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Juju Miao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yanqing Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wenqin Luo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhongzhong Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huadong Lai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Man Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaomu Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jinming Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuxiang Fang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Helen He Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chee Wai Chua
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liancheng Fan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiahua Pan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jia Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China. .,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
92
|
Ali FR, Marcos D, Chernukhin I, Woods LM, Parkinson LM, Wylie LA, Papkovskaia TD, Davies JD, Carroll JS, Philpott A. Dephosphorylation of the Proneural Transcription Factor ASCL1 Re-Engages a Latent Post-Mitotic Differentiation Program in Neuroblastoma. Mol Cancer Res 2020; 18:1759-1766. [PMID: 33046535 PMCID: PMC7614603 DOI: 10.1158/1541-7786.mcr-20-0693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022]
Abstract
Pediatric cancers often resemble trapped developmental intermediate states that fail to engage the normal differentiation program, typified by high-risk neuroblastoma arising from the developing sympathetic nervous system. Neuroblastoma cells resemble arrested neuroblasts trapped by a stable but aberrant epigenetic program controlled by sustained expression of a core transcriptional circuit of developmental regulators in conjunction with elevated MYCN or MYC (MYC). The transcription factor ASCL1 is a key master regulator in neuroblastoma and has oncogenic and tumor-suppressive activities in several other tumor types. Using functional mutational approaches, we find that preventing CDK-dependent phosphorylation of ASCL1 in neuroblastoma cells drives coordinated suppression of the MYC-driven core circuit supporting neuroblast identity and proliferation, while simultaneously activating an enduring gene program driving mitotic exit and neuronal differentiation. IMPLICATIONS: These findings indicate that targeting phosphorylation of ASCL1 may offer a new approach to development of differentiation therapies in neuroblastoma. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/12/1759/F1.large.jpg.
Collapse
Affiliation(s)
- Fahad R Ali
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Daniel Marcos
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Igor Chernukhin
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Laura M Woods
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Lydia M Parkinson
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Luke A Wylie
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | | | - John D Davies
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom.
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
93
|
Kuang S, Wang L. Deep Learning of Sequence Patterns for CCCTC-Binding Factor-Mediated Chromatin Loop Formation. J Comput Biol 2020; 28:133-145. [PMID: 33232622 DOI: 10.1089/cmb.2020.0225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The three-dimensional (3D) organization of the human genome is of crucial importance for gene regulation, and the CCCTC-binding factor (CTCF) plays an important role in chromatin interactions. However, it is still unclear what sequence patterns in addition to CTCF motif pairs determine chromatin loop formation. To discover the underlying sequence patterns, we have developed a deep learning model, called DeepCTCFLoop, to predict whether a chromatin loop can be formed between a pair of convergent or tandem CTCF motifs using only the DNA sequences of the motifs and their flanking regions. Our results suggest that DeepCTCFLoop can accurately distinguish the CTCF motif pairs forming chromatin loops from the ones not forming loops. It significantly outperforms CTCF-MP, a machine learning model based on word2vec and boosted trees, when using DNA sequences only. Furthermore, we show that DNA motifs binding to several transcription factors, including ZNF384, ZNF263, ASCL1, SP1, and ZEB1, may constitute the complex sequence patterns for CTCF-mediated chromatin loop formation. DeepCTCFLoop has also been applied to disease-associated sequence variants to identify candidates that may disrupt chromatin loop formation. Therefore, our results provide useful information for understanding the mechanism of 3D genome organization and may also help annotate and prioritize the noncoding sequence variants associated with human diseases.
Collapse
Affiliation(s)
- Shuzhen Kuang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA.,Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
94
|
Yao Z, Chen Y, Cao W, Shyh‐Chang N. Chromatin-modifying drugs and metabolites in cell fate control. Cell Prolif 2020; 53:e12898. [PMID: 32979011 PMCID: PMC7653270 DOI: 10.1111/cpr.12898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
For multicellular organisms, it is essential to produce a variety of specialized cells to perform a dazzling panoply of functions. Chromatin plays a vital role in determining cellular identities, and it dynamically regulates gene expression in response to changing nutrient metabolism and environmental conditions. Intermediates produced by cellular metabolic pathways are used as cofactors or substrates for chromatin modification. Drug analogues of metabolites that regulate chromatin-modifying enzyme reactions can also regulate cell fate by adjusting chromatin organization. In recent years, there have been many studies about how chromatin-modifying drug molecules or metabolites can interact with chromatin to regulate cell fate. In this review, we systematically discuss how DNA and histone-modifying molecules alter cell fate by regulating chromatin conformation and propose a mechanistic model that explains the process of cell fate transitions in a concise and qualitative manner.
Collapse
Affiliation(s)
- Ziyue Yao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu Chen
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ng Shyh‐Chang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
95
|
Sabelström H, Petri R, Shchors K, Jandial R, Schmidt C, Sacheva R, Masic S, Yuan E, Fenster T, Martinez M, Saxena S, Nicolaides TP, Ilkhanizadeh S, Berger MS, Snyder EY, Weiss WA, Jakobsson J, Persson AI. Driving Neuronal Differentiation through Reversal of an ERK1/2-miR-124-SOX9 Axis Abrogates Glioblastoma Aggressiveness. Cell Rep 2020; 28:2064-2079.e11. [PMID: 31433983 DOI: 10.1016/j.celrep.2019.07.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/29/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Identifying cellular programs that drive cancers to be stem-like and treatment resistant is critical to improving outcomes in patients. Here, we demonstrate that constitutive extracellular signal-regulated kinase 1/2 (ERK1/2) activation sustains a stem-like state in glioblastoma (GBM), the most common primary malignant brain tumor. Pharmacological inhibition of ERK1/2 activation restores neurogenesis during murine astrocytoma formation, inducing neuronal differentiation in tumorspheres. Constitutive ERK1/2 activation globally regulates miRNA expression in murine and human GBMs, while neuronal differentiation of GBM tumorspheres following the inhibition of ERK1/2 activation requires the functional expression of miR-124 and the depletion of its target gene SOX9. Overexpression of miR124 depletes SOX9 in vivo and promotes a stem-like-to-neuronal transition, with reduced tumorigenicity and increased radiation sensitivity. Providing a rationale for reports demonstrating miR-124-induced abrogation of GBM aggressiveness, we conclude that reversal of an ERK1/2-miR-124-SOX9 axis induces a neuronal phenotype and that enforcing neuronal differentiation represents a therapeutic strategy to improve outcomes in GBM.
Collapse
Affiliation(s)
- Hanna Sabelström
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rebecca Petri
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Ksenya Shchors
- ORD-Rinat, Pfizer, Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | - Rahul Jandial
- Division of Neurosurgery, City of Hope, Duarte, CA 91010, USA
| | - Christin Schmidt
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rohit Sacheva
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Selma Masic
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Edith Yuan
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trenten Fenster
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Martinez
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Supna Saxena
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Theodore P Nicolaides
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shirin Ilkhanizadeh
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mitchel S Berger
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Evan Y Snyder
- Center for Stem Cells and Regenerative Medicine, Sanford Burnham Prebys Medical Discovery Institute, and Department of Pediatrics, University of California, San Diego, San Diego, CA 92037, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Johan Jakobsson
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Anders I Persson
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
96
|
Chen KY, Bush K, Klein RH, Cervantes V, Lewis N, Naqvi A, Carcaboso AM, Lechpammer M, Knoepfler PS. Reciprocal H3.3 gene editing identifies K27M and G34R mechanisms in pediatric glioma including NOTCH signaling. Commun Biol 2020; 3:363. [PMID: 32647372 PMCID: PMC7347881 DOI: 10.1038/s42003-020-1076-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Histone H3.3 mutations are a hallmark of pediatric gliomas, but their core oncogenic mechanisms are not well-defined. To identify major effectors, we used CRISPR-Cas9 to introduce H3.3K27M and G34R mutations into previously H3.3-wildtype brain cells, while in parallel reverting the mutations in glioma cells back to wildtype. ChIP-seq analysis broadly linked K27M to altered H3K27me3 activity including within super-enhancers, which exhibited perturbed transcriptional function. This was largely independent of H3.3 DNA binding. The K27M and G34R mutations induced several of the same pathways suggesting key shared oncogenic mechanisms including activation of neurogenesis and NOTCH pathway genes. H3.3 mutant gliomas are also particularly sensitive to NOTCH pathway gene knockdown and drug inhibition, reducing their viability in culture. Reciprocal editing of cells generally produced reciprocal effects on tumorgenicity in xenograft assays. Overall, our findings define common and distinct K27M and G34R oncogenic mechanisms, including potentially targetable pathways. Kuang-Yui Chen et al. show that histone H3.3 K27M and G34R mutations share key oncogenic mechanisms such as activation of neurogenesis and NOTCH pathway genes. They find that H3.3 mutant gliomas are sensitive to inhibition of the NOTCH pathway, suggesting a potentially targetable pathway in pediatric gliomas.
Collapse
Affiliation(s)
- Kuang-Yui Chen
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Kelly Bush
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Rachel Herndon Klein
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Vanessa Cervantes
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Nichole Lewis
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA.,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | - Aasim Naqvi
- Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
| | | | | | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA. .,Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA. .,Department Pathology and Laboratory Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
97
|
From cancer to rejuvenation: incomplete regeneration as the missing link (part II: rejuvenation circle). Future Sci OA 2020; 6:FSO610. [PMID: 32983567 PMCID: PMC7491027 DOI: 10.2144/fsoa-2020-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the first part of our study, we substantiated that the embryonic reontogenesis and malignant growth (disintegrating growth) pathways are the same, but occur at different stages of ontogenesis, this mechanism is carried out in opposite directions. Cancer has been shown to be epigenetic-blocked redifferentiation and unfinished somatic embryogenesis. We formulated that only this approach of aging elimination has real prospects for a future that is fraught with cancer, as we will be able to convert this risk into a rejuvenation process through the continuous cycling of cell dedifferentiation-differentiation processes (permanent remorphogenesis). Here, we continue to develop the idea of looped ontogenesis and formulate the concept of the rejuvenation circle.
Collapse
|
98
|
Vue TY, Kollipara RK, Borromeo MD, Smith T, Mashimo T, Burns DK, Bachoo RM, Johnson JE. ASCL1 regulates neurodevelopmental transcription factors and cell cycle genes in brain tumors of glioma mouse models. Glia 2020; 68:2613-2630. [PMID: 32573857 PMCID: PMC7587013 DOI: 10.1002/glia.23873] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022]
Abstract
Glioblastomas (GBMs) are incurable brain tumors with a high degree of cellular heterogeneity and genetic mutations. Transcription factors that normally regulate neural progenitors and glial development are aberrantly coexpressed in GBM, conferring cancer stem‐like properties to drive tumor progression and therapeutic resistance. However, the functional role of individual transcription factors in GBMs in vivo remains elusive. Here, we demonstrate that the basic‐helix–loop–helix transcription factor ASCL1 regulates transcriptional targets that are central to GBM development, including neural stem cell and glial transcription factors, oncogenic signaling molecules, chromatin modifying genes, and cell cycle and mitotic genes. We also show that the loss of ASCL1 significantly reduces the proliferation of GBMs induced in the brain of a genetically relevant glioma mouse model, resulting in extended survival times. RNA‐seq analysis of mouse GBM tumors reveal that the loss of ASCL1 is associated with downregulation of cell cycle genes, illustrating an important role for ASCL1 in controlling the proliferation of GBM.
Collapse
Affiliation(s)
- Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mark D Borromeo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tyler Smith
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tomoyuki Mashimo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dennis K Burns
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert M Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
99
|
Mao YK, Liu ZB, Cai L. Identification of glioblastoma-specific prognostic biomarkers via an integrative analysis of DNA methylation and gene expression. Oncol Lett 2020; 20:1619-1628. [PMID: 32724403 PMCID: PMC7377174 DOI: 10.3892/ol.2020.11729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/07/2020] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and lethal tumor of the central nervous system. The present study set out to identify reliable prognostic and predictive biomarkers for patients with GBM. RNA-sequencing data were obtained from The Cancer Genome Atlas database and DNA methylation data were downloaded using the University of California Santa Cruz-Xena database. The expression and methylation differences between patients with GBM, and survival times <1 and ≥1 year were investigated. A protein-protein interaction network was constructed and functional enrichment analyses of differentially expressed and methylated genes were performed. Hub genes were identified using the Cytoscape plug-in cytoHubba software. Survival analysis was performed using the survminer package, in order to determine the prognostic values of the hub genes. The present study identified 71 genes that were hypomethylated and expressed at high levels, and four genes that were hypermethylated and expressed at low levels in GBM. These genes were predominantly enriched in the ‘JAK-STAT signaling pathway’, ‘transcriptional misregulation in cancer’ and the ‘ECM-receptor interaction’, which are associated with GBM development. Among the 24 hub genes identified, 15 possessed potential prognostic value. An integrative analysis approach was implemented in order to analyze the association of DNA methylation with changes in gene expression and to assess the association of gene expression changes with GBM survival time. The results of the present study suggest that these 15 CpG-based genes may be useful and practical tools in predicting the prognosis of patients with GBM. However, future research on gene methylation and/or expression is required in order to develop personalized treatments for patients with GBM.
Collapse
Affiliation(s)
- Yu Kun Mao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhi Bo Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
100
|
Otani Y, Yoo JY, Chao S, Liu J, Jaime-Ramirez AC, Lee TJ, Hurwitz B, Yan Y, Dai H, Glorioso JC, Caligiuri MA, Yu J, Kaur B. Oncolytic HSV-Infected Glioma Cells Activate NOTCH in Adjacent Tumor Cells Sensitizing Tumors to Gamma Secretase Inhibition. Clin Cancer Res 2020; 26:2381-2392. [PMID: 32139403 PMCID: PMC7325527 DOI: 10.1158/1078-0432.ccr-19-3420] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To examine the effect of oncolytic herpes simplex virus (oHSV) on NOTCH signaling in central nervous system tumors. EXPERIMENTAL DESIGN Bioluminescence imaging, reverse phase protein array proteomics, fluorescence microscopy, reporter assays, and molecular biology approaches were used to evaluate NOTCH signaling. Orthotopic glioma-mouse models were utilized to evaluate effects in vivo. RESULTS We have identified that herpes simplex virus-1 (HSV-1; oncolytic and wild-type)-infected glioma cells induce NOTCH signaling, from inside of infected cells into adjacent tumor cells (inside out signaling). This was canonical NOTCH signaling, which resulted in activation of RBPJ-dependent transcriptional activity that could be rescued with dnMAML. High-throughput screening of HSV-1-encoded cDNA and miRNA libraries further uncovered that HSV-1 miR-H16 induced NOTCH signaling. We further identified that factor inhibiting HIF-1 (FIH-1) is a direct target of miR-H16, and that FIH-1 downregulation by virus encoded miR-H16 induces NOTCH activity. FIH-1 binding to Mib1 has been reported, but this is the first report that shows FIH-1 sequester Mib1 to suppress NOTCH activation. We observed that FIH-1 degradation induced NOTCH ligand ubiquitination and NOTCH activity. REMBRANDT and The Cancer Genome Atlas data analysis also uncovered a significant negative regulation between FIH-1 and NOTCH. Furthermore, combination of oHSV with NOTCH-blocking gamma secretase inhibitor (GSI) had a therapeutic advantage in two different intracranial glioma models treated with oncolytic HSV, without affecting safety profile of the virus in vivo. CONCLUSIONS To our knowledge this is the first report to identify impact of HSV-1 on NOTCH signaling and highlights the significance of combining oHSV and GSI for glioblastoma therapy.
Collapse
Affiliation(s)
- Yoshihiro Otani
- The Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ji Young Yoo
- The Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Samantha Chao
- The Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
- Rice University, Houston, Texas
| | - Joseph Liu
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Alena Cristina Jaime-Ramirez
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tae Jin Lee
- The Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Brian Hurwitz
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York
| | - Yuanqing Yan
- The Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Hongsheng Dai
- City of Hope National Medical Center, Duarte, California
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Jianhua Yu
- City of Hope National Medical Center, Duarte, California
| | - Balveen Kaur
- The Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|