51
|
Limaye A, Perumal V, Karner CM, Arinzeh TL. Plant-Derived Zein as an Alternative to Animal-Derived Gelatin for Use as a Tissue Engineering Scaffold. ADVANCED NANOBIOMED RESEARCH 2024; 4:2300104. [PMID: 38665311 PMCID: PMC11045004 DOI: 10.1002/anbr.202300104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Natural biomaterials are commonly used as tissue engineering scaffolds due to their biocompatibility and biodegradability. Plant-derived materials have also gained significant interest due to their abundance and as a sustainable resource. This study evaluates the corn-derived protein zein as a plant-derived substitute for animal-derived gelatin, which is widely used for its favorable cell adhesion properties. Limited studies exist evaluating pure zein for tissue engineering. Herein, fibrous zein scaffolds are evaluated in vitro for cell adhesion, growth, and infiltration into the scaffold in comparison to gelatin scaffolds and are further studied in a subcutaneous model in vivo. Human mesenchymal stem cells (MSCs) on zein scaffolds express focal adhesion kinase and integrins such as αvβ3, α4, and β1 similar to gelatin scaffolds. MSCs also infiltrate zein scaffolds with a greater penetration depth than cells on gelatin scaffolds. Cells loaded onto zein scaffolds in vivo show higher cell proliferation and CD31 expression, as an indicator of blood vessel formation. Findings also demonstrate the capability of zein scaffolds to maintain the multipotent capability of MSCs. Overall, findings demonstrate plant-derived zein may be a suitable alternative to the animalderived gelatin and demonstrates zein's potential as a scaffold for tissue engineering.
Collapse
Affiliation(s)
- Apurva Limaye
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Biomedical Engineering, Columbia University, 3960 Broadway, New York, NY 10027, USA
| | - Venkatesan Perumal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Courtney M Karner
- Department of Internal Medicine, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
52
|
Upadhyay P, Ullah A. Enhancement of mechanical and barrier properties of chitosan-based bionanocomposites films reinforced with eggshell-derived hydroxyapatite nanoparticles. Int J Biol Macromol 2024; 261:129764. [PMID: 38296144 DOI: 10.1016/j.ijbiomac.2024.129764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
In this study, Hydroxyapatite nanoparticles (HANPs), derived from eggshell waste, were employed to reinforce chitosan biopolymer-based films through the solvent-casting method. The impact of varying HANPs content (1%, 3%, 5%, and 10 wt %) in bionanocomposites was investigated. The influence of HANPs addition on the final film properties was comprehensively analyzed using Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), mechanical (tensile) testing, and Water Vapor Permeability (WVP). The morphological aspects of bionanocomposites and the dispersion of nanoparticles within the matrix were studied using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). The structural changes in the films were probed using Fourier-Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) techniques. Results indicated that the addition of 1% and 3% of HANPs exhibited a higher glass transition temperature and improved thermal stability in bionanocomposites. Films with 3% HANPs content exhibited a notable increase in tensile strength, showing a 61.54% increase, while films with 1% HANPs content displayed a 52% reduction in WVP compared to pristine chitosan films. These findings underscore the significant potential of chitosan-hydroxyapatite bionanocomposite films for applications in food packaging applications.
Collapse
Affiliation(s)
- Punita Upadhyay
- Department of Agricultural, Food, and Nutritional Science, 360C South Academic Building, University of Alberta, Edmonton, Alberta T6G 2G7, Canada
| | - Aman Ullah
- Department of Agricultural, Food, and Nutritional Science, 360C South Academic Building, University of Alberta, Edmonton, Alberta T6G 2G7, Canada.
| |
Collapse
|
53
|
O'Bryan CS, Ni Y, Taylor CR, Angelini TE, Schulze KD. Collagen Networks under Indentation and Compression Behave Like Cellular Solids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4228-4235. [PMID: 38357880 DOI: 10.1021/acs.langmuir.3c03357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Simple synthetic and natural hydrogels can be formulated to have elastic moduli that match biological tissues, leading to their widespread application as model systems for tissue engineering, medical device development, and drug delivery vehicles. However, two different hydrogels having the same elastic modulus but differing in microstructure or nanostructure can exhibit drastically different mechanical responses, including their poroelasticity, lubricity, and load bearing capabilities. Here, we investigate the mechanical response of collagen-1 networks to local and bulk compressive loads. We compare these results to the behavior of polyacrylamide, a fundamentally different class of hydrogel network consisting of flexible polymer chains. We find that the high bending rigidity of collagen fibers, which suppresses entropic bending fluctuations and osmotic pressure, facilitates the bulk compression of collagen networks under infinitesimal applied stress. These results are fundamentally different from the behavior of flexible polymer networks in which the entropic thermal fluctuations of the polymer chains result in an osmotic pressure that must first be overcome before bulk compression can occur. Furthermore, we observe minimal transverse strain during the axial loading of collagen networks, a behavior reminiscent of open-celled cellular solids. Inspired by these results, we applied mechanical models of cellular solids to predict the elastic moduli of the collagen networks and found agreement with the moduli values measured through contact indentation. Collectively, these results suggest that unlike flexible polymer networks that are often considered incompressible, collagen hydrogels behave like rigid porous solids that volumetrically compress and expel water rather than spreading laterally under applied normal loads.
Collapse
Affiliation(s)
- Christopher S O'Bryan
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Yongliang Ni
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Curtis R Taylor
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Thomas E Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32603, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Kyle D Schulze
- Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
54
|
Kamenova K, Prancheva A, Stoyanova S, Radeva L, Tibi IPE, Yoncheva K, Ravutsov MA, Marinova MK, Simeonov SP, Mitova S, Eneva R, Zaharieva MM, Najdenski H, Petrov PD. Functional Hydrogels for Delivery of the Proteolytic Enzyme Serratiopeptidase. Gels 2024; 10:156. [PMID: 38534574 DOI: 10.3390/gels10030156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrogels are superior wound dressings because they can provide protection and hydration of the wound, as well as the controlled release of therapeutic substances to aid tissue regeneration and the healing process. Hydrogels obtained from natural precursors are preferred because of their low cost, biocompatibility, and biodegradability. We describe the synthesis of novel functional hydrogels based on two natural products-citric acid (CA) and pentane-1,2,5-triol (PT, a product from lignocellulose processing) and poly(ethylene glycol) (PEG-600)-via an environment friendly approach. The hydrogels were prepared via monomer crosslinking through a polycondensation reaction at an elevated temperature in the absence of any solvent. The reagents were blended at three different compositions with molar ratios of hydroxyl (from PT and PEG) to carboxyl (from CA) groups of 1:1, 1:1.4, and 1.4:1, respectively. The effect of the composition on the physicomechanical properties of materials was investigated. All hydrogels exhibited pH-sensitive behavior, while the swelling degree and elastic modulus were dependent on the composition of the polymer network. The proteolytic enzyme serratiopeptidase (SER) was loaded into a hydrogel via physical absorption as a model drug. The release profile of SER and the effects of the enzyme on healthy skin cells were assessed. The results showed that the hydrogel carrier could provide the complete release of the loaded enzyme.
Collapse
Affiliation(s)
- Katya Kamenova
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Anna Prancheva
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stiliyana Stoyanova
- Open Laboratory on Experimental Micro and Nano Mechanics (OLEM), Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Block 4, 1113 Sofia, Bulgaria
- Roberval Laboratory for Mechanics, Centre de Recherche de Royallieu, Université de Technologie de Compiègne, 60203 Compiegne, France
| | - Lyubomira Radeva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Ivanka Pencheva-El Tibi
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Krassimira Yoncheva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Martin A Ravutsov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Maya K Marinova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Svilen P Simeonov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Ga-ma Pinto, 1649-003 Lisbon, Portugal
| | - Simona Mitova
- The Stephan Angeloff Institute of Microbiology, 1113 Sofia, Bulgaria
| | - Rumyana Eneva
- The Stephan Angeloff Institute of Microbiology, 1113 Sofia, Bulgaria
| | - Maya M Zaharieva
- The Stephan Angeloff Institute of Microbiology, 1113 Sofia, Bulgaria
| | - Hristo Najdenski
- The Stephan Angeloff Institute of Microbiology, 1113 Sofia, Bulgaria
| | - Petar D Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
55
|
Riviello G, Connor B, McBrearty J, Rodriguez G, Hu X. Protein and Polysaccharide-Based Optical Materials for Biomedical Applications. Int J Mol Sci 2024; 25:1861. [PMID: 38339138 PMCID: PMC10855249 DOI: 10.3390/ijms25031861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Recent advances in biomedical research, particularly in optical applications, have sparked a transformative movement towards replacing synthetic polymers with more biocompatible and sustainable alternatives. Most often made from plastics or glass, these materials ignite immune responses from the body, and their production is based on environmentally harsh oil-based processes. Biopolymers, including both polysaccharides and proteins, have emerged as a potential candidate for optical biomaterials due to their inherent biocompatibility, biodegradability, and sustainability, derived from their existence in nature and being recognized by the immune system. Current extraction and fabrication methods for these biomaterials, including thermal drawing, extrusion and printing, mold casting, dry-jet wet spinning, hydrogel formations, and nanoparticles, aim to create optical materials in cost-effective and environmentally friendly manners for a wide range of applications. Present and future applications include optical waveguides and sensors, imaging and diagnostics, optical fibers, and waveguides, as well as ocular implants using biopolymers, which will revolutionize these fields, specifically their uses in the healthcare industry.
Collapse
Affiliation(s)
- Gianna Riviello
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Brendan Connor
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Jake McBrearty
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Gianna Rodriguez
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
56
|
Liu Y, Yu J, Cao H, Xue C, Chen K, Xu Y, Sun X. The cross-linking ability of dialdo-galactose in food processing condition. Food Chem 2024; 433:137356. [PMID: 37669574 DOI: 10.1016/j.foodchem.2023.137356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Cross-linking is a popular strategy to tailor the mechanical profile of foods and materials. Dialdo-galactose (DAG) is a hetero-sugar bearing two aldehyde groups that could potentially cross-link amino-group rich systems. In this study, we proved even in undesirable Maillard reaction condition, DAG is a very reactive Maillard substrate that could effectively cross-link all the tested foods, enhance their mechanical strength, and generate brown pigments during cross-linking. In particular, DAG treated sea cucumber exhibited good stability against heat-induced deterioration. In addition, DAG treated collagen sausage casing was more elastic and flexible then glutaraldehyde (GA) treated ones. DAG also outperformed GA in generating stronger chitosan hydrogels with higher G', and the DAG cross-linked chitosan film was more robust against acid-catalyzed decompositions. These results have not only confirmed DAG's cross-linking ability in food processing condition, but also provided useful information for the development of new food cross-linking agents based on oxidized saccharides.
Collapse
Affiliation(s)
- Yonghao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, PR China.
| | - Jiaqi Yu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, PR China.
| | - Honghua Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, PR China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, PR China.
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, PR China.
| | - Xun Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, PR China.
| |
Collapse
|
57
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
58
|
Książek E. Citric Acid: Properties, Microbial Production, and Applications in Industries. Molecules 2023; 29:22. [PMID: 38202605 PMCID: PMC10779990 DOI: 10.3390/molecules29010022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Citric acid finds broad applications in various industrial sectors, such as the pharmaceutical, food, chemical, and cosmetic industries. The bioproduction of citric acid uses various microorganisms, but the most commonly employed ones are filamentous fungi such as Aspergillus niger and yeast Yarrowia lipolytica. This article presents a literature review on the properties of citric acid, the microorganisms and substrates used, different fermentation techniques, its industrial utilization, and the global citric acid market. This review emphasizes that there is still much to explore, both in terms of production process techniques and emerging new applications of citric acid.
Collapse
Affiliation(s)
- Ewelina Książek
- Department of Agroenginieering and Quality Analysis, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118-120, 53-345 Wrocław, Poland
| |
Collapse
|
59
|
Mostaraddi S, Pazhang M, Ebadi-Nahari M, Najavand S. The Relationship Between the Cross-Linker on Chitosan-Coated Magnetic Nanoparticles and the Properties of Immobilized Papain. Mol Biotechnol 2023; 65:1809-1823. [PMID: 36795275 DOI: 10.1007/s12033-023-00687-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
The immobilized enzymes' properties can be affected by cross-linkers on the surface of supports. To study how cross-linkers alter enzymes function, chitosan-coated magnetic nanoparticles (CMNPs) with immobilized papain were prepared using glutaraldehyde and or genipin, and then, the properties of the nanoparticles and the immobilized enzymes were assessed. The Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR), and X-Ray Diffraction (XRD) results showed that the CMNPs were prepared and papain molecules were immobilized on CMNPs by glutaraldehyde (CMNP-Glu-Papain) or by genipin (CMNP-Gen-Papain). Also, the results associated with enzymes activity indicated that the immobilization by glutaraldehyde and genipin increased the pH optimum of papain from 7 to 7.5 and 9, respectively. The kinetic results indicated that the immobilization by genipin slightly affects the enzyme affinity to the substrate. The stability results showed that CMNP-Gen-Papain has more thermal stability than CMNP-Glu-Papain and papain immobilization on CMNPs by genipin leads to stabilization of the enzyme in the presence of polar solvents, probably due to the more hydroxyl groups on CMNPs activated by genipin. In conclusion, this study suggests that there is a relationship between the types of cross-linker on the surface of supports, and the mechanism of action, kinetic parameters, and the stability of immobilized papain.
Collapse
Affiliation(s)
- Samaneh Mostaraddi
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Pazhang
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Mostafa Ebadi-Nahari
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Saeed Najavand
- Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
60
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
61
|
Atwal A, Dale TP, Snow M, Forsyth NR, Davoodi P. Injectable hydrogels: An emerging therapeutic strategy for cartilage regeneration. Adv Colloid Interface Sci 2023; 321:103030. [PMID: 37907031 DOI: 10.1016/j.cis.2023.103030] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
The impairment of articular cartilage due to traumatic incidents or osteoarthritis has posed significant challenges for healthcare practitioners, researchers, and individuals suffering from these conditions. Due to the absence of an approved treatment strategy for the complete restoration of cartilage defects to their native state, the tissue condition often deteriorates over time, leading to osteoarthritic (OA). However, recent advancements in the field of regenerative medicine have unveiled promising prospects through the utilization of injectable hydrogels. This versatile class of biomaterials, characterized by their ability to emulate the characteristics of native articular cartilage, offers the distinct advantage of minimally invasive administration directly to the site of damage. These hydrogels can also serve as ideal delivery vehicles for a diverse range of bioactive agents, including growth factors, anti-inflammatory drugs, steroids, and cells. The controlled release of such biologically active molecules from hydrogel scaffolds can accelerate cartilage healing, stimulate chondrogenesis, and modulate the inflammatory microenvironment to halt osteoarthritic progression. The present review aims to describe the methods used to design injectable hydrogels, expound upon their applications as delivery vehicles of biologically active molecules, and provide an update on recent advances in leveraging these delivery systems to foster articular cartilage regeneration.
Collapse
Affiliation(s)
- Arjan Atwal
- School of Pharmacy and Bioengineering, Hornbeam building, Keele University, Staffordshire ST5 5BG, United Kingdom; Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Staffordshire ST4 7QB, United Kingdom
| | - Tina P Dale
- School of Pharmacy and Bioengineering, Hornbeam building, Keele University, Staffordshire ST5 5BG, United Kingdom; Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Staffordshire ST4 7QB, United Kingdom
| | - Martyn Snow
- Department of Arthroscopy, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham B31 2AP, United Kingdom; The Robert Jones and Agnes Hunt Hospital, Oswestry, Shropshire SY10 7AG, United Kingdom
| | - Nicholas R Forsyth
- School of Pharmacy and Bioengineering, Hornbeam building, Keele University, Staffordshire ST5 5BG, United Kingdom; Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Staffordshire ST4 7QB, United Kingdom; Vice Principals' Office, University of Aberdeen, Kings College, Aberdeen AB24 3FX, United Kingdom
| | - Pooya Davoodi
- School of Pharmacy and Bioengineering, Hornbeam building, Keele University, Staffordshire ST5 5BG, United Kingdom; Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Staffordshire ST4 7QB, United Kingdom.
| |
Collapse
|
62
|
Cruz RMS, Albertos I, Romero J, Agriopoulou S, Varzakas T. Innovations in Food Packaging for a Sustainable and Circular Economy. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:135-177. [PMID: 38460998 DOI: 10.1016/bs.afnr.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Packaging is fundamental to maintaining the quality of food, but its contribution with a negative footprint to the environment must be completely changed worldwide to reduce pollution and climate change. Innovative and sustainable packaging and new strategies of reutilization are necessary to reduce plastic waste accumulation, maintain food quality and safety, and reduce food losses and waste. The purpose of this chapter is to present innovations in food packaging for a sustainable and circular economy. First, to present the eco-design packaging approach as well as new strategies for recycled or recyclable materials in food packaging. Second, to show current trends in new packaging materials developed from the use of agro-industrial wastes as well as new methods of production, including 3D/4D printing, electrostatic spinning, and the use of nanomaterials.
Collapse
Affiliation(s)
- Rui M S Cruz
- Department of Food Engineering, Institute of Engineering, Universidade do Algarve, Campus da Penha, Faro, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, Faro, Portugal.
| | - Irene Albertos
- Nursing Department, Nursing Faculty, University of Valladolid, Valladolid, Spain
| | - Janira Romero
- Faculty of Sciences and Art, Universidad Católica de Ávila (UCAV), Calle Canteros s/n, Ávila, Spain
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| |
Collapse
|
63
|
Bonetti L, De Nardo L, Farè S. Crosslinking strategies in modulating methylcellulose hydrogel properties. SOFT MATTER 2023; 19:7869-7884. [PMID: 37817578 DOI: 10.1039/d3sm00721a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Methylcellulose (MC) hydrogels are ideal materials for the design of thermo-responsive platforms capable of exploiting the environment temperature as a driving force to activate their smart transition. However, MC hydrogels usually show reduced stability in an aqueous environment and low mechanical properties, limiting their applications' breadth. A possible approach intended to overcome these limitations is chemical crosslinking, which represents a simple yet effective strategy to modify the MC hydrogels' properties (e.g., physicochemical, mechanical, and biological). In this regard, understanding the selected crosslinking method's role in modulating the MC hydrogels' properties is a key factor in their design. This review offers a perspective on the main MC chemical crosslinking approaches reported in the literature. Three main categories can be distinguished: (i) small molecule crosslinkers, (ii) crosslinking by high-energy radiation, and (iii) crosslinking via MC chemical modification. The advantages and limitations of each approach are elucidated, and special consideration is paid to the thermo-responsive properties after crosslinking towards the development of MC hydrogels with enhanced physical stability and mechanical performance, preserving the thermo-responsive behavior.
Collapse
Affiliation(s)
- Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy.
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| |
Collapse
|
64
|
Cecone C, Iudici M, Ginepro M, Zanetti M, Trotta F, Bracco P. Dextrin-Based Adsorbents Synthesized via a Sustainable Approach for the Removal of Salicylic Acid from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2805. [PMID: 37887955 PMCID: PMC10609289 DOI: 10.3390/nano13202805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Pharmaceuticals such as salicylic acid are commonly detected in wastewater and surface waters, increasing concern for possible harmful effects on humans and the environment. Their difficult removal via conventional treatments raised the need for improved strategies, among which the development of bioderived adsorbents gained interest because of their sustainability and circularity. In this work, biobased cross-linked adsorbents, synthesized via a sustainable approach from starch derivatives, namely beta-cyclodextrins and maltodextrins, were at first characterized via FTIR-ATR, TGA, SEM, and elemental analysis, showing hydrophilic granular morphologies endowed with specific interaction sites and thermal stabilities higher than 300 °C. Subsequently, adsorption tests were carried out, aiming to assess the capabilities of such polymers on the removal of salicylic acid, as a case study, from water. Batch tests showed rapid kinetics of adsorption with a removal of salicylic acid higher than 90% and a maximum adsorption capacity of 17 mg/g. Accordingly, continuous fixed bed adsorption tests confirmed the good interaction between the polymers and salicylic acid, while the recycling of the adsorbents was successfully performed up to four cycles of use.
Collapse
Affiliation(s)
- Claudio Cecone
- Department of Chemistry, Nis Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy (M.G.); (M.Z.); (P.B.)
| | - Mario Iudici
- Department of Chemistry, Nis Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy (M.G.); (M.Z.); (P.B.)
| | - Marco Ginepro
- Department of Chemistry, Nis Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy (M.G.); (M.Z.); (P.B.)
| | - Marco Zanetti
- Department of Chemistry, Nis Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy (M.G.); (M.Z.); (P.B.)
- INSTM Reference Centre, University of Turin, Via G. Quarello 15A, 10135 Turin, Italy
- ICxT Interdepartmental Centre, University of Turin, Via Lungo Dora Siena 100, 10153 Turin, Italy
| | - Francesco Trotta
- Department of Chemistry, Nis Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy (M.G.); (M.Z.); (P.B.)
| | - Pierangiola Bracco
- Department of Chemistry, Nis Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy (M.G.); (M.Z.); (P.B.)
| |
Collapse
|
65
|
Chen R, Liu Z, Cui T, Zhang X, Wang CF, Li GX, Wang G, Chen S. HE@PCL/PCE Gel-Nanofiber Dressing with Robust Self-Adhesion toward High Wound-Healing Rate via Microfluidic Electrospinning Technology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46322-46332. [PMID: 37748017 DOI: 10.1021/acsami.3c09713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Hydrogels have attracted increasing attention in the biomedical field due to their similarity in structure and composition to natural extracellular matrices. However, they have been greatly limited by their low mechanical strength and self-adhesion for further application. Here, a gel-nanofiber material is designed for wound healing, which synergistically combines the benefits of hydrogels and nanofibers and can overcome the bottleneck of poor mechanical strength and self-adhesion in hydrogels and inadequate healing environment created by nanofibers. First, a nanofiber scaffold composed of polycaprolactone/poly(citric acid)-ε-lysine (PCL/PCE) nanofibers is fabricated via a new strategy of microfluidic electrospinning, which could provide a base for hyaluronic acid-polylysine (HE) gel growth on nanofibers. The prepared HE@PCL/PCE gel-nanofiber possesses high tensile strength (24.15 ± 1.67 MPa), excellent air permeability (656 m3/m2 h kPa), outstanding self-adhesion property, and positive hydrophilicity. More importantly, the prepared gel-nanofiber dressing shows good cytocompatibility and antibacterial properties, achieving a high wound-healing rate (92.48%) and 4.685 mm granulation growth thickness within 12 days. This material may open a promising avenue for accelerating wound healing and tissue regeneration, providing potential applications in clinical medicine.
Collapse
Affiliation(s)
- Rong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Zhiting Liu
- Department of General Surgery, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, 305 East Zhongshan Road, Nanjing 210002, China
| | - Tingting Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Xiaoying Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Guo-Xing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| | - Gefei Wang
- Department of General Surgery, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, 305 East Zhongshan Road, Nanjing 210002, China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
| |
Collapse
|
66
|
Feng W, Wang Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303326. [PMID: 37544909 PMCID: PMC10558674 DOI: 10.1002/advs.202303326] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/15/2023] [Indexed: 08/08/2023]
Abstract
Hydrogels with tailor-made swelling-shrinkable properties have aroused considerable interest in numerous biomedical domains. For example, as swelling is a key issue for blood and wound extrudates absorption, the transference of nutrients and metabolites, as well as drug diffusion and release, hydrogels with high swelling capacity have been widely applicated in full-thickness skin wound healing and tissue regeneration, and drug delivery. Nevertheless, in the fields of tissue adhesives and internal soft-tissue wound healing, and bioelectronics, non-swelling hydrogels play very important functions owing to their stable macroscopic dimension and physical performance in physiological environment. Moreover, the negative swelling behavior (i.e., shrinkage) of hydrogels can be exploited to drive noninvasive wound closure, and achieve resolution enhancement of hydrogel scaffolds. In addition, it can help push out the entrapped drugs, thus promote drug release. However, there still has not been a general review of the constructions and biomedical applications of hydrogels from the viewpoint of swelling-shrinkable properties. Therefore, this review summarizes the tactics employed so far in tailoring the swelling-shrinkable properties of hydrogels and their biomedical applications. And a relatively comprehensive understanding of the current progress and future challenge of the hydrogels with different swelling-shrinkable features is provided for potential clinical translations.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
67
|
Augustine R, Nikolopoulos VK, Camci-Unal G. Hydrogel-Impregnated Self-Oxygenating Electrospun Scaffolds for Bone Tissue Engineering. Bioengineering (Basel) 2023; 10:854. [PMID: 37508881 PMCID: PMC10376476 DOI: 10.3390/bioengineering10070854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Bone defects resulting from trauma, disease, or aging present significant challenges in the clinic. Although biomaterial scaffolds for bone-tissue engineering have shown promising results, challenges remain, including the need for adequate mechanical strength and suitable bioactive agents within scaffolds to promote bone formation. Oxygen is a critical factor for successful bone formation, and low oxygen tension inhibits it. In this study, we developed gelatin methacryloyl (GelMA) hydrogel-impregnated electrospun polycaprolactone (PCL) scaffolds that can release oxygen over 3 weeks. We investigated the potential of composite scaffolds for cell survival in bone-tissue engineering. Our results showed that the addition of an increased amount of CaO2 nanoparticles to the PCL scaffolds significantly increased oxygen generation, which was modulated by GelMA impregnation. Moreover, the resulting scaffolds showed improved cytocompatibility, pre-osteoblast adhesion, and proliferation under hypoxic conditions. This finding is particularly relevant since hypoxia is a prevalent feature in various bone diseases. In addition to providing oxygen, CaO2 nanoparticles also act as reinforcing agents improving the mechanical property of the scaffolds, while the incorporation of GelMA enhances cell adhesion and proliferation properties. Overall, our newly developed self-oxygenating composite biomaterials are promising scaffolds for bone-tissue engineering applications.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (R.A.); (V.K.N.)
| | - Vasilios K. Nikolopoulos
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (R.A.); (V.K.N.)
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (R.A.); (V.K.N.)
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
68
|
Berradi A, Aziz F, Achaby ME, Ouazzani N, Mandi L. A Comprehensive Review of Polysaccharide-Based Hydrogels as Promising Biomaterials. Polymers (Basel) 2023; 15:2908. [PMID: 37447553 DOI: 10.3390/polym15132908] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Polysaccharides have emerged as a promising material for hydrogel preparation due to their biocompatibility, biodegradability, and low cost. This review focuses on polysaccharide-based hydrogels' synthesis, characterization, and applications. The various synthetic methods used to prepare polysaccharide-based hydrogels are discussed. The characterization techniques are also highlighted to evaluate the physical and chemical properties of polysaccharide-based hydrogels. Finally, the applications of SAPs in various fields are discussed, along with their potential benefits and limitations. Due to environmental concerns, this review shows a growing interest in developing bio-sourced hydrogels made from natural materials such as polysaccharides. SAPs have many beneficial properties, including good mechanical and morphological properties, thermal stability, biocompatibility, biodegradability, non-toxicity, abundance, economic viability, and good swelling ability. However, some challenges remain to be overcome, such as limiting the formulation complexity of some SAPs and establishing a general protocol for calculating their water absorption and retention capacity. Furthermore, the development of SAPs requires a multidisciplinary approach and research should focus on improving their synthesis, modification, and characterization as well as exploring their potential applications. Biocompatibility, biodegradation, and the regulatory approval pathway of SAPs should be carefully evaluated to ensure their safety and efficacy.
Collapse
Affiliation(s)
- Achraf Berradi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Faissal Aziz
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Mounir El Achaby
- Materials Science and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Naaila Ouazzani
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| | - Laila Mandi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, P.O. Box 511, Marrakech 40000, Morocco
- Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
| |
Collapse
|
69
|
Said HA, Mabroum H, Lahcini M, Oudadesse H, Barroug A, Youcef HB, Noukrati H. Manufacturing methods, properties, and potential applications in bone tissue regeneration of hydroxyapatite-chitosan biocomposites: A review. Int J Biol Macromol 2023:125150. [PMID: 37285882 DOI: 10.1016/j.ijbiomac.2023.125150] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/06/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
Hydroxyapatite (HA) and chitosan (CS) biopolymer are the major materials investigated for biomedical purposes. Both of these components play an important role in the orthopedic field as bone substitutes or drug release systems. Used separately, the hydroxyapatite is quite fragile, while CS mechanical strength is very weak. Therefore, a combination of HA and CS polymer is used, which provides excellent mechanical performance with high biocompatibility and biomimetic capacity. Moreover, the porous structure and reactivity of the hydroxyapatite-chitosan (HA-CS) composite allow their application not only as a bone repair but also as a drug delivery system providing controlled drug release directly to the bone site. These features make biomimetic HA-CS composite a subject of interest for many researchers. Through this review, we provide the important recent achievements in the development of HA-CS composites, focusing on manufacturing techniques, conventional and novel three-dimensional bioprinting technology, and physicochemical and biological properties. The drug delivery properties and the most relevant biomedical applications of the HA-CS composite scaffolds are also presented. Finally, alternative approaches are proposed to develop HA composites with the aim to improve their physicochemical, mechanical, and biological properties.
Collapse
Affiliation(s)
- H Ait Said
- Mohammed VI Polytechnic University (UM6P), High Throughput Multidisciplinary Research laboratory (HTMR-Lab), 43150 Benguerir, Morocco; Cadi Ayyad University, Faculty of Sciences Semlalia (SCIMATOP), Bd Prince My Abdellah, BP 2390, 40000 Marrakech, Morocco
| | - H Mabroum
- Mohammed VI Polytechnic University (UM6P), Faculty of Medical Sciences (FMS), High Institute of Biological and Paramedical Sciences, ISSB-P, Morocco
| | - M Lahcini
- Cadi Ayyad University, Faculty of Sciences and Technologies, IMED Lab, 40000 Marrakech, Morocco
| | - H Oudadesse
- University of Rennes1, ISCR-UMR, 6226 Rennes, France
| | - A Barroug
- Cadi Ayyad University, Faculty of Sciences Semlalia (SCIMATOP), Bd Prince My Abdellah, BP 2390, 40000 Marrakech, Morocco; Mohammed VI Polytechnic University (UM6P), Faculty of Medical Sciences (FMS), High Institute of Biological and Paramedical Sciences, ISSB-P, Morocco
| | - H Ben Youcef
- Mohammed VI Polytechnic University (UM6P), High Throughput Multidisciplinary Research laboratory (HTMR-Lab), 43150 Benguerir, Morocco.
| | - H Noukrati
- Mohammed VI Polytechnic University (UM6P), Faculty of Medical Sciences (FMS), High Institute of Biological and Paramedical Sciences, ISSB-P, Morocco.
| |
Collapse
|
70
|
Omer AM, Eltaweil AS, El-Fakharany EM, Abd El-Monaem EM, Ismail MMF, Mohy-Eldin MS, Ayoup MS. Novel Cytocompatible Chitosan Schiff Base Derivative as a Potent Antibacterial, Antidiabetic, and Anticancer Agent. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023; 48:7587-7601. [DOI: 10.1007/s13369-022-07588-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023]
Abstract
AbstractThis study intends to develop a novel bioactive chitosan Schiff base (CTS-SB) derivative via coupling of chitosan (CTS) with 4-((5, 5-dimethyl-3-oxocyclohex-1-en-1-yl) amino) benzene-sulfonamide. The alteration in the chemical structure of CTS-SB was verified using1H NMR and FT-IR analysis, while the thermal and morphological properties were inspected by TGA and SEM characterization tools, respectively. Ion exchange capacity of the developed CTS-SB derivative recorded a maximal value of 12.1 meq/g compared to 10.1 meq/g for pristine CTS. In addition, antibacterial activity of CTS-SB derivative was greatly boosted againstEscherichia coli(E coli) andStaphylococcus aureus(S. aureus) bacteria. Minimum inhibition concentration of CTS-SB derivative was perceived at 50 µg/mL, while the highest concentration (250 µg/mL) could inhibit the growth ofS. aureusup to 91%. What’s more, enhanced antidiabetic activity by CTS-SB derivative, which displayed higher inhibitory values of α-amylase (57.9%) and α-glucosidase (63.9%), compared to those of pure CTS (49.8 and 53.4%), respectively Furthermore, cytotoxicity investigation on HepG-2 cell line revealed potential anticancer activity along with good safety margin against primary human skin fibroblasts (HSF cells) and decent cytocompatibility. Collectively, the gained results hypothesized that CTS-SB derivative could be effectively applied as a promising antibacterial, anticancer and antidiabetic agent for advanced biomedical applications.
Collapse
|
71
|
Kyser AJ, Masigol M, Mahmoud MY, Ryan M, Lewis WG, Lewis AL, Frieboes HB, Steinbach-Rankins JM. Fabrication and characterization of bioprints with Lactobacillus crispatus for vaginal application. J Control Release 2023; 357:545-560. [PMID: 37076014 PMCID: PMC10696519 DOI: 10.1016/j.jconrel.2023.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Bacterial vaginosis (BV) is characterized by low levels of lactobacilli and overgrowth of potential pathogens in the female genital tract. Current antibiotic treatments often fail to treat BV in a sustained manner, and > 50% of women experience recurrence within 6 months post-treatment. Recently, lactobacilli have shown promise for acting as probiotics by offering health benefits in BV. However, as with other active agents, probiotics often require intensive administration schedules incurring difficult user adherence. Three-dimensional (3D)-bioprinting enables fabrication of well-defined architectures with tunable release of active agents, including live mammalian cells, offering the potential for long-acting probiotic delivery. One promising bioink, gelatin alginate has been previously shown to provide structural stability, host compatibility, viable probiotic incorporation, and cellular nutrient diffusion. This study formulates and characterizes 3D-bioprinted Lactobacillus crispatus-containing gelatin alginate scaffolds for gynecologic applications. Different weight to volume (w/v) ratios of gelatin alginate were bioprinted to determine formulations with highest printing resolution, and different crosslinking reagents were evaluated for effect on scaffold integrity via mass loss and swelling measurements. Post-print viability, sustained-release, and vaginal keratinocyte cytotoxicity assays were conducted. A 10:2 (w/v) gelatin alginate formulation was selected based on line continuity and resolution, while degradation and swelling experiments demonstrated greatest structural stability with dual genipin and calcium crosslinking, showing minimal mass loss and swelling over 28 days. 3D-bioprinted L. crispatus-containing scaffolds demonstrated sustained release and proliferation of live bacteria over 28 days, without impacting viability of vaginal epithelial cells. This study provides in vitro evidence for 3D-bioprinted scaffolds as a novel strategy to sustain probiotic delivery with the ultimate goal of restoring vaginal lactobacilli following microbiological disturbances.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohammadali Masigol
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Mark Ryan
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Warren G Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
72
|
Kumar M, Hilles AR, Ge Y, Bhatia A, Mahmood S. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: Their current status with regulatory perspective. Int J Biol Macromol 2023; 234:123696. [PMID: 36801273 DOI: 10.1016/j.ijbiomac.2023.123696] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
The current treatment strategies for diabetic wound care provide only moderate degree of effectiveness; hence new and improved therapeutic techniques are in great demand. Diabetic wound healing is a complex physiological process that involves synchronisation of various biological events such as haemostasis, inflammation, and remodelling. Nanomaterials like polymeric nanofibers (NFs) offer a promising approach for the treatment of diabetic wounds and have emerged as viable options for wound management. Electrospinning is a powerful and cost-effective method to fabricate versatile NFs with a wide array of raw materials for different biological applications. The electrospun NFs have unique advantages in the development of wound dressings due to their high specific surface area and porosity. The electrospun NFs possess a unique porous structure and biological function similar to the natural extracellular matrix (ECM), and are known to accelerate wound healing. Compared to traditional dressings, the electrospun NFs are more effective in healing wounds owing to their distinct characteristics, good surface functionalisation, better biocompatibility and biodegradability. This review provides a comprehensive overview of the electrospinning procedure and its operating principle, with special emphasis on the role of electrospun NFs in the treatment of diabetic wounds. This review discusses the present techniques applied in the fabrication of NF dressings, and highlights the future prospects of electrospun NFs in medicinal applications.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Ayah R Hilles
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Yi Ge
- INHART, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Selangor, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
73
|
Habibi S, Mohammadi T, HMTShirazi R, Atyabi F, Kiani M, Asadi AA. A bilayer mupirocin/bupivacaine-loaded wound dressing based on chitosan/poly (vinyl alcohol) nanofibrous mat: Preparation, characterization, and controlled drug release. Int J Biol Macromol 2023; 240:124399. [PMID: 37059279 DOI: 10.1016/j.ijbiomac.2023.124399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
An infected skin wound caused by external injury remains a serious challenge. Electrospun drug-loaded nanofibers with antibacterial properties based on biopolymers have been widely explored for wound healing. In this study, the double-layer CS/PVA/mupirocin (CPM) + CS/PVA/bupivacaine (CPB) mats were prepared by electrospinning method (20 % polymer weight) and then crosslinked with glutaraldehyde (GA) to optimize the water-resistant and biodegradation properties for wound dressing applications. The morphology of mats was characterized as defect-free and interconnected nanofibers by Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM). Fourier Transform Infrared Spectrometry (FTIR) analysis also assessed the chemical structural properties. The porosity, surface wettability, and swelling degree of the dual-drug loaded mats were improved by about 20 %, 12°, and 200 % of the CS/PVA sample to provide a moist environment for efficient wound breathing and repairing. This highly porous mat facilitated the wound exudates absorption and air permeability excellently, reducing the chance of bacterial infections by inhibiting the growth of S. aureus bacterial colonies with a zone of 71.3 mm diameter. In vitro drug release results showed a high-burst release of 80 % and a continuous release profile for bupivacaine and mupirocin, respectively. MTT assay and in vivo tests indicated >90 % of cell viability and improvement in cell proliferation. It triply accelerated wound closure compared to the control group, reaching nearly full closure after 21 days as a potential clinical wound treatment.
Collapse
Affiliation(s)
- Soha Habibi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran.
| | - Romina HMTShirazi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Kiani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Atabak Asadi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran; Petroleum Refining Technology Development Division, Research Institute of Petroleum Industry (RIPI), Tehran 14857-33111, Iran
| |
Collapse
|
74
|
Yang Z, Sarkar AK, Amdursky N. Glycoproteins as a Platform for Making Proton-Conductive Free-Standing Biopolymers. Biomacromolecules 2023; 24:1111-1120. [PMID: 36787188 DOI: 10.1021/acs.biomac.2c01007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Biopolymers are an attractive environmentally friendly alternative to common synthetic polymers, whereas primarily proteins and polysaccharides are the biomacromolecules that are used for making the biopolymer. Due to the breadth of side chains of such biomacromolecules capable of participating in hydrogen bonding, proteins and polysaccharide biopolymers were also used for the making of proton-conductive biopolymers. Here, we introduce a new platform for combining the merits of both proteins and polysaccharides while using a glycosylated protein for making the biopolymer. We use mucin as our starting point, whereas being a waste of the food industry, it is a highly available and low-cost glycoprotein. We show how we can use different chemical strategies to target either the glycan part or specific amino acids for both crosslinking between the different glycoproteins, thus making a free-standing biopolymer, as well as for introducing superior proton conductivity properties to the formed biopolymer. The resultant proton-conductive soft biopolymer is an appealing candidate for any soft bioelectronic application.
Collapse
Affiliation(s)
- Ziyu Yang
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Amit Kumar Sarkar
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
75
|
Sun H, Yuan F, Jia S, Zhang X, Xing W. Laccase encapsulation immobilized in mesoporous ZIF-8 for enhancement bisphenol A degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130460. [PMID: 36462242 DOI: 10.1016/j.jhazmat.2022.130460] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Endocrine disruptors (EDCs) such as bisphenol A (BPA) have many adverse effects on environment and human health. Laccase encapsulation immobilized in mesoporous ZIF-8 was prepared for efficient degradation of BPA. The ZIF-8 (PA) with highly ordered mesopores was synthesized using trimethylacetic acid (PA) as a template agent. On account of the improvement of skeletal stability by cross-linking agent glutaraldehyde, ZIF-8 (PA) realized laccase (FL) immobilization within the mesopores through encapsulation strategy. By replacing the template agent, the effect of pore size on the composite activity and immobilization efficiency by SEM characterization and kinetic analysis were investigated. Based on the physical protection of ZIF-8(PA) on laccase, as well as electrostatic interactions between substances and changes in surface functional groups (e.g. -OH, etc.), multifaceted enhancement including activity, stability, storability were engendered. FL@ZIF-8(PA) could maintain high activity in complex systems at pH 3-11, 10-70 °C or in organic solvent containing system, which exhibited an obvious improvement compared to free laccase and other reported immobilized laccase. Combined with TGA, FT-IR and Zeta potential analysis, the intrinsic mechanism was elaborated in detail. On this basis, FL@ZIF-8(PA) achieved efficient removal of BPA even under adverse conditions (removal rates all above 55% and up to 90.28%), and was suitable for a wide range of initial BPA concentrations. Combined with the DFT calculations on the adsorption energy and differential charge, the mesoporous could not only improve the enrichment performance of BPA on ZIFs, but also enhance the interaction stability. Finally, FL@ZIF-8(PA) was successfully applied to the degradation of BPA in coal industry wastewater. This work provides a new and ultra-high performances material for the organic pollution treatment in wastewater.
Collapse
Affiliation(s)
- Haibing Sun
- School of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, PR China
| | - Fang Yuan
- School of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, PR China.
| | - Shengran Jia
- School of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, PR China
| | - Xiaokuan Zhang
- School of Urban Construction, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, PR China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Puzhu Road 30, Nanjing 211816, PR China
| |
Collapse
|
76
|
Stabilized human amniotic membrane for enhanced sustainability and biocompatibility. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
77
|
Spray-and freeze-drying of microcapsules prepared by complex coacervation method: A review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
78
|
Zhang W, Roy S, Assadpour E, Cong X, Jafari SM. Cross-linked biopolymeric films by citric acid for food packaging and preservation. Adv Colloid Interface Sci 2023; 314:102886. [PMID: 37002960 DOI: 10.1016/j.cis.2023.102886] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
There is a growing interest in the development of degradable and biopolymeric food packaging films (BFPFs) based on green ingredients and strategies due to their biocompatibility, sustainability, and renewable nature of bio-materials. The performance of BFPFs can be improved either by modifying the biopolymer molecules or by combining them with various additives, including nanomaterials, cross-linkers, bioactive compounds and other polymers. Among them, green cross-linking technology is considered as an effective method to improve the performance of BFPFs; citric acid (CA) is widely used as a natural green cross-linker in different BFPFs. In this study, after an overview on CA chemistry, different types of BFPFs cross-linked by CA have been discussed. In addition, this work summarizes the application of CA cross-linked BFPFs/coatings for food preservation in recent years. The role of CA as a cross-linking agent differs in various types of biopolymers, i.e. polysaccharide-based, protein-based and biopolyester-based biopolymers. Moreover, the cross-linking of CA with different biopolymer molecules is mainly related to the CA content and reaction state; the cross-linking process is significantly influenced by conditions such as temperature and pH. In conclusion, this work shows that CA as a natural green cross-linking agent could improve the performance of different BFPFs and enhance their food preservation capacity.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Solan 173229, India
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Xinli Cong
- School of Life Sciences, Hainan University, Haikou 570228, PR China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran..
| |
Collapse
|
79
|
Ahmed M, Bhat AR, Verma AK, Patel R. Collagen-PVA Films Plasticized with Choline Acetate Ionic Liquid for Sustained Drug Release: UV Shielding, Mechanical, Antioxidant, and Antibacterial Properties. ACS APPLIED BIO MATERIALS 2023; 6:663-673. [PMID: 36696601 DOI: 10.1021/acsabm.2c00918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Collagen and poly(vinyl alcohol) films as topical drug delivery systems were developed by plasticization with glycerol and different concentrations of choline acetate ([Cho]Ac) ionic liquid (IL). The results showed that [Cho]Ac improved the performance of the materials and can serve as an alternative to synthetic plasticizers such as glycerol. Ciprofloxacin (CIP) was used as a model drug to study its release behavior. Ready-to-use films were characterized for their optical opacity, solubility, swelling, mechanical properties, water contact angle, surface morphology, surface roughness, antioxidant, and antimicrobial activities. Moreover, X-ray diffraction and Fourier Transform Infrared (FTIR) studies were carried out for molecular characterization of the films. [Cho]Ac used as a plasticizing agent showed excellent antioxidant properties, mechanical strength, and UV shielding properties. Further, [Cho]Ac improves the roughness and decreases the solubility of films. The in vitro release behavior of CIP was investigated at physiological pH (7.4), and the results showed that CIP was released in a more controlled manner due to the incorporation of [Cho]Ac into the films' matrix, while the films constructed with glycerol exhibited burst release of CIP. Moreover, the films loaded with CIP showed excellent antibacterial activity against Gram-negative (Escherichia coli) as well as Gram-positive (Staphylococcus aureus) bacteria. This study provides insight into the use of choline-based ILs as plasticizing agents for the fabrication of protein-polymer composite films for wound dressing and many other applications.
Collapse
Affiliation(s)
- Mofieed Ahmed
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi110025, India.,Department of Biosciences, Jamia Millia Islamia, New Delhi110025, India
| | - Ab Raouf Bhat
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi110025, India
| | - Amit Kumar Verma
- Department of Biosciences, Jamia Millia Islamia, New Delhi110025, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi110025, India
| |
Collapse
|
80
|
Mittal N, Ojanguren A, Kundu D, Lizundia E, Niederberger M. Bottom-Up Design of a Green and Transient Zinc-Ion Battery with Ultralong Lifespan. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206249. [PMID: 36436829 DOI: 10.1002/smll.202206249] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Transient batteries are expected to lessen the inherent environmental impact of traditional batteries that rely on toxic and critical raw materials. This work presents the bottom-up design of a fully transient Zn-ion battery (ZIB) made of nontoxic and earth-abundant elements, including a novel hydrogel electrolyte prepared by cross-linking agarose and carboxymethyl cellulose. Facilitated by a high ionic conductivity and a high positive zinc-ion species transference number, the optimized hydrogel electrolyte enables stable cycling of the Zn anode with a lifespan extending over 8500 h for 0.25 mA cm-2 - 0.25 mAh cm-2 . On pairing with a biocompatible organic polydopamine-based cathode, the full cell ZIB delivers a capacity of 196 mAh g-1 after 1000 cycles at a current density of 0.5 A g-1 and a capacity of 110 mAh g-1 after 10 000 cycles at a current density of 1 A g-1 . A transient ZIB with a biodegradable agarose casing displays an open circuit voltage of 1.123 V and provides a specific capacity of 157 mAh g-1 after 200 cycles at a current density of 50 mA g-1 . After completing its service life, the battery can disintegrate under composting conditions.
Collapse
Affiliation(s)
- Neeru Mittal
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland
| | - Alazne Ojanguren
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland
| | - Dipan Kundu
- LBRI, School of Chemical Engineering, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao. University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Markus Niederberger
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland
| |
Collapse
|
81
|
Lee YB, Lim S, Lee Y, Park CH, Lee HJ. Green Chemistry for Crosslinking Biopolymers: Recent Advances in Riboflavin-Mediated Photochemistry. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1218. [PMID: 36770225 PMCID: PMC9920339 DOI: 10.3390/ma16031218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Riboflavin (RF), which is also known as vitamin B2, is a water-soluble vitamin. RF is a nontoxic and biocompatible natural substance. It absorbs light (at wavelengths of 380 and 450 nm) in the presence of oxygen to form reactive singlet oxygen (1O2). The generated singlet oxygen acts as a photoinitiator to induce the oxidation of biomolecules, such as amino acids, proteins, and nucleotides, or to initiate chemical reactions, such as the thiol-ene reaction and crosslinking of tyramine and furfuryl groups. In this review, we focus on the chemical mechanism and utilization of the photochemistry of RF, such as protein crosslinking and hydrogel formation. Currently, the crosslinking method using RF as a photoinitiator is actively employed in ophthalmic clinics. However, a significant broadening is expected in its range of applications, such as in tissue engineering and drug delivery.
Collapse
|
82
|
Kolya H, Kang CW. Synthesis of starch-based smart hydrogel derived from rice-cooked wastewater for agricultural use. Int J Biol Macromol 2023; 226:1477-1489. [PMID: 36442572 DOI: 10.1016/j.ijbiomac.2022.11.260] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
The synthesis of biodegradable hydrogel based on naturally available macromolecules is an important area of research. We synthesized new hydrogel using rice-cooked wastewater (starch), acrylamide, and 2-acrylamido-2-methylpropansulfonic acid in an aqueous medium. The synthesis approach is facile, low-cost, eco-friendly, and novel. The synthesized materials were characterized by scanning electron microscope, X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and Thermogravimetric analysis. The hydrogel exhibited maximum tap water absorbency (158.3 g/g) at pH 7, saline water absorbency (50 g/g), urea solution absorbency (141.2 g/g) at 24 h, and excellent water retention capability (47 wt% at 70 °C, 12 h, and 89 wt% at 30 °C, 24 h). Chili plants, mung beans, and pea seeds germinated and grew well in the hydrogel and hydrogel-mixed soil, respectively. The biodegradability study shows 34.6 % at 120 days in soil and 6.5 % at 30 days in the open air. These findings could entice agricultural development in dry soil.
Collapse
Affiliation(s)
- Haradhan Kolya
- Department of Housing Environmental Design, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea; Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| | - Chun-Won Kang
- Department of Housing Environmental Design, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea; Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
83
|
Sapuła P, Bialik-Wąs K, Malarz K. Are Natural Compounds a Promising Alternative to Synthetic Cross-Linking Agents in the Preparation of Hydrogels? Pharmaceutics 2023; 15:253. [PMID: 36678882 PMCID: PMC9866639 DOI: 10.3390/pharmaceutics15010253] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The main aim of this review is to assess the potential use of natural cross-linking agents, such as genipin, citric acid, tannic acid, epigallocatechin gallate, and vanillin in preparing chemically cross-linked hydrogels for the biomedical, pharmaceutical, and cosmetic industries. Chemical cross-linking is one of the most important methods that is commonly used to form mechanically strong hydrogels based on biopolymers, such as alginates, chitosan, hyaluronic acid, collagen, gelatin, and fibroin. Moreover, the properties of natural cross-linking agents and their advantages and disadvantages are compared relative to their commonly known synthetic cross-linking counterparts. Nowadays, advanced technologies can facilitate the acquisition of high-purity biomaterials from unreacted components with no additional purification steps. However, while planning and designing a chemical process, energy and water consumption should be limited in order to reduce the risks associated with global warming. However, many synthetic cross-linking agents, such as N,N'-methylenebisacrylamide, ethylene glycol dimethacrylate, poly (ethylene glycol) diacrylates, epichlorohydrin, and glutaraldehyde, are harmful to both humans and the environment. One solution to this problem could be the use of bio-cross-linking agents obtained from natural resources, which would eliminate their toxic effects and ensure the safety for humans and the environment.
Collapse
Affiliation(s)
- Paulina Sapuła
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Katarzyna Bialik-Wąs
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
84
|
Bombin ADJ, Dunne N, McCarthy HO. Delivery of a peptide/microRNA blend via electrospun antimicrobial nanofibres for wound repair. Acta Biomater 2023; 155:304-322. [PMID: 36334906 DOI: 10.1016/j.actbio.2022.10.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Downregulation of microRNA-31 (miR-31) and microRNA-132 (miR-132) has been associated with delayed wound healing. Therefore, it was hypothesised that intracellular delivery of miR-31 and miR-132, both as individual and blend formulations, could promote tissue repair. The use of a blend could minimise potential toxicity and achieve synergistic effects, thus maximising the therapeutic effect. miR-31 and miR-132 were condensed with a 30-mer positively charged amphipathic peptide, RALA, to form nanocomplexes with an average size <200 nm and zeta-potential ≥10 designed to facilitate cellular internalisation. This enabled a fold increase in miR-31 and miR-132 expression of ≥100,000 in a murine fibroblast cell line (NCTC-929) and a skin human keratinocyte cell line (HaCaT), with intracellular delivery >70% for individual and blend formulations. Moreover, incubation with the nanocomplexes increased the migration of HaCaT cells ≥25% at 4 and 8 h post-incubation, as well as downregulation of EMP-1 and RASA1 and HB-EGF and RASA1, target genes for miR-31 and miR-132, respectively. Electrospinning was then employed to produce an alginate/polyvinyl alcohol/ciprofloxacin nanofibrous wound patch to facilitate the controlled delivery of the nanocomplexes. Nanofibres were crosslinked with glutaraldehyde to improve stability in aqueous solvents, and they were proven to be biocompatible with antimicrobial activity without cellular attachment to avoid injury upon removal. RALA/miR nanoparticles were incorporated to the nanofibrous wound dressing and in vivo wound healing studies using C57BL/6J mice demonstrated a >60% acceleration in the wound closure rate at Day 7 post-wounding, a ≥1.5 increase in epidermal thickness, and a ≥2 increase in blood vessel count with respect to commercial and untreated controls. Taken together, this data proves that delivery of RALA/miR-31 and RALA/miR-132 from an alginate/polyvinyl alcohol/ciprofloxacin nanofibrous wound dressing constitutes an advanced therapy for wound healing, by accelerating wound closure and improving healed tissue quality. STATEMENT OF SIGNIFICANCE: In this study, we report for the first time the use of the RALA peptide to deliver two miRNA 31 & 132 simultaneously from an electrospun patch. Both miRs have been shown to be downregulated in wounds and this study endeavoured to deliver a blend of the miRs from a nanofibre patch. Electrospinning was used to produce an alginate/polyvinyl alcohol/ciprofloxacin wound patch to enable controlled delivery of the miRs without cellular attachment to the wound with the added benefit of anti-microbial activity. Application of the nanofibre patch loaded with the blended RALA/miR nanoparticles demonstrated a synergistic effect with acceleration of wound closure rate, a significant increase in epidermal thickness and blood vessel count with respect to commercial and untreated controls.
Collapse
Affiliation(s)
| | - Nicholas Dunne
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Mechanical and Manufacturing Engineering, Centre for Medical Engineering Research, Dublin City University, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Dublin 9, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Chemical Sciences, Dublin City University, Collins Avenue, Dublin 9, Ireland.
| |
Collapse
|
85
|
Lee S, Nasr S, Rasheed S, Liu Y, Hartwig O, Kaya C, Boese A, Koch M, Herrmann J, Müller R, Loretz B, Buhler E, Hirsch AKH, Lehr CM. Proteoid biodynamers for safe mRNA transfection via pH-responsive nanorods enabling endosomal escape. J Control Release 2023; 353:915-929. [PMID: 36521693 DOI: 10.1016/j.jconrel.2022.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
The recent success of mRNA vaccines using lipid-based vectors highlights the importance of strategies for nucleotide delivery under the pandemic situation. Although current mRNA delivery is focused on lipid-based vectors, still they need to be optimized for increasing stability, targeting, and efficiency, and for reducing toxicity. In this regard, other vector systems featuring smart strategies such as pH-responsive degradability and endosomal escape ability hold the potential to overcome the current limitations. Here, we report pH-responsive polymeric nanorods made of amino acid-derivatives connected by dynamic covalent bonds called proteoid-biodynamers, as mRNA vectors. They show excellent biocompatibility due to the biodegradation, and outstanding transfection. The biodynamers of Lys, His, and Arg or monomer mixtures thereof were shown to form nanocomplexes with mRNA. They outperformed conventional transfection agents three times regarding transfection efficacy in three human cell lines, with 82-98% transfection in living cells. Also, we confirmed that the biodynamers disrupted the endosomes up to 10-fold more in number than the conventional vectors. We discuss here their outstanding performance with a thorough analysis of their nanorod structure changes in endosomal microenvironments.
Collapse
Affiliation(s)
- Sangeun Lee
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany.
| | - Sarah Nasr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), Braunschweig, Germany
| | - Yun Liu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Cansu Kaya
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Annette Boese
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), Braunschweig, Germany; Helmholtz International Lab - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany
| | - Eric Buhler
- Laboratoire Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Cité, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; Helmholtz International Lab - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E 8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
86
|
Synthesis and Characterization of Innovative Microgels Based on Polyacrylic Acid and Microalgae Cell Wall and Their Potential as Antigen Delivery Vehicles. Pharmaceutics 2022; 15:pharmaceutics15010133. [PMID: 36678762 PMCID: PMC9863243 DOI: 10.3390/pharmaceutics15010133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
In this study, hybrid polyacrylic acid and Schizochytrium sp. microalgae (PAA/Schizo) microgels were synthesized by inverse emulsion assisted by ultrasound using the cell wall fraction as crosslinker. Physicochemical characterization of PAA/Schizo microgels revealed polymeric spherical particles (288 ± 39 nm) and were deemed stable and negatively charged. The produced microgels are not inherently toxic as cell viability was sustained above 80% when mice splenocytes were exposed to concentrations ranging 10-900 µg/mL. PAA/Schizo microgels were evaluated as antigen delivery nanovehicle by adsorbing bovine serum albumin (BSA); with a loading efficiency of 72% and loading capacity of 362 µg/mg. Overall, intranasally-immunized BALB/c mice showed null IgG or IgA responses against PAA/Schizo microgel-BSA, whereas soluble BSA induced significant humoral responses in systemic and mucosal compartments. Splenocytes proliferation assay upon BSA stimulus revealed positive CD4+ T cells-proliferation response in PAA/Schizo microgels-BSA group. Thus, PAA/Schizo microgels constitute functional antigen delivery vehicles of simple and ecofriendly synthesis. Moreover, the use of cell wall fraction as cross-linker agent provides an alternative use for the generation of high-value products using residual algae biomass from the oil industry. Our data suggests that the PAA/Schizo microgels are potential antigen delivery vehicles for immunotherapy development.
Collapse
|
87
|
Ionotropic Gelation and Chemical Crosslinking as Methods for Fabrication of Modified-Release Gellan Gum-Based Drug Delivery Systems. Pharmaceutics 2022; 15:pharmaceutics15010108. [PMID: 36678736 PMCID: PMC9865147 DOI: 10.3390/pharmaceutics15010108] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Hydrogels have a tridimensional structure. They have the ability to absorb a significant amount of water or other natural or simulated fluids that cause their swelling albeit without losing their structure. Their properties can be exploited for encapsulation and modified targeted drug release. Among the numerous natural polymers suitable for obtaining hydrogels, gellan gum is one gaining much interest. It is a gelling agent with many unique features, and furthermore, it is non-toxic, biocompatible, and biodegradable. Its ability to react with oppositely charged molecules results in the forming of structured physical materials (films, beads, hydrogels, nanoparticles). The properties of obtained hydrogels can be modified by chemical crosslinking, which improves the three-dimensional structure of the gellan hydrogel. In the current review, an overview of gellan gum hydrogels and their properties will be presented as well as the mechanisms of ionotropic gelation or chemical crosslinking. Methods of producing gellan hydrogels and their possible applications related to improved release, bioavailability, and therapeutic activity were described.
Collapse
|
88
|
Polysaccharides-Based Injectable Hydrogels: Preparation, Characteristics, and Biomedical Applications. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polysaccharides-based injectable hydrogels are a unique group of biodegradable and biocompatible materials that have shown great potential in the different biomedical fields. The biomolecules or cells can be simply blended with the hydrogel precursors with a high loading capacity by homogenous mixing. The different physical and chemical crosslinking approaches for preparing polysaccharide-based injectable hydrogels are reviewed. Additionally, the review highlights the recent work using polysaccharides-based injectable hydrogels as stimuli-responsive delivery vehicles for the controlled release of different therapeutic agents and viscoelastic matrix for cell encapsulation. Moreover, the application of polysaccharides-based injectable hydrogel in regenerative medicine as tissue scaffold and wound healing dressing is covered.
Collapse
|
89
|
Doğan C, Doğan N, Gungor M, Eticha AK, Akgul Y. Novel active food packaging based on centrifugally spun nanofibers containing lavender essential oil: Rapid fabrication, characterization, and application to preserve of minced lamb meat. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
90
|
Hydrogels and biohydrogels: investigation of origin of production, production methods, and application. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
91
|
|
92
|
Serdiuk V, Shevchuk O, Tetiana K, Bukartyk N, Tokarev V. Synthesis of reactive copolymers with peroxide functionality for cross‐linking water‐soluble polymers. J Appl Polym Sci 2022. [DOI: 10.1002/app.53254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Oleh Shevchuk
- Department of Organic Chemistry, Institute of Chemistry and Chemical Technologies Lviv Polytechnic National University Lviv Ukraine
| | - Kovalenko Tetiana
- Department of Organic Chemistry, Institute of Chemistry and Chemical Technologies Lviv Polytechnic National University Lviv Ukraine
- Department of Heat Engineering and Thermal and Nuclear Power Plants Institute of Power Engineering and Control Systems, Lviv Polytechnic National University Lviv Ukraine
| | - Natalya Bukartyk
- Department of Organic Chemistry, Institute of Chemistry and Chemical Technologies Lviv Polytechnic National University Lviv Ukraine
| | - Viktor Tokarev
- Department of Organic Chemistry, Institute of Chemistry and Chemical Technologies Lviv Polytechnic National University Lviv Ukraine
| |
Collapse
|
93
|
Highly Stable Core-Shell Nanocolloids: Synergy between Nano-Silver and Natural Polymers to Prevent Biofilm Formation. Antibiotics (Basel) 2022; 11:antibiotics11101396. [PMID: 36290054 PMCID: PMC9598106 DOI: 10.3390/antibiotics11101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Active investment in research time in the development and study of novel unconventional antimicrobials is trending for several reasons. First, it is one of the ways which might help to fight antimicrobial resistance and bacterial contamination due to uncontrolled biofilm growth. Second, minimizing harmful environmental outcomes due to the overuse of toxic chemicals is one of the highest priorities nowadays. We propose the application of two common natural compounds, chitosan and tannic acid, for the creation of a highly crosslinked polymer blend with not only intrinsic antimicrobial properties but also reducing and stabilizing powers. Thus, the fast and green synthesis of fine spherically shaped Ag nanoparticles and further study of the composition and properties of the colloids took place. A positively charged core-shell nanocomposition, with an average size in terms of the metal core of 17 ± 4 nm, was developed. Nanoantimicrobials were characterized by several spectroscopic (UV-vis and FTIR) and microscopic (transmission and scanning electron microscopies) techniques. The use of AgNPs as a core and an organic polymer blend as a shell potentially enable a synergistic long-lasting antipathogen effect. The antibiofilm potential was studied against the food-borne pathogens Salmonella enterica and Listeria monocytogenes. The antibiofilm protocol efficiency was evaluated by performing crystal violet assay and optical density measurements, direct visualization by confocal laser scanning microscopy and morphological studies by SEM. It was found that the complex nanocomposite has the ability to prevent the growth of biofilm. Further investigation for the potential application of this stable composition in food packaging will be carried out.
Collapse
|
94
|
Batta-Mpouma J, Kandhola G, Sakon J, Kim JW. Covalent Crosslinking of Colloidal Cellulose Nanocrystals for Multifunctional Nanostructured Hydrogels with Tunable Physicochemical Properties. Biomacromolecules 2022; 23:4085-4096. [PMID: 36166819 DOI: 10.1021/acs.biomac.2c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cellulose nanocrystals (CNCs) have shown promise for the development of multifunctional materials for many research communities, ranging from bioresource engineering and biomedical engineering to materials science and engineering. However, accessible hydroxyl (OH) groups on the surface of colloidal CNCs at the (11̅0)β/(100)α and (110)β/(010)α facets and the intermolecular hydrogen bonding (H-bonds) between these OH groups account for the instability of self-assembled CNC structures in moist environments, limiting their practical uses to dry media. In this work, accessible OH groups of CNCs were crosslinked using two crosslinkers, that is, glutaraldehyde (GA) and epichlorohydrin (EC), to form nanoparticle-based hydrogels with tunable physicochemical properties. The intensity of the intermolecular H-bonds was controlled by the type and concentration of crosslinkers as well as the CNC concentration. Rheological analyses through the loss tangent were used to determine the degree of crosslinking with maximal values beyond 90%. Fourier-transform infrared spectroscopy demonstrated that H-bond intensity was inversely proportional to the degree of crosslinking for both GA and EC, indicating a dissimilar crosslinking mechanism for GA and EC in acidic and alkaline pH conditions, respectively. Atomic force microscopy and wettability analyses showed a significant increase in the surface roughness from 3.2 ± 0.41 nm (pure CNC) to 31.5 ± 1.08 nm (CNCs crosslinked by GA) and 23.8 ± 0.14 nm (CNCs crosslinked by EC) and water contact angle from 13° (pure CNC) to 108° (CNCs crosslinked by GA) and 104° (CNCs crosslinked by EC). Moreover, optimum water absorption values were found at 157.67 ± 2.01 g and 173.59 ± 1.26 g of water for 1 g of freeze-dried hydrogels for 10% GA and 1% EC, respectively. The results aligned with reaction conditions that led to maximal degrees of crosslinking and indicated the transformation of surface chemistry from a hydrophilic to a hydrophobic network as well as tunable topology and aqueous stability of self-assembled structures made from crosslinked CNCs. This technology demonstrated the potential of crosslinked CNCs with tunable physicochemical properties for use as advanced building blocks to produce 2D and 3D structures for their related functions.
Collapse
Affiliation(s)
- Joseph Batta-Mpouma
- Bio/Nano Technology Group, Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States.,Materials Science & Engineering Program, University of Arkansas, Fayetteville, Arkansas 72701, United States.,Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Gurshagan Kandhola
- Bio/Nano Technology Group, Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States.,Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Joshua Sakon
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jin-Woo Kim
- Bio/Nano Technology Group, Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States.,Materials Science & Engineering Program, University of Arkansas, Fayetteville, Arkansas 72701, United States.,Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
95
|
An Innovative Sandwich Type Biosensor towards Sensitive and Selective Monitoring of 2-Arachidonoylglycerol in Human Plasma Samples Using P(β-CD)-AuNPs-DDT as Amplificant Agent: A New Immuno-Platform for the Recognition of Endocannabinoids in Real Samples. BIOSENSORS 2022; 12:bios12100791. [PMID: 36290931 PMCID: PMC9599568 DOI: 10.3390/bios12100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/20/2022]
Abstract
In this work, 2-AG was successfully detected in human plasma samples using a new sandwich-type electrochemical immune device based on poly-β-cyclodextrin P(β-CD) functionalized with AuNPs-DDT and toluidine blue. The P(β-CD) ensured the bioactivity and stability of the immobilized 2-AG antibody by providing a broad surface for the efficient immobilization of the biotinylated antibody. To complete the top section of the immunosensor (reporter), an HRP-conjugated antibody of 2-AG (secondary antibody (Ab2)) was attached to the surface of a glassy carbon electrode (GCE) modified by P(β-CD), as well as a primarily biotinylated antibody (Ab1). The biosensor fabrication process was monitored using field-emission scanning electron microscope (FE-SEM) and EDS methods. Using the differential pulse voltammetry technique, the immunosensor was utilized for detection of 2-AG in real samples. The suggested interface increased the surface area, which allowed for the immobilization of a large quantity of anti-2-AG antibody while also improving biocompatibility, stability, and electrical conductivity. Finally, the suggested immunosensor’s limit of quantitation was determined to be 0.0078 ng/L, with a linear range of 0.0078 to 1.0 ng/L. The results showed that the suggested bioassay can be utilized for diagnosis of 2-AG in clinical samples as a unique and ultrasensitive electrochemical biodevice.
Collapse
|
96
|
Photocrosslinkable Silk-Based Biomaterials for Regenerative Medicine and Healthcare Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
97
|
Ionogels Derived from Fluorinated Ionic Liquids to Enhance Aqueous Drug Solubility for Local Drug Administration. Gels 2022; 8:gels8090594. [PMID: 36135306 PMCID: PMC9498591 DOI: 10.3390/gels8090594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/05/2022] Open
Abstract
Gelatin is a popular biopolymer for biomedical applications due to its harmless impact with a negligible inflammatory response in the host organism. Gelatin interacts with soluble molecules in aqueous media as ionic counterparts such as ionic liquids (ILs) to be used as cosolvents to generate the so-called Ionogels. The perfluorinated IL (FIL), 1-ethyl-3-methylpyridinium perfluorobutanesulfonate, has been selected as co-hydrosolvent for fish gelatin due to its low cytotoxicity and hydrophobicity aprotic polar structure to improve the drug aqueous solubility. A series of FIL/water emulsions with different FIL content and their corresponding shark gelatin/FIL Ionogel has been designed to enhance the drug solubility whilst retaining the mechanical structure and their nanostructure was probed by simultaneous SAXS/WAXS, FTIR and Raman spectroscopy, DSC and rheological experiments. Likewise, the FIL assisted the solubility of the antitumoural Doxorubicin whilst retaining the performing mechanical properties of the drug delivery system network for the drug storage as well as the local administration by a syringe. In addition, the different controlled release mechanisms of two different antitumoral such as Doxorubicin and Mithramycin from two different Ionogels formulations were compared to previous gelatin hydrogels which proved the key structure correlation required to attain specific therapeutic dosages.
Collapse
|
98
|
Assessing Molecular Docking Tools to Guide the Design of Polymeric Materials Formulations: A Case Study of Canola and Soybean Protein. Polymers (Basel) 2022; 14:polym14173690. [PMID: 36080764 PMCID: PMC9460131 DOI: 10.3390/polym14173690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
After more than 40 years of biopolymer development, the current research is still based on conventional laboratory techniques, which require a large number of experiments. Therefore, finding new research methods are required to accelerate and power the future of biopolymeric development. In this study, promising biopolymer-additive ranking was described using an integrated computer-aided molecular design platform. In this perspective, a set of 21 different additives with plant canola and soy proteins were initially examined by predicting the molecular interactions scores and mode of molecule interactions within the binding site using AutoDock Vina, Molecular Operating Environment (MOE), and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA). The findings of the investigated additives highlighted differences in their binding energy, binding sites, pockets, types, and distance of bonds formed that play crucial roles in protein-additive interactions. Therefore, the molecular docking approach can be used to rank the optimal additive among a set of candidates by predicting their binding affinities. Furthermore, specific molecular-level insights behind protein-additives interactions were provided to explain the ranking results. The highlighted results can provide a set of guidelines for the design of high-performance polymeric materials at the molecular level. As a result, we suggest that the implementation of molecular modeling can serve as a fast and straightforward tool in protein-based bioplastics design, where the correct ranking of additives among sets of candidates is often emphasized. Moreover, these approaches may open new ways for the discovery of new additives and serve as a starting point for more in-depth investigations into this area.
Collapse
|
99
|
Wang C, Cao H, Jia L, Liu W, Liu P. Characterization of antibacterial aerogel based on ɛ-poly-l-lysine/nanocellulose by using citric acid as crosslinker. Carbohydr Polym 2022; 291:119568. [DOI: 10.1016/j.carbpol.2022.119568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/17/2022]
|
100
|
Yousefi Talouki P, Tamimi R, Zamanlui Benisi S, Goodarzi V, Shojaei S, Hesami tackalou S, Samadikhah HR. Polyglycerol sebacate (PGS)-based composite and nanocomposites: properties and applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2097681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Pardis Yousefi Talouki
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Reyhaneh Tamimi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
- Stem cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19945-546, Tehran, Iran
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
- Stem cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran
| | | | | |
Collapse
|