51
|
Cacioppo M, De Zorzi R, Syrgiannis Z, Bellich B, Bertoncin P, Jou IA, Brady JW, Rizzo R, Cescutti P. Microscopy and modelling investigations on the morphology of the biofilm exopolysaccharide produced by Burkholderia multivorans strain C1576. Int J Biol Macromol 2023; 253:127294. [PMID: 37813217 PMCID: PMC10872726 DOI: 10.1016/j.ijbiomac.2023.127294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Bacteria form very often biofilms where they embed in a self-synthesized matrix exhibiting a gel-like appearance. Matrices offer several advantages, including defence against external threats and the easiness of intercellular communication. In infections, biofilm formation enhances bacteria resistance against antimicrobials, causing serious clinical problems for patients' treatments. Biofilm matrices are composed of proteins, extracellular DNA, and polysaccharides, the latter being the major responsible for matrix architecture. The repeating unit of the biofilm polysaccharide synthesized by Burkholderia multivorans strain C1576 contains two mannoses and two sequentially linked rhamnoses, one of them 50 % methylated on C-3. Rhamnose, a 6-deoxysugar, has lower polarity than other common monosaccharides and its methylation further reduces polarity. This suggests a possible role of this polysaccharide in the biofilm matrix; in fact, computer modelling and atomic force microscopy studies evidenced intra- and inter-molecular non-polar interactions both within polysaccharides and with aliphatic molecules. In this paper, the polysaccharide three-dimensional morphology was investigated using atomic force microscopy in both solid and solution states. Independent evidence of the polymer conformation was obtained by transmission electron microscopy which confirmed the formation of globular compact structures. Finally, data from computer dynamic simulations were used to model the three-dimensional structure.
Collapse
Affiliation(s)
- Michele Cacioppo
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Zois Syrgiannis
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Paolo Bertoncin
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Ining A Jou
- Food Science Department, Cornell University, 101A Stocking Hall, Ithaca, NY 14853, USA
| | - John W Brady
- Food Science Department, Cornell University, 101A Stocking Hall, Ithaca, NY 14853, USA
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
52
|
Souza LS, Folmar J, Salle A, Eda S. Partial privatization and cooperation in biofilms. AN ACAD BRAS CIENC 2023; 95:e20220985. [PMID: 38126521 DOI: 10.1590/0001-3765202320220985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/24/2023] [Indexed: 12/23/2023] Open
Abstract
The evolution of cooperation in microbes is a challenge to explain because microbes producing costly goods for the benefit of any strain types (cooperators) often withstand the threat of elimination by interacting with individuals that exploit these benefits without contributing (defectors). Here we developed an individual-based model to investigate whether partial privatization via the partial secretion of goods can favor cooperation in structured, surface-attaching microbial populations, biofilms. Whether partial secretion can favor cooperation in biofilms is unclear for two reasons. First, while partial privatization has been shown to foster cooperation in unstructured populations, little is known about the role of partial privatization in biofilms. Second, while limited diffusion of goods favors cooperation in biofilms because molecules are more likely to be shared with genetically-related individuals, partial secretion reduces goods that could have been directed towards genetically related individuals. Our results show that although partial secretion weakens the role that limited diffusion has on fostering cooperation, partial secretion favors cooperation in biofilms. Overall, our results provide predictions that future experiments could test to reveal contributions of relatedness and partial secretion to the social evolution of biofilms.
Collapse
Affiliation(s)
- Lucas S Souza
- University of Tennessee, Department of Ecology and Evolutionary Biology, 1416 Circle Dr, 37996, Knoxville, Tennessee, USA
| | - Jackie Folmar
- Yale University, Yale University Office of Undergraduate Admissions, 38 Hillhouse Ave, 06520-8234, New Haven, Connecticut, USA
| | - Abby Salle
- Lincoln Memorial University, College of Osteopathic Medicine, 6965 Cumberland Gap Pkwy, 37752, Harrogate, Tennessee, USA
| | - Shigetoshi Eda
- University of Tennessee, Department of Forestry, Wildlife and Fisheries, 2505 E.J. Chapman Drive, 37996-4563, Knoxville, Tennessee, USA
| |
Collapse
|
53
|
Bennett AN, Woolard KJ, Sorge A, Melander C, Gunn JS. Spectrum of activity of Salmonella anti-biofilm compounds: Evaluation of activity against biofilm-forming ESKAPE pathogens. Biofilm 2023; 6:100158. [PMID: 37790732 PMCID: PMC10542598 DOI: 10.1016/j.bioflm.2023.100158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
The ESKAPE pathogens are a group of bacteria that are a leading cause of health-care associated infections and are known to be agents of chronic, biofilm-mediated infections. These chronic bacterial infections often respond poorly to antibiotics and in some cases may require surgical intervention in order to cure the infection. As biofilms are often the critical mediator of a chronic infection, it is essential to develop therapies that target bacteria within the biofilm state. Herein, we report the development of a rapid, 96-well plate-based assay that employs conditions specific for each species to optimize biofilm production and allow for easy identification of differences in biofilm mass after treatment with anti-biofilm candidates. We used these ESKAPE-specific biofilm assays to test our previously identified Salmonella anti-biofilm small molecule compounds, JG-1 and M4, for anti-biofilm activity. The results demonstrated that JG-1 and M4 have anti-biofilm activity against Enterobacter spp., S. aureus, E. faecium, P. aeruginosa, and A. baumannii. In addition, we identified that M4 has significant antimicrobial activity against S. aureus and E. faecium at concentrations >10 μM (X μg/mL). These findings support the claim that JG-1 and M4 have broad-spectrum anti-biofilm activity, while M4 has antimicrobial activity against the Gram-positive members of the ESKAPE pathogens. Thus, these compounds have the potential to have a significant impact on treating multiple types of commonly encountered biofilm-mediated infections.
Collapse
Affiliation(s)
- Aliyah N. Bennett
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA
- Medical Scientist Training Program, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Katherine J. Woolard
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Amy Sorge
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - John S. Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
54
|
Valdivieso González D, Jara J, Almendro-Vedia VG, Orgaz B, López-Montero I. Expansion microscopy applied to mono- and dual-species biofilms. NPJ Biofilms Microbiomes 2023; 9:92. [PMID: 38049404 PMCID: PMC10696089 DOI: 10.1038/s41522-023-00460-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
Expansion microscopy (ExM) is a new super-resolution technique based on embedding the biological sample within a hydrogel and its physical expansion after swelling. This allows increasing its size by several times while preserving its structural details. Applied to prokaryotic cells, ExM requires digestion steps for efficient expansion as bacteria are surrounded by a rigid cell wall. Furthermore, bacteria can live in social groups forming biofilms, where cells are protected from environmental stresses by a self-produced matrix. The extracellular matrix represents an additional impenetrable barrier for ExM. Here we optimize the current protocols of ExM and apply them to mono- and dual-species biofilms formed by clinical isolates of Limosilactobacillus reuteri, Enterococcus faecalis, Serratia marcescens and Staphylococcus aureus. Using scanning electron microscopy for comparison, our results demonstrate that embedded bacteria expanded 3-fold. Moreover, ExM allowed visualizing the three-dimensional architecture of the biofilm and identifying the distribution of different microbial species and their interactions. We also detected the presence of the extracellular matrix after expansion with a specific stain of the polysaccharide component. The potential applications of ExM in biofilms will improve our understanding of these complex communities and have far-reaching implications for industrial and clinical research.
Collapse
Affiliation(s)
- David Valdivieso González
- Dto. Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Ps. Juan XXIII 1, 28040, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (Imas12), Avda. de Córdoba s/n, 28041, Madrid, Spain
| | - Josué Jara
- Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Víctor G Almendro-Vedia
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Ps. Juan XXIII 1, 28040, Madrid, Spain
- Sección Departamental de Farmacia Galénica y Tecnología Alimentaria, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (Imas12), Avda. de Córdoba s/n, 28041, Madrid, Spain
| | - Belén Orgaz
- Sección Departamental de Farmacia Galénica y Tecnología Alimentaria, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Iván López-Montero
- Dto. Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Ps. Juan XXIII 1, 28040, Madrid, Spain.
- Instituto de Investigación Biomédica Hospital Doce de Octubre (Imas12), Avda. de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
55
|
Scholten R, Klein Klouwenberg PMC, VAN Susante JLC, Somford MP. Empiric antibiotic treatment for periprosthetic joint infections: a national survey in The Netherlands. Acta Orthop Belg 2023; 89:665-669. [PMID: 38205758 DOI: 10.52628/89.4.9415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Early periprosthetic joint infection (PJI) is generally treated by means of debridement, antibiotics and implant retention (DAIR). Subsequently, empiric antibiotic therapy is commenced directly after surgery which is important for the successful treatment of PJI. The aim of this study is to evaluate current nationwide empiric antibiotic treatment regimens for PJI in the Netherlands. An electronic 15-question survey addressing the empiric antibiotic treatment strategy for PJI following THA or TKA was sent to orthopaedic surgeons in all Dutch hospitals in April 2019. Orthopaedic surgeons active in every single Dutch orthopaedic hospital (n=69) were approached. At least one surgeon in every hospital completed the survey (100% response rate). A protocol dictating the empiric antibiotic treatment following DAIR was used in 87% (60 hospitals). Among all hospitals, 72% (50 hospitals) used antibiotic monotherapy and 28% (19 hospitals) used combination therapy. Cefazolin was the most commonly used regimen in centres opting for monotherapy (42%, 29 hospitals). Similar regimens were used for the empiric treatment of suspected early PJI after revision surgery and for acute hematogenous PJI. In septic patients, combination therapy was preferred (64%). 81% (56 hospitals) incubated tissue biopsies for a minimum of 10 days whereas 16% (9 hospitals) indicated an incubation period of 7 days or less. Even in a small country such as the Netherlands there seems to be no uniformity regarding empiric antibiotic treatment for PJI. Increased uniformity regarding empiric treatment could be an important first step in improving PJI treatment.
Collapse
|
56
|
Žiemytė M, Rodríguez-Díaz JC, Ventero-Martín MP, Mira A, Ferrer MD. Real-time monitoring of biofilm growth identifies andrographolide as a potent antifungal compound eradicating Candida biofilms. Biofilm 2023; 5:100134. [PMID: 37396463 PMCID: PMC10313501 DOI: 10.1016/j.bioflm.2023.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Candida species cause life-threatening infections with high morbidity and mortality rates and their resistance to conventional therapy is closely linked to biofilm formation. Thus, the development of new approaches to study Candida biofilms and the identification of novel therapeutic strategies could yield improved clinical outcomes. In the current study, we have set up an impedance-based in vitro system to study Candida spp. biofilms in real-time and to evaluate their sensitivity to two conventional antifungal groups used in clinical practice - azoles and echinocandins. Both fluconazole and voriconazole were unable to inhibit biofilm formation in most strains tested, while echinocandins showed biofilm inhibitory capacity at relatively low concentrations (starting from 0.625 mg/L). However, assays performed on 24 h Candida albicans and C. glabrata biofilms revealed that micafungin and caspofungin failed to eradicate mature biofilms at all tested concentrations, evidencing that once formed, Candida spp. biofilms are extremely difficult to eliminate using currently available antifungals. We then evaluated the antifungal and anti-biofilm effect of andrographolide, a natural compound isolated from the plant Andrographis paniculata with known antibiofilm activity on Gram-positive and Gram-negative bacteria. Optical density measures, impedance evaluation, CFU counts, and electron microscopy data showed that andrographolide strongly inhibits planktonic Candida spp. growth and halts Candida spp. biofilm formation in a dose-dependent manner in all tested strains. Moreover, andrographolide was capable of eliminating mature biofilms and viable cell numbers by up to 99.9% in the C. albicans and C. glabrata strains tested, suggesting its potential as a new approach to treat multi-resistant Candida spp. biofilm-related infections.
Collapse
Affiliation(s)
- Miglė Žiemytė
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
| | - Juan C Rodríguez-Díaz
- Servicio de Microbiología, Hospital General Universitario de Alicante, ISABIAL, Alicante, Spain
| | - María P Ventero-Martín
- Servicio de Microbiología, Hospital General Universitario de Alicante, ISABIAL, Alicante, Spain
| | - Alex Mira
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
- CIBER Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - María D Ferrer
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
| |
Collapse
|
57
|
Plotniece A, Sobolev A, Supuran CT, Carta F, Björkling F, Franzyk H, Yli-Kauhaluoma J, Augustyns K, Cos P, De Vooght L, Govaerts M, Aizawa J, Tammela P, Žalubovskis R. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem 2023; 38:2155816. [PMID: 36629427 PMCID: PMC9848314 DOI: 10.1080/14756366.2022.2155816] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.
Collapse
Affiliation(s)
- Aiva Plotniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, Riga, Latvia
| | | | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Carta
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Linda De Vooght
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Matthias Govaerts
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Juliana Aizawa
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Päivi Tammela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
58
|
Fernández-Billón M, Llambías-Cabot AE, Jordana-Lluch E, Oliver A, Macià MD. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm 2023; 5:100129. [PMID: 37205903 PMCID: PMC10189392 DOI: 10.1016/j.bioflm.2023.100129] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Pseudomonas aeruginosa is a major cause of life-threatening acute infections and life-long lasting chronic infections. The characteristic biofilm mode of life in P. aeruginosa chronic infections severely limits the efficacy of antimicrobial therapies, as it leads to intrinsic tolerance, involving physical and physiological factors in addition to biofilm-specific genes that can confer a transient protection against antibiotics promoting the development of resistance. Indeed, a striking feature of this pathogen is the extraordinary capacity to develop resistance to nearly all available antibiotics through the selection of chromosomal mutations, evidenced by its outstanding and versatile mutational resistome. This threat is dramatically amplified in chronic infections, driven by the frequent emergence of mutator variants with enhanced spontaneous mutation rates. Thus, this mini review is focused on describing the complex interplay of antibiotic resistance mechanisms in P. aeruginosa biofilms, to provide potentially useful information for the design of effective therapeutic strategies.
Collapse
Affiliation(s)
- María Fernández-Billón
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Aina E. Llambías-Cabot
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Elena Jordana-Lluch
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Antonio Oliver
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - María D. Macià
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
- Corresponding author. Department of Microbiology, Hospital Universitario Son Espases, Crta. Vallemossa 79, 07120, Palma de Mallorca, Spain.
| |
Collapse
|
59
|
Kumar P, Behera A, Tiwari P, Karthik S, Biswas M, Sonawane A, Mobin SM. Exploring the antimicrobial potential of isoniazid loaded Cu-based metal-organic frameworks as a novel strategy for effective killing of Mycobacterium tuberculosis. J Mater Chem B 2023; 11:10929-10940. [PMID: 37937634 DOI: 10.1039/d3tb02292g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Tuberculosis (TB) remains one of the most infectious pathogens with the highest human mortality and morbidity. Biofilm formation during Mycobacterium tuberculosis (Mtb) infection is responsible for bacterial growth, communication, and, most essentially, increased resistance/tolerance to antibiotics leading to higher bacterial persistence. Thus, biofilm growth is presently considered a key virulence factor in the case of chronic disease. Metal-Organic Frameworks (MOFs) have recently emerged as a highly efficient system to improve existing antibiotics' therapeutic efficacy and reduce adverse effects. In this regard, we have synthesized Cu-MOF (IITI-3) using a solvothermal approach. IITI-3 was well characterized by various spectroscopic techniques. Herein, IITI-3 was first encapsulated with isoniazid (INH) to form INH@IITI-3 with 10 wt% loading within 1 hour. INH@IITI-3 was well characterized by PXRD, TGA, FTIR, and BET surface area analysis. Furthermore, the drug release kinetics studies of INH@IITI-3 have been performed at pH 5.8 and 7.4 to mimic the small intestine and blood pH, respectively. The results show that drug release follows first-order kinetics. Furthermore, the antimycobacterial activity of INH@IITI-3 demonstrated significant bacterial killing and altered the structural morphology of the bacteria. Moreover, INH@IITI-3 was able to inhibit the mycobacterial biofilm formation upon treatment and showed less cytotoxicity toward the murine RAW264.7 macrophages. Thus, this work significantly opens up new possibilities for the applications of INH@IITI-3 in biofilm infections in Mtb and further contributes to TB therapeutics.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, Indian Institute of Technology, Indore, Simrol, Madhya Pradesh, India
| | - Ananyaashree Behera
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India.
| | - Pranav Tiwari
- Department of Chemistry, Indian Institute of Technology, Indore, Simrol, Madhya Pradesh, India
| | - Sibi Karthik
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Madhya Pradesh, India
| | - Mainak Biswas
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India.
| | - Avinash Sonawane
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India.
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Madhya Pradesh, India
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology, Indore, Simrol, Madhya Pradesh, India
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Madhya Pradesh, India
- Center for Advance Electronic (CAE), Indian Institute of Technology, Indore, Simrol, Madhya Pradesh, India
- Center for Electric Vehicle and Intelligent Transport Systems, Indian Institute of Technology, Indore, Simrol, Madhya Pradesh, India
| |
Collapse
|
60
|
Li D, Su Y, Li J, Liu R, Fang B, He J, Xu W, Zhu L. Applications and Challenges of Bacteriostatic Aptamers in the Treatment of Common Pathogenic Bacteria Infections. Biomacromolecules 2023; 24:4568-4586. [PMID: 37728999 DOI: 10.1021/acs.biomac.3c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The continuous evolution and spread of common pathogenic bacteria is a major challenge in diagnosis and treatment with current biotechnology and modern molecular medicine. To confront this challenge, scientists urgently need to find alternatives for traditional antimicrobial agents. Various bacteriostatic aptamers obtained through SELEX screening are one of the most promising strategies. These bacteriostatic aptamers can reduce bacterial infection by blocking bacterial toxin infiltration, inhibiting biofilm formation, preventing bacterial invasion of immune cells, interfering with essential biochemical processes, and other mechanisms. In addition, aptamers may also help enhance the function of other antibacterial materials/drugs when used in combination. This paper has reviewed the bacteriostatic aptamers in the treatment of common pathogenic bacteria infections. For this aspect, first, bacteriostatic aptamers and their screening strategies are summarized. Then, the effect of molecular tailoring and modification on the performance of the bacteriostatic aptamer is analyzed, and the antibacterial mechanism and antibacterial strategy based on aptamers are introduced. Finally, the key technical challenges and their development prospects in clinical treatment are also carefully discussed.
Collapse
Affiliation(s)
- Diandian Li
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yuan Su
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jie Li
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Rong Liu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Bing Fang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jingjing He
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
61
|
Jing K, Li Y, Yao C, Jiang C, Li J. Towards the fate of antibiotics and the development of related resistance genes in stream biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165554. [PMID: 37454845 DOI: 10.1016/j.scitotenv.2023.165554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Antibiotics are ubiquitously found in natural surface waters and cause great harm to aquatic organisms. Stream biofilm is a complex and active community composed of algae, bacteria, fungi and other microorganisms, which mainly adheres to solid substances such as rocks and sediments. The durability and diverse structural and metabolic characteristics of biofilms make them a representative of microbial life in aquatic micrecosystems and can reflect major ecosystem processes. Microorganisms and extracellular polymeric substances in biofilms can adsorb and actively accumulate antibiotics. Therefore, biofilms are excellent biological indicators for detecting antibiotic in polluted aquatic environments, but the biotransformation potential of stream biofilms for antibiotics has not been fully explored in the aquatic environment. The characteristics of stream biofilm, such as high abundance and activity of bacterial community, wide contact area with pollutants, etc., which increases the opportunity of biotransformation of antibiotics in biofilm and contribute to bioremediation to improve ecosystem health. Recent studies have demonstrated that both exposure to high and sub-minimum inhibitory concentrations of antibiotics may drive the development of antibiotic resistance genes (ARGs) in natural stream biofilms, which are susceptible to the effects of antibiotic residues, microbial communities and mobile genetic elements, etc. On the basis of peer-reviewed papers, this review explores the distribution behavior of antibiotics in stream biofilms and the contribution of biofilms to the acquisition and spread of antibiotic resistance. Considering that antibiotics and ARGs alter the structure and ecological functions of natural microbial communities and pose a threat to river organisms and human health, our research findings provide comprehensive insights into the migration, transformation, and bioavailability of antibiotics in biofilms.
Collapse
Affiliation(s)
- Ke Jing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China.
| | - Chi Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Chenxue Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| | - Jing Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing 210098, China
| |
Collapse
|
62
|
Xie LY, Xu YB, Ding XQ, Liang S, Li DL, Fu AK, Zhan XA. Itaconic acid and dimethyl itaconate exert antibacterial activity in carbon-enriched environments through the TCA cycle. Biomed Pharmacother 2023; 167:115487. [PMID: 37713987 DOI: 10.1016/j.biopha.2023.115487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Itaconic acid (IA), a metabolite generated by the tricarboxylic acid (TCA) cycle in eukaryotic immune cells, and its derivative dimethyl itaconate (DI) exert antibacterial functions in intracellular environments. Previous studies suggested that IA and DI only inhibit bacterial growth in carbon-limited environments; however, whether IA and DI maintain antibacterial activity in carbon-enriched environments remains unknown. Here, IA and DI inhibited the bacteria with minimum inhibitory concentrations of 24.02 mM and 39.52 mM, respectively, in a carbon-enriched environment. The reduced bacterial pathogenicity was reflected in cell membrane integrity, motility, biofilm formation, AI-2/luxS, and virulence. Mechanistically, succinate dehydrogenase (SDH) activity and fumaric acid levels decreased in the IA and DI treatments, while isocitrate lyase (ICL) activity was upregulated. Inhibited TCA circulation was also observed through untargeted metabolomics. In addition, energy-related aspartate metabolism and lysine degradation were suppressed. In summary, these results indicated that IA and DI reduced bacterial pathogenicity while exerting antibacterial functions by inhibiting TCA circulation. This study enriches knowledge on the inhibition of bacteria by IA and DI in a carbon-mixed environment, suggesting an alternative method for treating bacterial infections by immune metabolites.
Collapse
Affiliation(s)
- L Y Xie
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Y B Xu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - X Q Ding
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - S Liang
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - D L Li
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - A K Fu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - X A Zhan
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
63
|
Moradi F, Ghaedi A, Fooladfar Z, Bazrgar A. Recent advance on nanoparticles or nanomaterials with anti-multidrug resistant bacteria and anti-bacterial biofilm properties: A systematic review. Heliyon 2023; 9:e22105. [PMID: 38034786 PMCID: PMC10685370 DOI: 10.1016/j.heliyon.2023.e22105] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/05/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
Objective With the wide spread of Multidrug-resistant bacteria (MDR) due to the transfer and acquisition of antibiotic resistance genes and the formation of microbial biofilm, various researchers around the world are looking for a solution to overcome these resistances. One potential strategy and the best candidate to overcome these infections is using an effective nanomaterial with antibacterial properties against them. Methods and analysis: In this study, we overview nanomaterials with anti-MDR bacteria and anti-biofilm properties. Hence, we systematically explored biomedical databases (Web of Sciences, Google Scholar, PubMed, and Scopus) to categorize related studies about nanomaterial with anti-MDR bacteria and anti-biofilm activities from 2007 to December 2022. Results In total, forty-one studies were investigated to find antibacterial and anti-biofilm information about the nanomaterial during 2007-2022. According to the collected documents, nineteen types of nanomaterial showed putative antibacterial effects such as Cu, Ag, Au, Au/Pt, TiO2, Al2O3, ZnO, Se, CuO, Cu/Ni, Cu/Zn, Fe3O4, Au/Fe3O4, Au/Ag, Au/Pt, Graphene O, and CuS. In addition, seven types of them considered as anti-biofilm agents such as Ag, ZnO, Au/Ag, Graphene O, Cu, Fe3O4, and Au/Ag. Conclusion According to the studies, each of nanomaterial has been designed with different methods and their effects against standard strains, clinical strains, MDR strains, and bacterial biofilms have been investigated in-vitro and in-vivo conditions. In addition, nanomaterials have different destructive mechanism on bacterial structures. Various nanoparticles (NP) introduced as the best candidate to designing new drug and medical equipment preventing infectious disease outbreaks by overcome antibiotic resistance and bacterial biofilm.
Collapse
Affiliation(s)
- Farhad Moradi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arshin Ghaedi
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Fooladfar
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Bazrgar
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
64
|
Anantharajah A, Goormaghtigh F, Mantu EN, Güler B, Bearzatto B, Momal A, Werion A, Hantson P, Kabamba-Mukadi B, Van Bambeke F, Rodriguez-Villalobos H, Verroken A. Long-term ICU outbreak of carbapenamase-producing organisms associated with contaminated sink drains. J Hosp Infect 2023; 143:S0195-6701(23)00343-2. [PMID: 39491220 DOI: 10.1016/j.jhin.2023.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Between 2018 and 2022, a Belgian tertiary care hospital faced a growing issue with acquiring carbapenemase-producing organisms (CPO), mainly VIM-producing P. aeruginosa (PA-VIM) and NDM-producing Enterobacterales (CPE-NDM) among hospitalized patients in the adult intensive care unit (ICU). We report the investigation of this ICU long-term CPO outbreak involving multiple species and a persistent environmental reservoir. METHODS Active case finding, environmental sampling, whole genome sequencing (WGS) analysis of patient and environmental strains and implemented control strategies were described in this study. FINDINGS From 2018 to 2022, 37 patients became colonised or infected with PA-VIM and/ or CPE-NDM during their ICU stay. WGS confirmed the epidemiological link between clinical and environmental strains collected from the sink drains with clonal strains dissemination and horizontal gene transfer mediated by plasmid conjugation and/or transposon jumps. Environmental disinfection by quaternary ammonium-based disinfectant and replacement of contaminated equipment failed to eradicate environmental sources. Interestingly, efflux pumps genes conferring resistance to quaternary ammonium compounds were widespread in the isolates. As removing sinks was not feasible, a combination of a foaming product degrading the biofilm and foaming disinfectant based on peracetic acid and hydrogen peroxide has been evaluated and has so far prevented re-colonisation of the proximal sink drain by CPO. CONCLUSION The persistence in the hospital environment of antibiotic-and-disinfectant resistant bacteria with the ability to transfer mobile genetic elements poses a serious threat on ICU patients with a risk of shifting towards an endemicity scenario. Innovative strategies are needed to address persistent environmental reservoirs and prevent CPO transmission.
Collapse
Affiliation(s)
- Ahalieyah Anantharajah
- Department of Clinical Microbiology, Cliniques universitaires Saint-Luc, Brussels, Belgium; Medical Microbiology Unit, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| | - Frédéric Goormaghtigh
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Eléonore Nguyvula Mantu
- Medical Microbiology Unit, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Beysa Güler
- Medical Microbiology Unit, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Bertrand Bearzatto
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Alexe Momal
- Department of Clinical Microbiology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Alexis Werion
- Department of Intensive Care, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Philippe Hantson
- Department of Intensive Care, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Benoît Kabamba-Mukadi
- Department of Clinical Microbiology, Cliniques universitaires Saint-Luc, Brussels, Belgium; Medical Microbiology Unit, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Hector Rodriguez-Villalobos
- Department of Clinical Microbiology, Cliniques universitaires Saint-Luc, Brussels, Belgium; Medical Microbiology Unit, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Alexia Verroken
- Department of Clinical Microbiology, Cliniques universitaires Saint-Luc, Brussels, Belgium; Medical Microbiology Unit, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Prevention and Control Infection, Cliniques universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
65
|
Elashiry MM, Bergeron BE, Tay FR. Enterococcus faecalis in secondary apical periodontitis: Mechanisms of bacterial survival and disease persistence. Microb Pathog 2023; 183:106337. [PMID: 37683835 DOI: 10.1016/j.micpath.2023.106337] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Enterococcus faecalis is a commensal bacterium commonly found in the human gastrointestinal tract. However, in individuals with compromised immune systems, the pathogen can lead to severe illness. This opportunistic pathogen is associated with secondary apical diseases and is adept at resisting antibiotics and other forms of treatment because of its numerous virulence factors. Enterococcus faecalis is capable of disrupting the normal functions of immune cells, thereby hindering the body's ability to eradicate the infection. However, intensive research is needed in further understanding the adverse immunomodulatory effects of E. faecalis. Potential strategies specific for eradicating E. faecalis have proven beneficial in the treatment of persistent secondary apical periodontitis.
Collapse
Affiliation(s)
- Mohamed M Elashiry
- Department of Endodontics, Dental College of Georgia, Augusta University, Georgia, USA; Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo, Egypt.
| | - Brian E Bergeron
- Department of Endodontics, Dental College of Georgia, Augusta University, Georgia, USA
| | - Franklin R Tay
- Department of Endodontics, Dental College of Georgia, Augusta University, Georgia, USA
| |
Collapse
|
66
|
K S, Vasanthrao R, Chattopadhyay I. Impact of environment on transmission of antibiotic-resistant superbugs in humans and strategies to lower dissemination of antibiotic resistance. Folia Microbiol (Praha) 2023; 68:657-675. [PMID: 37589876 DOI: 10.1007/s12223-023-01083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Antibiotics are the most efficient type of therapy developed in the twentieth century. From the early 1960s to the present, the rate of discovery of new and therapeutically useful classes of antibiotics has significantly decreased. As a result of antibiotic use, novel strains emerge that limit the efficiency of therapies in patients, resulting in serious consequences such as morbidity or mortality, as well as clinical difficulties. Antibiotic resistance has created major concern and has a greater impact on global health. Horizontal and vertical gene transfers are two mechanisms involved in the spread of antibiotic resistance genes (ARGs) through environmental sources such as wastewater treatment plants, agriculture, soil, manure, and hospital-associated area discharges. Mobile genetic elements have an important part in microbe selection pressure and in spreading their genes into new microbial communities; additionally, it establishes a loop between the environment, animals, and humans. This review contains antibiotics and their resistance mechanisms, diffusion of ARGs, prevention of ARG transmission, tactics involved in microbiome identification, and therapies that aid to minimize infection, which are explored further below. The emergence of ARGs and antibiotic-resistant bacteria (ARB) is an unavoidable threat to global health. The discovery of novel antimicrobial agents derived from natural products shifts the focus from chemical modification of existing antibiotic chemical composition. In the future, metagenomic research could aid in the identification of antimicrobial resistance genes in the environment. Novel therapeutics may reduce infection and the transmission of ARGs.
Collapse
Affiliation(s)
- Suganya K
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610101, India
| | - Ramavath Vasanthrao
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610101, India
| | - Indranil Chattopadhyay
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610101, India.
| |
Collapse
|
67
|
Vishakha K, Das S, Ganguli A. The Facile Synthesis of Eco-Friendly Zinc Magnesium Bimetal Nanoparticles and its Application in the Eradication of Xanthomonas oryzae pv. oryzae that Causes Leaf Blight Disease of Rice. Curr Microbiol 2023; 80:340. [PMID: 37712946 DOI: 10.1007/s00284-023-03455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
In this research work, we formulated and successfully assessed the antibacterial capability of zinc magnesium bimetal nanoparticles (ZnMgNPs) against Xanthomonas oryzae pv. oryzae (Xoo), the pathogenic microorganism responsible for causing the destructive leaf blight disease in rice. Successful preparation of ZnMgNPs were determined by UV-vis spectroscopy, EDX (Energy dispersive X-ray), FTIR (Fourier transform infrared) and SEM (Scanning Electron Microscopy). ZnMgNPs had antibacterial efficacy towards Xoo at MIC (minimum inhibitory concentration) 50 µg/ml. ZnMgNPs impeded the formation of biofilm of Xoo by drastically reducing the amount of EPS (extracellular polymeric substances) production and number of sessile cells. The ZnMgNPs also reduced several pathogenic traits of Xoo like motility, xanthomonadin and exoenzymes production. ZnMgNPs target cell membrane of Xoo and also induced oxidative damage as mechanisms of its antibacterial activity. As revealed by an ex-vivo study, ZnMgNPs diminished BLB (bacterial leaf blight) disease symptoms in rice leaves, ZnMgNPs had no effect on rice seed germination, and that following foliar application, the length and biomass of roots and shoots of rice seedling were unaffected, low cytotoxic to A549 cell line showing that ZnMgNPs are non-toxic. However, with ZnMgNPs treatment, the chlorophyll content index (CCI) increased significantly, indicating a good impact on rice physiology. All of these findings suggest that ZnMgNPs could be applied in agriculture to combat the Xoo-caused BLB disease.
Collapse
Affiliation(s)
- Kumari Vishakha
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Shatabdi Das
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Arnab Ganguli
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
68
|
Maillard JY, Centeleghe I. How biofilm changes our understanding of cleaning and disinfection. Antimicrob Resist Infect Control 2023; 12:95. [PMID: 37679831 PMCID: PMC10483709 DOI: 10.1186/s13756-023-01290-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Biofilms are ubiquitous in healthcare settings. By nature, biofilms are less susceptible to antimicrobials and are associated with healthcare-associated infections (HAI). Resistance of biofilm to antimicrobials is multifactorial with the presence of a matrix composed of extracellular polymeric substances and eDNA, being a major contributing factor. The usual multispecies composition of environmental biofilms can also impact on antimicrobial efficacy. In healthcare settings, two main types of biofilms are present: hydrated biofilms, for example, in drains and parts of some medical devices and equipment, and environmental dry biofilms (DSB) on surfaces and possibly in medical devices. Biofilms act as a reservoir for pathogens including multi-drug resistant organisms and their elimination requires different approaches. The control of hydrated (drain) biofilms should be informed by a reduction or elimination of microbial bioburden together with measuring biofilm regrowth time. The control of DSB should be measured by a combination of a reduction or elimination in microbial bioburden on surfaces together with a decrease in bacterial transfer post-intervention. Failure to control biofilms increases the risk for HAI, but biofilms are not solely responsible for disinfection failure or shortcoming. The limited number of standardised biofilm efficacy tests is a hindrance for end users and manufacturers, whilst in Europe there are no approved standard protocols. Education of stakeholders about biofilms and ad hoc efficacy tests, often academic in nature, is thus paramount, to achieve a better control of biofilms in healthcare settings.
Collapse
Affiliation(s)
- Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, Wales, UK.
| | - Isabella Centeleghe
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, Wales, UK
| |
Collapse
|
69
|
Richter-Dahlfors A, Kärkkäinen E, Choong FX. Fluorescent optotracers for bacterial and biofilm detection and diagnostics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2246867. [PMID: 37680974 PMCID: PMC10481766 DOI: 10.1080/14686996.2023.2246867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/03/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023]
Abstract
Effective treatment of bacterial infections requires methods that accurately and quickly identify which antibiotic should be prescribed. This review describes recent research on the development of optotracing methodologies for bacterial and biofilm detection and diagnostics. Optotracers are small, chemically well-defined, anionic fluorescent tracer molecules that detect peptide- and carbohydrate-based biopolymers. This class of organic molecules (luminescent conjugated oligothiophenes) show unique electronic, electrochemical and optical properties originating from the conjugated structure of the compounds. The photophysical properties are further improved as donor-acceptor-donor (D-A-D)-type motifs are incorporated in the conjugated backbone. Optotracers bind their biopolymeric target molecules via electrostatic interactions. Binding alters the optical properties of these tracer molecules, shown as altered absorption and emission spectra, as well as ON-like switch of fluorescence. As the optotracer provides a defined spectral signature for each binding partner, a fingerprint is generated that can be used for identification of the target biopolymer. Alongside their use for in situ experimentation, optotracers have demonstrated excellent use in studies of a number of clinically relevant microbial pathogens. These methods will find widespread use across a variety of communities engaged in reducing the effect of antibiotic resistance. This includes basic researchers studying molecular resistance mechanisms, academia and pharma developing new antimicrobials targeting biofilm infections and tests to diagnose biofilm infections, as well as those developing antibiotic susceptibility tests for biofilm infections (biofilm-AST). By iterating between the microbial world and that of plants, development of the optotracing technology has become a prime example of successful cross-feeding across the boundaries of disciplines. As optotracers offers a capacity to redefine the way we work with polysaccharides in the microbial world as well as with plant biomass, the technology is providing novel outputs desperately needed for global impact of the threat of antimicrobial resistance as well as our strive for a circular bioeconomy.
Collapse
Affiliation(s)
- Agneta Richter-Dahlfors
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elina Kärkkäinen
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ferdinand X. Choong
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
70
|
Han H, Xing L, Chen BT, Liu Y, Zhou TJ, Wang Y, Zhang LF, Li L, Cho CS, Jiang HL. Progress on the pathological tissue microenvironment barrier-modulated nanomedicine. Adv Drug Deliv Rev 2023; 200:115051. [PMID: 37549848 DOI: 10.1016/j.addr.2023.115051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Imbalance in the tissue microenvironment is the main obstacle to drug delivery and distribution in the human body. Before penetrating the pathological tissue microenvironment to the target site, therapeutic agents are usually accompanied by three consumption steps: the first step is tissue physical barriers for prevention of their penetration, the second step is inactivation of them by biological molecules, and the third step is a cytoprotective mechanism for preventing them from functioning on specific subcellular organelles. However, recent studies in drug-hindering mainly focus on normal physiological rather than pathological microenvironment, and the repair of damaged physiological barriers is also rarely discussed. Actually, both the modulation of pathological barriers and the repair of damaged physiological barriers are essential in the disease treatment and the homeostasis maintenance. In this review, we present an overview describing the latest advances in the generality of these pathological barriers and barrier-modulated nanomedicine. Overall, this review holds considerable significance for guiding the design of nanomedicine to increase drug efficacy in the future.
Collapse
Affiliation(s)
- Han Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Bi-Te Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling-Feng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
71
|
Debourgogne A, Monpierre L, Sy KA, Valsecchi I, Decousser JW, Botterel F. Interactions between Bacteria and Aspergillus fumigatus in Airways: From the Mycobiome to Molecular Interactions. J Fungi (Basel) 2023; 9:900. [PMID: 37755008 PMCID: PMC10533028 DOI: 10.3390/jof9090900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Interactions between different kingdoms of microorganisms in humans are common but not well described. A recent analysis of the mycobiome has described the presence of different fungi and their positive and/or negative interactions with bacteria and other fungi. In chronic respiratory diseases, these different microorganisms form mixed biofilms to live inside. The interactions between Gram-negative bacteria and filamentous fungi in these biofilms have attracted more attention recently. In this review, we analyse the microbiota of the respiratory tract of healthy individuals and patients with chronic respiratory disease. Additionally, we describe the regulatory mechanisms that rule the mixed biofilms of Aspergillus fumigatus and Gram-negative bacteria and the effects of this biofilm on clinical presentations.
Collapse
Affiliation(s)
- Anne Debourgogne
- UR 7300, Stress Immunité Pathogène, Université de Lorraine, 54000 Vandoeuvre les Nancy, France;
| | - Lorra Monpierre
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris (APHP), 94000 Créteil, France;
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
| | - Khadeeja Adam Sy
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
- Institut National de la Santé et de la Recherche Médicale (Inserm) U955, 94010 Créteil, France
| | - Isabel Valsecchi
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
| | - Jean-Winoc Decousser
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
- Department of Infection Control, University Hospital Henri Mondor, Assistance Publique—Hôpitaux de Paris, 94000 Créteil, France
| | - Françoise Botterel
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris (APHP), 94000 Créteil, France;
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
| |
Collapse
|
72
|
R KB, S SC, N SS. "Sharing the matrix" - a cooperative strategy for survival in Salmonella enterica serovar Typhimurium. BMC Microbiol 2023; 23:230. [PMID: 37612630 PMCID: PMC10463773 DOI: 10.1186/s12866-023-02972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Bacteria in nature live together in communities called biofilms, where they produce a matrix that protects them from hostile environments. The components of this matrix vary among species, with Salmonella enterica serovar Typhimurium (STm- WT) primarily producing curli and cellulose, which are regulated by the master regulator csgD. Interactions between bacteria can be competitive or cooperative, with cooperation more commonly observed among the kin population. This study refers to STm- WT as the generalist which produces all the matrix components and knockout strains that are defective in either curli or cellulose as the specialists, which produces one of the matrix components but not both. We have asked whether two different specialists will cooperate and share matrix components during biofilm formation to match the ability of the generalist which produces both components. RESULTS In this study, the response of the specialists and generalist to physical, chemical, and biological stress during biofilm formation is also studied to assess their abilities to cooperate and produce biofilms like the generalist. STm WT colony biofilm which produces both the major biofilm matrix component were protected from stress whereas the non-matrix producer (∆csgD), the cellulose, and curli alone producers ∆csgA, ∆bcsA respectively were affected. During the exposure to various stresses, the majority of killing occurred in ∆csgD. Whereas the co-culture (∆csgA: ∆bcsA) was able to resist stress like that of the STm WT. Phenotypic and morphological characteristics of the colonies were typed using congo red assay and the Influence of matrix on the architecture of biofilms was confirmed by scanning electron microscopy. CONCLUSION Our results show that matrix aids in survival during antibiotic, chlorine, and predatory stress. And possible sharing of the matrix is occurring in co-culture, with one counterbalancing the inability of the other when confronted with stress.
Collapse
Affiliation(s)
- Kavi Bharathi R
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Srinandan C S
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Sai Subramanian N
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India.
- Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to Be University, Tamil Nadu, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
73
|
Kim JY, Li ZP, Lee G, Kim JH, Shah AB, Lee YH, Park KH. Investigation of bacterial neuraminidase inhibition of xanthones bearing geranyl and prenyl groups from Cratoxylum cochinchinense. Front Chem 2023; 11:1245071. [PMID: 37621851 PMCID: PMC10445491 DOI: 10.3389/fchem.2023.1245071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction: The root of Cratoxylum cochinchinense has been widely used as Chinese folk medicine to cure fevers, burns, and abdominal complications because it contains various bioactive metabolites such as xanthones, triterpenes, and flavonoids. In this study, we estimated bacterial neuraminidase inhibition with a series of xanthones from C. cochinchinense. BNA has connected to various biological functions such as pathogenic bacteria infection inflammatory process after infection and biofilm formation. Methods: The identification of xanthones (1-6) bearing geranyl and prenyl groups was established by spectroscopic data using UV, IR, NMR, and HREIMS. BNA inhibitory modes of isolated xanthones were investigated by Double-reciprocal plots. Moreover, the competitive inhibitor was evaluated the additional kinetic modes determined by kinetic parameters (k 3, k 4, and K i app). The molecular docking (MD) and molecular dynamics simulations (MDS) studies also provided the critical information regarding the role of the geranyl and prenyl groups against BNA inhibition. Results: A series of xanthones (1-6) appended prenyl and geranyl groups on the A-ring were isolated, and compounds 1-3 were shown to be new xanthones. The analogues within this series were highly inhibited with excellent affinity against bacterial neuraminidase (BNA). A subtle change in the prenyl or geranyl motif affected the inhibitory potency and behavior significantly. For example, the inhibitory potency and binding affinity resulting from the geranyl group on C4: xanthone 1 (IC50 = 0.38 μM, KA = 2.4434 × 105 L·mol-1) were 100-fold different from those of xanthone 3 (IC50 = 35.8 μM, KA = 0.0002 × 105 L·mol-1). The most potent compound 1 was identified as a competitive inhibitor which interacted with BNA under reversible slow-binding inhibition: K i app = 0.1440 μM, k 3 = 0.1410 μM-1s-1, and k 4 = 0.0203 min-1. The inhibitory potencies (IC50) were doubly confirmed by the binding affinities (KA). Discussion: This study suggests the potential of xanthones derived from C. cochinchinense as promising candidates for developing novel BNA inhibitors. Further research and exploration of these xanthones may contribute to the development of effective treatments for bacterial infections and inflammatory processes associated with BNA activity.
Collapse
Affiliation(s)
- Jeong Yoon Kim
- Department of Pharmaceutical Engineering, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Zuo Peng Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Gihwan Lee
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong Ho Kim
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Abdul Bari Shah
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Yong Hyun Lee
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Ki Hun Park
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
74
|
Nucci A, Rocha EPC, Rendueles O. Latent evolution of biofilm formation depends on life-history and genetic background. NPJ Biofilms Microbiomes 2023; 9:53. [PMID: 37537176 PMCID: PMC10400614 DOI: 10.1038/s41522-023-00422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Adaptation to one environment can often generate phenotypic and genotypic changes which impact the future ability of an organism to thrive in other environmental conditions. In the context of host-microbe interactions, biofilm formation can increase survival rates in vivo upon exposure to stresses, like the host's immune system or antibiotic therapy. However, how the generic process of adaptation impacts the ability to form biofilm and how it may change through time has seldomly been studied. To do so, we used a previous evolution experiment with three strains of the Klebsiella pneumoniae species complex, in which we specifically did not select for biofilm formation. We observed that changes in the ability to form biofilm happened very fast at first and afterwards reverted to ancestral levels in many populations. Biofilm changes were associated to changes in population yield and surface polysaccharide production. Genotypically, mutations in the tip adhesin of type III fimbriae (mrkD) or the fim switch of type I fimbriae were shaped by nutrient availability during evolution, and their impact on biofilm formation was dependent on capsule production. Analyses of natural isolates revealed similar mutations in mrkD, suggesting that such mutations also play an important role in adaptation outside the laboratory. Our work reveals that the latent evolution of biofilm formation, and its temporal dynamics, depend on nutrient availability, the genetic background and other intertwined phenotypic and genotypic changes. Ultimately, it suggests that small differences in the environment can alter an organism's fate in more complex niches like the host.
Collapse
Affiliation(s)
- Amandine Nucci
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Olaya Rendueles
- Institut Pasteur, Université de Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France.
| |
Collapse
|
75
|
Chandra K, Nair AV, Chatterjee R, Muralidhara P, Singh A, Kamanna S, Tatu US, Chakravortty D. Absence of proline-peptide transporter YjiY in Salmonella Typhimurium leads to secretion of factors which inhibits intra-species biofilm formation. Microbiol Res 2023; 273:127411. [PMID: 37285689 DOI: 10.1016/j.micres.2023.127411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 06/09/2023]
Abstract
Salmonella is a genus of widely spread Gram negative, facultative anaerobic bacteria, which is known to cause ¼th of diarrheal morbidity and mortality globally. It causes typhoid fever and gastroenteritis by gaining access to the host gut through contaminated food and water. Salmonella utilizes its biofilm lifestyle to strongly resist antibiotics and persist in the host. Although biofilm removal or dispersal has been studied widely, the inhibition of the initiation of Salmonella Typhimurium (STM WT) biofilm remains elusive. This study demonstrates the anti-biofilm property of the cell-free supernatant obtained from a carbon-starvation induced proline peptide transporter mutant (STM ΔyjiY) strain. The STM ΔyjiY culture supernatant primarily inhibits biofilm initiation by regulating biofilm-associated transcriptional network that is reversed upon complementation (STM ΔyjiY:yjiY). We demonstrate that abundance of FlgM correlates with the absence of flagella in the STM ΔyjiY supernatant treated WT cells. NusG works synergistically with the global transcriptional regulator H-NS. Relatively low abundances of flavoredoxin, glutaredoxin, and thiol peroxidase might lead to accumulation of ROS within the biofilm, and subsequent toxicity in STM ΔyjiY supernatant. This work further suggests that targeting these oxidative stress relieving proteins might be a good choice to reduce Salmonella biofilm.
Collapse
Affiliation(s)
- Kasturi Chandra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ritika Chatterjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Prerana Muralidhara
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sathisha Kamanna
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Utpal S Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; Adjunct Faculty, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| |
Collapse
|
76
|
El-Essawy RH, Al-Ashry S, Sabet NE, Ghobashy AM. Assessment of depth of penetration and antibiofilm properties of Boswellia sacra compared with calcium hydroxide intracanal medicament (in vitro study). AUST ENDOD J 2023; 49:295-301. [PMID: 36004503 DOI: 10.1111/aej.12675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/08/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Successful endodontic treatment requires advanced materials to eliminate biofilm This study aims to assess the penetration depth and the effectiveness of Boswellia sacra as a novel intracanal medicament compared with calcium hydroxide against Enterococcus faecalis biofilm. 60 single-rooted teeth were decoronated, prepared and sterilised. Fifty teeth were contaminated with a culture of E. faecalis (ATCC 19433) for 21 days. Two teeth were used to confirm the biofilm using scanning electron microscope. For colony-forming unit (CFU), 40 samples were divided into one control group (calcium hydroxide) and the other experimental group (B. sacra). Each group was divided into two subgroups to be tested at 3 and 7 days. The minimum inhibitory concentration (MIC) of B. sacra was determined, and the B. sacra's ethanolic extract medicament was prepared. Eight discs divided into groups similar to CFU were used to evaluate live/dead bacteria using confocal laser scanning microscopy (CLSM). Ten teeth were selected for penetration depth using CLSM. The intracanal medicaments were mixed with 0.1% rhodamine B. were inserted into the root canals 0.2 slices were dissected and viewed under CLSM. The MIC of B. sacra was 1.25 mg/ml. The CFU evaluation proved that B. sacra are more effective than calcium hydroxide in the 3 days groups. However, it was statistically insignificant compared with calcium hydroxide after 7 days. The depth of penetration of B. sacra exceeds that of calcium hydroxide. B. sacra is an effective intracanal medicament.
Collapse
Affiliation(s)
| | - Salma Al-Ashry
- Department of Endodontics, Ain Shams University, Cairo, Egypt
| | | | | |
Collapse
|
77
|
Chua AJ, Francesco VD, Huang D, D'Souza A, Bleier BS, Amiji MM. Nanotechnology-enabled topical delivery of therapeutics in chronic rhinosinusitis. Nanomedicine (Lond) 2023; 18:1399-1415. [PMID: 37800470 DOI: 10.2217/nnm-2023-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a chronic inflammatory disease of the paranasal sinuses which represents a significant health burden due to its widespread prevalence and impact on patients' quality of life. As the molecular pathways driving and sustaining inflammation in CRS become better elucidated, the diversity of treatment options is likely to widen significantly. Nanotechnology offers several tools to enhance the effectiveness of topical therapies, which has been limited by factors such as poor drug retention, mucosal permeation and adhesion, removal by epithelial efflux pumps and the inability to effectively penetrate biofilms. In this review, we highlight the successful application of nanomedicine in the field of CRS therapeutics, discuss current limitations and propose opportunities for future work.
Collapse
Affiliation(s)
- Andy J Chua
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
- Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
- Department of Otorhinolaryngology - Head & Neck Surgery, Sengkang General Hospital, 110 Sengkang E Way, 544886, Singapore
| | - Valentina Di Francesco
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
| | - Di Huang
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
- Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
- Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA
| |
Collapse
|
78
|
Fiegna F, Pande S, Peitz H, Velicer GJ. Widespread density dependence of bacterial growth under acid stress. iScience 2023; 26:106952. [PMID: 37332671 PMCID: PMC10275722 DOI: 10.1016/j.isci.2023.106952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/27/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Many microbial phenotypes are density-dependent, including group-level phenotypes emerging from cooperation. However, surveys for the presence of a particular form of density dependence across diverse species are rare, as are direct tests for the Allee effect, i.e., positive density dependence of fitness. Here, we test for density-dependent growth under acid stress in five diverse bacterial species and find the Allee effect in all. Yet social protection from acid stress appears to have evolved by multiple mechanisms. In Myxococcus xanthus, a strong Allee effect is mediated by pH-regulated secretion of a diffusible molecule by high-density populations. In other species, growth from low density under acid stress was not enhanced by high-density supernatant. In M. xanthus, high cell density may promote predation on other microbes that metabolically acidify their environment, and acid-mediated density dependence may impact the evolution of fruiting-body development. More broadly, high density may protect most bacterial species against acid stress.
Collapse
Affiliation(s)
- Francesca Fiegna
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Samay Pande
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Gregory J. Velicer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
79
|
Hashem MH, Wehbe M, Damacet P, El Habbal RK, Ghaddar N, Ghali K, Ahmad MN, Karam P, Hmadeh M. Electrospun Metal-Organic Framework-Fabric Nanocomposites as Efficient Bactericides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37384737 DOI: 10.1021/acs.langmuir.3c01039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
In this work, we utilized electrospinning to develop advanced composite membranes of polyvinyl chloride (PVC) loaded with postmetalated metal-organic frameworks (MOFs), specifically UiO-66(COOH)2-Ag and ZIF-8-Ag. This innovative technique led to the creation of highly stable PVC/MOFs-Ag membrane composites, which were thoroughly characterized using various analytical techniques, including scanning electron microscopy, powder X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, porosity analysis, and water contact angle measurement. The results verified the successful integration of MOF crystals within the nanofibrous PVC membranes. The obtained composites exhibited larger fiber diameters for 5 and 10% MOF loadings and a smaller diameter for 20% loading. Additionally, they displayed greater average pore sizes than traditional PVC membranes across most MOF loading percentages. Furthermore, we examined the antibacterial properties of the fabricated membranes at different MOFs-Ag loadings. The findings revealed that the membranes demonstrated significant antibacterial activity up to 95% against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria as the MOFs-Ag loading increased, even when maintaining a constant silver concentration. This indicates a contact-based inhibition mechanism. The outcomes of this study have crucial implications for the development of novel, stable, and highly effective antibacterial materials, which could serve as superior alternatives for face masks and be integrated into materials requiring regular decontamination, as well as potential water filtration systems.
Collapse
Affiliation(s)
- Mohammad H Hashem
- Department of Mechanical Engineering, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mohamad Wehbe
- Chemistry Department, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Patrick Damacet
- Chemistry Department, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Rayan Kadah El Habbal
- Chemistry Department, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Nesreen Ghaddar
- Department of Mechanical Engineering, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Kamel Ghali
- Department of Mechanical Engineering, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mohammad N Ahmad
- Bahaa and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Faculty of Engineering and Architecture, American University of Beirut, P.O. Box 11-0236, Beirut 1107 2020, Lebanon
| | - Pierre Karam
- Chemistry Department, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| | - Mohamad Hmadeh
- Chemistry Department, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon
| |
Collapse
|
80
|
He Y, Vasilev K, Zilm P. pH-Responsive Biomaterials for the Treatment of Dental Caries-A Focussed and Critical Review. Pharmaceutics 2023; 15:1837. [PMID: 37514024 PMCID: PMC10385394 DOI: 10.3390/pharmaceutics15071837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Dental caries is a common and costly multifactorial biofilm disease caused by cariogenic bacteria that ferment carbohydrates to lactic acid, demineralizing the inorganic component of teeth. Therefore, low pH (pH 4.5) is a characteristic signal of the localised carious environment, compared to a healthy oral pH range (6.8 to 7.4). The development of pH-responsive delivery systems that release antibacterial agents in response to low pH has gained attention as a targeted therapy for dental caries. Release is triggered by high levels of acidogenic species and their reduction may select for the establishment of health-associated biofilm communities. Moreover, drug efficacy can be amplified by the modification of the delivery system to target adhesion to the plaque biofilm to extend the retention time of antimicrobial agents in the oral cavity. In this review, recent developments of different pH-responsive nanocarriers and their biofilm targeting mechanisms are discussed. This review critically discusses the current state of the art and innovations in the development and use of smart delivery materials for dental caries treatment. The authors' views for the future of the field are also presented.
Collapse
Affiliation(s)
- Yanping He
- Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
81
|
Zhou Y, Zhou Z, Zheng L, Gong Z, Li Y, Jin Y, Huang Y, Chi M. Urinary Tract Infections Caused by Uropathogenic Escherichia coli: Mechanisms of Infection and Treatment Options. Int J Mol Sci 2023; 24:10537. [PMID: 37445714 DOI: 10.3390/ijms241310537] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Urinary tract infections (UTIs) are common bacterial infections that represent a severe public health problem. They are often caused by Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumonia), Proteus mirabilis (P. mirabilis), Enterococcus faecalis (E. faecalis), and Staphylococcus saprophyticus (S. saprophyticus). Among these, uropathogenic E. coli (UPEC) are the most common causative agent in both uncomplicated and complicated UTIs. The adaptive evolution of UPEC has been observed in several ways, including changes in colonization, attachment, invasion, and intracellular replication to invade the urothelium and survive intracellularly. While antibiotic therapy has historically been very successful in controlling UTIs, high recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly reduce the efficacy of these treatments. Furthermore, the gradual global emergence of multidrug-resistant UPEC has highlighted the need to further explore its pathogenesis and seek alternative therapeutic and preventative strategies. Therefore, a thorough understanding of the clinical status and pathogenesis of UTIs and the advantages and disadvantages of antibiotics as a conventional treatment option could spark a surge in the search for alternative treatment options, especially vaccines and medicinal plants. Such options targeting multiple pathogenic mechanisms of UPEC are expected to be a focus of UTI management in the future to help combat antibiotic resistance.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zuying Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yang Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Mingyan Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| |
Collapse
|
82
|
Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023; 11:1614. [PMID: 37375116 PMCID: PMC10305407 DOI: 10.3390/microorganisms11061614] [Citation(s) in RCA: 243] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Biofilm is complex and consists of bacterial colonies that reside in an exopolysaccharide matrix that attaches to foreign surfaces in a living organism. Biofilm frequently leads to nosocomial, chronic infections in clinical settings. Since the bacteria in the biofilm have developed antibiotic resistance, using antibiotics alone to treat infections brought on by biofilm is ineffective. This review provides a succinct summary of the theories behind the composition of, formation of, and drug-resistant infections attributed to biofilm and cutting-edge curative approaches to counteract and treat biofilm. The high frequency of medical device-induced infections due to biofilm warrants the application of innovative technologies to manage the complexities presented by biofilm.
Collapse
Affiliation(s)
- Satish Sharma
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
| | - James Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Stanley A. Schwartz
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Medicine, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Liana Bruggemann
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY 14260, USA;
| | - Ravikumar Aalinkeel
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Medicine, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| |
Collapse
|
83
|
Burnett AJN, Rodriguez E, Constable S, Lowrance B, Fish M, Weadge JT. WssI from the Gram-Negative Bacterial Cellulose Synthase is an O-acetyltransferase that Acts on Cello-oligomers with Several Acetyl Donor Substrates. J Biol Chem 2023:104849. [PMID: 37224964 PMCID: PMC10302187 DOI: 10.1016/j.jbc.2023.104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
In microbial biofilms, bacterial cells are encased in a self-produced matrix of polymers (e.g., exopolysaccharides) that enable surface adherence and protect against environmental stressors. For example, the wrinkly spreader phenotype of Pseudomonas fluorescens colonizes food/water sources and human tissue to form robust biofilms that can spread across surfaces. This biofilm largely consists of bacterial cellulose produced by the cellulose synthase proteins encoded by the wss operon, which also occurs in other species, including pathogenic Achromobacter species. Although phenotypic mutant analysis of the wssFGHI genes has previously shown that they are responsible for acetylation of bacterial cellulose, their specific roles remain unknown and distinct from the recently identified cellulose phosphoethanolamine modification found in other species. Here we have purified the C-terminal soluble form of WssI from P. fluorescens and A. insuavis and demonstrated acetyl-esterase activity with chromogenic substrates. The kinetic parameters (kcat/KM values of 13 and 8.0 M-1∙ s-1, respectively) indicate that these enzymes are up to four times more catalytically efficient than the closest characterized homolog, AlgJ from the alginate synthase. Unlike AlgJ and its cognate alginate polymer, WssI also demonstrated acetyltransferase activity onto cellulose oligomers (e.g., cellotetraose to cellohexaose) with multiple acetyl-donor substrates (pNP-Ac, MU-Ac and acetyl-CoA). Finally, a high-throughput screen identified three low micromolar WssI inhibitors that may be useful for chemically interrogating cellulose acetylation and biofilm formation.
Collapse
Affiliation(s)
| | - Emily Rodriguez
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Shirley Constable
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Brian Lowrance
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Michael Fish
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Joel T Weadge
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
84
|
Ji H, Zhao L, Lv K, Zhang Y, Gao H, Gong Q, Yu W. Citrinin Is a Potential Quorum Sensing Inhibitor against Pseudomonas aeruginosa. Mar Drugs 2023; 21:md21050296. [PMID: 37233490 DOI: 10.3390/md21050296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that infects patients by regulating virulence factors and biofilms through a quorum sensing (QS) system to protect itself from antibiotics and environmental stress. Therefore, the development of quorum sensing inhibitors (QSIs) is expected to become a new strategy for studying drug resistance to P. aeruginosa infections. Marine fungi are valuable resources for screening QSIs. A marine fungus, Penicillium sp. JH1, with anti-QS activity was isolated from the offshore waters of Qingdao (China), and citrinin, a novel QSI, was purified from secondary metabolites of this fungus. Citrinin could significantly inhibit the production of violacein in Chromobacterium violaceum CV12472 and the production of three virulence factors (elastase, rhamnolipid and pyocyanin) in P. aeruginosa PAO1. It could also inhibit the biofilm formation and motility of PAO1. In addition, citrinin downregulated the transcript levels of nine genes (lasI, rhlI, pqsA, lasR, rhlR, pqsR, lasB, rhlA and phzH) associated with QS. Molecular docking results showed that citrinin bound to PqsR and LasR with better affinity than the natural ligands. This study laid a foundation for the further study of the structure optimization and structure-activity relationship of citrinin.
Collapse
Affiliation(s)
- Hongrui Ji
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Lu Zhao
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kaiwen Lv
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuzhu Zhang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Haibo Gao
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qianhong Gong
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
85
|
Venezia V, Verrillo M, Avallone PR, Silvestri B, Cangemi S, Pasquino R, Grizzuti N, Spaccini R, Luciani G. Waste to Wealth Approach: Improved Antimicrobial Properties in Bioactive Hydrogels through Humic Substance-Gelatin Chemical Conjugation. Biomacromolecules 2023. [PMID: 37167573 DOI: 10.1021/acs.biomac.3c00143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Exploring opportunities for biowaste valorization, herein, humic substances (HS) were combined with gelatin, a hydrophilic biocompatible and bioavailable polymer, to obtain 3D hydrogels. Hybrid gels (Gel HS) were prepared at different HS contents, exploiting physical or chemical cross-linking, through 1-ethyl-(3-3-dimethylaminopropyl)carbodiimide (EDC) chemistry, between HS and gelatin. Physicochemical features were assessed through rheological measurements, X-ray diffraction, attenuated total reflectance (ATR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy (SEM). ATR and NMR spectroscopies suggested the formation of an amide bond between HS and Gel via EDC chemistry. In addition, antioxidant and antimicrobial features toward both Gram(-) and Gram(+) strains were evaluated. HS confers great antioxidant and widespread antibiotic performance to the whole gel. Furthermore, the chemical cross-linking affects the viscoelastic behavior, crystalline structures, water uptake, and functional performance and produces a marked improvement of biocide action.
Collapse
Affiliation(s)
- Virginia Venezia
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
- DiSt, Department of Structures for Engineering and Architecture, University of Naples Federico II, Naples 80125, Italy
| | - Mariavittoria Verrillo
- Department of Agricultural Science, University of Naples Federico II, Portici 80125, Italy
| | - Pietro Renato Avallone
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Brigida Silvestri
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Silvana Cangemi
- Department of Agricultural Science, University of Naples Federico II, Portici 80125, Italy
| | - Rossana Pasquino
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Nino Grizzuti
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Riccardo Spaccini
- Department of Agricultural Science, University of Naples Federico II, Portici 80125, Italy
| | - Giuseppina Luciani
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| |
Collapse
|
86
|
Yang S, Wang Y, Ren F, Li Z, Dong Q. Applying enzyme treatments in Bacillus cereus biofilm removal. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
87
|
Gladysheva IV, Cherkasov SV. Antibiofilm activity of cell-free supernatants of vaginal isolates of Corynebacterium amycolatum against Pseudomonas aeruginosa and Klebsiella pneumoniae. Arch Microbiol 2023; 205:158. [PMID: 37004579 DOI: 10.1007/s00203-023-03498-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
Biofilm formation is an important factor in the development of antibiotic resistance and chronic infection. In this study, we demonstrated that the cell-free supernatant of vaginal isolates of C. amycolatum caused a reduction in biofilm formation, destroyed the preformed biofilms, altered the cell surface properties and reduced the production of exopolysaccharides in clinical isolates of P. aeruginosa и Kl. pneumoniae. Microscopic observations showed that P. aeruginosa and Kl. pneumoniae biofilm formed small clusters scattered over the surface after treatment with cell-free supernatant of C. amycolatum ICIS 99, in contrast to the dense aggregates observed in controls, as well as the flat, scattered, and unstructured biofilm architecture after treatment of preformed biofilms cell-free supernatant. The cells were flat and relatively unstructured. Based on these results, we hypothesize that C. amycolatum likely produces secondary metabolites with antimicrobial activity and utilizes a similar mechanism of action to bacteriocins and/or biosurfactants. The data obtained open the prospect of studying the metabolic profile of the cell-free supernatant of C. amycolatum to understand the nature and mechanism of the detected antibacterial action and provide further support for the probiotic potential of C. amycolatum vaginal isolates.
Collapse
Affiliation(s)
- Irina V Gladysheva
- Laboratory of Biomedical Technologies of Institute for Cellular and Intracellular Symbiosis UrB RAS, Orenburg, Russia.
| | - Sergey V Cherkasov
- Laboratory of Biomedical Technologies of Institute for Cellular and Intracellular Symbiosis UrB RAS, Orenburg, Russia
| |
Collapse
|
88
|
Regulski M, Myntti MF, James GA. Anti-Biofilm Efficacy of Commonly Used Wound Care Products in In Vitro Settings. Antibiotics (Basel) 2023; 12:antibiotics12030536. [PMID: 36978402 PMCID: PMC10044339 DOI: 10.3390/antibiotics12030536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Considering the prevalence and pathogenicity of biofilms in wounds, this study was designed to evaluate the anti-biofilm capabilities of eight commercially available wound care products using established in vitro assays for biofilms. The products evaluated included dressings with multiple delivery formats for ionic silver including nanocrystalline, gelling fibers, polyurethane (PU) foam, and polymer matrix. Additionally, non-silver-based products including an extracellular polymeric substance (EPS)-dissolving antimicrobial wound gel (BDWG), a collagenase-based debriding ointment and a fish skin-based skin substitute were also evaluated. The products were evaluated on Staphylococcus aureus and Pseudomonas aeruginosa mixed-species biofilms grown using colony drip flow reactor (CDFR) and standard drip flow reactor (DFR) methodologies. Anti-biofilm efficacy was measured by viable plate counts and confocal scanning laser microscopy (CSLM). Four of the eight wound care products tested were efficacious in inhibiting growth of new biofilm when compared with untreated controls. These four products were further evaluated against mature biofilms. BDWG was the only product that achieved greater than 2-log growth reduction (5.88 and 6.58 for S. aureus and P. aeruginosa, respectively) of a mature biofilm. Evaluating both biofilm prevention and mature biofilm disruption capacity is important to a comprehensive understanding of the anti-biofilm efficacy of wound care products.
Collapse
Affiliation(s)
- Matthew Regulski
- Wound Care Institute of Ocean County, 54 Bey Lea Road, Toms River, NJ 08753, USA
| | - Matthew F Myntti
- Next Science® LLC, 10550 Deerwood Park Blvd, Suite 300, Jacksonville, FL 32256, USA
| | - Garth A James
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| |
Collapse
|
89
|
Gao X, Liu Y, Li Y, Jin B, Jiang P, Chen X, Wei C, Sheng J, Liu YN, Li J, Chen W. Piezoelectric Nanozyme for Dual-Driven Catalytic Eradication of Bacterial Biofilms. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36880988 DOI: 10.1021/acsami.2c21901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Catalytic nanomedicine can in situ catalytically generate bactericidal species under external stimuli to defend against bacterial infections. However, bacterial biofilms seriously impede the catalytic efficacy of traditional nanocatalysts. In this work, MoSe2 nanoflowers (NFs) as piezoelectric nanozymes were constructed for dual-driven catalytic eradication of multi-drug-resistant bacterial biofilms. In the biofilm microenvironment, the piezoelectricity of MoSe2 NFs was cascaded with their enzyme-mimic activity, including glutathione oxidase-mimic and peroxidase-mimic activity. As a result, the oxidative stress in the biofilms was sharply elevated under ultrasound irradiation, achieving a 4.0 log10 reduction of bacterial cells. The in vivo studies reveal that the MoSe2 NFs efficiently relieve the methicillin-resistant Staphylococcus aureus bacterial burden in mice under the control of ultrasound at a low power density. Moreover, because of the surface coating of antioxidant poly(ethyleneimine), the dual-driven catalysis of MoSe2 NFs was retarded in normal tissues to minimize the off-target damage and favor the wound healing process. Therefore, the cascade of piezoelectricity and enzyme-mimic activity in MoSe2 NFs reveals a dual-driven strategy for improving the performance of catalytic nanomaterials in the eradication of bacterial biofilms.
Collapse
Affiliation(s)
- Xinyu Gao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yihong Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yuqing Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Bowen Jin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Peixi Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xi Chen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chuanwan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Jianping Sheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jianghua Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
90
|
Staphylococcus aureus Cell Wall Phenotypic Changes Associated with Biofilm Maturation and Water Availability: A Key Contributing Factor for Chlorine Resistance. Int J Mol Sci 2023; 24:ijms24054983. [PMID: 36902413 PMCID: PMC10003762 DOI: 10.3390/ijms24054983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Staphylococcus aureus biofilms are resistant to both antibiotics and disinfectants. As Staphylococci cell walls are an important defence mechanism, we sought to examine changes to the bacterial cell wall under different growth conditions. Cell walls of S. aureus grown as 3-day hydrated biofilm, 12-day hydrated biofilm, and 12-day dry surface biofilm (DSB) were compared to cell walls of planktonic organisms. Additionally, proteomic analysis using high-throughput tandem mass tag-based mass spectrometry was performed. Proteins involved in cell wall synthesis in biofilms were upregulated in comparison to planktonic growth. Bacterial cell wall width (measured by transmission electron microscopy) and peptidoglycan production (detected using a silkworm larva plasma system) increased with biofilm culture duration (p < 0.001) and dehydration (p = 0.002). Similarly, disinfectant tolerance was greatest in DSB, followed by 12-day hydrated biofilm and then 3-day biofilm, and it was least in the planktonic bacteria--suggesting that changes to the cell wall may be a key factor for S. aureus biofilm biocide resistance. Our findings shed light on possible new targets to combat biofilm-related infections and hospital dry surface biofilms.
Collapse
|
91
|
Associational Resistance to Predation by Protists in a Mixed Species Biofilm. Appl Environ Microbiol 2023; 89:e0174122. [PMID: 36656007 PMCID: PMC9972941 DOI: 10.1128/aem.01741-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mixed species biofilms exhibit increased tolerance to numerous stresses compared to single species biofilms. The aim of this study was to examine the effect of grazing by the heterotrophic protist, Tetrahymena pyriformis, on a mixed species biofilm consisting of Pseudomonas aeruginosa, Pseudomonas protegens, and Klebsiella pneumoniae. Protozoan grazing significantly reduced the single species K. pneumoniae biofilm, and the single species P. protegens biofilm was also sensitive to grazing. In contrast, P. aeruginosa biofilms were resistant to predation. This resistance protected the otherwise sensitive members of the mixed species biofilm consortium. Rhamnolipids produced by P. aeruginosa were shown to be the primary toxic factor for T. pyriformis. However, a rhamnolipid-deficient mutant of P. aeruginosa (P. aeruginosa ΔrhlAB) maintained grazing resistance in the biofilm, suggesting the presence of at least one additional protective mechanism. P. aeruginosa with a deleted gene encoding the type III secretion system also resisted grazing. A transposon library was generated in the ΔrhlAB mutant to identify the additional factor involved in community biofilm protection. Results indicated that the Pseudomonas Quinolone Signal (PQS), a quorum sensing signaling molecule, was likely responsible for this effect. We confirmed this observation by showing that double mutants of ΔrhlAB and genes in the PQS biosynthetic operon lost grazing protection. We also showed that PQS was directly toxic to T. pyriformis. This study demonstrates that residing in a mixed species biofilm can be an advantageous strategy for grazing sensitive bacterial species, as P. aeruginosa confers community protection from protozoan grazing through multiple mechanisms. IMPORTANCE Biofilms have been shown to protect bacterial cells from predation by protists. Biofilm studies have traditionally used single species systems, which have provided information on the mechanisms and regulation of biofilm formation and dispersal, and the effects of predation on these biofilms. However, biofilms in nature are comprised of multiple species. To better understand how multispecies biofilms are impacted by predation, a model mixed-species biofilm was here exposed to protozoan predation. We show that the grazing sensitive strains K. pneumonia and P. protogens gained associational resistance from the grazing resistant P. aeruginosa. Resistance was due to the secretion of rhamnolipids and quorum sensing molecule PQS. This work highlights the importance of using mixed species systems.
Collapse
|
92
|
Crivello G, Fracchia L, Ciardelli G, Boffito M, Mattu C. In Vitro Models of Bacterial Biofilms: Innovative Tools to Improve Understanding and Treatment of Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050904. [PMID: 36903781 PMCID: PMC10004855 DOI: 10.3390/nano13050904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/02/2023]
Abstract
Bacterial infections are a growing concern to the health care systems. Bacteria in the human body are often found embedded in a dense 3D structure, the biofilm, which makes their eradication even more challenging. Indeed, bacteria in biofilm are protected from external hazards and are more prone to develop antibiotic resistance. Moreover, biofilms are highly heterogeneous, with properties dependent on the bacteria species, the anatomic localization, and the nutrient/flow conditions. Therefore, antibiotic screening and testing would strongly benefit from reliable in vitro models of bacterial biofilms. This review article summarizes the main features of biofilms, with particular focus on parameters affecting biofilm composition and mechanical properties. Moreover, a thorough overview of the in vitro biofilm models recently developed is presented, focusing on both traditional and advanced approaches. Static, dynamic, and microcosm models are described, and their main features, advantages, and disadvantages are compared and discussed.
Collapse
Affiliation(s)
- G. Crivello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - L. Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - G. Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - M. Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - C. Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
93
|
Morris D, Flores M, Harris L, Gammon J, Nigam Y. Larval Therapy and Larval Excretions/Secretions: A Potential Treatment for Biofilm in Chronic Wounds? A Systematic Review. Microorganisms 2023; 11:microorganisms11020457. [PMID: 36838422 PMCID: PMC9965881 DOI: 10.3390/microorganisms11020457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Chronic wounds present a global healthcare challenge and are increasing in prevalence, with bacterial biofilms being the primary roadblock to healing in most cases. A systematic review of the to-date knowledge on larval therapy's interaction with chronic-wound biofilm is presented here. The findings detail how larval therapy-the controlled application of necrophagous blowfly larvae-acts on biofilms produced by chronic-wound-relevant bacteria through their principle pharmacological mode of action: the secretion and excretion of biologically active substances into the wound bed. A total of 12 inclusion-criteria-meeting publications were identified following the application of a PRISMA-guided methodology for a systematic review. The findings of these publications were qualitatively analyzed to provide a summary of the prevailing understanding of larval therapy's effects on bacterial biofilm. A further review assessed the quality of the existing evidence to identify knowledge gaps and suggest ways these may be bridged. In summary, larval therapy has a seemingly unarguable ability to inhibit and degrade bacterial biofilms associated with impaired wound healing. However, further research is needed to clarify and standardize the methodological approach in this area of investigation. Such research may lead to the clinical application of larval therapy or derivative treatments for the management of chronic-wound biofilms and improve patient healing outcomes at a time when alternative therapies are desperately needed.
Collapse
Affiliation(s)
- Daniel Morris
- Faculty of Medicine, Health, and Life Science, Swansea University, Swansea SA2 8PP, UK
- BioMonde, Bridgend CF31 3BG, UK
| | | | - Llinos Harris
- Faculty of Medicine, Health, and Life Science, Swansea University, Swansea SA2 8PP, UK
| | - John Gammon
- Faculty of Medicine, Health, and Life Science, Swansea University, Swansea SA2 8PP, UK
| | - Yamni Nigam
- Faculty of Medicine, Health, and Life Science, Swansea University, Swansea SA2 8PP, UK
- Correspondence:
| |
Collapse
|
94
|
Dinesh R, Sreena CP, Sheeja TE, Charles S, Srinivasan V, Sajith V, Subila KP, Haritha P. Metagenomics indicates abundance of biofilm related genes and horizontal transfer of multidrug resistant genes among bacterial communities in nano zinc oxide polluted soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160032. [PMID: 36370776 DOI: 10.1016/j.scitotenv.2022.160032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The unsafe and reckless disposal of metal oxide nanoparticles like ZnO (nZnO) into the soil could seriously impact bacterial behavioural responses and functions. Under such stress, biofilm formation is considered to be a robust mechanism for bacterial survival in soil. We examined the response of bacterial metagenomes in soils exposed to varying levels of Zn (50, 200, 500 and 1000 mg kg-1) as nano Zn oxide (nZnO) in terms of biofilm genesis and regulation and their co-occurrences with multidrug resistance genes (MDRGs) and mobile genetic elements (MGEs). The size-specific effects of nZnO were verified using its bulk counterpart (bZnO). Both nZnO and bZnO facilitated profusion of biofilm related genes (BGs) especially at higher Zn levels (500 and 1000 mg kg-1 Zn), though maximum abundance was registered at a comparatively lower level under nZnO. In general, nZnO favoured an enhancement of genes involved in exopolysaccharide biosynthesis and attachment, while bZnO favoured genes related to capsule formation, chemotaxis and biofilm dispersion. Co-occurrence network analysis revealed significant positive correlations between abundances of BGs, MDRGs and MGEs, indicating an enhanced probability for horizontal gene transfer of MDRGs in nZnO polluted soils.
Collapse
Affiliation(s)
- R Dinesh
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - C P Sreena
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - T E Sheeja
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India.
| | - Sona Charles
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - V Srinivasan
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - V Sajith
- National Institute of Technology, NIT Campus PO, Kozhikode, Kerala 673012, India
| | - K P Subila
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - P Haritha
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| |
Collapse
|
95
|
Doherty C, Byrne CV, Baqader S, El-Chami C, McBain AJ, Thomason HA. Anti-biofilm effects and healing promotion by silver oxynitrate-based dressings. Sci Rep 2023; 13:2014. [PMID: 36737464 PMCID: PMC9898495 DOI: 10.1038/s41598-022-26856-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/21/2022] [Indexed: 02/05/2023] Open
Abstract
Microbial growth within a wound often manifests as biofilms, which can prevent healing and is difficult to eradicate. Novel silver dressings claim to combat wound infection, but anti-biofilm efficacy and effects on healing independent of infection are often unclear. Using in vitro and in vivo S. aureus and P. aeruginosa biofilm models, we report the efficacy of a dressing which produces Ag1+ ions; an Ag1+ dressing containing ethylenediaminetetraacetic acid and benzethonium chloride (Ag1+/EDTA/BC), and a dressing containing silver oxynitrate (Ag Oxysalts) which produces Ag1+, Ag2+ and Ag3+ ions, against wound biofilms, and their effects on healing. Ag1+ dressings had minimal effect on in vitro and murine (C57BL/6j) wound biofilms. In contrast, Ag Oxysalts and Ag1+/EDTA/BC dressings significantly reduced viable bacteria within in vitro biofilms and demonstrated a visible reduction in bacteria and EPS components within murine wound biofilms. The dressings had different effects on the healing of biofilm-infected and uninfected wounds, with Ag Oxysalts dressings having a greater beneficial effect on re-epithelialisation, wound size and inflammation than the control treatment and the other silver dressings. The different physicochemical properties of the silver dressings result in varied effects on wound biofilms and healing which should be considered when selecting dressings to treat biofilm-infected wounds.
Collapse
Affiliation(s)
- Christopher Doherty
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Charlotte V Byrne
- 3M Medical Solutions Division. King Edward Court, King Edward Road, Knutsford, Cheshire, WA16 0BE, UK
| | - Sajwa Baqader
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.,Community Nursing and Healthcare Department, Faculty of Nursing, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Cecile El-Chami
- School of Biological Sciences, Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| | - Helen A Thomason
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,3M Medical Solutions Division. King Edward Court, King Edward Road, Knutsford, Cheshire, WA16 0BE, UK.
| |
Collapse
|
96
|
Natural Medicine a Promising Candidate in Combating Microbial Biofilm. Antibiotics (Basel) 2023; 12:antibiotics12020299. [PMID: 36830210 PMCID: PMC9952808 DOI: 10.3390/antibiotics12020299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Studies on biofilm-related infections are gaining prominence owing to their involvement in most clinical infections and seriously threatening global public health. A biofilm is a natural form of bacterial growth ubiquitous in ecological niches, considered to be a generic survival mechanism adopted by both pathogenic and non-pathogenic microorganisms and entailing heterogeneous cell development within the matrix. In the ecological niche, quorum sensing is a communication channel that is crucial to developing biofilms. Biofilm formation leads to increased resistance to unfavourable ecological effects, comprising resistance to antibiotics and antimicrobial agents. Biofilms are frequently combated with modern conventional medicines such as antibiotics, but at present, they are considered inadequate for the treatment of multi-drug resistance; therefore, it is vital to discover some new antimicrobial agents that can prevent the production and growth of biofilm, in addition to minimizing the side effects of such therapies. In the search for some alternative and safe therapies, natural plant-derived phytomedicines are gaining popularity among the research community. Phytomedicines are natural agents derived from natural plants. These plant-derived agents may include flavonoids, terpenoids, lectins, alkaloids, polypeptides, polyacetylenes, phenolics, and essential oils. Since they are natural agents, they cause minimal side effects, so could be administered with dose flexibility. It is vital to discover some new antimicrobial agents that can control the production and growth of biofilms. This review summarizes and analyzes the efficacy characteristics and corresponding mechanisms of natural-product-based antibiofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and their sources, along with their mechanism, quorum sensing signalling pathways, disrupting extracellular matrix adhesion. The review also provides some other strategies to inhibit biofilm-related illness. The prepared list of newly discovered natural antibiofilm agents could help in devising novel strategies for biofilm-associated infections.
Collapse
|
97
|
Pompilio A, Scocchi M, Mangoni ML, Shirooie S, Serio A, Ferreira Garcia da Costa Y, Alves MS, Şeker Karatoprak G, Süntar I, Khan H, Di Bonaventura G. Bioactive compounds: a goldmine for defining new strategies against pathogenic bacterial biofilms? Crit Rev Microbiol 2023; 49:117-149. [PMID: 35313120 DOI: 10.1080/1040841x.2022.2038082] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Most human infectious diseases are caused by microorganisms growing as biofilms. These three-dimensional self-organized communities are embedded in a dense matrix allowing microorganisms to persistently inhabit abiotic and biotic surfaces due to increased resistance to both antibiotics and effectors of the immune system. Consequently, there is an urgent need for novel strategies to control biofilm-associated infections. Natural products offer a vast array of chemical structures and possess a wide variety of biological properties; therefore, they have been and continue to be exploited in the search for potential biofilm inhibitors with a specific or multi-locus mechanism of action. This review provides an updated discussion of the major bioactive compounds isolated from several natural sources - such as plants, lichens, algae, microorganisms, animals, and humans - with the potential to inhibit biofilm formation and/or to disperse established biofilms by bacterial pathogens. Despite the very large number of bioactive products, their exact mechanism of action often remains to be clarified and, in some cases, the identity of the active molecule is still unknown. This knowledge gap should be filled thus allowing development of these products not only as novel drugs to combat bacterial biofilms, but also as antibiotic adjuvants to restore the therapeutic efficacy of current antibiotics.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Sapienza University of Rome, Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ygor Ferreira Garcia da Costa
- Laboratory of Cellular and Molecular Bioactivity, Pharmaceutical Research Center, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Maria Silvana Alves
- Laboratory of Cellular and Molecular Bioactivity, Pharmaceutical Research Center, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Talas, Kayseri, Turkey
| | - Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
98
|
Christine E, Olive C, Louisin M, Dramé M, Marion‐Sanchez K. A new spray-based method for the in-vitro development of dry-surface biofilms. Microbiologyopen 2023; 12:e1330. [PMID: 36825879 PMCID: PMC9834607 DOI: 10.1002/mbo3.1330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023] Open
Abstract
The inanimate environment immediately surrounding the patient in healthcare facilities is a reservoir of microorganisms embedded in dry-surface biofilms (DSB). These biofilms, first highlighted in 2012, are increasingly studied, but currently available in-vitro models only allow for the growth of semi-hydrated biofilms. We developed a new in-vitro method under actual dehydration conditions based on the hypothesis that surface contamination is mainly due to splashes of respiratory secretions. The main objective of this study was to show that the operating conditions we have defined allowed the growth of DSB with a methicillin resistant Staphylococcus aureus strain. The second objective was to show that extended-spectrum beta-lactamase-producing Enterobacteriaceae, that is, Klebsiella pneumoniae and Enterobacter cloacae were also able to grow such biofilms under these conditions. Monobacterial suspensions in sterile artificial saliva (SAS) were sprayed onto polyethylene surfaces. Nutrients and hydration were provided daily by spraying SAS enriched with 20% of Brain Heart Infusion broth. The primary outcome was mean surface coverage measured by image analysis after crystal violet staining. The method applied to S. aureus for 12 days resulted in reproducible and repeatable DSB consisting of isolated and confluent microcolonies embedded in extracellular polymeric substances as shown in scanning electron microscopy images. Similar DSB were obtained with both Enterobacteriaceae applying the same method. No interspecies variation was shown between the three strains in terms of surface coverage. These first trials are the starting point for a 3-year study currently in process.
Collapse
Affiliation(s)
- Esther Christine
- Department of BacteriologyHygiene and Environment Laboratory, CHU MartiniqueCS 90632Fort‐de‐FranceCedexMartinique
| | - Claude Olive
- Department of BacteriologyHygiene and Environment Laboratory, CHU MartiniqueCS 90632Fort‐de‐FranceCedexMartinique
| | - Myriam Louisin
- Department of BacteriologyHygiene and Environment Laboratory, CHU MartiniqueCS 90632Fort‐de‐FranceCedexMartinique
| | - Moustapha Dramé
- Department of Clinical Research and InnovationCHU MartiniqueCS 90632Fort‐de‐FranceCedexMartinique
| | - Karine Marion‐Sanchez
- Department of BacteriologyHygiene and Environment Laboratory, CHU MartiniqueCS 90632Fort‐de‐FranceCedexMartinique
- Department of Hospital HygieneCHU MartiniqueCS 90632Fort‐de‐FranceCedexMartinique
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, Université des Antilles, Inserm, Etablissement Français du SangCHU MartiniqueMontpellierFrance
| |
Collapse
|
99
|
Han J, Zeng S, Chen Y, Li H, Yoon J. Prospects of coupled iron-based nanostructures in preclinical antibacterial therapy. Adv Drug Deliv Rev 2023; 193:114672. [PMID: 36592895 DOI: 10.1016/j.addr.2022.114672] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/13/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
Bacterial infections can threaten human health. Drug-resistant bacteria have become a challenge because of the excessive use of drugs. We summarize the current metallic antibacterial materials, especially Fe-based materials, for efficiently killing bacteria. The possible antibacterial mechanisms of metallic antibacterial agents are classified into interactions with bacterial proteins, iron metabolism, catalytic activity, and combinations of magnetic, photodynamic, and photothermal effects. This review will inspire the development of novel Fe-based antibacterial agents for clinical settings.
Collapse
Affiliation(s)
- Jingjing Han
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760 Republic of Korea; Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Shuang Zeng
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024 China
| | - Yahui Chen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760 Republic of Korea; New and Renewable Energy Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024 China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760 Republic of Korea.
| |
Collapse
|
100
|
Heydarian N, Wouters CL, Neel A, Ferrell M, Panlilio H, Haight T, Gu T, Rice CV. Eradicating Biofilms of Carbapenem-Resistant Enterobacteriaceae by Simultaneously Dispersing the Biomass and Killing Planktonic Bacteria with PEGylated Branched Polyethyleneimine. ChemMedChem 2023; 18:e202200428. [PMID: 36542457 PMCID: PMC9899318 DOI: 10.1002/cmdc.202200428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are emerging pathogens that cause variety of severe infections. CRE evade antibiotic treatments because these bacteria produce enzymes that degrade a wide range of antibiotics including carbapenems and β-lactams. The formation of biofilms aggravates CRE infections, especially in a wound environment. These difficulties lead to persistent infection and non-healing wounds. This creates the need for new compounds to overcome CRE antimicrobial resistance and disrupt biofilms. Recent studies in our lab show that 600 Da branched polyethyleneimine (BPEI) and its derivative PEG350-BPEI can overcome antimicrobial resistance and eradicate biofilms in methicillin-resistant S. aureus, methicillin-resistant S. epidermidis, P. aeruginosa, and E. coli. In this study, the ability of 600 Da BPEI and PEG350-BPEI to eradicate carbapenem-resistant Enterobacteriaceae bacteria and their biofilms is demonstrated. We show that both BPEI and PEG350-BPEI have anti-biofilm efficacy against CRE strains expressing Klebsiella pneumoniae carbapenemases (KPCs) and metallo-β-lactamases (MBLs), such as New Delhi MBL (NDM-1). Furthermore, our results illustrate that BPEI affects planktonic CRE bacteria by increasing bacterial length and width from the inability to proceed with normal cell division processes. These data demonstrate the multi-functional properties of 600 Da BPEI and PEG350-BPEI to reduce biofilm formation and mitigate virulence in carbapenem-resistant Enterobacteriaceae.
Collapse
Affiliation(s)
- Neda Heydarian
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Cassandra L. Wouters
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Andrew Neel
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Maya Ferrell
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Tristan Haight
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| | - Tingting Gu
- Department of Biology, 730 Van Vleet Oval, Room 314, University of Oklahoma, Norman, OK 73019, USA
| | - Charles V. Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019
| |
Collapse
|